spirv: Reuse helpers in vtn_handle_type()
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values[0],
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned rows = glsl_get_vector_elements(val->type);
247 unsigned columns = glsl_get_matrix_columns(val->type);
248 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
249
250 for (unsigned i = 0; i < columns; i++) {
251 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
252 col_val->type = glsl_get_column_type(val->type);
253 nir_load_const_instr *load =
254 nir_load_const_instr_create(b->shader, rows, bit_size);
255
256 memcpy(load->value, constant->values[i],
257 sizeof(nir_const_value) * load->def.num_components);
258
259 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
260 col_val->def = &load->def;
261
262 val->elems[i] = col_val;
263 }
264 }
265 break;
266 }
267
268 case GLSL_TYPE_ARRAY: {
269 unsigned elems = glsl_get_length(val->type);
270 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
271 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
272 for (unsigned i = 0; i < elems; i++)
273 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
274 elem_type);
275 break;
276 }
277
278 case GLSL_TYPE_STRUCT: {
279 unsigned elems = glsl_get_length(val->type);
280 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
281 for (unsigned i = 0; i < elems; i++) {
282 const struct glsl_type *elem_type =
283 glsl_get_struct_field(val->type, i);
284 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
285 elem_type);
286 }
287 break;
288 }
289
290 default:
291 vtn_fail("bad constant type");
292 }
293
294 return val;
295 }
296
297 struct vtn_ssa_value *
298 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
299 {
300 struct vtn_value *val = vtn_untyped_value(b, value_id);
301 switch (val->value_type) {
302 case vtn_value_type_undef:
303 return vtn_undef_ssa_value(b, val->type->type);
304
305 case vtn_value_type_constant:
306 return vtn_const_ssa_value(b, val->constant, val->type->type);
307
308 case vtn_value_type_ssa:
309 return val->ssa;
310
311 case vtn_value_type_pointer:
312 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
313 struct vtn_ssa_value *ssa =
314 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
315 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
316 return ssa;
317
318 default:
319 vtn_fail("Invalid type for an SSA value");
320 }
321 }
322
323 static char *
324 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
325 unsigned word_count, unsigned *words_used)
326 {
327 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
328 if (words_used) {
329 /* Ammount of space taken by the string (including the null) */
330 unsigned len = strlen(dup) + 1;
331 *words_used = DIV_ROUND_UP(len, sizeof(*words));
332 }
333 return dup;
334 }
335
336 const uint32_t *
337 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
338 const uint32_t *end, vtn_instruction_handler handler)
339 {
340 b->file = NULL;
341 b->line = -1;
342 b->col = -1;
343
344 const uint32_t *w = start;
345 while (w < end) {
346 SpvOp opcode = w[0] & SpvOpCodeMask;
347 unsigned count = w[0] >> SpvWordCountShift;
348 vtn_assert(count >= 1 && w + count <= end);
349
350 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
351
352 switch (opcode) {
353 case SpvOpNop:
354 break; /* Do nothing */
355
356 case SpvOpLine:
357 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
358 b->line = w[2];
359 b->col = w[3];
360 break;
361
362 case SpvOpNoLine:
363 b->file = NULL;
364 b->line = -1;
365 b->col = -1;
366 break;
367
368 default:
369 if (!handler(b, opcode, w, count))
370 return w;
371 break;
372 }
373
374 w += count;
375 }
376
377 b->spirv_offset = 0;
378 b->file = NULL;
379 b->line = -1;
380 b->col = -1;
381
382 assert(w == end);
383 return w;
384 }
385
386 static void
387 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
388 const uint32_t *w, unsigned count)
389 {
390 const char *ext = (const char *)&w[2];
391 switch (opcode) {
392 case SpvOpExtInstImport: {
393 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
394 if (strcmp(ext, "GLSL.std.450") == 0) {
395 val->ext_handler = vtn_handle_glsl450_instruction;
396 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
397 && (b->options && b->options->caps.gcn_shader)) {
398 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
399 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
400 && (b->options && b->options->caps.trinary_minmax)) {
401 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
402 } else if (strcmp(ext, "OpenCL.std") == 0) {
403 val->ext_handler = vtn_handle_opencl_instruction;
404 } else {
405 vtn_fail("Unsupported extension: %s", ext);
406 }
407 break;
408 }
409
410 case SpvOpExtInst: {
411 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
412 bool handled = val->ext_handler(b, w[4], w, count);
413 vtn_assert(handled);
414 break;
415 }
416
417 default:
418 vtn_fail_with_opcode("Unhandled opcode", opcode);
419 }
420 }
421
422 static void
423 _foreach_decoration_helper(struct vtn_builder *b,
424 struct vtn_value *base_value,
425 int parent_member,
426 struct vtn_value *value,
427 vtn_decoration_foreach_cb cb, void *data)
428 {
429 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
430 int member;
431 if (dec->scope == VTN_DEC_DECORATION) {
432 member = parent_member;
433 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
434 vtn_fail_if(value->value_type != vtn_value_type_type ||
435 value->type->base_type != vtn_base_type_struct,
436 "OpMemberDecorate and OpGroupMemberDecorate are only "
437 "allowed on OpTypeStruct");
438 /* This means we haven't recursed yet */
439 assert(value == base_value);
440
441 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
442
443 vtn_fail_if(member >= base_value->type->length,
444 "OpMemberDecorate specifies member %d but the "
445 "OpTypeStruct has only %u members",
446 member, base_value->type->length);
447 } else {
448 /* Not a decoration */
449 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
450 continue;
451 }
452
453 if (dec->group) {
454 assert(dec->group->value_type == vtn_value_type_decoration_group);
455 _foreach_decoration_helper(b, base_value, member, dec->group,
456 cb, data);
457 } else {
458 cb(b, base_value, member, dec, data);
459 }
460 }
461 }
462
463 /** Iterates (recursively if needed) over all of the decorations on a value
464 *
465 * This function iterates over all of the decorations applied to a given
466 * value. If it encounters a decoration group, it recurses into the group
467 * and iterates over all of those decorations as well.
468 */
469 void
470 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
471 vtn_decoration_foreach_cb cb, void *data)
472 {
473 _foreach_decoration_helper(b, value, -1, value, cb, data);
474 }
475
476 void
477 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
478 vtn_execution_mode_foreach_cb cb, void *data)
479 {
480 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
481 if (dec->scope != VTN_DEC_EXECUTION_MODE)
482 continue;
483
484 assert(dec->group == NULL);
485 cb(b, value, dec, data);
486 }
487 }
488
489 void
490 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
491 const uint32_t *w, unsigned count)
492 {
493 const uint32_t *w_end = w + count;
494 const uint32_t target = w[1];
495 w += 2;
496
497 switch (opcode) {
498 case SpvOpDecorationGroup:
499 vtn_push_value(b, target, vtn_value_type_decoration_group);
500 break;
501
502 case SpvOpDecorate:
503 case SpvOpDecorateId:
504 case SpvOpMemberDecorate:
505 case SpvOpDecorateStringGOOGLE:
506 case SpvOpMemberDecorateStringGOOGLE:
507 case SpvOpExecutionMode:
508 case SpvOpExecutionModeId: {
509 struct vtn_value *val = vtn_untyped_value(b, target);
510
511 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
512 switch (opcode) {
513 case SpvOpDecorate:
514 case SpvOpDecorateId:
515 case SpvOpDecorateStringGOOGLE:
516 dec->scope = VTN_DEC_DECORATION;
517 break;
518 case SpvOpMemberDecorate:
519 case SpvOpMemberDecorateStringGOOGLE:
520 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
521 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
522 "Member argument of OpMemberDecorate too large");
523 break;
524 case SpvOpExecutionMode:
525 case SpvOpExecutionModeId:
526 dec->scope = VTN_DEC_EXECUTION_MODE;
527 break;
528 default:
529 unreachable("Invalid decoration opcode");
530 }
531 dec->decoration = *(w++);
532 dec->operands = w;
533
534 /* Link into the list */
535 dec->next = val->decoration;
536 val->decoration = dec;
537 break;
538 }
539
540 case SpvOpGroupMemberDecorate:
541 case SpvOpGroupDecorate: {
542 struct vtn_value *group =
543 vtn_value(b, target, vtn_value_type_decoration_group);
544
545 for (; w < w_end; w++) {
546 struct vtn_value *val = vtn_untyped_value(b, *w);
547 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
548
549 dec->group = group;
550 if (opcode == SpvOpGroupDecorate) {
551 dec->scope = VTN_DEC_DECORATION;
552 } else {
553 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
554 vtn_fail_if(dec->scope < 0, /* Check for overflow */
555 "Member argument of OpGroupMemberDecorate too large");
556 }
557
558 /* Link into the list */
559 dec->next = val->decoration;
560 val->decoration = dec;
561 }
562 break;
563 }
564
565 default:
566 unreachable("Unhandled opcode");
567 }
568 }
569
570 struct member_decoration_ctx {
571 unsigned num_fields;
572 struct glsl_struct_field *fields;
573 struct vtn_type *type;
574 };
575
576 /**
577 * Returns true if the given type contains a struct decorated Block or
578 * BufferBlock
579 */
580 bool
581 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
582 {
583 switch (type->base_type) {
584 case vtn_base_type_array:
585 return vtn_type_contains_block(b, type->array_element);
586 case vtn_base_type_struct:
587 if (type->block || type->buffer_block)
588 return true;
589 for (unsigned i = 0; i < type->length; i++) {
590 if (vtn_type_contains_block(b, type->members[i]))
591 return true;
592 }
593 return false;
594 default:
595 return false;
596 }
597 }
598
599 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
600 * OpStore, or OpCopyMemory between them without breaking anything.
601 * Technically, the SPIR-V rules require the exact same type ID but this lets
602 * us internally be a bit looser.
603 */
604 bool
605 vtn_types_compatible(struct vtn_builder *b,
606 struct vtn_type *t1, struct vtn_type *t2)
607 {
608 if (t1->id == t2->id)
609 return true;
610
611 if (t1->base_type != t2->base_type)
612 return false;
613
614 switch (t1->base_type) {
615 case vtn_base_type_void:
616 case vtn_base_type_scalar:
617 case vtn_base_type_vector:
618 case vtn_base_type_matrix:
619 case vtn_base_type_image:
620 case vtn_base_type_sampler:
621 case vtn_base_type_sampled_image:
622 return t1->type == t2->type;
623
624 case vtn_base_type_array:
625 return t1->length == t2->length &&
626 vtn_types_compatible(b, t1->array_element, t2->array_element);
627
628 case vtn_base_type_pointer:
629 return vtn_types_compatible(b, t1->deref, t2->deref);
630
631 case vtn_base_type_struct:
632 if (t1->length != t2->length)
633 return false;
634
635 for (unsigned i = 0; i < t1->length; i++) {
636 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
637 return false;
638 }
639 return true;
640
641 case vtn_base_type_function:
642 /* This case shouldn't get hit since you can't copy around function
643 * types. Just require them to be identical.
644 */
645 return false;
646 }
647
648 vtn_fail("Invalid base type");
649 }
650
651 struct vtn_type *
652 vtn_type_without_array(struct vtn_type *type)
653 {
654 while (type->base_type == vtn_base_type_array)
655 type = type->array_element;
656 return type;
657 }
658
659 /* does a shallow copy of a vtn_type */
660
661 static struct vtn_type *
662 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
663 {
664 struct vtn_type *dest = ralloc(b, struct vtn_type);
665 *dest = *src;
666
667 switch (src->base_type) {
668 case vtn_base_type_void:
669 case vtn_base_type_scalar:
670 case vtn_base_type_vector:
671 case vtn_base_type_matrix:
672 case vtn_base_type_array:
673 case vtn_base_type_pointer:
674 case vtn_base_type_image:
675 case vtn_base_type_sampler:
676 case vtn_base_type_sampled_image:
677 /* Nothing more to do */
678 break;
679
680 case vtn_base_type_struct:
681 dest->members = ralloc_array(b, struct vtn_type *, src->length);
682 memcpy(dest->members, src->members,
683 src->length * sizeof(src->members[0]));
684
685 dest->offsets = ralloc_array(b, unsigned, src->length);
686 memcpy(dest->offsets, src->offsets,
687 src->length * sizeof(src->offsets[0]));
688 break;
689
690 case vtn_base_type_function:
691 dest->params = ralloc_array(b, struct vtn_type *, src->length);
692 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
693 break;
694 }
695
696 return dest;
697 }
698
699 static struct vtn_type *
700 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
701 {
702 type->members[member] = vtn_type_copy(b, type->members[member]);
703 type = type->members[member];
704
705 /* We may have an array of matrices.... Oh, joy! */
706 while (glsl_type_is_array(type->type)) {
707 type->array_element = vtn_type_copy(b, type->array_element);
708 type = type->array_element;
709 }
710
711 vtn_assert(glsl_type_is_matrix(type->type));
712
713 return type;
714 }
715
716 static void
717 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
718 int member, enum gl_access_qualifier access)
719 {
720 type->members[member] = vtn_type_copy(b, type->members[member]);
721 type = type->members[member];
722
723 type->access |= access;
724 }
725
726 static void
727 array_stride_decoration_cb(struct vtn_builder *b,
728 struct vtn_value *val, int member,
729 const struct vtn_decoration *dec, void *void_ctx)
730 {
731 struct vtn_type *type = val->type;
732
733 if (dec->decoration == SpvDecorationArrayStride) {
734 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
735 type->stride = dec->operands[0];
736 }
737 }
738
739 static void
740 struct_member_decoration_cb(struct vtn_builder *b,
741 struct vtn_value *val, int member,
742 const struct vtn_decoration *dec, void *void_ctx)
743 {
744 struct member_decoration_ctx *ctx = void_ctx;
745
746 if (member < 0)
747 return;
748
749 assert(member < ctx->num_fields);
750
751 switch (dec->decoration) {
752 case SpvDecorationRelaxedPrecision:
753 case SpvDecorationUniform:
754 break; /* FIXME: Do nothing with this for now. */
755 case SpvDecorationNonWritable:
756 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
757 break;
758 case SpvDecorationNonReadable:
759 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
760 break;
761 case SpvDecorationVolatile:
762 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
763 break;
764 case SpvDecorationCoherent:
765 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
766 break;
767 case SpvDecorationNoPerspective:
768 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
769 break;
770 case SpvDecorationFlat:
771 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
772 break;
773 case SpvDecorationCentroid:
774 ctx->fields[member].centroid = true;
775 break;
776 case SpvDecorationSample:
777 ctx->fields[member].sample = true;
778 break;
779 case SpvDecorationStream:
780 /* Vulkan only allows one GS stream */
781 vtn_assert(dec->operands[0] == 0);
782 break;
783 case SpvDecorationLocation:
784 ctx->fields[member].location = dec->operands[0];
785 break;
786 case SpvDecorationComponent:
787 break; /* FIXME: What should we do with these? */
788 case SpvDecorationBuiltIn:
789 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
790 ctx->type->members[member]->is_builtin = true;
791 ctx->type->members[member]->builtin = dec->operands[0];
792 ctx->type->builtin_block = true;
793 break;
794 case SpvDecorationOffset:
795 ctx->type->offsets[member] = dec->operands[0];
796 ctx->fields[member].offset = dec->operands[0];
797 break;
798 case SpvDecorationMatrixStride:
799 /* Handled as a second pass */
800 break;
801 case SpvDecorationColMajor:
802 break; /* Nothing to do here. Column-major is the default. */
803 case SpvDecorationRowMajor:
804 mutable_matrix_member(b, ctx->type, member)->row_major = true;
805 break;
806
807 case SpvDecorationPatch:
808 break;
809
810 case SpvDecorationSpecId:
811 case SpvDecorationBlock:
812 case SpvDecorationBufferBlock:
813 case SpvDecorationArrayStride:
814 case SpvDecorationGLSLShared:
815 case SpvDecorationGLSLPacked:
816 case SpvDecorationInvariant:
817 case SpvDecorationRestrict:
818 case SpvDecorationAliased:
819 case SpvDecorationConstant:
820 case SpvDecorationIndex:
821 case SpvDecorationBinding:
822 case SpvDecorationDescriptorSet:
823 case SpvDecorationLinkageAttributes:
824 case SpvDecorationNoContraction:
825 case SpvDecorationInputAttachmentIndex:
826 vtn_warn("Decoration not allowed on struct members: %s",
827 spirv_decoration_to_string(dec->decoration));
828 break;
829
830 case SpvDecorationXfbBuffer:
831 case SpvDecorationXfbStride:
832 vtn_warn("Vulkan does not have transform feedback");
833 break;
834
835 case SpvDecorationCPacked:
836 if (b->shader->info.stage != MESA_SHADER_KERNEL)
837 vtn_warn("Decoration only allowed for CL-style kernels: %s",
838 spirv_decoration_to_string(dec->decoration));
839 else
840 ctx->type->packed = true;
841 break;
842
843 case SpvDecorationSaturatedConversion:
844 case SpvDecorationFuncParamAttr:
845 case SpvDecorationFPRoundingMode:
846 case SpvDecorationFPFastMathMode:
847 case SpvDecorationAlignment:
848 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
849 vtn_warn("Decoration only allowed for CL-style kernels: %s",
850 spirv_decoration_to_string(dec->decoration));
851 }
852 break;
853
854 case SpvDecorationHlslSemanticGOOGLE:
855 /* HLSL semantic decorations can safely be ignored by the driver. */
856 break;
857
858 default:
859 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
860 }
861 }
862
863 /** Chases the array type all the way down to the tail and rewrites the
864 * glsl_types to be based off the tail's glsl_type.
865 */
866 static void
867 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
868 {
869 if (type->base_type != vtn_base_type_array)
870 return;
871
872 vtn_array_type_rewrite_glsl_type(type->array_element);
873
874 type->type = glsl_array_type(type->array_element->type,
875 type->length, type->stride);
876 }
877
878 /* Matrix strides are handled as a separate pass because we need to know
879 * whether the matrix is row-major or not first.
880 */
881 static void
882 struct_member_matrix_stride_cb(struct vtn_builder *b,
883 struct vtn_value *val, int member,
884 const struct vtn_decoration *dec,
885 void *void_ctx)
886 {
887 if (dec->decoration != SpvDecorationMatrixStride)
888 return;
889
890 vtn_fail_if(member < 0,
891 "The MatrixStride decoration is only allowed on members "
892 "of OpTypeStruct");
893 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
894
895 struct member_decoration_ctx *ctx = void_ctx;
896
897 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
898 if (mat_type->row_major) {
899 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
900 mat_type->stride = mat_type->array_element->stride;
901 mat_type->array_element->stride = dec->operands[0];
902
903 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
904 dec->operands[0], true);
905 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
906 } else {
907 vtn_assert(mat_type->array_element->stride > 0);
908 mat_type->stride = dec->operands[0];
909
910 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
911 dec->operands[0], false);
912 }
913
914 /* Now that we've replaced the glsl_type with a properly strided matrix
915 * type, rewrite the member type so that it's an array of the proper kind
916 * of glsl_type.
917 */
918 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
919 ctx->fields[member].type = ctx->type->members[member]->type;
920 }
921
922 static void
923 struct_block_decoration_cb(struct vtn_builder *b,
924 struct vtn_value *val, int member,
925 const struct vtn_decoration *dec, void *ctx)
926 {
927 if (member != -1)
928 return;
929
930 struct vtn_type *type = val->type;
931 if (dec->decoration == SpvDecorationBlock)
932 type->block = true;
933 else if (dec->decoration == SpvDecorationBufferBlock)
934 type->buffer_block = true;
935 }
936
937 static void
938 type_decoration_cb(struct vtn_builder *b,
939 struct vtn_value *val, int member,
940 const struct vtn_decoration *dec, void *ctx)
941 {
942 struct vtn_type *type = val->type;
943
944 if (member != -1) {
945 /* This should have been handled by OpTypeStruct */
946 assert(val->type->base_type == vtn_base_type_struct);
947 assert(member >= 0 && member < val->type->length);
948 return;
949 }
950
951 switch (dec->decoration) {
952 case SpvDecorationArrayStride:
953 vtn_assert(type->base_type == vtn_base_type_array ||
954 type->base_type == vtn_base_type_pointer);
955 break;
956 case SpvDecorationBlock:
957 vtn_assert(type->base_type == vtn_base_type_struct);
958 vtn_assert(type->block);
959 break;
960 case SpvDecorationBufferBlock:
961 vtn_assert(type->base_type == vtn_base_type_struct);
962 vtn_assert(type->buffer_block);
963 break;
964 case SpvDecorationGLSLShared:
965 case SpvDecorationGLSLPacked:
966 /* Ignore these, since we get explicit offsets anyways */
967 break;
968
969 case SpvDecorationRowMajor:
970 case SpvDecorationColMajor:
971 case SpvDecorationMatrixStride:
972 case SpvDecorationBuiltIn:
973 case SpvDecorationNoPerspective:
974 case SpvDecorationFlat:
975 case SpvDecorationPatch:
976 case SpvDecorationCentroid:
977 case SpvDecorationSample:
978 case SpvDecorationVolatile:
979 case SpvDecorationCoherent:
980 case SpvDecorationNonWritable:
981 case SpvDecorationNonReadable:
982 case SpvDecorationUniform:
983 case SpvDecorationLocation:
984 case SpvDecorationComponent:
985 case SpvDecorationOffset:
986 case SpvDecorationXfbBuffer:
987 case SpvDecorationXfbStride:
988 case SpvDecorationHlslSemanticGOOGLE:
989 vtn_warn("Decoration only allowed for struct members: %s",
990 spirv_decoration_to_string(dec->decoration));
991 break;
992
993 case SpvDecorationStream:
994 /* We don't need to do anything here, as stream is filled up when
995 * aplying the decoration to a variable, just check that if it is not a
996 * struct member, it should be a struct.
997 */
998 vtn_assert(type->base_type == vtn_base_type_struct);
999 break;
1000
1001 case SpvDecorationRelaxedPrecision:
1002 case SpvDecorationSpecId:
1003 case SpvDecorationInvariant:
1004 case SpvDecorationRestrict:
1005 case SpvDecorationAliased:
1006 case SpvDecorationConstant:
1007 case SpvDecorationIndex:
1008 case SpvDecorationBinding:
1009 case SpvDecorationDescriptorSet:
1010 case SpvDecorationLinkageAttributes:
1011 case SpvDecorationNoContraction:
1012 case SpvDecorationInputAttachmentIndex:
1013 vtn_warn("Decoration not allowed on types: %s",
1014 spirv_decoration_to_string(dec->decoration));
1015 break;
1016
1017 case SpvDecorationCPacked:
1018 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1019 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1020 spirv_decoration_to_string(dec->decoration));
1021 else
1022 type->packed = true;
1023 break;
1024
1025 case SpvDecorationSaturatedConversion:
1026 case SpvDecorationFuncParamAttr:
1027 case SpvDecorationFPRoundingMode:
1028 case SpvDecorationFPFastMathMode:
1029 case SpvDecorationAlignment:
1030 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1031 spirv_decoration_to_string(dec->decoration));
1032 break;
1033
1034 default:
1035 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1036 }
1037 }
1038
1039 static unsigned
1040 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1041 {
1042 switch (format) {
1043 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1044 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1045 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1046 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1047 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1048 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1049 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1050 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1051 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1052 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1053 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1054 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1055 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1056 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1057 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1058 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1059 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1060 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1061 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1062 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1063 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1064 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1065 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1066 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1067 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1068 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1069 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1070 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1071 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1072 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1073 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1074 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1075 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1076 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1077 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1078 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1079 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1080 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1081 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1082 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1083 default:
1084 vtn_fail("Invalid image format: %s (%u)",
1085 spirv_imageformat_to_string(format), format);
1086 }
1087 }
1088
1089 static struct vtn_type *
1090 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
1091 uint32_t *size_out, uint32_t *align_out)
1092 {
1093 switch (type->base_type) {
1094 case vtn_base_type_scalar: {
1095 uint32_t comp_size = glsl_type_is_boolean(type->type)
1096 ? 4 : glsl_get_bit_size(type->type) / 8;
1097 *size_out = comp_size;
1098 *align_out = comp_size;
1099 return type;
1100 }
1101
1102 case vtn_base_type_vector: {
1103 uint32_t comp_size = glsl_type_is_boolean(type->type)
1104 ? 4 : glsl_get_bit_size(type->type) / 8;
1105 unsigned align_comps = type->length == 3 ? 4 : type->length;
1106 *size_out = comp_size * type->length,
1107 *align_out = comp_size * align_comps;
1108 return type;
1109 }
1110
1111 case vtn_base_type_matrix:
1112 case vtn_base_type_array: {
1113 /* We're going to add an array stride */
1114 type = vtn_type_copy(b, type);
1115 uint32_t elem_size, elem_align;
1116 type->array_element = vtn_type_layout_std430(b, type->array_element,
1117 &elem_size, &elem_align);
1118 type->stride = vtn_align_u32(elem_size, elem_align);
1119 *size_out = type->stride * type->length;
1120 *align_out = elem_align;
1121 return type;
1122 }
1123
1124 case vtn_base_type_struct: {
1125 /* We're going to add member offsets */
1126 type = vtn_type_copy(b, type);
1127 uint32_t offset = 0;
1128 uint32_t align = 0;
1129 for (unsigned i = 0; i < type->length; i++) {
1130 uint32_t mem_size, mem_align;
1131 type->members[i] = vtn_type_layout_std430(b, type->members[i],
1132 &mem_size, &mem_align);
1133 offset = vtn_align_u32(offset, mem_align);
1134 type->offsets[i] = offset;
1135 offset += mem_size;
1136 align = MAX2(align, mem_align);
1137 }
1138 *size_out = offset;
1139 *align_out = align;
1140 return type;
1141 }
1142
1143 default:
1144 unreachable("Invalid SPIR-V type for std430");
1145 }
1146 }
1147
1148 static void
1149 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1150 const uint32_t *w, unsigned count)
1151 {
1152 struct vtn_value *val = NULL;
1153
1154 /* In order to properly handle forward declarations, we have to defer
1155 * allocation for pointer types.
1156 */
1157 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1158 val = vtn_push_value(b, w[1], vtn_value_type_type);
1159 vtn_fail_if(val->type != NULL,
1160 "Only pointers can have forward declarations");
1161 val->type = rzalloc(b, struct vtn_type);
1162 val->type->id = w[1];
1163 }
1164
1165 switch (opcode) {
1166 case SpvOpTypeVoid:
1167 val->type->base_type = vtn_base_type_void;
1168 val->type->type = glsl_void_type();
1169 break;
1170 case SpvOpTypeBool:
1171 val->type->base_type = vtn_base_type_scalar;
1172 val->type->type = glsl_bool_type();
1173 val->type->length = 1;
1174 break;
1175 case SpvOpTypeInt: {
1176 int bit_size = w[2];
1177 const bool signedness = w[3];
1178 val->type->base_type = vtn_base_type_scalar;
1179 switch (bit_size) {
1180 case 64:
1181 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1182 break;
1183 case 32:
1184 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1185 break;
1186 case 16:
1187 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1188 break;
1189 case 8:
1190 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1191 break;
1192 default:
1193 vtn_fail("Invalid int bit size: %u", bit_size);
1194 }
1195 val->type->length = 1;
1196 break;
1197 }
1198
1199 case SpvOpTypeFloat: {
1200 int bit_size = w[2];
1201 val->type->base_type = vtn_base_type_scalar;
1202 switch (bit_size) {
1203 case 16:
1204 val->type->type = glsl_float16_t_type();
1205 break;
1206 case 32:
1207 val->type->type = glsl_float_type();
1208 break;
1209 case 64:
1210 val->type->type = glsl_double_type();
1211 break;
1212 default:
1213 vtn_fail("Invalid float bit size: %u", bit_size);
1214 }
1215 val->type->length = 1;
1216 break;
1217 }
1218
1219 case SpvOpTypeVector: {
1220 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1221 unsigned elems = w[3];
1222
1223 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1224 "Base type for OpTypeVector must be a scalar");
1225 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1226 "Invalid component count for OpTypeVector");
1227
1228 val->type->base_type = vtn_base_type_vector;
1229 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1230 val->type->length = elems;
1231 val->type->stride = glsl_type_is_boolean(val->type->type)
1232 ? 4 : glsl_get_bit_size(base->type) / 8;
1233 val->type->array_element = base;
1234 break;
1235 }
1236
1237 case SpvOpTypeMatrix: {
1238 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1239 unsigned columns = w[3];
1240
1241 vtn_fail_if(base->base_type != vtn_base_type_vector,
1242 "Base type for OpTypeMatrix must be a vector");
1243 vtn_fail_if(columns < 2 || columns > 4,
1244 "Invalid column count for OpTypeMatrix");
1245
1246 val->type->base_type = vtn_base_type_matrix;
1247 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1248 glsl_get_vector_elements(base->type),
1249 columns);
1250 vtn_fail_if(glsl_type_is_error(val->type->type),
1251 "Unsupported base type for OpTypeMatrix");
1252 assert(!glsl_type_is_error(val->type->type));
1253 val->type->length = columns;
1254 val->type->array_element = base;
1255 val->type->row_major = false;
1256 val->type->stride = 0;
1257 break;
1258 }
1259
1260 case SpvOpTypeRuntimeArray:
1261 case SpvOpTypeArray: {
1262 struct vtn_type *array_element =
1263 vtn_value(b, w[2], vtn_value_type_type)->type;
1264
1265 if (opcode == SpvOpTypeRuntimeArray) {
1266 /* A length of 0 is used to denote unsized arrays */
1267 val->type->length = 0;
1268 } else {
1269 val->type->length =
1270 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0][0].u32;
1271 }
1272
1273 val->type->base_type = vtn_base_type_array;
1274 val->type->array_element = array_element;
1275 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1276 val->type->stride = glsl_get_cl_size(array_element->type);
1277
1278 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1279 val->type->type = glsl_array_type(array_element->type, val->type->length,
1280 val->type->stride);
1281 break;
1282 }
1283
1284 case SpvOpTypeStruct: {
1285 unsigned num_fields = count - 2;
1286 val->type->base_type = vtn_base_type_struct;
1287 val->type->length = num_fields;
1288 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1289 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1290 val->type->packed = false;
1291
1292 NIR_VLA(struct glsl_struct_field, fields, count);
1293 for (unsigned i = 0; i < num_fields; i++) {
1294 val->type->members[i] =
1295 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1296 fields[i] = (struct glsl_struct_field) {
1297 .type = val->type->members[i]->type,
1298 .name = ralloc_asprintf(b, "field%d", i),
1299 .location = -1,
1300 .offset = -1,
1301 };
1302 }
1303
1304 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1305 unsigned offset = 0;
1306 for (unsigned i = 0; i < num_fields; i++) {
1307 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1308 fields[i].offset = offset;
1309 offset += glsl_get_cl_size(fields[i].type);
1310 }
1311 }
1312
1313 struct member_decoration_ctx ctx = {
1314 .num_fields = num_fields,
1315 .fields = fields,
1316 .type = val->type
1317 };
1318
1319 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1320 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1321
1322 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1323
1324 const char *name = val->name;
1325
1326 if (val->type->block || val->type->buffer_block) {
1327 /* Packing will be ignored since types coming from SPIR-V are
1328 * explicitly laid out.
1329 */
1330 val->type->type = glsl_interface_type(fields, num_fields,
1331 /* packing */ 0, false,
1332 name ? name : "block");
1333 } else {
1334 val->type->type = glsl_struct_type(fields, num_fields,
1335 name ? name : "struct", false);
1336 }
1337 break;
1338 }
1339
1340 case SpvOpTypeFunction: {
1341 val->type->base_type = vtn_base_type_function;
1342 val->type->type = NULL;
1343
1344 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1345
1346 const unsigned num_params = count - 3;
1347 val->type->length = num_params;
1348 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1349 for (unsigned i = 0; i < count - 3; i++) {
1350 val->type->params[i] =
1351 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1352 }
1353 break;
1354 }
1355
1356 case SpvOpTypePointer:
1357 case SpvOpTypeForwardPointer: {
1358 /* We can't blindly push the value because it might be a forward
1359 * declaration.
1360 */
1361 val = vtn_untyped_value(b, w[1]);
1362
1363 SpvStorageClass storage_class = w[2];
1364
1365 if (val->value_type == vtn_value_type_invalid) {
1366 val->value_type = vtn_value_type_type;
1367 val->type = rzalloc(b, struct vtn_type);
1368 val->type->id = w[1];
1369 val->type->base_type = vtn_base_type_pointer;
1370 val->type->storage_class = storage_class;
1371
1372 /* These can actually be stored to nir_variables and used as SSA
1373 * values so they need a real glsl_type.
1374 */
1375 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1376 b, storage_class, NULL, NULL);
1377 val->type->type = nir_address_format_to_glsl_type(
1378 vtn_mode_to_address_format(b, mode));
1379 } else {
1380 vtn_fail_if(val->type->storage_class != storage_class,
1381 "The storage classes of an OpTypePointer and any "
1382 "OpTypeForwardPointers that provide forward "
1383 "declarations of it must match.");
1384 }
1385
1386 if (opcode == SpvOpTypePointer) {
1387 vtn_fail_if(val->type->deref != NULL,
1388 "While OpTypeForwardPointer can be used to provide a "
1389 "forward declaration of a pointer, OpTypePointer can "
1390 "only be used once for a given id.");
1391
1392 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1393
1394 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1395
1396 if (b->physical_ptrs) {
1397 switch (storage_class) {
1398 case SpvStorageClassFunction:
1399 case SpvStorageClassWorkgroup:
1400 case SpvStorageClassCrossWorkgroup:
1401 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1402 glsl_get_cl_alignment(val->type->deref->type));
1403 break;
1404 default:
1405 break;
1406 }
1407 }
1408
1409 if (storage_class == SpvStorageClassWorkgroup &&
1410 b->options->lower_workgroup_access_to_offsets) {
1411 uint32_t size, align;
1412 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1413 &size, &align);
1414 val->type->length = size;
1415 val->type->align = align;
1416 }
1417 }
1418 break;
1419 }
1420
1421 case SpvOpTypeImage: {
1422 val->type->base_type = vtn_base_type_image;
1423
1424 const struct vtn_type *sampled_type =
1425 vtn_value(b, w[2], vtn_value_type_type)->type;
1426
1427 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1428 glsl_get_bit_size(sampled_type->type) != 32,
1429 "Sampled type of OpTypeImage must be a 32-bit scalar");
1430
1431 enum glsl_sampler_dim dim;
1432 switch ((SpvDim)w[3]) {
1433 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1434 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1435 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1436 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1437 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1438 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1439 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1440 default:
1441 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1442 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1443 }
1444
1445 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1446 * The “Depth” operand of OpTypeImage is ignored.
1447 */
1448 bool is_array = w[5];
1449 bool multisampled = w[6];
1450 unsigned sampled = w[7];
1451 SpvImageFormat format = w[8];
1452
1453 if (count > 9)
1454 val->type->access_qualifier = w[9];
1455 else
1456 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1457
1458 if (multisampled) {
1459 if (dim == GLSL_SAMPLER_DIM_2D)
1460 dim = GLSL_SAMPLER_DIM_MS;
1461 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1462 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1463 else
1464 vtn_fail("Unsupported multisampled image type");
1465 }
1466
1467 val->type->image_format = translate_image_format(b, format);
1468
1469 enum glsl_base_type sampled_base_type =
1470 glsl_get_base_type(sampled_type->type);
1471 if (sampled == 1) {
1472 val->type->sampled = true;
1473 val->type->type = glsl_sampler_type(dim, false, is_array,
1474 sampled_base_type);
1475 } else if (sampled == 2) {
1476 val->type->sampled = false;
1477 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1478 } else {
1479 vtn_fail("We need to know if the image will be sampled");
1480 }
1481 break;
1482 }
1483
1484 case SpvOpTypeSampledImage:
1485 val->type->base_type = vtn_base_type_sampled_image;
1486 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1487 val->type->type = val->type->image->type;
1488 break;
1489
1490 case SpvOpTypeSampler:
1491 /* The actual sampler type here doesn't really matter. It gets
1492 * thrown away the moment you combine it with an image. What really
1493 * matters is that it's a sampler type as opposed to an integer type
1494 * so the backend knows what to do.
1495 */
1496 val->type->base_type = vtn_base_type_sampler;
1497 val->type->type = glsl_bare_sampler_type();
1498 break;
1499
1500 case SpvOpTypeOpaque:
1501 case SpvOpTypeEvent:
1502 case SpvOpTypeDeviceEvent:
1503 case SpvOpTypeReserveId:
1504 case SpvOpTypeQueue:
1505 case SpvOpTypePipe:
1506 default:
1507 vtn_fail_with_opcode("Unhandled opcode", opcode);
1508 }
1509
1510 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1511
1512 if (val->type->base_type == vtn_base_type_struct &&
1513 (val->type->block || val->type->buffer_block)) {
1514 for (unsigned i = 0; i < val->type->length; i++) {
1515 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1516 "Block and BufferBlock decorations cannot decorate a "
1517 "structure type that is nested at any level inside "
1518 "another structure type decorated with Block or "
1519 "BufferBlock.");
1520 }
1521 }
1522 }
1523
1524 static nir_constant *
1525 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1526 {
1527 nir_constant *c = rzalloc(b, nir_constant);
1528
1529 switch (type->base_type) {
1530 case vtn_base_type_scalar:
1531 case vtn_base_type_vector:
1532 /* Nothing to do here. It's already initialized to zero */
1533 break;
1534
1535 case vtn_base_type_pointer:
1536 case vtn_base_type_void:
1537 case vtn_base_type_image:
1538 case vtn_base_type_sampler:
1539 case vtn_base_type_sampled_image:
1540 case vtn_base_type_function:
1541 /* For pointers and other things, we have to return something but it
1542 * doesn't matter what.
1543 */
1544 break;
1545
1546 case vtn_base_type_matrix:
1547 case vtn_base_type_array:
1548 vtn_assert(type->length > 0);
1549 c->num_elements = type->length;
1550 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1551
1552 c->elements[0] = vtn_null_constant(b, type->array_element);
1553 for (unsigned i = 1; i < c->num_elements; i++)
1554 c->elements[i] = c->elements[0];
1555 break;
1556
1557 case vtn_base_type_struct:
1558 c->num_elements = type->length;
1559 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1560 for (unsigned i = 0; i < c->num_elements; i++)
1561 c->elements[i] = vtn_null_constant(b, type->members[i]);
1562 break;
1563
1564 default:
1565 vtn_fail("Invalid type for null constant");
1566 }
1567
1568 return c;
1569 }
1570
1571 static void
1572 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1573 int member, const struct vtn_decoration *dec,
1574 void *data)
1575 {
1576 vtn_assert(member == -1);
1577 if (dec->decoration != SpvDecorationSpecId)
1578 return;
1579
1580 struct spec_constant_value *const_value = data;
1581
1582 for (unsigned i = 0; i < b->num_specializations; i++) {
1583 if (b->specializations[i].id == dec->operands[0]) {
1584 if (const_value->is_double)
1585 const_value->data64 = b->specializations[i].data64;
1586 else
1587 const_value->data32 = b->specializations[i].data32;
1588 return;
1589 }
1590 }
1591 }
1592
1593 static uint32_t
1594 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1595 uint32_t const_value)
1596 {
1597 struct spec_constant_value data;
1598 data.is_double = false;
1599 data.data32 = const_value;
1600 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1601 return data.data32;
1602 }
1603
1604 static uint64_t
1605 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1606 uint64_t const_value)
1607 {
1608 struct spec_constant_value data;
1609 data.is_double = true;
1610 data.data64 = const_value;
1611 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1612 return data.data64;
1613 }
1614
1615 static void
1616 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1617 struct vtn_value *val,
1618 int member,
1619 const struct vtn_decoration *dec,
1620 void *data)
1621 {
1622 vtn_assert(member == -1);
1623 if (dec->decoration != SpvDecorationBuiltIn ||
1624 dec->operands[0] != SpvBuiltInWorkgroupSize)
1625 return;
1626
1627 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1628 b->workgroup_size_builtin = val;
1629 }
1630
1631 static void
1632 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1633 const uint32_t *w, unsigned count)
1634 {
1635 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1636 val->constant = rzalloc(b, nir_constant);
1637 switch (opcode) {
1638 case SpvOpConstantTrue:
1639 case SpvOpConstantFalse:
1640 case SpvOpSpecConstantTrue:
1641 case SpvOpSpecConstantFalse: {
1642 vtn_fail_if(val->type->type != glsl_bool_type(),
1643 "Result type of %s must be OpTypeBool",
1644 spirv_op_to_string(opcode));
1645
1646 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1647 opcode == SpvOpSpecConstantTrue);
1648
1649 if (opcode == SpvOpSpecConstantTrue ||
1650 opcode == SpvOpSpecConstantFalse)
1651 int_val = get_specialization(b, val, int_val);
1652
1653 val->constant->values[0][0].b = int_val != 0;
1654 break;
1655 }
1656
1657 case SpvOpConstant: {
1658 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1659 "Result type of %s must be a scalar",
1660 spirv_op_to_string(opcode));
1661 int bit_size = glsl_get_bit_size(val->type->type);
1662 switch (bit_size) {
1663 case 64:
1664 val->constant->values[0][0].u64 = vtn_u64_literal(&w[3]);
1665 break;
1666 case 32:
1667 val->constant->values[0][0].u32 = w[3];
1668 break;
1669 case 16:
1670 val->constant->values[0][0].u16 = w[3];
1671 break;
1672 case 8:
1673 val->constant->values[0][0].u8 = w[3];
1674 break;
1675 default:
1676 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1677 }
1678 break;
1679 }
1680
1681 case SpvOpSpecConstant: {
1682 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1683 "Result type of %s must be a scalar",
1684 spirv_op_to_string(opcode));
1685 int bit_size = glsl_get_bit_size(val->type->type);
1686 switch (bit_size) {
1687 case 64:
1688 val->constant->values[0][0].u64 =
1689 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1690 break;
1691 case 32:
1692 val->constant->values[0][0].u32 = get_specialization(b, val, w[3]);
1693 break;
1694 case 16:
1695 val->constant->values[0][0].u16 = get_specialization(b, val, w[3]);
1696 break;
1697 case 8:
1698 val->constant->values[0][0].u8 = get_specialization(b, val, w[3]);
1699 break;
1700 default:
1701 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1702 }
1703 break;
1704 }
1705
1706 case SpvOpSpecConstantComposite:
1707 case SpvOpConstantComposite: {
1708 unsigned elem_count = count - 3;
1709 vtn_fail_if(elem_count != val->type->length,
1710 "%s has %u constituents, expected %u",
1711 spirv_op_to_string(opcode), elem_count, val->type->length);
1712
1713 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1714 for (unsigned i = 0; i < elem_count; i++) {
1715 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1716
1717 if (val->value_type == vtn_value_type_constant) {
1718 elems[i] = val->constant;
1719 } else {
1720 vtn_fail_if(val->value_type != vtn_value_type_undef,
1721 "only constants or undefs allowed for "
1722 "SpvOpConstantComposite");
1723 /* to make it easier, just insert a NULL constant for now */
1724 elems[i] = vtn_null_constant(b, val->type);
1725 }
1726 }
1727
1728 switch (val->type->base_type) {
1729 case vtn_base_type_vector: {
1730 assert(glsl_type_is_vector(val->type->type));
1731 for (unsigned i = 0; i < elem_count; i++)
1732 val->constant->values[0][i] = elems[i]->values[0][0];
1733 break;
1734 }
1735
1736 case vtn_base_type_matrix:
1737 assert(glsl_type_is_matrix(val->type->type));
1738 for (unsigned i = 0; i < elem_count; i++) {
1739 unsigned components =
1740 glsl_get_components(glsl_get_column_type(val->type->type));
1741 memcpy(val->constant->values[i], elems[i]->values,
1742 sizeof(nir_const_value) * components);
1743 }
1744 break;
1745
1746 case vtn_base_type_struct:
1747 case vtn_base_type_array:
1748 ralloc_steal(val->constant, elems);
1749 val->constant->num_elements = elem_count;
1750 val->constant->elements = elems;
1751 break;
1752
1753 default:
1754 vtn_fail("Result type of %s must be a composite type",
1755 spirv_op_to_string(opcode));
1756 }
1757 break;
1758 }
1759
1760 case SpvOpSpecConstantOp: {
1761 SpvOp opcode = get_specialization(b, val, w[3]);
1762 switch (opcode) {
1763 case SpvOpVectorShuffle: {
1764 struct vtn_value *v0 = &b->values[w[4]];
1765 struct vtn_value *v1 = &b->values[w[5]];
1766
1767 vtn_assert(v0->value_type == vtn_value_type_constant ||
1768 v0->value_type == vtn_value_type_undef);
1769 vtn_assert(v1->value_type == vtn_value_type_constant ||
1770 v1->value_type == vtn_value_type_undef);
1771
1772 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1773 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1774
1775 vtn_assert(len0 + len1 < 16);
1776
1777 unsigned bit_size = glsl_get_bit_size(val->type->type);
1778 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1779 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1780
1781 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1782 (void)bit_size0; (void)bit_size1;
1783
1784 if (bit_size == 64) {
1785 uint64_t u64[8];
1786 if (v0->value_type == vtn_value_type_constant) {
1787 for (unsigned i = 0; i < len0; i++)
1788 u64[i] = v0->constant->values[0][i].u64;
1789 }
1790 if (v1->value_type == vtn_value_type_constant) {
1791 for (unsigned i = 0; i < len1; i++)
1792 u64[len0 + i] = v1->constant->values[0][i].u64;
1793 }
1794
1795 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1796 uint32_t comp = w[i + 6];
1797 /* If component is not used, set the value to a known constant
1798 * to detect if it is wrongly used.
1799 */
1800 if (comp == (uint32_t)-1)
1801 val->constant->values[0][j].u64 = 0xdeadbeefdeadbeef;
1802 else
1803 val->constant->values[0][j].u64 = u64[comp];
1804 }
1805 } else {
1806 /* This is for both 32-bit and 16-bit values */
1807 uint32_t u32[8];
1808 if (v0->value_type == vtn_value_type_constant) {
1809 for (unsigned i = 0; i < len0; i++)
1810 u32[i] = v0->constant->values[0][i].u32;
1811 }
1812 if (v1->value_type == vtn_value_type_constant) {
1813 for (unsigned i = 0; i < len1; i++)
1814 u32[len0 + i] = v1->constant->values[0][i].u32;
1815 }
1816
1817 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1818 uint32_t comp = w[i + 6];
1819 /* If component is not used, set the value to a known constant
1820 * to detect if it is wrongly used.
1821 */
1822 if (comp == (uint32_t)-1)
1823 val->constant->values[0][j].u32 = 0xdeadbeef;
1824 else
1825 val->constant->values[0][j].u32 = u32[comp];
1826 }
1827 }
1828 break;
1829 }
1830
1831 case SpvOpCompositeExtract:
1832 case SpvOpCompositeInsert: {
1833 struct vtn_value *comp;
1834 unsigned deref_start;
1835 struct nir_constant **c;
1836 if (opcode == SpvOpCompositeExtract) {
1837 comp = vtn_value(b, w[4], vtn_value_type_constant);
1838 deref_start = 5;
1839 c = &comp->constant;
1840 } else {
1841 comp = vtn_value(b, w[5], vtn_value_type_constant);
1842 deref_start = 6;
1843 val->constant = nir_constant_clone(comp->constant,
1844 (nir_variable *)b);
1845 c = &val->constant;
1846 }
1847
1848 int elem = -1;
1849 int col = 0;
1850 const struct vtn_type *type = comp->type;
1851 for (unsigned i = deref_start; i < count; i++) {
1852 vtn_fail_if(w[i] > type->length,
1853 "%uth index of %s is %u but the type has only "
1854 "%u elements", i - deref_start,
1855 spirv_op_to_string(opcode), w[i], type->length);
1856
1857 switch (type->base_type) {
1858 case vtn_base_type_vector:
1859 elem = w[i];
1860 type = type->array_element;
1861 break;
1862
1863 case vtn_base_type_matrix:
1864 assert(col == 0 && elem == -1);
1865 col = w[i];
1866 elem = 0;
1867 type = type->array_element;
1868 break;
1869
1870 case vtn_base_type_array:
1871 c = &(*c)->elements[w[i]];
1872 type = type->array_element;
1873 break;
1874
1875 case vtn_base_type_struct:
1876 c = &(*c)->elements[w[i]];
1877 type = type->members[w[i]];
1878 break;
1879
1880 default:
1881 vtn_fail("%s must only index into composite types",
1882 spirv_op_to_string(opcode));
1883 }
1884 }
1885
1886 if (opcode == SpvOpCompositeExtract) {
1887 if (elem == -1) {
1888 val->constant = *c;
1889 } else {
1890 unsigned num_components = type->length;
1891 for (unsigned i = 0; i < num_components; i++)
1892 val->constant->values[0][i] = (*c)->values[col][elem + i];
1893 }
1894 } else {
1895 struct vtn_value *insert =
1896 vtn_value(b, w[4], vtn_value_type_constant);
1897 vtn_assert(insert->type == type);
1898 if (elem == -1) {
1899 *c = insert->constant;
1900 } else {
1901 unsigned num_components = type->length;
1902 for (unsigned i = 0; i < num_components; i++)
1903 (*c)->values[col][elem + i] = insert->constant->values[0][i];
1904 }
1905 }
1906 break;
1907 }
1908
1909 default: {
1910 bool swap;
1911 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1912 nir_alu_type src_alu_type = dst_alu_type;
1913 unsigned num_components = glsl_get_vector_elements(val->type->type);
1914 unsigned bit_size;
1915
1916 vtn_assert(count <= 7);
1917
1918 switch (opcode) {
1919 case SpvOpSConvert:
1920 case SpvOpFConvert:
1921 /* We have a source in a conversion */
1922 src_alu_type =
1923 nir_get_nir_type_for_glsl_type(
1924 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1925 /* We use the bitsize of the conversion source to evaluate the opcode later */
1926 bit_size = glsl_get_bit_size(
1927 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1928 break;
1929 default:
1930 bit_size = glsl_get_bit_size(val->type->type);
1931 };
1932
1933 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1934 nir_alu_type_get_type_size(src_alu_type),
1935 nir_alu_type_get_type_size(dst_alu_type));
1936 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1937
1938 for (unsigned i = 0; i < count - 4; i++) {
1939 struct vtn_value *src_val =
1940 vtn_value(b, w[4 + i], vtn_value_type_constant);
1941
1942 /* If this is an unsized source, pull the bit size from the
1943 * source; otherwise, we'll use the bit size from the destination.
1944 */
1945 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1946 bit_size = glsl_get_bit_size(src_val->type->type);
1947
1948 unsigned j = swap ? 1 - i : i;
1949 memcpy(src[j], src_val->constant->values[0], sizeof(src[j]));
1950 }
1951
1952 /* fix up fixed size sources */
1953 switch (op) {
1954 case nir_op_ishl:
1955 case nir_op_ishr:
1956 case nir_op_ushr: {
1957 if (bit_size == 32)
1958 break;
1959 for (unsigned i = 0; i < num_components; ++i) {
1960 switch (bit_size) {
1961 case 64: src[1][i].u32 = src[1][i].u64; break;
1962 case 16: src[1][i].u32 = src[1][i].u16; break;
1963 case 8: src[1][i].u32 = src[1][i].u8; break;
1964 }
1965 }
1966 break;
1967 }
1968 default:
1969 break;
1970 }
1971
1972 nir_const_value *srcs[3] = {
1973 src[0], src[1], src[2],
1974 };
1975 nir_eval_const_opcode(op, val->constant->values[0], num_components, bit_size, srcs);
1976 break;
1977 } /* default */
1978 }
1979 break;
1980 }
1981
1982 case SpvOpConstantNull:
1983 val->constant = vtn_null_constant(b, val->type);
1984 break;
1985
1986 case SpvOpConstantSampler:
1987 vtn_fail("OpConstantSampler requires Kernel Capability");
1988 break;
1989
1990 default:
1991 vtn_fail_with_opcode("Unhandled opcode", opcode);
1992 }
1993
1994 /* Now that we have the value, update the workgroup size if needed */
1995 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1996 }
1997
1998 struct vtn_ssa_value *
1999 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2000 {
2001 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2002 val->type = type;
2003
2004 if (!glsl_type_is_vector_or_scalar(type)) {
2005 unsigned elems = glsl_get_length(type);
2006 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2007 for (unsigned i = 0; i < elems; i++) {
2008 const struct glsl_type *child_type;
2009
2010 switch (glsl_get_base_type(type)) {
2011 case GLSL_TYPE_INT:
2012 case GLSL_TYPE_UINT:
2013 case GLSL_TYPE_INT16:
2014 case GLSL_TYPE_UINT16:
2015 case GLSL_TYPE_UINT8:
2016 case GLSL_TYPE_INT8:
2017 case GLSL_TYPE_INT64:
2018 case GLSL_TYPE_UINT64:
2019 case GLSL_TYPE_BOOL:
2020 case GLSL_TYPE_FLOAT:
2021 case GLSL_TYPE_FLOAT16:
2022 case GLSL_TYPE_DOUBLE:
2023 child_type = glsl_get_column_type(type);
2024 break;
2025 case GLSL_TYPE_ARRAY:
2026 child_type = glsl_get_array_element(type);
2027 break;
2028 case GLSL_TYPE_STRUCT:
2029 case GLSL_TYPE_INTERFACE:
2030 child_type = glsl_get_struct_field(type, i);
2031 break;
2032 default:
2033 vtn_fail("unkown base type");
2034 }
2035
2036 val->elems[i] = vtn_create_ssa_value(b, child_type);
2037 }
2038 }
2039
2040 return val;
2041 }
2042
2043 static nir_tex_src
2044 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2045 {
2046 nir_tex_src src;
2047 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2048 src.src_type = type;
2049 return src;
2050 }
2051
2052 static void
2053 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2054 const uint32_t *w, unsigned count)
2055 {
2056 if (opcode == SpvOpSampledImage) {
2057 struct vtn_value *val =
2058 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2059 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2060 val->sampled_image->type =
2061 vtn_value(b, w[1], vtn_value_type_type)->type;
2062 val->sampled_image->image =
2063 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2064 val->sampled_image->sampler =
2065 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2066 return;
2067 } else if (opcode == SpvOpImage) {
2068 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2069 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2070 if (src_val->value_type == vtn_value_type_sampled_image) {
2071 val->pointer = src_val->sampled_image->image;
2072 } else {
2073 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2074 val->pointer = src_val->pointer;
2075 }
2076 return;
2077 }
2078
2079 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2080 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2081
2082 struct vtn_sampled_image sampled;
2083 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2084 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2085 sampled = *sampled_val->sampled_image;
2086 } else {
2087 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2088 sampled.type = sampled_val->pointer->type;
2089 sampled.image = NULL;
2090 sampled.sampler = sampled_val->pointer;
2091 }
2092
2093 const struct glsl_type *image_type = sampled.type->type;
2094 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2095 const bool is_array = glsl_sampler_type_is_array(image_type);
2096
2097 /* Figure out the base texture operation */
2098 nir_texop texop;
2099 switch (opcode) {
2100 case SpvOpImageSampleImplicitLod:
2101 case SpvOpImageSampleDrefImplicitLod:
2102 case SpvOpImageSampleProjImplicitLod:
2103 case SpvOpImageSampleProjDrefImplicitLod:
2104 texop = nir_texop_tex;
2105 break;
2106
2107 case SpvOpImageSampleExplicitLod:
2108 case SpvOpImageSampleDrefExplicitLod:
2109 case SpvOpImageSampleProjExplicitLod:
2110 case SpvOpImageSampleProjDrefExplicitLod:
2111 texop = nir_texop_txl;
2112 break;
2113
2114 case SpvOpImageFetch:
2115 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2116 texop = nir_texop_txf_ms;
2117 } else {
2118 texop = nir_texop_txf;
2119 }
2120 break;
2121
2122 case SpvOpImageGather:
2123 case SpvOpImageDrefGather:
2124 texop = nir_texop_tg4;
2125 break;
2126
2127 case SpvOpImageQuerySizeLod:
2128 case SpvOpImageQuerySize:
2129 texop = nir_texop_txs;
2130 break;
2131
2132 case SpvOpImageQueryLod:
2133 texop = nir_texop_lod;
2134 break;
2135
2136 case SpvOpImageQueryLevels:
2137 texop = nir_texop_query_levels;
2138 break;
2139
2140 case SpvOpImageQuerySamples:
2141 texop = nir_texop_texture_samples;
2142 break;
2143
2144 default:
2145 vtn_fail_with_opcode("Unhandled opcode", opcode);
2146 }
2147
2148 nir_tex_src srcs[10]; /* 10 should be enough */
2149 nir_tex_src *p = srcs;
2150
2151 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2152 nir_deref_instr *texture =
2153 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2154
2155 p->src = nir_src_for_ssa(&texture->dest.ssa);
2156 p->src_type = nir_tex_src_texture_deref;
2157 p++;
2158
2159 switch (texop) {
2160 case nir_texop_tex:
2161 case nir_texop_txb:
2162 case nir_texop_txl:
2163 case nir_texop_txd:
2164 case nir_texop_tg4:
2165 case nir_texop_lod:
2166 /* These operations require a sampler */
2167 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2168 p->src_type = nir_tex_src_sampler_deref;
2169 p++;
2170 break;
2171 case nir_texop_txf:
2172 case nir_texop_txf_ms:
2173 case nir_texop_txs:
2174 case nir_texop_query_levels:
2175 case nir_texop_texture_samples:
2176 case nir_texop_samples_identical:
2177 /* These don't */
2178 break;
2179 case nir_texop_txf_ms_fb:
2180 vtn_fail("unexpected nir_texop_txf_ms_fb");
2181 break;
2182 case nir_texop_txf_ms_mcs:
2183 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2184 }
2185
2186 unsigned idx = 4;
2187
2188 struct nir_ssa_def *coord;
2189 unsigned coord_components;
2190 switch (opcode) {
2191 case SpvOpImageSampleImplicitLod:
2192 case SpvOpImageSampleExplicitLod:
2193 case SpvOpImageSampleDrefImplicitLod:
2194 case SpvOpImageSampleDrefExplicitLod:
2195 case SpvOpImageSampleProjImplicitLod:
2196 case SpvOpImageSampleProjExplicitLod:
2197 case SpvOpImageSampleProjDrefImplicitLod:
2198 case SpvOpImageSampleProjDrefExplicitLod:
2199 case SpvOpImageFetch:
2200 case SpvOpImageGather:
2201 case SpvOpImageDrefGather:
2202 case SpvOpImageQueryLod: {
2203 /* All these types have the coordinate as their first real argument */
2204 switch (sampler_dim) {
2205 case GLSL_SAMPLER_DIM_1D:
2206 case GLSL_SAMPLER_DIM_BUF:
2207 coord_components = 1;
2208 break;
2209 case GLSL_SAMPLER_DIM_2D:
2210 case GLSL_SAMPLER_DIM_RECT:
2211 case GLSL_SAMPLER_DIM_MS:
2212 coord_components = 2;
2213 break;
2214 case GLSL_SAMPLER_DIM_3D:
2215 case GLSL_SAMPLER_DIM_CUBE:
2216 coord_components = 3;
2217 break;
2218 default:
2219 vtn_fail("Invalid sampler type");
2220 }
2221
2222 if (is_array && texop != nir_texop_lod)
2223 coord_components++;
2224
2225 coord = vtn_ssa_value(b, w[idx++])->def;
2226 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2227 (1 << coord_components) - 1));
2228 p->src_type = nir_tex_src_coord;
2229 p++;
2230 break;
2231 }
2232
2233 default:
2234 coord = NULL;
2235 coord_components = 0;
2236 break;
2237 }
2238
2239 switch (opcode) {
2240 case SpvOpImageSampleProjImplicitLod:
2241 case SpvOpImageSampleProjExplicitLod:
2242 case SpvOpImageSampleProjDrefImplicitLod:
2243 case SpvOpImageSampleProjDrefExplicitLod:
2244 /* These have the projector as the last coordinate component */
2245 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2246 p->src_type = nir_tex_src_projector;
2247 p++;
2248 break;
2249
2250 default:
2251 break;
2252 }
2253
2254 bool is_shadow = false;
2255 unsigned gather_component = 0;
2256 switch (opcode) {
2257 case SpvOpImageSampleDrefImplicitLod:
2258 case SpvOpImageSampleDrefExplicitLod:
2259 case SpvOpImageSampleProjDrefImplicitLod:
2260 case SpvOpImageSampleProjDrefExplicitLod:
2261 case SpvOpImageDrefGather:
2262 /* These all have an explicit depth value as their next source */
2263 is_shadow = true;
2264 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2265 break;
2266
2267 case SpvOpImageGather:
2268 /* This has a component as its next source */
2269 gather_component =
2270 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0][0].u32;
2271 break;
2272
2273 default:
2274 break;
2275 }
2276
2277 /* For OpImageQuerySizeLod, we always have an LOD */
2278 if (opcode == SpvOpImageQuerySizeLod)
2279 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2280
2281 /* Now we need to handle some number of optional arguments */
2282 struct vtn_value *gather_offsets = NULL;
2283 if (idx < count) {
2284 uint32_t operands = w[idx++];
2285
2286 if (operands & SpvImageOperandsBiasMask) {
2287 vtn_assert(texop == nir_texop_tex);
2288 texop = nir_texop_txb;
2289 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2290 }
2291
2292 if (operands & SpvImageOperandsLodMask) {
2293 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2294 texop == nir_texop_txs);
2295 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2296 }
2297
2298 if (operands & SpvImageOperandsGradMask) {
2299 vtn_assert(texop == nir_texop_txl);
2300 texop = nir_texop_txd;
2301 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2302 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2303 }
2304
2305 if (operands & SpvImageOperandsOffsetMask ||
2306 operands & SpvImageOperandsConstOffsetMask)
2307 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2308
2309 if (operands & SpvImageOperandsConstOffsetsMask) {
2310 vtn_assert(texop == nir_texop_tg4);
2311 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2312 }
2313
2314 if (operands & SpvImageOperandsSampleMask) {
2315 vtn_assert(texop == nir_texop_txf_ms);
2316 texop = nir_texop_txf_ms;
2317 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2318 }
2319
2320 if (operands & SpvImageOperandsMinLodMask) {
2321 vtn_assert(texop == nir_texop_tex ||
2322 texop == nir_texop_txb ||
2323 texop == nir_texop_txd);
2324 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2325 }
2326 }
2327 /* We should have now consumed exactly all of the arguments */
2328 vtn_assert(idx == count);
2329
2330 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2331 instr->op = texop;
2332
2333 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2334
2335 instr->coord_components = coord_components;
2336 instr->sampler_dim = sampler_dim;
2337 instr->is_array = is_array;
2338 instr->is_shadow = is_shadow;
2339 instr->is_new_style_shadow =
2340 is_shadow && glsl_get_components(ret_type->type) == 1;
2341 instr->component = gather_component;
2342
2343 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2344 instr->texture_non_uniform = true;
2345
2346 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2347 instr->sampler_non_uniform = true;
2348
2349 switch (glsl_get_sampler_result_type(image_type)) {
2350 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2351 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2352 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2353 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2354 default:
2355 vtn_fail("Invalid base type for sampler result");
2356 }
2357
2358 nir_ssa_dest_init(&instr->instr, &instr->dest,
2359 nir_tex_instr_dest_size(instr), 32, NULL);
2360
2361 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2362 nir_tex_instr_dest_size(instr));
2363
2364 if (gather_offsets) {
2365 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2366 gather_offsets->type->length != 4,
2367 "ConstOffsets must be an array of size four of vectors "
2368 "of two integer components");
2369
2370 struct vtn_type *vec_type = gather_offsets->type->array_element;
2371 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2372 vec_type->length != 2 ||
2373 !glsl_type_is_integer(vec_type->type),
2374 "ConstOffsets must be an array of size four of vectors "
2375 "of two integer components");
2376
2377 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2378 for (uint32_t i = 0; i < 4; i++) {
2379 const nir_const_value *cvec =
2380 gather_offsets->constant->elements[i]->values[0];
2381 for (uint32_t j = 0; j < 2; j++) {
2382 switch (bit_size) {
2383 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2384 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2385 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2386 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2387 default:
2388 vtn_fail("Unsupported bit size: %u", bit_size);
2389 }
2390 }
2391 }
2392 }
2393
2394 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2395 val->ssa->def = &instr->dest.ssa;
2396
2397 nir_builder_instr_insert(&b->nb, &instr->instr);
2398 }
2399
2400 static void
2401 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2402 const uint32_t *w, nir_src *src)
2403 {
2404 switch (opcode) {
2405 case SpvOpAtomicIIncrement:
2406 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2407 break;
2408
2409 case SpvOpAtomicIDecrement:
2410 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2411 break;
2412
2413 case SpvOpAtomicISub:
2414 src[0] =
2415 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2416 break;
2417
2418 case SpvOpAtomicCompareExchange:
2419 case SpvOpAtomicCompareExchangeWeak:
2420 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2421 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2422 break;
2423
2424 case SpvOpAtomicExchange:
2425 case SpvOpAtomicIAdd:
2426 case SpvOpAtomicSMin:
2427 case SpvOpAtomicUMin:
2428 case SpvOpAtomicSMax:
2429 case SpvOpAtomicUMax:
2430 case SpvOpAtomicAnd:
2431 case SpvOpAtomicOr:
2432 case SpvOpAtomicXor:
2433 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2434 break;
2435
2436 default:
2437 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2438 }
2439 }
2440
2441 static nir_ssa_def *
2442 get_image_coord(struct vtn_builder *b, uint32_t value)
2443 {
2444 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2445
2446 /* The image_load_store intrinsics assume a 4-dim coordinate */
2447 unsigned dim = glsl_get_vector_elements(coord->type);
2448 unsigned swizzle[4];
2449 for (unsigned i = 0; i < 4; i++)
2450 swizzle[i] = MIN2(i, dim - 1);
2451
2452 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2453 }
2454
2455 static nir_ssa_def *
2456 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2457 {
2458 if (value->num_components == 4)
2459 return value;
2460
2461 unsigned swiz[4];
2462 for (unsigned i = 0; i < 4; i++)
2463 swiz[i] = i < value->num_components ? i : 0;
2464 return nir_swizzle(b, value, swiz, 4, false);
2465 }
2466
2467 static void
2468 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2469 const uint32_t *w, unsigned count)
2470 {
2471 /* Just get this one out of the way */
2472 if (opcode == SpvOpImageTexelPointer) {
2473 struct vtn_value *val =
2474 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2475 val->image = ralloc(b, struct vtn_image_pointer);
2476
2477 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2478 val->image->coord = get_image_coord(b, w[4]);
2479 val->image->sample = vtn_ssa_value(b, w[5])->def;
2480 return;
2481 }
2482
2483 struct vtn_image_pointer image;
2484
2485 switch (opcode) {
2486 case SpvOpAtomicExchange:
2487 case SpvOpAtomicCompareExchange:
2488 case SpvOpAtomicCompareExchangeWeak:
2489 case SpvOpAtomicIIncrement:
2490 case SpvOpAtomicIDecrement:
2491 case SpvOpAtomicIAdd:
2492 case SpvOpAtomicISub:
2493 case SpvOpAtomicLoad:
2494 case SpvOpAtomicSMin:
2495 case SpvOpAtomicUMin:
2496 case SpvOpAtomicSMax:
2497 case SpvOpAtomicUMax:
2498 case SpvOpAtomicAnd:
2499 case SpvOpAtomicOr:
2500 case SpvOpAtomicXor:
2501 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2502 break;
2503
2504 case SpvOpAtomicStore:
2505 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2506 break;
2507
2508 case SpvOpImageQuerySize:
2509 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2510 image.coord = NULL;
2511 image.sample = NULL;
2512 break;
2513
2514 case SpvOpImageRead:
2515 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2516 image.coord = get_image_coord(b, w[4]);
2517
2518 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2519 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2520 image.sample = vtn_ssa_value(b, w[6])->def;
2521 } else {
2522 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2523 }
2524 break;
2525
2526 case SpvOpImageWrite:
2527 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2528 image.coord = get_image_coord(b, w[2]);
2529
2530 /* texel = w[3] */
2531
2532 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2533 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2534 image.sample = vtn_ssa_value(b, w[5])->def;
2535 } else {
2536 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2537 }
2538 break;
2539
2540 default:
2541 vtn_fail_with_opcode("Invalid image opcode", opcode);
2542 }
2543
2544 nir_intrinsic_op op;
2545 switch (opcode) {
2546 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2547 OP(ImageQuerySize, size)
2548 OP(ImageRead, load)
2549 OP(ImageWrite, store)
2550 OP(AtomicLoad, load)
2551 OP(AtomicStore, store)
2552 OP(AtomicExchange, atomic_exchange)
2553 OP(AtomicCompareExchange, atomic_comp_swap)
2554 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2555 OP(AtomicIIncrement, atomic_add)
2556 OP(AtomicIDecrement, atomic_add)
2557 OP(AtomicIAdd, atomic_add)
2558 OP(AtomicISub, atomic_add)
2559 OP(AtomicSMin, atomic_min)
2560 OP(AtomicUMin, atomic_min)
2561 OP(AtomicSMax, atomic_max)
2562 OP(AtomicUMax, atomic_max)
2563 OP(AtomicAnd, atomic_and)
2564 OP(AtomicOr, atomic_or)
2565 OP(AtomicXor, atomic_xor)
2566 #undef OP
2567 default:
2568 vtn_fail_with_opcode("Invalid image opcode", opcode);
2569 }
2570
2571 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2572
2573 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2574 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2575
2576 /* ImageQuerySize doesn't take any extra parameters */
2577 if (opcode != SpvOpImageQuerySize) {
2578 /* The image coordinate is always 4 components but we may not have that
2579 * many. Swizzle to compensate.
2580 */
2581 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2582 intrin->src[2] = nir_src_for_ssa(image.sample);
2583 }
2584
2585 switch (opcode) {
2586 case SpvOpAtomicLoad:
2587 case SpvOpImageQuerySize:
2588 case SpvOpImageRead:
2589 break;
2590 case SpvOpAtomicStore:
2591 case SpvOpImageWrite: {
2592 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2593 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2594 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2595 assert(op == nir_intrinsic_image_deref_store);
2596 intrin->num_components = 4;
2597 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2598 break;
2599 }
2600
2601 case SpvOpAtomicCompareExchange:
2602 case SpvOpAtomicCompareExchangeWeak:
2603 case SpvOpAtomicIIncrement:
2604 case SpvOpAtomicIDecrement:
2605 case SpvOpAtomicExchange:
2606 case SpvOpAtomicIAdd:
2607 case SpvOpAtomicISub:
2608 case SpvOpAtomicSMin:
2609 case SpvOpAtomicUMin:
2610 case SpvOpAtomicSMax:
2611 case SpvOpAtomicUMax:
2612 case SpvOpAtomicAnd:
2613 case SpvOpAtomicOr:
2614 case SpvOpAtomicXor:
2615 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2616 break;
2617
2618 default:
2619 vtn_fail_with_opcode("Invalid image opcode", opcode);
2620 }
2621
2622 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2623 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2624 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2625
2626 unsigned dest_components = glsl_get_vector_elements(type->type);
2627 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2628 if (intrin->num_components == 0)
2629 intrin->num_components = dest_components;
2630
2631 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2632 intrin->num_components, 32, NULL);
2633
2634 nir_builder_instr_insert(&b->nb, &intrin->instr);
2635
2636 nir_ssa_def *result = &intrin->dest.ssa;
2637 if (intrin->num_components != dest_components)
2638 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2639
2640 val->ssa = vtn_create_ssa_value(b, type->type);
2641 val->ssa->def = result;
2642 } else {
2643 nir_builder_instr_insert(&b->nb, &intrin->instr);
2644 }
2645 }
2646
2647 static nir_intrinsic_op
2648 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2649 {
2650 switch (opcode) {
2651 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2652 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2653 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2654 OP(AtomicExchange, atomic_exchange)
2655 OP(AtomicCompareExchange, atomic_comp_swap)
2656 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2657 OP(AtomicIIncrement, atomic_add)
2658 OP(AtomicIDecrement, atomic_add)
2659 OP(AtomicIAdd, atomic_add)
2660 OP(AtomicISub, atomic_add)
2661 OP(AtomicSMin, atomic_imin)
2662 OP(AtomicUMin, atomic_umin)
2663 OP(AtomicSMax, atomic_imax)
2664 OP(AtomicUMax, atomic_umax)
2665 OP(AtomicAnd, atomic_and)
2666 OP(AtomicOr, atomic_or)
2667 OP(AtomicXor, atomic_xor)
2668 #undef OP
2669 default:
2670 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2671 }
2672 }
2673
2674 static nir_intrinsic_op
2675 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2676 {
2677 switch (opcode) {
2678 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2679 OP(AtomicLoad, read_deref)
2680 OP(AtomicExchange, exchange)
2681 OP(AtomicCompareExchange, comp_swap)
2682 OP(AtomicCompareExchangeWeak, comp_swap)
2683 OP(AtomicIIncrement, inc_deref)
2684 OP(AtomicIDecrement, post_dec_deref)
2685 OP(AtomicIAdd, add_deref)
2686 OP(AtomicISub, add_deref)
2687 OP(AtomicUMin, min_deref)
2688 OP(AtomicUMax, max_deref)
2689 OP(AtomicAnd, and_deref)
2690 OP(AtomicOr, or_deref)
2691 OP(AtomicXor, xor_deref)
2692 #undef OP
2693 default:
2694 /* We left the following out: AtomicStore, AtomicSMin and
2695 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2696 * moment Atomic Counter support is needed for ARB_spirv support, so is
2697 * only need to support GLSL Atomic Counters that are uints and don't
2698 * allow direct storage.
2699 */
2700 unreachable("Invalid uniform atomic");
2701 }
2702 }
2703
2704 static nir_intrinsic_op
2705 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2706 {
2707 switch (opcode) {
2708 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2709 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2710 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2711 OP(AtomicExchange, atomic_exchange)
2712 OP(AtomicCompareExchange, atomic_comp_swap)
2713 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2714 OP(AtomicIIncrement, atomic_add)
2715 OP(AtomicIDecrement, atomic_add)
2716 OP(AtomicIAdd, atomic_add)
2717 OP(AtomicISub, atomic_add)
2718 OP(AtomicSMin, atomic_imin)
2719 OP(AtomicUMin, atomic_umin)
2720 OP(AtomicSMax, atomic_imax)
2721 OP(AtomicUMax, atomic_umax)
2722 OP(AtomicAnd, atomic_and)
2723 OP(AtomicOr, atomic_or)
2724 OP(AtomicXor, atomic_xor)
2725 #undef OP
2726 default:
2727 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2728 }
2729 }
2730
2731 static nir_intrinsic_op
2732 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2733 {
2734 switch (opcode) {
2735 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2736 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2737 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2738 OP(AtomicExchange, atomic_exchange)
2739 OP(AtomicCompareExchange, atomic_comp_swap)
2740 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2741 OP(AtomicIIncrement, atomic_add)
2742 OP(AtomicIDecrement, atomic_add)
2743 OP(AtomicIAdd, atomic_add)
2744 OP(AtomicISub, atomic_add)
2745 OP(AtomicSMin, atomic_imin)
2746 OP(AtomicUMin, atomic_umin)
2747 OP(AtomicSMax, atomic_imax)
2748 OP(AtomicUMax, atomic_umax)
2749 OP(AtomicAnd, atomic_and)
2750 OP(AtomicOr, atomic_or)
2751 OP(AtomicXor, atomic_xor)
2752 #undef OP
2753 default:
2754 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2755 }
2756 }
2757
2758 /*
2759 * Handles shared atomics, ssbo atomics and atomic counters.
2760 */
2761 static void
2762 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2763 const uint32_t *w, unsigned count)
2764 {
2765 struct vtn_pointer *ptr;
2766 nir_intrinsic_instr *atomic;
2767
2768 switch (opcode) {
2769 case SpvOpAtomicLoad:
2770 case SpvOpAtomicExchange:
2771 case SpvOpAtomicCompareExchange:
2772 case SpvOpAtomicCompareExchangeWeak:
2773 case SpvOpAtomicIIncrement:
2774 case SpvOpAtomicIDecrement:
2775 case SpvOpAtomicIAdd:
2776 case SpvOpAtomicISub:
2777 case SpvOpAtomicSMin:
2778 case SpvOpAtomicUMin:
2779 case SpvOpAtomicSMax:
2780 case SpvOpAtomicUMax:
2781 case SpvOpAtomicAnd:
2782 case SpvOpAtomicOr:
2783 case SpvOpAtomicXor:
2784 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2785 break;
2786
2787 case SpvOpAtomicStore:
2788 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2789 break;
2790
2791 default:
2792 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2793 }
2794
2795 /*
2796 SpvScope scope = w[4];
2797 SpvMemorySemanticsMask semantics = w[5];
2798 */
2799
2800 /* uniform as "atomic counter uniform" */
2801 if (ptr->mode == vtn_variable_mode_uniform) {
2802 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2803 const struct glsl_type *deref_type = deref->type;
2804 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2805 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2806 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2807
2808 /* SSBO needs to initialize index/offset. In this case we don't need to,
2809 * as that info is already stored on the ptr->var->var nir_variable (see
2810 * vtn_create_variable)
2811 */
2812
2813 switch (opcode) {
2814 case SpvOpAtomicLoad:
2815 atomic->num_components = glsl_get_vector_elements(deref_type);
2816 break;
2817
2818 case SpvOpAtomicStore:
2819 atomic->num_components = glsl_get_vector_elements(deref_type);
2820 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2821 break;
2822
2823 case SpvOpAtomicExchange:
2824 case SpvOpAtomicCompareExchange:
2825 case SpvOpAtomicCompareExchangeWeak:
2826 case SpvOpAtomicIIncrement:
2827 case SpvOpAtomicIDecrement:
2828 case SpvOpAtomicIAdd:
2829 case SpvOpAtomicISub:
2830 case SpvOpAtomicSMin:
2831 case SpvOpAtomicUMin:
2832 case SpvOpAtomicSMax:
2833 case SpvOpAtomicUMax:
2834 case SpvOpAtomicAnd:
2835 case SpvOpAtomicOr:
2836 case SpvOpAtomicXor:
2837 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2838 * atomic counter uniforms doesn't have sources
2839 */
2840 break;
2841
2842 default:
2843 unreachable("Invalid SPIR-V atomic");
2844
2845 }
2846 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2847 nir_ssa_def *offset, *index;
2848 offset = vtn_pointer_to_offset(b, ptr, &index);
2849
2850 nir_intrinsic_op op;
2851 if (ptr->mode == vtn_variable_mode_ssbo) {
2852 op = get_ssbo_nir_atomic_op(b, opcode);
2853 } else {
2854 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2855 b->options->lower_workgroup_access_to_offsets);
2856 op = get_shared_nir_atomic_op(b, opcode);
2857 }
2858
2859 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2860
2861 int src = 0;
2862 switch (opcode) {
2863 case SpvOpAtomicLoad:
2864 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2865 nir_intrinsic_set_align(atomic, 4, 0);
2866 if (ptr->mode == vtn_variable_mode_ssbo)
2867 atomic->src[src++] = nir_src_for_ssa(index);
2868 atomic->src[src++] = nir_src_for_ssa(offset);
2869 break;
2870
2871 case SpvOpAtomicStore:
2872 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2873 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2874 nir_intrinsic_set_align(atomic, 4, 0);
2875 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2876 if (ptr->mode == vtn_variable_mode_ssbo)
2877 atomic->src[src++] = nir_src_for_ssa(index);
2878 atomic->src[src++] = nir_src_for_ssa(offset);
2879 break;
2880
2881 case SpvOpAtomicExchange:
2882 case SpvOpAtomicCompareExchange:
2883 case SpvOpAtomicCompareExchangeWeak:
2884 case SpvOpAtomicIIncrement:
2885 case SpvOpAtomicIDecrement:
2886 case SpvOpAtomicIAdd:
2887 case SpvOpAtomicISub:
2888 case SpvOpAtomicSMin:
2889 case SpvOpAtomicUMin:
2890 case SpvOpAtomicSMax:
2891 case SpvOpAtomicUMax:
2892 case SpvOpAtomicAnd:
2893 case SpvOpAtomicOr:
2894 case SpvOpAtomicXor:
2895 if (ptr->mode == vtn_variable_mode_ssbo)
2896 atomic->src[src++] = nir_src_for_ssa(index);
2897 atomic->src[src++] = nir_src_for_ssa(offset);
2898 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2899 break;
2900
2901 default:
2902 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2903 }
2904 } else {
2905 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2906 const struct glsl_type *deref_type = deref->type;
2907 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2908 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2909 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2910
2911 switch (opcode) {
2912 case SpvOpAtomicLoad:
2913 atomic->num_components = glsl_get_vector_elements(deref_type);
2914 break;
2915
2916 case SpvOpAtomicStore:
2917 atomic->num_components = glsl_get_vector_elements(deref_type);
2918 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2919 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2920 break;
2921
2922 case SpvOpAtomicExchange:
2923 case SpvOpAtomicCompareExchange:
2924 case SpvOpAtomicCompareExchangeWeak:
2925 case SpvOpAtomicIIncrement:
2926 case SpvOpAtomicIDecrement:
2927 case SpvOpAtomicIAdd:
2928 case SpvOpAtomicISub:
2929 case SpvOpAtomicSMin:
2930 case SpvOpAtomicUMin:
2931 case SpvOpAtomicSMax:
2932 case SpvOpAtomicUMax:
2933 case SpvOpAtomicAnd:
2934 case SpvOpAtomicOr:
2935 case SpvOpAtomicXor:
2936 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2937 break;
2938
2939 default:
2940 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2941 }
2942 }
2943
2944 if (opcode != SpvOpAtomicStore) {
2945 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2946
2947 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2948 glsl_get_vector_elements(type->type),
2949 glsl_get_bit_size(type->type), NULL);
2950
2951 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2952 val->ssa = rzalloc(b, struct vtn_ssa_value);
2953 val->ssa->def = &atomic->dest.ssa;
2954 val->ssa->type = type->type;
2955 }
2956
2957 nir_builder_instr_insert(&b->nb, &atomic->instr);
2958 }
2959
2960 static nir_alu_instr *
2961 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2962 {
2963 nir_op op = nir_op_vec(num_components);
2964 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2965 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2966 bit_size, NULL);
2967 vec->dest.write_mask = (1 << num_components) - 1;
2968
2969 return vec;
2970 }
2971
2972 struct vtn_ssa_value *
2973 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2974 {
2975 if (src->transposed)
2976 return src->transposed;
2977
2978 struct vtn_ssa_value *dest =
2979 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2980
2981 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2982 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2983 glsl_get_bit_size(src->type));
2984 if (glsl_type_is_vector_or_scalar(src->type)) {
2985 vec->src[0].src = nir_src_for_ssa(src->def);
2986 vec->src[0].swizzle[0] = i;
2987 } else {
2988 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2989 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2990 vec->src[j].swizzle[0] = i;
2991 }
2992 }
2993 nir_builder_instr_insert(&b->nb, &vec->instr);
2994 dest->elems[i]->def = &vec->dest.dest.ssa;
2995 }
2996
2997 dest->transposed = src;
2998
2999 return dest;
3000 }
3001
3002 nir_ssa_def *
3003 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3004 {
3005 return nir_channel(&b->nb, src, index);
3006 }
3007
3008 nir_ssa_def *
3009 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3010 unsigned index)
3011 {
3012 nir_alu_instr *vec = create_vec(b, src->num_components,
3013 src->bit_size);
3014
3015 for (unsigned i = 0; i < src->num_components; i++) {
3016 if (i == index) {
3017 vec->src[i].src = nir_src_for_ssa(insert);
3018 } else {
3019 vec->src[i].src = nir_src_for_ssa(src);
3020 vec->src[i].swizzle[0] = i;
3021 }
3022 }
3023
3024 nir_builder_instr_insert(&b->nb, &vec->instr);
3025
3026 return &vec->dest.dest.ssa;
3027 }
3028
3029 static nir_ssa_def *
3030 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3031 {
3032 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3033 }
3034
3035 nir_ssa_def *
3036 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3037 nir_ssa_def *index)
3038 {
3039 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3040 }
3041
3042 nir_ssa_def *
3043 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3044 nir_ssa_def *insert, nir_ssa_def *index)
3045 {
3046 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3047 for (unsigned i = 1; i < src->num_components; i++)
3048 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3049 vtn_vector_insert(b, src, insert, i), dest);
3050
3051 return dest;
3052 }
3053
3054 static nir_ssa_def *
3055 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3056 nir_ssa_def *src0, nir_ssa_def *src1,
3057 const uint32_t *indices)
3058 {
3059 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3060
3061 for (unsigned i = 0; i < num_components; i++) {
3062 uint32_t index = indices[i];
3063 if (index == 0xffffffff) {
3064 vec->src[i].src =
3065 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3066 } else if (index < src0->num_components) {
3067 vec->src[i].src = nir_src_for_ssa(src0);
3068 vec->src[i].swizzle[0] = index;
3069 } else {
3070 vec->src[i].src = nir_src_for_ssa(src1);
3071 vec->src[i].swizzle[0] = index - src0->num_components;
3072 }
3073 }
3074
3075 nir_builder_instr_insert(&b->nb, &vec->instr);
3076
3077 return &vec->dest.dest.ssa;
3078 }
3079
3080 /*
3081 * Concatentates a number of vectors/scalars together to produce a vector
3082 */
3083 static nir_ssa_def *
3084 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3085 unsigned num_srcs, nir_ssa_def **srcs)
3086 {
3087 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3088
3089 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3090 *
3091 * "When constructing a vector, there must be at least two Constituent
3092 * operands."
3093 */
3094 vtn_assert(num_srcs >= 2);
3095
3096 unsigned dest_idx = 0;
3097 for (unsigned i = 0; i < num_srcs; i++) {
3098 nir_ssa_def *src = srcs[i];
3099 vtn_assert(dest_idx + src->num_components <= num_components);
3100 for (unsigned j = 0; j < src->num_components; j++) {
3101 vec->src[dest_idx].src = nir_src_for_ssa(src);
3102 vec->src[dest_idx].swizzle[0] = j;
3103 dest_idx++;
3104 }
3105 }
3106
3107 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3108 *
3109 * "When constructing a vector, the total number of components in all
3110 * the operands must equal the number of components in Result Type."
3111 */
3112 vtn_assert(dest_idx == num_components);
3113
3114 nir_builder_instr_insert(&b->nb, &vec->instr);
3115
3116 return &vec->dest.dest.ssa;
3117 }
3118
3119 static struct vtn_ssa_value *
3120 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3121 {
3122 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3123 dest->type = src->type;
3124
3125 if (glsl_type_is_vector_or_scalar(src->type)) {
3126 dest->def = src->def;
3127 } else {
3128 unsigned elems = glsl_get_length(src->type);
3129
3130 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3131 for (unsigned i = 0; i < elems; i++)
3132 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3133 }
3134
3135 return dest;
3136 }
3137
3138 static struct vtn_ssa_value *
3139 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3140 struct vtn_ssa_value *insert, const uint32_t *indices,
3141 unsigned num_indices)
3142 {
3143 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3144
3145 struct vtn_ssa_value *cur = dest;
3146 unsigned i;
3147 for (i = 0; i < num_indices - 1; i++) {
3148 cur = cur->elems[indices[i]];
3149 }
3150
3151 if (glsl_type_is_vector_or_scalar(cur->type)) {
3152 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3153 * the component granularity. In that case, the last index will be
3154 * the index to insert the scalar into the vector.
3155 */
3156
3157 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3158 } else {
3159 cur->elems[indices[i]] = insert;
3160 }
3161
3162 return dest;
3163 }
3164
3165 static struct vtn_ssa_value *
3166 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3167 const uint32_t *indices, unsigned num_indices)
3168 {
3169 struct vtn_ssa_value *cur = src;
3170 for (unsigned i = 0; i < num_indices; i++) {
3171 if (glsl_type_is_vector_or_scalar(cur->type)) {
3172 vtn_assert(i == num_indices - 1);
3173 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3174 * the component granularity. The last index will be the index of the
3175 * vector to extract.
3176 */
3177
3178 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3179 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3180 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3181 return ret;
3182 } else {
3183 cur = cur->elems[indices[i]];
3184 }
3185 }
3186
3187 return cur;
3188 }
3189
3190 static void
3191 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3192 const uint32_t *w, unsigned count)
3193 {
3194 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
3195 const struct glsl_type *type =
3196 vtn_value(b, w[1], vtn_value_type_type)->type->type;
3197 val->ssa = vtn_create_ssa_value(b, type);
3198
3199 switch (opcode) {
3200 case SpvOpVectorExtractDynamic:
3201 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3202 vtn_ssa_value(b, w[4])->def);
3203 break;
3204
3205 case SpvOpVectorInsertDynamic:
3206 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3207 vtn_ssa_value(b, w[4])->def,
3208 vtn_ssa_value(b, w[5])->def);
3209 break;
3210
3211 case SpvOpVectorShuffle:
3212 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
3213 vtn_ssa_value(b, w[3])->def,
3214 vtn_ssa_value(b, w[4])->def,
3215 w + 5);
3216 break;
3217
3218 case SpvOpCompositeConstruct: {
3219 unsigned elems = count - 3;
3220 assume(elems >= 1);
3221 if (glsl_type_is_vector_or_scalar(type)) {
3222 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3223 for (unsigned i = 0; i < elems; i++)
3224 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3225 val->ssa->def =
3226 vtn_vector_construct(b, glsl_get_vector_elements(type),
3227 elems, srcs);
3228 } else {
3229 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3230 for (unsigned i = 0; i < elems; i++)
3231 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3232 }
3233 break;
3234 }
3235 case SpvOpCompositeExtract:
3236 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3237 w + 4, count - 4);
3238 break;
3239
3240 case SpvOpCompositeInsert:
3241 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3242 vtn_ssa_value(b, w[3]),
3243 w + 5, count - 5);
3244 break;
3245
3246 case SpvOpCopyObject:
3247 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3248 break;
3249
3250 default:
3251 vtn_fail_with_opcode("unknown composite operation", opcode);
3252 }
3253 }
3254
3255 static void
3256 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3257 {
3258 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3259 nir_builder_instr_insert(&b->nb, &intrin->instr);
3260 }
3261
3262 static void
3263 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3264 SpvMemorySemanticsMask semantics)
3265 {
3266 static const SpvMemorySemanticsMask all_memory_semantics =
3267 SpvMemorySemanticsUniformMemoryMask |
3268 SpvMemorySemanticsWorkgroupMemoryMask |
3269 SpvMemorySemanticsAtomicCounterMemoryMask |
3270 SpvMemorySemanticsImageMemoryMask;
3271
3272 /* If we're not actually doing a memory barrier, bail */
3273 if (!(semantics & all_memory_semantics))
3274 return;
3275
3276 /* GL and Vulkan don't have these */
3277 vtn_assert(scope != SpvScopeCrossDevice);
3278
3279 if (scope == SpvScopeSubgroup)
3280 return; /* Nothing to do here */
3281
3282 if (scope == SpvScopeWorkgroup) {
3283 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3284 return;
3285 }
3286
3287 /* There's only two scopes thing left */
3288 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3289
3290 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3291 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3292 return;
3293 }
3294
3295 /* Issue a bunch of more specific barriers */
3296 uint32_t bits = semantics;
3297 while (bits) {
3298 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3299 switch (semantic) {
3300 case SpvMemorySemanticsUniformMemoryMask:
3301 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3302 break;
3303 case SpvMemorySemanticsWorkgroupMemoryMask:
3304 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3305 break;
3306 case SpvMemorySemanticsAtomicCounterMemoryMask:
3307 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3308 break;
3309 case SpvMemorySemanticsImageMemoryMask:
3310 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3311 break;
3312 default:
3313 break;;
3314 }
3315 }
3316 }
3317
3318 static void
3319 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3320 const uint32_t *w, unsigned count)
3321 {
3322 switch (opcode) {
3323 case SpvOpEmitVertex:
3324 case SpvOpEmitStreamVertex:
3325 case SpvOpEndPrimitive:
3326 case SpvOpEndStreamPrimitive: {
3327 nir_intrinsic_op intrinsic_op;
3328 switch (opcode) {
3329 case SpvOpEmitVertex:
3330 case SpvOpEmitStreamVertex:
3331 intrinsic_op = nir_intrinsic_emit_vertex;
3332 break;
3333 case SpvOpEndPrimitive:
3334 case SpvOpEndStreamPrimitive:
3335 intrinsic_op = nir_intrinsic_end_primitive;
3336 break;
3337 default:
3338 unreachable("Invalid opcode");
3339 }
3340
3341 nir_intrinsic_instr *intrin =
3342 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3343
3344 switch (opcode) {
3345 case SpvOpEmitStreamVertex:
3346 case SpvOpEndStreamPrimitive: {
3347 unsigned stream = vtn_constant_uint(b, w[1]);
3348 nir_intrinsic_set_stream_id(intrin, stream);
3349 break;
3350 }
3351
3352 default:
3353 break;
3354 }
3355
3356 nir_builder_instr_insert(&b->nb, &intrin->instr);
3357 break;
3358 }
3359
3360 case SpvOpMemoryBarrier: {
3361 SpvScope scope = vtn_constant_uint(b, w[1]);
3362 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3363 vtn_emit_memory_barrier(b, scope, semantics);
3364 return;
3365 }
3366
3367 case SpvOpControlBarrier: {
3368 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3369 if (execution_scope == SpvScopeWorkgroup)
3370 vtn_emit_barrier(b, nir_intrinsic_barrier);
3371
3372 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3373 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3374 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3375 break;
3376 }
3377
3378 default:
3379 unreachable("unknown barrier instruction");
3380 }
3381 }
3382
3383 static unsigned
3384 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3385 SpvExecutionMode mode)
3386 {
3387 switch (mode) {
3388 case SpvExecutionModeInputPoints:
3389 case SpvExecutionModeOutputPoints:
3390 return 0; /* GL_POINTS */
3391 case SpvExecutionModeInputLines:
3392 return 1; /* GL_LINES */
3393 case SpvExecutionModeInputLinesAdjacency:
3394 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3395 case SpvExecutionModeTriangles:
3396 return 4; /* GL_TRIANGLES */
3397 case SpvExecutionModeInputTrianglesAdjacency:
3398 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3399 case SpvExecutionModeQuads:
3400 return 7; /* GL_QUADS */
3401 case SpvExecutionModeIsolines:
3402 return 0x8E7A; /* GL_ISOLINES */
3403 case SpvExecutionModeOutputLineStrip:
3404 return 3; /* GL_LINE_STRIP */
3405 case SpvExecutionModeOutputTriangleStrip:
3406 return 5; /* GL_TRIANGLE_STRIP */
3407 default:
3408 vtn_fail("Invalid primitive type: %s (%u)",
3409 spirv_executionmode_to_string(mode), mode);
3410 }
3411 }
3412
3413 static unsigned
3414 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3415 SpvExecutionMode mode)
3416 {
3417 switch (mode) {
3418 case SpvExecutionModeInputPoints:
3419 return 1;
3420 case SpvExecutionModeInputLines:
3421 return 2;
3422 case SpvExecutionModeInputLinesAdjacency:
3423 return 4;
3424 case SpvExecutionModeTriangles:
3425 return 3;
3426 case SpvExecutionModeInputTrianglesAdjacency:
3427 return 6;
3428 default:
3429 vtn_fail("Invalid GS input mode: %s (%u)",
3430 spirv_executionmode_to_string(mode), mode);
3431 }
3432 }
3433
3434 static gl_shader_stage
3435 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3436 {
3437 switch (model) {
3438 case SpvExecutionModelVertex:
3439 return MESA_SHADER_VERTEX;
3440 case SpvExecutionModelTessellationControl:
3441 return MESA_SHADER_TESS_CTRL;
3442 case SpvExecutionModelTessellationEvaluation:
3443 return MESA_SHADER_TESS_EVAL;
3444 case SpvExecutionModelGeometry:
3445 return MESA_SHADER_GEOMETRY;
3446 case SpvExecutionModelFragment:
3447 return MESA_SHADER_FRAGMENT;
3448 case SpvExecutionModelGLCompute:
3449 return MESA_SHADER_COMPUTE;
3450 case SpvExecutionModelKernel:
3451 return MESA_SHADER_KERNEL;
3452 default:
3453 vtn_fail("Unsupported execution model: %s (%u)",
3454 spirv_executionmodel_to_string(model), model);
3455 }
3456 }
3457
3458 #define spv_check_supported(name, cap) do { \
3459 if (!(b->options && b->options->caps.name)) \
3460 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3461 spirv_capability_to_string(cap), cap); \
3462 } while(0)
3463
3464
3465 void
3466 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3467 unsigned count)
3468 {
3469 struct vtn_value *entry_point = &b->values[w[2]];
3470 /* Let this be a name label regardless */
3471 unsigned name_words;
3472 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3473
3474 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3475 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3476 return;
3477
3478 vtn_assert(b->entry_point == NULL);
3479 b->entry_point = entry_point;
3480 }
3481
3482 static bool
3483 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3484 const uint32_t *w, unsigned count)
3485 {
3486 switch (opcode) {
3487 case SpvOpSource: {
3488 const char *lang;
3489 switch (w[1]) {
3490 default:
3491 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3492 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3493 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3494 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3495 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3496 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3497 }
3498
3499 uint32_t version = w[2];
3500
3501 const char *file =
3502 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3503
3504 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3505 break;
3506 }
3507
3508 case SpvOpSourceExtension:
3509 case SpvOpSourceContinued:
3510 case SpvOpExtension:
3511 case SpvOpModuleProcessed:
3512 /* Unhandled, but these are for debug so that's ok. */
3513 break;
3514
3515 case SpvOpCapability: {
3516 SpvCapability cap = w[1];
3517 switch (cap) {
3518 case SpvCapabilityMatrix:
3519 case SpvCapabilityShader:
3520 case SpvCapabilityGeometry:
3521 case SpvCapabilityGeometryPointSize:
3522 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3523 case SpvCapabilitySampledImageArrayDynamicIndexing:
3524 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3525 case SpvCapabilityStorageImageArrayDynamicIndexing:
3526 case SpvCapabilityImageRect:
3527 case SpvCapabilitySampledRect:
3528 case SpvCapabilitySampled1D:
3529 case SpvCapabilityImage1D:
3530 case SpvCapabilitySampledCubeArray:
3531 case SpvCapabilityImageCubeArray:
3532 case SpvCapabilitySampledBuffer:
3533 case SpvCapabilityImageBuffer:
3534 case SpvCapabilityImageQuery:
3535 case SpvCapabilityDerivativeControl:
3536 case SpvCapabilityInterpolationFunction:
3537 case SpvCapabilityMultiViewport:
3538 case SpvCapabilitySampleRateShading:
3539 case SpvCapabilityClipDistance:
3540 case SpvCapabilityCullDistance:
3541 case SpvCapabilityInputAttachment:
3542 case SpvCapabilityImageGatherExtended:
3543 case SpvCapabilityStorageImageExtendedFormats:
3544 break;
3545
3546 case SpvCapabilityLinkage:
3547 case SpvCapabilityVector16:
3548 case SpvCapabilityFloat16Buffer:
3549 case SpvCapabilitySparseResidency:
3550 vtn_warn("Unsupported SPIR-V capability: %s",
3551 spirv_capability_to_string(cap));
3552 break;
3553
3554 case SpvCapabilityMinLod:
3555 spv_check_supported(min_lod, cap);
3556 break;
3557
3558 case SpvCapabilityAtomicStorage:
3559 spv_check_supported(atomic_storage, cap);
3560 break;
3561
3562 case SpvCapabilityFloat64:
3563 spv_check_supported(float64, cap);
3564 break;
3565 case SpvCapabilityInt64:
3566 spv_check_supported(int64, cap);
3567 break;
3568 case SpvCapabilityInt16:
3569 spv_check_supported(int16, cap);
3570 break;
3571 case SpvCapabilityInt8:
3572 spv_check_supported(int8, cap);
3573 break;
3574
3575 case SpvCapabilityTransformFeedback:
3576 spv_check_supported(transform_feedback, cap);
3577 break;
3578
3579 case SpvCapabilityGeometryStreams:
3580 spv_check_supported(geometry_streams, cap);
3581 break;
3582
3583 case SpvCapabilityInt64Atomics:
3584 spv_check_supported(int64_atomics, cap);
3585 break;
3586
3587 case SpvCapabilityStorageImageMultisample:
3588 spv_check_supported(storage_image_ms, cap);
3589 break;
3590
3591 case SpvCapabilityAddresses:
3592 spv_check_supported(address, cap);
3593 break;
3594
3595 case SpvCapabilityKernel:
3596 spv_check_supported(kernel, cap);
3597 break;
3598
3599 case SpvCapabilityImageBasic:
3600 case SpvCapabilityImageReadWrite:
3601 case SpvCapabilityImageMipmap:
3602 case SpvCapabilityPipes:
3603 case SpvCapabilityGroups:
3604 case SpvCapabilityDeviceEnqueue:
3605 case SpvCapabilityLiteralSampler:
3606 case SpvCapabilityGenericPointer:
3607 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3608 spirv_capability_to_string(cap));
3609 break;
3610
3611 case SpvCapabilityImageMSArray:
3612 spv_check_supported(image_ms_array, cap);
3613 break;
3614
3615 case SpvCapabilityTessellation:
3616 case SpvCapabilityTessellationPointSize:
3617 spv_check_supported(tessellation, cap);
3618 break;
3619
3620 case SpvCapabilityDrawParameters:
3621 spv_check_supported(draw_parameters, cap);
3622 break;
3623
3624 case SpvCapabilityStorageImageReadWithoutFormat:
3625 spv_check_supported(image_read_without_format, cap);
3626 break;
3627
3628 case SpvCapabilityStorageImageWriteWithoutFormat:
3629 spv_check_supported(image_write_without_format, cap);
3630 break;
3631
3632 case SpvCapabilityDeviceGroup:
3633 spv_check_supported(device_group, cap);
3634 break;
3635
3636 case SpvCapabilityMultiView:
3637 spv_check_supported(multiview, cap);
3638 break;
3639
3640 case SpvCapabilityGroupNonUniform:
3641 spv_check_supported(subgroup_basic, cap);
3642 break;
3643
3644 case SpvCapabilityGroupNonUniformVote:
3645 spv_check_supported(subgroup_vote, cap);
3646 break;
3647
3648 case SpvCapabilitySubgroupBallotKHR:
3649 case SpvCapabilityGroupNonUniformBallot:
3650 spv_check_supported(subgroup_ballot, cap);
3651 break;
3652
3653 case SpvCapabilityGroupNonUniformShuffle:
3654 case SpvCapabilityGroupNonUniformShuffleRelative:
3655 spv_check_supported(subgroup_shuffle, cap);
3656 break;
3657
3658 case SpvCapabilityGroupNonUniformQuad:
3659 spv_check_supported(subgroup_quad, cap);
3660 break;
3661
3662 case SpvCapabilityGroupNonUniformArithmetic:
3663 case SpvCapabilityGroupNonUniformClustered:
3664 spv_check_supported(subgroup_arithmetic, cap);
3665 break;
3666
3667 case SpvCapabilityVariablePointersStorageBuffer:
3668 case SpvCapabilityVariablePointers:
3669 spv_check_supported(variable_pointers, cap);
3670 b->variable_pointers = true;
3671 break;
3672
3673 case SpvCapabilityStorageUniformBufferBlock16:
3674 case SpvCapabilityStorageUniform16:
3675 case SpvCapabilityStoragePushConstant16:
3676 case SpvCapabilityStorageInputOutput16:
3677 spv_check_supported(storage_16bit, cap);
3678 break;
3679
3680 case SpvCapabilityShaderViewportIndexLayerEXT:
3681 spv_check_supported(shader_viewport_index_layer, cap);
3682 break;
3683
3684 case SpvCapabilityStorageBuffer8BitAccess:
3685 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3686 case SpvCapabilityStoragePushConstant8:
3687 spv_check_supported(storage_8bit, cap);
3688 break;
3689
3690 case SpvCapabilityShaderNonUniformEXT:
3691 spv_check_supported(descriptor_indexing, cap);
3692 break;
3693
3694 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3695 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3696 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3697 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3698 break;
3699
3700 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3701 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3702 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3703 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3704 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3705 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3706 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3707 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3708 break;
3709
3710 case SpvCapabilityRuntimeDescriptorArrayEXT:
3711 spv_check_supported(runtime_descriptor_array, cap);
3712 break;
3713
3714 case SpvCapabilityStencilExportEXT:
3715 spv_check_supported(stencil_export, cap);
3716 break;
3717
3718 case SpvCapabilitySampleMaskPostDepthCoverage:
3719 spv_check_supported(post_depth_coverage, cap);
3720 break;
3721
3722 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3723 spv_check_supported(physical_storage_buffer_address, cap);
3724 break;
3725
3726 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3727 case SpvCapabilityComputeDerivativeGroupLinearNV:
3728 spv_check_supported(derivative_group, cap);
3729 break;
3730
3731 case SpvCapabilityFloat16:
3732 spv_check_supported(float16, cap);
3733 break;
3734
3735 default:
3736 vtn_fail("Unhandled capability: %s (%u)",
3737 spirv_capability_to_string(cap), cap);
3738 }
3739 break;
3740 }
3741
3742 case SpvOpExtInstImport:
3743 vtn_handle_extension(b, opcode, w, count);
3744 break;
3745
3746 case SpvOpMemoryModel:
3747 switch (w[1]) {
3748 case SpvAddressingModelPhysical32:
3749 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3750 "AddressingModelPhysical32 only supported for kernels");
3751 b->shader->info.cs.ptr_size = 32;
3752 b->physical_ptrs = true;
3753 b->options->shared_addr_format = nir_address_format_32bit_global;
3754 b->options->global_addr_format = nir_address_format_32bit_global;
3755 b->options->temp_addr_format = nir_address_format_32bit_global;
3756 break;
3757 case SpvAddressingModelPhysical64:
3758 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3759 "AddressingModelPhysical64 only supported for kernels");
3760 b->shader->info.cs.ptr_size = 64;
3761 b->physical_ptrs = true;
3762 b->options->shared_addr_format = nir_address_format_64bit_global;
3763 b->options->global_addr_format = nir_address_format_64bit_global;
3764 b->options->temp_addr_format = nir_address_format_64bit_global;
3765 break;
3766 case SpvAddressingModelLogical:
3767 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3768 "AddressingModelLogical only supported for shaders");
3769 b->shader->info.cs.ptr_size = 0;
3770 b->physical_ptrs = false;
3771 break;
3772 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3773 vtn_fail_if(!b->options ||
3774 !b->options->caps.physical_storage_buffer_address,
3775 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3776 break;
3777 default:
3778 vtn_fail("Unknown addressing model: %s (%u)",
3779 spirv_addressingmodel_to_string(w[1]), w[1]);
3780 break;
3781 }
3782
3783 vtn_assert(w[2] == SpvMemoryModelSimple ||
3784 w[2] == SpvMemoryModelGLSL450 ||
3785 w[2] == SpvMemoryModelOpenCL);
3786 break;
3787
3788 case SpvOpEntryPoint:
3789 vtn_handle_entry_point(b, w, count);
3790 break;
3791
3792 case SpvOpString:
3793 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3794 vtn_string_literal(b, &w[2], count - 2, NULL);
3795 break;
3796
3797 case SpvOpName:
3798 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3799 break;
3800
3801 case SpvOpMemberName:
3802 /* TODO */
3803 break;
3804
3805 case SpvOpExecutionMode:
3806 case SpvOpExecutionModeId:
3807 case SpvOpDecorationGroup:
3808 case SpvOpDecorate:
3809 case SpvOpDecorateId:
3810 case SpvOpMemberDecorate:
3811 case SpvOpGroupDecorate:
3812 case SpvOpGroupMemberDecorate:
3813 case SpvOpDecorateStringGOOGLE:
3814 case SpvOpMemberDecorateStringGOOGLE:
3815 vtn_handle_decoration(b, opcode, w, count);
3816 break;
3817
3818 default:
3819 return false; /* End of preamble */
3820 }
3821
3822 return true;
3823 }
3824
3825 static void
3826 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3827 const struct vtn_decoration *mode, void *data)
3828 {
3829 vtn_assert(b->entry_point == entry_point);
3830
3831 switch(mode->exec_mode) {
3832 case SpvExecutionModeOriginUpperLeft:
3833 case SpvExecutionModeOriginLowerLeft:
3834 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3835 b->shader->info.fs.origin_upper_left =
3836 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3837 break;
3838
3839 case SpvExecutionModeEarlyFragmentTests:
3840 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3841 b->shader->info.fs.early_fragment_tests = true;
3842 break;
3843
3844 case SpvExecutionModePostDepthCoverage:
3845 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3846 b->shader->info.fs.post_depth_coverage = true;
3847 break;
3848
3849 case SpvExecutionModeInvocations:
3850 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3851 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
3852 break;
3853
3854 case SpvExecutionModeDepthReplacing:
3855 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3856 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3857 break;
3858 case SpvExecutionModeDepthGreater:
3859 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3860 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3861 break;
3862 case SpvExecutionModeDepthLess:
3863 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3864 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3865 break;
3866 case SpvExecutionModeDepthUnchanged:
3867 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3868 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3869 break;
3870
3871 case SpvExecutionModeLocalSize:
3872 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3873 b->shader->info.cs.local_size[0] = mode->operands[0];
3874 b->shader->info.cs.local_size[1] = mode->operands[1];
3875 b->shader->info.cs.local_size[2] = mode->operands[2];
3876 break;
3877
3878 case SpvExecutionModeLocalSizeId:
3879 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
3880 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
3881 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
3882 break;
3883
3884 case SpvExecutionModeLocalSizeHint:
3885 case SpvExecutionModeLocalSizeHintId:
3886 break; /* Nothing to do with this */
3887
3888 case SpvExecutionModeOutputVertices:
3889 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3890 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3891 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
3892 } else {
3893 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3894 b->shader->info.gs.vertices_out = mode->operands[0];
3895 }
3896 break;
3897
3898 case SpvExecutionModeInputPoints:
3899 case SpvExecutionModeInputLines:
3900 case SpvExecutionModeInputLinesAdjacency:
3901 case SpvExecutionModeTriangles:
3902 case SpvExecutionModeInputTrianglesAdjacency:
3903 case SpvExecutionModeQuads:
3904 case SpvExecutionModeIsolines:
3905 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3906 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3907 b->shader->info.tess.primitive_mode =
3908 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3909 } else {
3910 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3911 b->shader->info.gs.vertices_in =
3912 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3913 b->shader->info.gs.input_primitive =
3914 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3915 }
3916 break;
3917
3918 case SpvExecutionModeOutputPoints:
3919 case SpvExecutionModeOutputLineStrip:
3920 case SpvExecutionModeOutputTriangleStrip:
3921 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3922 b->shader->info.gs.output_primitive =
3923 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3924 break;
3925
3926 case SpvExecutionModeSpacingEqual:
3927 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3928 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3929 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3930 break;
3931 case SpvExecutionModeSpacingFractionalEven:
3932 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3933 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3934 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3935 break;
3936 case SpvExecutionModeSpacingFractionalOdd:
3937 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3938 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3939 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3940 break;
3941 case SpvExecutionModeVertexOrderCw:
3942 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3943 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3944 b->shader->info.tess.ccw = false;
3945 break;
3946 case SpvExecutionModeVertexOrderCcw:
3947 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3948 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3949 b->shader->info.tess.ccw = true;
3950 break;
3951 case SpvExecutionModePointMode:
3952 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3953 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3954 b->shader->info.tess.point_mode = true;
3955 break;
3956
3957 case SpvExecutionModePixelCenterInteger:
3958 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3959 b->shader->info.fs.pixel_center_integer = true;
3960 break;
3961
3962 case SpvExecutionModeXfb:
3963 b->shader->info.has_transform_feedback_varyings = true;
3964 break;
3965
3966 case SpvExecutionModeVecTypeHint:
3967 break; /* OpenCL */
3968
3969 case SpvExecutionModeContractionOff:
3970 if (b->shader->info.stage != MESA_SHADER_KERNEL)
3971 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
3972 spirv_executionmode_to_string(mode->exec_mode));
3973 else
3974 b->exact = true;
3975 break;
3976
3977 case SpvExecutionModeStencilRefReplacingEXT:
3978 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3979 break;
3980
3981 case SpvExecutionModeDerivativeGroupQuadsNV:
3982 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3983 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
3984 break;
3985
3986 case SpvExecutionModeDerivativeGroupLinearNV:
3987 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3988 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
3989 break;
3990
3991 default:
3992 vtn_fail("Unhandled execution mode: %s (%u)",
3993 spirv_executionmode_to_string(mode->exec_mode),
3994 mode->exec_mode);
3995 }
3996 }
3997
3998 static bool
3999 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4000 const uint32_t *w, unsigned count)
4001 {
4002 vtn_set_instruction_result_type(b, opcode, w, count);
4003
4004 switch (opcode) {
4005 case SpvOpSource:
4006 case SpvOpSourceContinued:
4007 case SpvOpSourceExtension:
4008 case SpvOpExtension:
4009 case SpvOpCapability:
4010 case SpvOpExtInstImport:
4011 case SpvOpMemoryModel:
4012 case SpvOpEntryPoint:
4013 case SpvOpExecutionMode:
4014 case SpvOpString:
4015 case SpvOpName:
4016 case SpvOpMemberName:
4017 case SpvOpDecorationGroup:
4018 case SpvOpDecorate:
4019 case SpvOpDecorateId:
4020 case SpvOpMemberDecorate:
4021 case SpvOpGroupDecorate:
4022 case SpvOpGroupMemberDecorate:
4023 case SpvOpDecorateStringGOOGLE:
4024 case SpvOpMemberDecorateStringGOOGLE:
4025 vtn_fail("Invalid opcode types and variables section");
4026 break;
4027
4028 case SpvOpTypeVoid:
4029 case SpvOpTypeBool:
4030 case SpvOpTypeInt:
4031 case SpvOpTypeFloat:
4032 case SpvOpTypeVector:
4033 case SpvOpTypeMatrix:
4034 case SpvOpTypeImage:
4035 case SpvOpTypeSampler:
4036 case SpvOpTypeSampledImage:
4037 case SpvOpTypeArray:
4038 case SpvOpTypeRuntimeArray:
4039 case SpvOpTypeStruct:
4040 case SpvOpTypeOpaque:
4041 case SpvOpTypePointer:
4042 case SpvOpTypeForwardPointer:
4043 case SpvOpTypeFunction:
4044 case SpvOpTypeEvent:
4045 case SpvOpTypeDeviceEvent:
4046 case SpvOpTypeReserveId:
4047 case SpvOpTypeQueue:
4048 case SpvOpTypePipe:
4049 vtn_handle_type(b, opcode, w, count);
4050 break;
4051
4052 case SpvOpConstantTrue:
4053 case SpvOpConstantFalse:
4054 case SpvOpConstant:
4055 case SpvOpConstantComposite:
4056 case SpvOpConstantSampler:
4057 case SpvOpConstantNull:
4058 case SpvOpSpecConstantTrue:
4059 case SpvOpSpecConstantFalse:
4060 case SpvOpSpecConstant:
4061 case SpvOpSpecConstantComposite:
4062 case SpvOpSpecConstantOp:
4063 vtn_handle_constant(b, opcode, w, count);
4064 break;
4065
4066 case SpvOpUndef:
4067 case SpvOpVariable:
4068 vtn_handle_variables(b, opcode, w, count);
4069 break;
4070
4071 default:
4072 return false; /* End of preamble */
4073 }
4074
4075 return true;
4076 }
4077
4078 static bool
4079 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4080 const uint32_t *w, unsigned count)
4081 {
4082 switch (opcode) {
4083 case SpvOpLabel:
4084 break;
4085
4086 case SpvOpLoopMerge:
4087 case SpvOpSelectionMerge:
4088 /* This is handled by cfg pre-pass and walk_blocks */
4089 break;
4090
4091 case SpvOpUndef: {
4092 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4093 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4094 break;
4095 }
4096
4097 case SpvOpExtInst:
4098 vtn_handle_extension(b, opcode, w, count);
4099 break;
4100
4101 case SpvOpVariable:
4102 case SpvOpLoad:
4103 case SpvOpStore:
4104 case SpvOpCopyMemory:
4105 case SpvOpCopyMemorySized:
4106 case SpvOpAccessChain:
4107 case SpvOpPtrAccessChain:
4108 case SpvOpInBoundsAccessChain:
4109 case SpvOpInBoundsPtrAccessChain:
4110 case SpvOpArrayLength:
4111 case SpvOpConvertPtrToU:
4112 case SpvOpConvertUToPtr:
4113 vtn_handle_variables(b, opcode, w, count);
4114 break;
4115
4116 case SpvOpFunctionCall:
4117 vtn_handle_function_call(b, opcode, w, count);
4118 break;
4119
4120 case SpvOpSampledImage:
4121 case SpvOpImage:
4122 case SpvOpImageSampleImplicitLod:
4123 case SpvOpImageSampleExplicitLod:
4124 case SpvOpImageSampleDrefImplicitLod:
4125 case SpvOpImageSampleDrefExplicitLod:
4126 case SpvOpImageSampleProjImplicitLod:
4127 case SpvOpImageSampleProjExplicitLod:
4128 case SpvOpImageSampleProjDrefImplicitLod:
4129 case SpvOpImageSampleProjDrefExplicitLod:
4130 case SpvOpImageFetch:
4131 case SpvOpImageGather:
4132 case SpvOpImageDrefGather:
4133 case SpvOpImageQuerySizeLod:
4134 case SpvOpImageQueryLod:
4135 case SpvOpImageQueryLevels:
4136 case SpvOpImageQuerySamples:
4137 vtn_handle_texture(b, opcode, w, count);
4138 break;
4139
4140 case SpvOpImageRead:
4141 case SpvOpImageWrite:
4142 case SpvOpImageTexelPointer:
4143 vtn_handle_image(b, opcode, w, count);
4144 break;
4145
4146 case SpvOpImageQuerySize: {
4147 struct vtn_pointer *image =
4148 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4149 if (glsl_type_is_image(image->type->type)) {
4150 vtn_handle_image(b, opcode, w, count);
4151 } else {
4152 vtn_assert(glsl_type_is_sampler(image->type->type));
4153 vtn_handle_texture(b, opcode, w, count);
4154 }
4155 break;
4156 }
4157
4158 case SpvOpAtomicLoad:
4159 case SpvOpAtomicExchange:
4160 case SpvOpAtomicCompareExchange:
4161 case SpvOpAtomicCompareExchangeWeak:
4162 case SpvOpAtomicIIncrement:
4163 case SpvOpAtomicIDecrement:
4164 case SpvOpAtomicIAdd:
4165 case SpvOpAtomicISub:
4166 case SpvOpAtomicSMin:
4167 case SpvOpAtomicUMin:
4168 case SpvOpAtomicSMax:
4169 case SpvOpAtomicUMax:
4170 case SpvOpAtomicAnd:
4171 case SpvOpAtomicOr:
4172 case SpvOpAtomicXor: {
4173 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4174 if (pointer->value_type == vtn_value_type_image_pointer) {
4175 vtn_handle_image(b, opcode, w, count);
4176 } else {
4177 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4178 vtn_handle_atomics(b, opcode, w, count);
4179 }
4180 break;
4181 }
4182
4183 case SpvOpAtomicStore: {
4184 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4185 if (pointer->value_type == vtn_value_type_image_pointer) {
4186 vtn_handle_image(b, opcode, w, count);
4187 } else {
4188 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4189 vtn_handle_atomics(b, opcode, w, count);
4190 }
4191 break;
4192 }
4193
4194 case SpvOpSelect: {
4195 /* Handle OpSelect up-front here because it needs to be able to handle
4196 * pointers and not just regular vectors and scalars.
4197 */
4198 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4199 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
4200 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4201 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4202
4203 const struct glsl_type *sel_type;
4204 switch (res_val->type->base_type) {
4205 case vtn_base_type_scalar:
4206 sel_type = glsl_bool_type();
4207 break;
4208 case vtn_base_type_vector:
4209 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
4210 break;
4211 case vtn_base_type_pointer:
4212 /* We need to have actual storage for pointer types */
4213 vtn_fail_if(res_val->type->type == NULL,
4214 "Invalid pointer result type for OpSelect");
4215 sel_type = glsl_bool_type();
4216 break;
4217 default:
4218 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
4219 }
4220
4221 if (unlikely(sel_val->type->type != sel_type)) {
4222 if (sel_val->type->type == glsl_bool_type()) {
4223 /* This case is illegal but some older versions of GLSLang produce
4224 * it. The GLSLang issue was fixed on March 30, 2017:
4225 *
4226 * https://github.com/KhronosGroup/glslang/issues/809
4227 *
4228 * Unfortunately, there are applications in the wild which are
4229 * shipping with this bug so it isn't nice to fail on them so we
4230 * throw a warning instead. It's not actually a problem for us as
4231 * nir_builder will just splat the condition out which is most
4232 * likely what the client wanted anyway.
4233 */
4234 vtn_warn("Condition type of OpSelect must have the same number "
4235 "of components as Result Type");
4236 } else {
4237 vtn_fail("Condition type of OpSelect must be a scalar or vector "
4238 "of Boolean type. It must have the same number of "
4239 "components as Result Type");
4240 }
4241 }
4242
4243 vtn_fail_if(obj1_val->type != res_val->type ||
4244 obj2_val->type != res_val->type,
4245 "Object types must match the result type in OpSelect");
4246
4247 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4248 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
4249 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
4250 vtn_ssa_value(b, w[4])->def,
4251 vtn_ssa_value(b, w[5])->def);
4252 vtn_push_ssa(b, w[2], res_type, ssa);
4253 break;
4254 }
4255
4256 case SpvOpSNegate:
4257 case SpvOpFNegate:
4258 case SpvOpNot:
4259 case SpvOpAny:
4260 case SpvOpAll:
4261 case SpvOpConvertFToU:
4262 case SpvOpConvertFToS:
4263 case SpvOpConvertSToF:
4264 case SpvOpConvertUToF:
4265 case SpvOpUConvert:
4266 case SpvOpSConvert:
4267 case SpvOpFConvert:
4268 case SpvOpQuantizeToF16:
4269 case SpvOpPtrCastToGeneric:
4270 case SpvOpGenericCastToPtr:
4271 case SpvOpIsNan:
4272 case SpvOpIsInf:
4273 case SpvOpIsFinite:
4274 case SpvOpIsNormal:
4275 case SpvOpSignBitSet:
4276 case SpvOpLessOrGreater:
4277 case SpvOpOrdered:
4278 case SpvOpUnordered:
4279 case SpvOpIAdd:
4280 case SpvOpFAdd:
4281 case SpvOpISub:
4282 case SpvOpFSub:
4283 case SpvOpIMul:
4284 case SpvOpFMul:
4285 case SpvOpUDiv:
4286 case SpvOpSDiv:
4287 case SpvOpFDiv:
4288 case SpvOpUMod:
4289 case SpvOpSRem:
4290 case SpvOpSMod:
4291 case SpvOpFRem:
4292 case SpvOpFMod:
4293 case SpvOpVectorTimesScalar:
4294 case SpvOpDot:
4295 case SpvOpIAddCarry:
4296 case SpvOpISubBorrow:
4297 case SpvOpUMulExtended:
4298 case SpvOpSMulExtended:
4299 case SpvOpShiftRightLogical:
4300 case SpvOpShiftRightArithmetic:
4301 case SpvOpShiftLeftLogical:
4302 case SpvOpLogicalEqual:
4303 case SpvOpLogicalNotEqual:
4304 case SpvOpLogicalOr:
4305 case SpvOpLogicalAnd:
4306 case SpvOpLogicalNot:
4307 case SpvOpBitwiseOr:
4308 case SpvOpBitwiseXor:
4309 case SpvOpBitwiseAnd:
4310 case SpvOpIEqual:
4311 case SpvOpFOrdEqual:
4312 case SpvOpFUnordEqual:
4313 case SpvOpINotEqual:
4314 case SpvOpFOrdNotEqual:
4315 case SpvOpFUnordNotEqual:
4316 case SpvOpULessThan:
4317 case SpvOpSLessThan:
4318 case SpvOpFOrdLessThan:
4319 case SpvOpFUnordLessThan:
4320 case SpvOpUGreaterThan:
4321 case SpvOpSGreaterThan:
4322 case SpvOpFOrdGreaterThan:
4323 case SpvOpFUnordGreaterThan:
4324 case SpvOpULessThanEqual:
4325 case SpvOpSLessThanEqual:
4326 case SpvOpFOrdLessThanEqual:
4327 case SpvOpFUnordLessThanEqual:
4328 case SpvOpUGreaterThanEqual:
4329 case SpvOpSGreaterThanEqual:
4330 case SpvOpFOrdGreaterThanEqual:
4331 case SpvOpFUnordGreaterThanEqual:
4332 case SpvOpDPdx:
4333 case SpvOpDPdy:
4334 case SpvOpFwidth:
4335 case SpvOpDPdxFine:
4336 case SpvOpDPdyFine:
4337 case SpvOpFwidthFine:
4338 case SpvOpDPdxCoarse:
4339 case SpvOpDPdyCoarse:
4340 case SpvOpFwidthCoarse:
4341 case SpvOpBitFieldInsert:
4342 case SpvOpBitFieldSExtract:
4343 case SpvOpBitFieldUExtract:
4344 case SpvOpBitReverse:
4345 case SpvOpBitCount:
4346 case SpvOpTranspose:
4347 case SpvOpOuterProduct:
4348 case SpvOpMatrixTimesScalar:
4349 case SpvOpVectorTimesMatrix:
4350 case SpvOpMatrixTimesVector:
4351 case SpvOpMatrixTimesMatrix:
4352 vtn_handle_alu(b, opcode, w, count);
4353 break;
4354
4355 case SpvOpBitcast:
4356 vtn_handle_bitcast(b, w, count);
4357 break;
4358
4359 case SpvOpVectorExtractDynamic:
4360 case SpvOpVectorInsertDynamic:
4361 case SpvOpVectorShuffle:
4362 case SpvOpCompositeConstruct:
4363 case SpvOpCompositeExtract:
4364 case SpvOpCompositeInsert:
4365 case SpvOpCopyObject:
4366 vtn_handle_composite(b, opcode, w, count);
4367 break;
4368
4369 case SpvOpEmitVertex:
4370 case SpvOpEndPrimitive:
4371 case SpvOpEmitStreamVertex:
4372 case SpvOpEndStreamPrimitive:
4373 case SpvOpControlBarrier:
4374 case SpvOpMemoryBarrier:
4375 vtn_handle_barrier(b, opcode, w, count);
4376 break;
4377
4378 case SpvOpGroupNonUniformElect:
4379 case SpvOpGroupNonUniformAll:
4380 case SpvOpGroupNonUniformAny:
4381 case SpvOpGroupNonUniformAllEqual:
4382 case SpvOpGroupNonUniformBroadcast:
4383 case SpvOpGroupNonUniformBroadcastFirst:
4384 case SpvOpGroupNonUniformBallot:
4385 case SpvOpGroupNonUniformInverseBallot:
4386 case SpvOpGroupNonUniformBallotBitExtract:
4387 case SpvOpGroupNonUniformBallotBitCount:
4388 case SpvOpGroupNonUniformBallotFindLSB:
4389 case SpvOpGroupNonUniformBallotFindMSB:
4390 case SpvOpGroupNonUniformShuffle:
4391 case SpvOpGroupNonUniformShuffleXor:
4392 case SpvOpGroupNonUniformShuffleUp:
4393 case SpvOpGroupNonUniformShuffleDown:
4394 case SpvOpGroupNonUniformIAdd:
4395 case SpvOpGroupNonUniformFAdd:
4396 case SpvOpGroupNonUniformIMul:
4397 case SpvOpGroupNonUniformFMul:
4398 case SpvOpGroupNonUniformSMin:
4399 case SpvOpGroupNonUniformUMin:
4400 case SpvOpGroupNonUniformFMin:
4401 case SpvOpGroupNonUniformSMax:
4402 case SpvOpGroupNonUniformUMax:
4403 case SpvOpGroupNonUniformFMax:
4404 case SpvOpGroupNonUniformBitwiseAnd:
4405 case SpvOpGroupNonUniformBitwiseOr:
4406 case SpvOpGroupNonUniformBitwiseXor:
4407 case SpvOpGroupNonUniformLogicalAnd:
4408 case SpvOpGroupNonUniformLogicalOr:
4409 case SpvOpGroupNonUniformLogicalXor:
4410 case SpvOpGroupNonUniformQuadBroadcast:
4411 case SpvOpGroupNonUniformQuadSwap:
4412 vtn_handle_subgroup(b, opcode, w, count);
4413 break;
4414
4415 default:
4416 vtn_fail_with_opcode("Unhandled opcode", opcode);
4417 }
4418
4419 return true;
4420 }
4421
4422 struct vtn_builder*
4423 vtn_create_builder(const uint32_t *words, size_t word_count,
4424 gl_shader_stage stage, const char *entry_point_name,
4425 const struct spirv_to_nir_options *options)
4426 {
4427 /* Initialize the vtn_builder object */
4428 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4429 struct spirv_to_nir_options *dup_options =
4430 ralloc(b, struct spirv_to_nir_options);
4431 *dup_options = *options;
4432
4433 b->spirv = words;
4434 b->spirv_word_count = word_count;
4435 b->file = NULL;
4436 b->line = -1;
4437 b->col = -1;
4438 exec_list_make_empty(&b->functions);
4439 b->entry_point_stage = stage;
4440 b->entry_point_name = entry_point_name;
4441 b->options = dup_options;
4442
4443 /*
4444 * Handle the SPIR-V header (first 5 dwords).
4445 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4446 */
4447 if (word_count <= 5)
4448 goto fail;
4449
4450 if (words[0] != SpvMagicNumber) {
4451 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4452 goto fail;
4453 }
4454 if (words[1] < 0x10000) {
4455 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4456 goto fail;
4457 }
4458
4459 uint16_t generator_id = words[2] >> 16;
4460 uint16_t generator_version = words[2];
4461
4462 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4463 * but this should at least let us shut the workaround off for modern
4464 * versions of GLSLang.
4465 */
4466 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4467
4468 /* words[2] == generator magic */
4469 unsigned value_id_bound = words[3];
4470 if (words[4] != 0) {
4471 vtn_err("words[4] was %u, want 0", words[4]);
4472 goto fail;
4473 }
4474
4475 b->value_id_bound = value_id_bound;
4476 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4477
4478 return b;
4479 fail:
4480 ralloc_free(b);
4481 return NULL;
4482 }
4483
4484 static nir_function *
4485 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4486 nir_function *entry_point)
4487 {
4488 vtn_assert(entry_point == b->entry_point->func->impl->function);
4489 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4490 const char *func_name =
4491 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4492
4493 /* we shouldn't have any inputs yet */
4494 vtn_assert(!entry_point->shader->num_inputs);
4495 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4496
4497 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4498 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4499 nir_builder_init(&b->nb, main_entry_point->impl);
4500 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4501 b->func_param_idx = 0;
4502
4503 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4504
4505 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4506 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4507
4508 /* consider all pointers to function memory to be parameters passed
4509 * by value
4510 */
4511 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4512 param_type->storage_class == SpvStorageClassFunction;
4513
4514 /* input variable */
4515 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4516 in_var->data.mode = nir_var_shader_in;
4517 in_var->data.read_only = true;
4518 in_var->data.location = i;
4519
4520 if (is_by_val)
4521 in_var->type = param_type->deref->type;
4522 else
4523 in_var->type = param_type->type;
4524
4525 nir_shader_add_variable(b->nb.shader, in_var);
4526 b->nb.shader->num_inputs++;
4527
4528 /* we have to copy the entire variable into function memory */
4529 if (is_by_val) {
4530 nir_variable *copy_var =
4531 nir_local_variable_create(main_entry_point->impl, in_var->type,
4532 "copy_in");
4533 nir_copy_var(&b->nb, copy_var, in_var);
4534 call->params[i] =
4535 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4536 } else {
4537 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4538 }
4539 }
4540
4541 nir_builder_instr_insert(&b->nb, &call->instr);
4542
4543 return main_entry_point;
4544 }
4545
4546 nir_function *
4547 spirv_to_nir(const uint32_t *words, size_t word_count,
4548 struct nir_spirv_specialization *spec, unsigned num_spec,
4549 gl_shader_stage stage, const char *entry_point_name,
4550 const struct spirv_to_nir_options *options,
4551 const nir_shader_compiler_options *nir_options)
4552
4553 {
4554 const uint32_t *word_end = words + word_count;
4555
4556 struct vtn_builder *b = vtn_create_builder(words, word_count,
4557 stage, entry_point_name,
4558 options);
4559
4560 if (b == NULL)
4561 return NULL;
4562
4563 /* See also _vtn_fail() */
4564 if (setjmp(b->fail_jump)) {
4565 ralloc_free(b);
4566 return NULL;
4567 }
4568
4569 /* Skip the SPIR-V header, handled at vtn_create_builder */
4570 words+= 5;
4571
4572 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4573
4574 /* Handle all the preamble instructions */
4575 words = vtn_foreach_instruction(b, words, word_end,
4576 vtn_handle_preamble_instruction);
4577
4578 if (b->entry_point == NULL) {
4579 vtn_fail("Entry point not found");
4580 ralloc_free(b);
4581 return NULL;
4582 }
4583
4584 /* Set shader info defaults */
4585 b->shader->info.gs.invocations = 1;
4586
4587 b->specializations = spec;
4588 b->num_specializations = num_spec;
4589
4590 /* Handle all variable, type, and constant instructions */
4591 words = vtn_foreach_instruction(b, words, word_end,
4592 vtn_handle_variable_or_type_instruction);
4593
4594 /* Parse execution modes */
4595 vtn_foreach_execution_mode(b, b->entry_point,
4596 vtn_handle_execution_mode, NULL);
4597
4598 if (b->workgroup_size_builtin) {
4599 vtn_assert(b->workgroup_size_builtin->type->type ==
4600 glsl_vector_type(GLSL_TYPE_UINT, 3));
4601
4602 nir_const_value *const_size =
4603 b->workgroup_size_builtin->constant->values[0];
4604
4605 b->shader->info.cs.local_size[0] = const_size[0].u32;
4606 b->shader->info.cs.local_size[1] = const_size[1].u32;
4607 b->shader->info.cs.local_size[2] = const_size[2].u32;
4608 }
4609
4610 /* Set types on all vtn_values */
4611 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4612
4613 vtn_build_cfg(b, words, word_end);
4614
4615 assert(b->entry_point->value_type == vtn_value_type_function);
4616 b->entry_point->func->referenced = true;
4617
4618 bool progress;
4619 do {
4620 progress = false;
4621 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4622 if (func->referenced && !func->emitted) {
4623 b->const_table = _mesa_pointer_hash_table_create(b);
4624
4625 vtn_function_emit(b, func, vtn_handle_body_instruction);
4626 progress = true;
4627 }
4628 }
4629 } while (progress);
4630
4631 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4632 nir_function *entry_point = b->entry_point->func->impl->function;
4633 vtn_assert(entry_point);
4634
4635 /* post process entry_points with input params */
4636 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4637 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4638
4639 entry_point->is_entrypoint = true;
4640
4641 /* When multiple shader stages exist in the same SPIR-V module, we
4642 * generate input and output variables for every stage, in the same
4643 * NIR program. These dead variables can be invalid NIR. For example,
4644 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4645 * VS output variables wouldn't be.
4646 *
4647 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4648 * right away. In order to do so, we must lower any constant initializers
4649 * on outputs so nir_remove_dead_variables sees that they're written to.
4650 */
4651 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4652 nir_remove_dead_variables(b->shader,
4653 nir_var_shader_in | nir_var_shader_out);
4654
4655 /* We sometimes generate bogus derefs that, while never used, give the
4656 * validator a bit of heartburn. Run dead code to get rid of them.
4657 */
4658 nir_opt_dce(b->shader);
4659
4660 /* Unparent the shader from the vtn_builder before we delete the builder */
4661 ralloc_steal(NULL, b->shader);
4662
4663 ralloc_free(b);
4664
4665 return entry_point;
4666 }