vtn: Clean up acos implementation.
[mesa.git] / src / compiler / nir / spirv / vtn_glsl450.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "GLSL.std.450.h"
30
31 #define M_PIf ((float) M_PI)
32 #define M_PI_2f ((float) M_PI_2)
33 #define M_PI_4f ((float) M_PI_4)
34
35 static nir_ssa_def *
36 build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
37 {
38 unsigned swiz[4] = {1, 0, 0, 0};
39 nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true));
40 return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
41 }
42
43 static nir_ssa_def *
44 build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
45 {
46 unsigned yzx[4] = {1, 2, 0, 0};
47 unsigned zxy[4] = {2, 0, 1, 0};
48
49 nir_ssa_def *prod0 =
50 nir_fmul(b, col[0],
51 nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true),
52 nir_swizzle(b, col[2], zxy, 3, true)));
53 nir_ssa_def *prod1 =
54 nir_fmul(b, col[0],
55 nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true),
56 nir_swizzle(b, col[2], yzx, 3, true)));
57
58 nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
59
60 return nir_fadd(b, nir_channel(b, diff, 0),
61 nir_fadd(b, nir_channel(b, diff, 1),
62 nir_channel(b, diff, 2)));
63 }
64
65 static nir_ssa_def *
66 build_mat4_det(nir_builder *b, nir_ssa_def **col)
67 {
68 nir_ssa_def *subdet[4];
69 for (unsigned i = 0; i < 4; i++) {
70 unsigned swiz[3];
71 for (unsigned j = 0, k = 0; j < 3; j++, k++) {
72 if (k == i)
73 k++; /* skip column */
74 swiz[j] = k;
75 }
76
77 nir_ssa_def *subcol[3];
78 subcol[0] = nir_swizzle(b, col[1], swiz, 3, true);
79 subcol[1] = nir_swizzle(b, col[2], swiz, 3, true);
80 subcol[2] = nir_swizzle(b, col[3], swiz, 3, true);
81
82 subdet[i] = build_mat3_det(b, subcol);
83 }
84
85 nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
86
87 return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
88 nir_channel(b, prod, 1)),
89 nir_fsub(b, nir_channel(b, prod, 2),
90 nir_channel(b, prod, 3)));
91 }
92
93 static nir_ssa_def *
94 build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
95 {
96 unsigned size = glsl_get_vector_elements(src->type);
97
98 nir_ssa_def *cols[4];
99 for (unsigned i = 0; i < size; i++)
100 cols[i] = src->elems[i]->def;
101
102 switch(size) {
103 case 2: return build_mat2_det(&b->nb, cols);
104 case 3: return build_mat3_det(&b->nb, cols);
105 case 4: return build_mat4_det(&b->nb, cols);
106 default:
107 unreachable("Invalid matrix size");
108 }
109 }
110
111 /* Computes the determinate of the submatrix given by taking src and
112 * removing the specified row and column.
113 */
114 static nir_ssa_def *
115 build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
116 unsigned size, unsigned row, unsigned col)
117 {
118 assert(row < size && col < size);
119 if (size == 2) {
120 return nir_channel(b, src->elems[1 - col]->def, 1 - row);
121 } else {
122 /* Swizzle to get all but the specified row */
123 unsigned swiz[3];
124 for (unsigned j = 0; j < 4; j++)
125 swiz[j - (j > row)] = j;
126
127 /* Grab all but the specified column */
128 nir_ssa_def *subcol[3];
129 for (unsigned j = 0; j < size; j++) {
130 if (j != col) {
131 subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
132 swiz, size - 1, true);
133 }
134 }
135
136 if (size == 3) {
137 return build_mat2_det(b, subcol);
138 } else {
139 assert(size == 4);
140 return build_mat3_det(b, subcol);
141 }
142 }
143 }
144
145 static struct vtn_ssa_value *
146 matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
147 {
148 nir_ssa_def *adj_col[4];
149 unsigned size = glsl_get_vector_elements(src->type);
150
151 /* Build up an adjugate matrix */
152 for (unsigned c = 0; c < size; c++) {
153 nir_ssa_def *elem[4];
154 for (unsigned r = 0; r < size; r++) {
155 elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
156
157 if ((r + c) % 2)
158 elem[r] = nir_fneg(&b->nb, elem[r]);
159 }
160
161 adj_col[c] = nir_vec(&b->nb, elem, size);
162 }
163
164 nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
165
166 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
167 for (unsigned i = 0; i < size; i++)
168 val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
169
170 return val;
171 }
172
173 static nir_ssa_def*
174 build_length(nir_builder *b, nir_ssa_def *vec)
175 {
176 switch (vec->num_components) {
177 case 1: return nir_fsqrt(b, nir_fmul(b, vec, vec));
178 case 2: return nir_fsqrt(b, nir_fdot2(b, vec, vec));
179 case 3: return nir_fsqrt(b, nir_fdot3(b, vec, vec));
180 case 4: return nir_fsqrt(b, nir_fdot4(b, vec, vec));
181 default:
182 unreachable("Invalid number of components");
183 }
184 }
185
186 static inline nir_ssa_def *
187 build_fclamp(nir_builder *b,
188 nir_ssa_def *x, nir_ssa_def *min_val, nir_ssa_def *max_val)
189 {
190 return nir_fmin(b, nir_fmax(b, x, min_val), max_val);
191 }
192
193 /**
194 * Return e^x.
195 */
196 static nir_ssa_def *
197 build_exp(nir_builder *b, nir_ssa_def *x)
198 {
199 return nir_fexp2(b, nir_fmul(b, x, nir_imm_float(b, M_LOG2E)));
200 }
201
202 /**
203 * Return ln(x) - the natural logarithm of x.
204 */
205 static nir_ssa_def *
206 build_log(nir_builder *b, nir_ssa_def *x)
207 {
208 return nir_fmul(b, nir_flog2(b, x), nir_imm_float(b, 1.0 / M_LOG2E));
209 }
210
211 /**
212 * Approximate asin(x) by the formula:
213 * asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
214 *
215 * which is correct to first order at x=0 and x=±1 regardless of the p
216 * coefficients but can be made second-order correct at both ends by selecting
217 * the fit coefficients appropriately. Different p coefficients can be used
218 * in the asin and acos implementation to minimize some relative error metric
219 * in each case.
220 */
221 static nir_ssa_def *
222 build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
223 {
224 nir_ssa_def *abs_x = nir_fabs(b, x);
225 return nir_fmul(b, nir_fsign(b, x),
226 nir_fsub(b, nir_imm_float(b, M_PI_2f),
227 nir_fmul(b, nir_fsqrt(b, nir_fsub(b, nir_imm_float(b, 1.0f), abs_x)),
228 nir_fadd(b, nir_imm_float(b, M_PI_2f),
229 nir_fmul(b, abs_x,
230 nir_fadd(b, nir_imm_float(b, M_PI_4f - 1.0f),
231 nir_fmul(b, abs_x,
232 nir_fadd(b, nir_imm_float(b, p0),
233 nir_fmul(b, abs_x,
234 nir_imm_float(b, p1))))))))));
235 }
236
237 /**
238 * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
239 */
240 static nir_ssa_def *
241 build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
242 {
243 nir_ssa_def *accum = xs[0];
244
245 for (int i = 1; i < terms; i++)
246 accum = nir_fadd(b, accum, xs[i]);
247
248 return accum;
249 }
250
251 static nir_ssa_def *
252 build_atan(nir_builder *b, nir_ssa_def *y_over_x)
253 {
254 nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
255 nir_ssa_def *one = nir_imm_float(b, 1.0f);
256
257 /*
258 * range-reduction, first step:
259 *
260 * / y_over_x if |y_over_x| <= 1.0;
261 * x = <
262 * \ 1.0 / y_over_x otherwise
263 */
264 nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
265 nir_fmax(b, abs_y_over_x, one));
266
267 /*
268 * approximate atan by evaluating polynomial:
269 *
270 * x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
271 * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
272 * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
273 */
274 nir_ssa_def *x_2 = nir_fmul(b, x, x);
275 nir_ssa_def *x_3 = nir_fmul(b, x_2, x);
276 nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2);
277 nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2);
278 nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2);
279 nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
280
281 nir_ssa_def *polynomial_terms[] = {
282 nir_fmul(b, x, nir_imm_float(b, 0.9999793128310355f)),
283 nir_fmul(b, x_3, nir_imm_float(b, -0.3326756418091246f)),
284 nir_fmul(b, x_5, nir_imm_float(b, 0.1938924977115610f)),
285 nir_fmul(b, x_7, nir_imm_float(b, -0.1173503194786851f)),
286 nir_fmul(b, x_9, nir_imm_float(b, 0.0536813784310406f)),
287 nir_fmul(b, x_11, nir_imm_float(b, -0.0121323213173444f)),
288 };
289
290 nir_ssa_def *tmp =
291 build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
292
293 /* range-reduction fixup */
294 tmp = nir_fadd(b, tmp,
295 nir_fmul(b,
296 nir_b2f(b, nir_flt(b, one, abs_y_over_x)),
297 nir_fadd(b, nir_fmul(b, tmp,
298 nir_imm_float(b, -2.0f)),
299 nir_imm_float(b, M_PI_2f))));
300
301 /* sign fixup */
302 return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
303 }
304
305 static nir_ssa_def *
306 build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
307 {
308 nir_ssa_def *zero = nir_imm_float(b, 0.0f);
309
310 /* If |x| >= 1.0e-8 * |y|: */
311 nir_ssa_def *condition =
312 nir_fge(b, nir_fabs(b, x),
313 nir_fmul(b, nir_imm_float(b, 1.0e-8f), nir_fabs(b, y)));
314
315 /* Then...call atan(y/x) and fix it up: */
316 nir_ssa_def *atan1 = build_atan(b, nir_fdiv(b, y, x));
317 nir_ssa_def *r_then =
318 nir_bcsel(b, nir_flt(b, x, zero),
319 nir_fadd(b, atan1,
320 nir_bcsel(b, nir_fge(b, y, zero),
321 nir_imm_float(b, M_PIf),
322 nir_imm_float(b, -M_PIf))),
323 atan1);
324
325 /* Else... */
326 nir_ssa_def *r_else =
327 nir_fmul(b, nir_fsign(b, y), nir_imm_float(b, M_PI_2f));
328
329 return nir_bcsel(b, condition, r_then, r_else);
330 }
331
332 static nir_ssa_def *
333 build_frexp(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
334 {
335 nir_ssa_def *abs_x = nir_fabs(b, x);
336 nir_ssa_def *zero = nir_imm_float(b, 0.0f);
337
338 /* Single-precision floating-point values are stored as
339 * 1 sign bit;
340 * 8 exponent bits;
341 * 23 mantissa bits.
342 *
343 * An exponent shift of 23 will shift the mantissa out, leaving only the
344 * exponent and sign bit (which itself may be zero, if the absolute value
345 * was taken before the bitcast and shift.
346 */
347 nir_ssa_def *exponent_shift = nir_imm_int(b, 23);
348 nir_ssa_def *exponent_bias = nir_imm_int(b, -126);
349
350 nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x807fffffu);
351
352 /* Exponent of floating-point values in the range [0.5, 1.0). */
353 nir_ssa_def *exponent_value = nir_imm_int(b, 0x3f000000u);
354
355 nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
356
357 *exponent =
358 nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
359 nir_bcsel(b, is_not_zero, exponent_bias, zero));
360
361 return nir_ior(b, nir_iand(b, x, sign_mantissa_mask),
362 nir_bcsel(b, is_not_zero, exponent_value, zero));
363 }
364
365 static void
366 handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
367 const uint32_t *w, unsigned count)
368 {
369 struct nir_builder *nb = &b->nb;
370 const struct glsl_type *dest_type =
371 vtn_value(b, w[1], vtn_value_type_type)->type->type;
372
373 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
374 val->ssa = vtn_create_ssa_value(b, dest_type);
375
376 /* Collect the various SSA sources */
377 unsigned num_inputs = count - 5;
378 nir_ssa_def *src[3];
379 for (unsigned i = 0; i < num_inputs; i++)
380 src[i] = vtn_ssa_value(b, w[i + 5])->def;
381
382 nir_op op;
383 switch (entrypoint) {
384 case GLSLstd450Round: op = nir_op_fround_even; break; /* TODO */
385 case GLSLstd450RoundEven: op = nir_op_fround_even; break;
386 case GLSLstd450Trunc: op = nir_op_ftrunc; break;
387 case GLSLstd450FAbs: op = nir_op_fabs; break;
388 case GLSLstd450SAbs: op = nir_op_iabs; break;
389 case GLSLstd450FSign: op = nir_op_fsign; break;
390 case GLSLstd450SSign: op = nir_op_isign; break;
391 case GLSLstd450Floor: op = nir_op_ffloor; break;
392 case GLSLstd450Ceil: op = nir_op_fceil; break;
393 case GLSLstd450Fract: op = nir_op_ffract; break;
394 case GLSLstd450Radians:
395 val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 0.01745329251));
396 return;
397 case GLSLstd450Degrees:
398 val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 57.2957795131));
399 return;
400 case GLSLstd450Sin: op = nir_op_fsin; break;
401 case GLSLstd450Cos: op = nir_op_fcos; break;
402 case GLSLstd450Tan:
403 val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
404 nir_fcos(nb, src[0]));
405 return;
406 case GLSLstd450Pow: op = nir_op_fpow; break;
407 case GLSLstd450Exp2: op = nir_op_fexp2; break;
408 case GLSLstd450Log2: op = nir_op_flog2; break;
409 case GLSLstd450Sqrt: op = nir_op_fsqrt; break;
410 case GLSLstd450InverseSqrt: op = nir_op_frsq; break;
411
412 case GLSLstd450Modf: {
413 nir_ssa_def *sign = nir_fsign(nb, src[0]);
414 nir_ssa_def *abs = nir_fabs(nb, src[0]);
415 val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
416 nir_store_deref_var(nb, vtn_nir_deref(b, w[6]),
417 nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
418 return;
419 }
420
421 case GLSLstd450ModfStruct: {
422 nir_ssa_def *sign = nir_fsign(nb, src[0]);
423 nir_ssa_def *abs = nir_fabs(nb, src[0]);
424 assert(glsl_type_is_struct(val->ssa->type));
425 val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
426 val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
427 return;
428 }
429
430 case GLSLstd450FMin: op = nir_op_fmin; break;
431 case GLSLstd450UMin: op = nir_op_umin; break;
432 case GLSLstd450SMin: op = nir_op_imin; break;
433 case GLSLstd450FMax: op = nir_op_fmax; break;
434 case GLSLstd450UMax: op = nir_op_umax; break;
435 case GLSLstd450SMax: op = nir_op_imax; break;
436 case GLSLstd450FMix: op = nir_op_flrp; break;
437 case GLSLstd450Step:
438 val->ssa->def = nir_sge(nb, src[1], src[0]);
439 return;
440
441 case GLSLstd450Fma: op = nir_op_ffma; break;
442 case GLSLstd450Ldexp: op = nir_op_ldexp; break;
443
444 /* Packing/Unpacking functions */
445 case GLSLstd450PackSnorm4x8: op = nir_op_pack_snorm_4x8; break;
446 case GLSLstd450PackUnorm4x8: op = nir_op_pack_unorm_4x8; break;
447 case GLSLstd450PackSnorm2x16: op = nir_op_pack_snorm_2x16; break;
448 case GLSLstd450PackUnorm2x16: op = nir_op_pack_unorm_2x16; break;
449 case GLSLstd450PackHalf2x16: op = nir_op_pack_half_2x16; break;
450 case GLSLstd450UnpackSnorm4x8: op = nir_op_unpack_snorm_4x8; break;
451 case GLSLstd450UnpackUnorm4x8: op = nir_op_unpack_unorm_4x8; break;
452 case GLSLstd450UnpackSnorm2x16: op = nir_op_unpack_snorm_2x16; break;
453 case GLSLstd450UnpackUnorm2x16: op = nir_op_unpack_unorm_2x16; break;
454 case GLSLstd450UnpackHalf2x16: op = nir_op_unpack_half_2x16; break;
455
456 case GLSLstd450Length:
457 val->ssa->def = build_length(nb, src[0]);
458 return;
459 case GLSLstd450Distance:
460 val->ssa->def = build_length(nb, nir_fsub(nb, src[0], src[1]));
461 return;
462 case GLSLstd450Normalize:
463 val->ssa->def = nir_fdiv(nb, src[0], build_length(nb, src[0]));
464 return;
465
466 case GLSLstd450Exp:
467 val->ssa->def = build_exp(nb, src[0]);
468 return;
469
470 case GLSLstd450Log:
471 val->ssa->def = build_log(nb, src[0]);
472 return;
473
474 case GLSLstd450FClamp:
475 val->ssa->def = build_fclamp(nb, src[0], src[1], src[2]);
476 return;
477 case GLSLstd450UClamp:
478 val->ssa->def = nir_umin(nb, nir_umax(nb, src[0], src[1]), src[2]);
479 return;
480 case GLSLstd450SClamp:
481 val->ssa->def = nir_imin(nb, nir_imax(nb, src[0], src[1]), src[2]);
482 return;
483
484 case GLSLstd450Cross: {
485 unsigned yzx[4] = { 1, 2, 0, 0 };
486 unsigned zxy[4] = { 2, 0, 1, 0 };
487 val->ssa->def =
488 nir_fsub(nb, nir_fmul(nb, nir_swizzle(nb, src[0], yzx, 3, true),
489 nir_swizzle(nb, src[1], zxy, 3, true)),
490 nir_fmul(nb, nir_swizzle(nb, src[0], zxy, 3, true),
491 nir_swizzle(nb, src[1], yzx, 3, true)));
492 return;
493 }
494
495 case GLSLstd450SmoothStep: {
496 /* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
497 nir_ssa_def *t =
498 build_fclamp(nb, nir_fdiv(nb, nir_fsub(nb, src[2], src[0]),
499 nir_fsub(nb, src[1], src[0])),
500 nir_imm_float(nb, 0.0), nir_imm_float(nb, 1.0));
501 /* result = t * t * (3 - 2 * t) */
502 val->ssa->def =
503 nir_fmul(nb, t, nir_fmul(nb, t,
504 nir_fsub(nb, nir_imm_float(nb, 3.0),
505 nir_fmul(nb, nir_imm_float(nb, 2.0), t))));
506 return;
507 }
508
509 case GLSLstd450FaceForward:
510 val->ssa->def =
511 nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
512 nir_imm_float(nb, 0.0)),
513 src[0], nir_fneg(nb, src[0]));
514 return;
515
516 case GLSLstd450Reflect:
517 /* I - 2 * dot(N, I) * N */
518 val->ssa->def =
519 nir_fsub(nb, src[0], nir_fmul(nb, nir_imm_float(nb, 2.0),
520 nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
521 src[1])));
522 return;
523
524 case GLSLstd450Refract: {
525 nir_ssa_def *I = src[0];
526 nir_ssa_def *N = src[1];
527 nir_ssa_def *eta = src[2];
528 nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
529 nir_ssa_def *one = nir_imm_float(nb, 1.0);
530 nir_ssa_def *zero = nir_imm_float(nb, 0.0);
531 /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
532 nir_ssa_def *k =
533 nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
534 nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
535 nir_ssa_def *result =
536 nir_fsub(nb, nir_fmul(nb, eta, I),
537 nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
538 nir_fsqrt(nb, k)), N));
539 /* XXX: bcsel, or if statement? */
540 val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
541 return;
542 }
543
544 case GLSLstd450Sinh:
545 /* 0.5 * (e^x - e^(-x)) */
546 val->ssa->def =
547 nir_fmul(nb, nir_imm_float(nb, 0.5f),
548 nir_fsub(nb, build_exp(nb, src[0]),
549 build_exp(nb, nir_fneg(nb, src[0]))));
550 return;
551
552 case GLSLstd450Cosh:
553 /* 0.5 * (e^x + e^(-x)) */
554 val->ssa->def =
555 nir_fmul(nb, nir_imm_float(nb, 0.5f),
556 nir_fadd(nb, build_exp(nb, src[0]),
557 build_exp(nb, nir_fneg(nb, src[0]))));
558 return;
559
560 case GLSLstd450Tanh:
561 /* (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x))) */
562 val->ssa->def =
563 nir_fdiv(nb, nir_fmul(nb, nir_imm_float(nb, 0.5f),
564 nir_fsub(nb, build_exp(nb, src[0]),
565 build_exp(nb, nir_fneg(nb, src[0])))),
566 nir_fmul(nb, nir_imm_float(nb, 0.5f),
567 nir_fadd(nb, build_exp(nb, src[0]),
568 build_exp(nb, nir_fneg(nb, src[0])))));
569 return;
570
571 case GLSLstd450Asinh:
572 val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
573 build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
574 nir_fsqrt(nb, nir_fadd(nb, nir_fmul(nb, src[0], src[0]),
575 nir_imm_float(nb, 1.0f))))));
576 return;
577 case GLSLstd450Acosh:
578 val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
579 nir_fsqrt(nb, nir_fsub(nb, nir_fmul(nb, src[0], src[0]),
580 nir_imm_float(nb, 1.0f)))));
581 return;
582 case GLSLstd450Atanh: {
583 nir_ssa_def *one = nir_imm_float(nb, 1.0);
584 val->ssa->def = nir_fmul(nb, nir_imm_float(nb, 0.5f),
585 build_log(nb, nir_fdiv(nb, nir_fadd(nb, one, src[0]),
586 nir_fsub(nb, one, src[0]))));
587 return;
588 }
589
590 case GLSLstd450FindILsb: op = nir_op_find_lsb; break;
591 case GLSLstd450FindSMsb: op = nir_op_ifind_msb; break;
592 case GLSLstd450FindUMsb: op = nir_op_ufind_msb; break;
593
594 case GLSLstd450Asin:
595 val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
596 return;
597
598 case GLSLstd450Acos:
599 val->ssa->def = nir_fsub(nb, nir_imm_float(nb, M_PI_2f),
600 build_asin(nb, src[0], 0.08132463, -0.02363318));
601 return;
602
603 case GLSLstd450Atan:
604 val->ssa->def = build_atan(nb, src[0]);
605 return;
606
607 case GLSLstd450Atan2:
608 val->ssa->def = build_atan2(nb, src[0], src[1]);
609 return;
610
611 case GLSLstd450Frexp: {
612 nir_ssa_def *exponent;
613 val->ssa->def = build_frexp(nb, src[0], &exponent);
614 nir_store_deref_var(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
615 return;
616 }
617
618 case GLSLstd450FrexpStruct: {
619 assert(glsl_type_is_struct(val->ssa->type));
620 val->ssa->elems[0]->def = build_frexp(nb, src[0],
621 &val->ssa->elems[1]->def);
622 return;
623 }
624
625 case GLSLstd450PackDouble2x32:
626 case GLSLstd450UnpackDouble2x32:
627 default:
628 unreachable("Unhandled opcode");
629 }
630
631 nir_alu_instr *instr = nir_alu_instr_create(b->shader, op);
632 nir_ssa_dest_init(&instr->instr, &instr->dest.dest,
633 glsl_get_vector_elements(val->ssa->type), val->name);
634 instr->dest.write_mask = (1 << instr->dest.dest.ssa.num_components) - 1;
635 val->ssa->def = &instr->dest.dest.ssa;
636
637 for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++)
638 instr->src[i].src = nir_src_for_ssa(src[i]);
639
640 nir_builder_instr_insert(nb, &instr->instr);
641 }
642
643 bool
644 vtn_handle_glsl450_instruction(struct vtn_builder *b, uint32_t ext_opcode,
645 const uint32_t *w, unsigned count)
646 {
647 switch ((enum GLSLstd450)ext_opcode) {
648 case GLSLstd450Determinant: {
649 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
650 val->ssa = rzalloc(b, struct vtn_ssa_value);
651 val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
652 val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
653 break;
654 }
655
656 case GLSLstd450MatrixInverse: {
657 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
658 val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
659 break;
660 }
661
662 case GLSLstd450InterpolateAtCentroid:
663 case GLSLstd450InterpolateAtSample:
664 case GLSLstd450InterpolateAtOffset:
665 unreachable("Unhandled opcode");
666
667 default:
668 handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
669 }
670
671 return true;
672 }