vtn: handle bitcast with pointer src/dest
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values[0],
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned rows = glsl_get_vector_elements(val->type);
247 unsigned columns = glsl_get_matrix_columns(val->type);
248 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
249
250 for (unsigned i = 0; i < columns; i++) {
251 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
252 col_val->type = glsl_get_column_type(val->type);
253 nir_load_const_instr *load =
254 nir_load_const_instr_create(b->shader, rows, bit_size);
255
256 memcpy(load->value, constant->values[i],
257 sizeof(nir_const_value) * load->def.num_components);
258
259 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
260 col_val->def = &load->def;
261
262 val->elems[i] = col_val;
263 }
264 }
265 break;
266 }
267
268 case GLSL_TYPE_ARRAY: {
269 unsigned elems = glsl_get_length(val->type);
270 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
271 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
272 for (unsigned i = 0; i < elems; i++)
273 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
274 elem_type);
275 break;
276 }
277
278 case GLSL_TYPE_STRUCT: {
279 unsigned elems = glsl_get_length(val->type);
280 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
281 for (unsigned i = 0; i < elems; i++) {
282 const struct glsl_type *elem_type =
283 glsl_get_struct_field(val->type, i);
284 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
285 elem_type);
286 }
287 break;
288 }
289
290 default:
291 vtn_fail("bad constant type");
292 }
293
294 return val;
295 }
296
297 struct vtn_ssa_value *
298 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
299 {
300 struct vtn_value *val = vtn_untyped_value(b, value_id);
301 switch (val->value_type) {
302 case vtn_value_type_undef:
303 return vtn_undef_ssa_value(b, val->type->type);
304
305 case vtn_value_type_constant:
306 return vtn_const_ssa_value(b, val->constant, val->type->type);
307
308 case vtn_value_type_ssa:
309 return val->ssa;
310
311 case vtn_value_type_pointer:
312 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
313 struct vtn_ssa_value *ssa =
314 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
315 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
316 return ssa;
317
318 default:
319 vtn_fail("Invalid type for an SSA value");
320 }
321 }
322
323 static char *
324 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
325 unsigned word_count, unsigned *words_used)
326 {
327 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
328 if (words_used) {
329 /* Ammount of space taken by the string (including the null) */
330 unsigned len = strlen(dup) + 1;
331 *words_used = DIV_ROUND_UP(len, sizeof(*words));
332 }
333 return dup;
334 }
335
336 const uint32_t *
337 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
338 const uint32_t *end, vtn_instruction_handler handler)
339 {
340 b->file = NULL;
341 b->line = -1;
342 b->col = -1;
343
344 const uint32_t *w = start;
345 while (w < end) {
346 SpvOp opcode = w[0] & SpvOpCodeMask;
347 unsigned count = w[0] >> SpvWordCountShift;
348 vtn_assert(count >= 1 && w + count <= end);
349
350 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
351
352 switch (opcode) {
353 case SpvOpNop:
354 break; /* Do nothing */
355
356 case SpvOpLine:
357 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
358 b->line = w[2];
359 b->col = w[3];
360 break;
361
362 case SpvOpNoLine:
363 b->file = NULL;
364 b->line = -1;
365 b->col = -1;
366 break;
367
368 default:
369 if (!handler(b, opcode, w, count))
370 return w;
371 break;
372 }
373
374 w += count;
375 }
376
377 b->spirv_offset = 0;
378 b->file = NULL;
379 b->line = -1;
380 b->col = -1;
381
382 assert(w == end);
383 return w;
384 }
385
386 static void
387 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
388 const uint32_t *w, unsigned count)
389 {
390 const char *ext = (const char *)&w[2];
391 switch (opcode) {
392 case SpvOpExtInstImport: {
393 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
394 if (strcmp(ext, "GLSL.std.450") == 0) {
395 val->ext_handler = vtn_handle_glsl450_instruction;
396 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
397 && (b->options && b->options->caps.gcn_shader)) {
398 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
399 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
400 && (b->options && b->options->caps.trinary_minmax)) {
401 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
402 } else if (strcmp(ext, "OpenCL.std") == 0) {
403 val->ext_handler = vtn_handle_opencl_instruction;
404 } else {
405 vtn_fail("Unsupported extension: %s", ext);
406 }
407 break;
408 }
409
410 case SpvOpExtInst: {
411 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
412 bool handled = val->ext_handler(b, w[4], w, count);
413 vtn_assert(handled);
414 break;
415 }
416
417 default:
418 vtn_fail_with_opcode("Unhandled opcode", opcode);
419 }
420 }
421
422 static void
423 _foreach_decoration_helper(struct vtn_builder *b,
424 struct vtn_value *base_value,
425 int parent_member,
426 struct vtn_value *value,
427 vtn_decoration_foreach_cb cb, void *data)
428 {
429 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
430 int member;
431 if (dec->scope == VTN_DEC_DECORATION) {
432 member = parent_member;
433 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
434 vtn_fail_if(value->value_type != vtn_value_type_type ||
435 value->type->base_type != vtn_base_type_struct,
436 "OpMemberDecorate and OpGroupMemberDecorate are only "
437 "allowed on OpTypeStruct");
438 /* This means we haven't recursed yet */
439 assert(value == base_value);
440
441 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
442
443 vtn_fail_if(member >= base_value->type->length,
444 "OpMemberDecorate specifies member %d but the "
445 "OpTypeStruct has only %u members",
446 member, base_value->type->length);
447 } else {
448 /* Not a decoration */
449 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
450 continue;
451 }
452
453 if (dec->group) {
454 assert(dec->group->value_type == vtn_value_type_decoration_group);
455 _foreach_decoration_helper(b, base_value, member, dec->group,
456 cb, data);
457 } else {
458 cb(b, base_value, member, dec, data);
459 }
460 }
461 }
462
463 /** Iterates (recursively if needed) over all of the decorations on a value
464 *
465 * This function iterates over all of the decorations applied to a given
466 * value. If it encounters a decoration group, it recurses into the group
467 * and iterates over all of those decorations as well.
468 */
469 void
470 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
471 vtn_decoration_foreach_cb cb, void *data)
472 {
473 _foreach_decoration_helper(b, value, -1, value, cb, data);
474 }
475
476 void
477 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
478 vtn_execution_mode_foreach_cb cb, void *data)
479 {
480 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
481 if (dec->scope != VTN_DEC_EXECUTION_MODE)
482 continue;
483
484 assert(dec->group == NULL);
485 cb(b, value, dec, data);
486 }
487 }
488
489 void
490 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
491 const uint32_t *w, unsigned count)
492 {
493 const uint32_t *w_end = w + count;
494 const uint32_t target = w[1];
495 w += 2;
496
497 switch (opcode) {
498 case SpvOpDecorationGroup:
499 vtn_push_value(b, target, vtn_value_type_decoration_group);
500 break;
501
502 case SpvOpDecorate:
503 case SpvOpDecorateId:
504 case SpvOpMemberDecorate:
505 case SpvOpDecorateStringGOOGLE:
506 case SpvOpMemberDecorateStringGOOGLE:
507 case SpvOpExecutionMode:
508 case SpvOpExecutionModeId: {
509 struct vtn_value *val = vtn_untyped_value(b, target);
510
511 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
512 switch (opcode) {
513 case SpvOpDecorate:
514 case SpvOpDecorateId:
515 case SpvOpDecorateStringGOOGLE:
516 dec->scope = VTN_DEC_DECORATION;
517 break;
518 case SpvOpMemberDecorate:
519 case SpvOpMemberDecorateStringGOOGLE:
520 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
521 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
522 "Member argument of OpMemberDecorate too large");
523 break;
524 case SpvOpExecutionMode:
525 case SpvOpExecutionModeId:
526 dec->scope = VTN_DEC_EXECUTION_MODE;
527 break;
528 default:
529 unreachable("Invalid decoration opcode");
530 }
531 dec->decoration = *(w++);
532 dec->operands = w;
533
534 /* Link into the list */
535 dec->next = val->decoration;
536 val->decoration = dec;
537 break;
538 }
539
540 case SpvOpGroupMemberDecorate:
541 case SpvOpGroupDecorate: {
542 struct vtn_value *group =
543 vtn_value(b, target, vtn_value_type_decoration_group);
544
545 for (; w < w_end; w++) {
546 struct vtn_value *val = vtn_untyped_value(b, *w);
547 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
548
549 dec->group = group;
550 if (opcode == SpvOpGroupDecorate) {
551 dec->scope = VTN_DEC_DECORATION;
552 } else {
553 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
554 vtn_fail_if(dec->scope < 0, /* Check for overflow */
555 "Member argument of OpGroupMemberDecorate too large");
556 }
557
558 /* Link into the list */
559 dec->next = val->decoration;
560 val->decoration = dec;
561 }
562 break;
563 }
564
565 default:
566 unreachable("Unhandled opcode");
567 }
568 }
569
570 struct member_decoration_ctx {
571 unsigned num_fields;
572 struct glsl_struct_field *fields;
573 struct vtn_type *type;
574 };
575
576 /**
577 * Returns true if the given type contains a struct decorated Block or
578 * BufferBlock
579 */
580 bool
581 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
582 {
583 switch (type->base_type) {
584 case vtn_base_type_array:
585 return vtn_type_contains_block(b, type->array_element);
586 case vtn_base_type_struct:
587 if (type->block || type->buffer_block)
588 return true;
589 for (unsigned i = 0; i < type->length; i++) {
590 if (vtn_type_contains_block(b, type->members[i]))
591 return true;
592 }
593 return false;
594 default:
595 return false;
596 }
597 }
598
599 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
600 * OpStore, or OpCopyMemory between them without breaking anything.
601 * Technically, the SPIR-V rules require the exact same type ID but this lets
602 * us internally be a bit looser.
603 */
604 bool
605 vtn_types_compatible(struct vtn_builder *b,
606 struct vtn_type *t1, struct vtn_type *t2)
607 {
608 if (t1->id == t2->id)
609 return true;
610
611 if (t1->base_type != t2->base_type)
612 return false;
613
614 switch (t1->base_type) {
615 case vtn_base_type_void:
616 case vtn_base_type_scalar:
617 case vtn_base_type_vector:
618 case vtn_base_type_matrix:
619 case vtn_base_type_image:
620 case vtn_base_type_sampler:
621 case vtn_base_type_sampled_image:
622 return t1->type == t2->type;
623
624 case vtn_base_type_array:
625 return t1->length == t2->length &&
626 vtn_types_compatible(b, t1->array_element, t2->array_element);
627
628 case vtn_base_type_pointer:
629 return vtn_types_compatible(b, t1->deref, t2->deref);
630
631 case vtn_base_type_struct:
632 if (t1->length != t2->length)
633 return false;
634
635 for (unsigned i = 0; i < t1->length; i++) {
636 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
637 return false;
638 }
639 return true;
640
641 case vtn_base_type_function:
642 /* This case shouldn't get hit since you can't copy around function
643 * types. Just require them to be identical.
644 */
645 return false;
646 }
647
648 vtn_fail("Invalid base type");
649 }
650
651 /* does a shallow copy of a vtn_type */
652
653 static struct vtn_type *
654 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
655 {
656 struct vtn_type *dest = ralloc(b, struct vtn_type);
657 *dest = *src;
658
659 switch (src->base_type) {
660 case vtn_base_type_void:
661 case vtn_base_type_scalar:
662 case vtn_base_type_vector:
663 case vtn_base_type_matrix:
664 case vtn_base_type_array:
665 case vtn_base_type_pointer:
666 case vtn_base_type_image:
667 case vtn_base_type_sampler:
668 case vtn_base_type_sampled_image:
669 /* Nothing more to do */
670 break;
671
672 case vtn_base_type_struct:
673 dest->members = ralloc_array(b, struct vtn_type *, src->length);
674 memcpy(dest->members, src->members,
675 src->length * sizeof(src->members[0]));
676
677 dest->offsets = ralloc_array(b, unsigned, src->length);
678 memcpy(dest->offsets, src->offsets,
679 src->length * sizeof(src->offsets[0]));
680 break;
681
682 case vtn_base_type_function:
683 dest->params = ralloc_array(b, struct vtn_type *, src->length);
684 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
685 break;
686 }
687
688 return dest;
689 }
690
691 static struct vtn_type *
692 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
693 {
694 type->members[member] = vtn_type_copy(b, type->members[member]);
695 type = type->members[member];
696
697 /* We may have an array of matrices.... Oh, joy! */
698 while (glsl_type_is_array(type->type)) {
699 type->array_element = vtn_type_copy(b, type->array_element);
700 type = type->array_element;
701 }
702
703 vtn_assert(glsl_type_is_matrix(type->type));
704
705 return type;
706 }
707
708 static void
709 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
710 int member, enum gl_access_qualifier access)
711 {
712 type->members[member] = vtn_type_copy(b, type->members[member]);
713 type = type->members[member];
714
715 type->access |= access;
716 }
717
718 static void
719 array_stride_decoration_cb(struct vtn_builder *b,
720 struct vtn_value *val, int member,
721 const struct vtn_decoration *dec, void *void_ctx)
722 {
723 struct vtn_type *type = val->type;
724
725 if (dec->decoration == SpvDecorationArrayStride) {
726 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
727 type->stride = dec->operands[0];
728 }
729 }
730
731 static void
732 struct_member_decoration_cb(struct vtn_builder *b,
733 struct vtn_value *val, int member,
734 const struct vtn_decoration *dec, void *void_ctx)
735 {
736 struct member_decoration_ctx *ctx = void_ctx;
737
738 if (member < 0)
739 return;
740
741 assert(member < ctx->num_fields);
742
743 switch (dec->decoration) {
744 case SpvDecorationRelaxedPrecision:
745 case SpvDecorationUniform:
746 break; /* FIXME: Do nothing with this for now. */
747 case SpvDecorationNonWritable:
748 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
749 break;
750 case SpvDecorationNonReadable:
751 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
752 break;
753 case SpvDecorationVolatile:
754 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
755 break;
756 case SpvDecorationCoherent:
757 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
758 break;
759 case SpvDecorationNoPerspective:
760 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
761 break;
762 case SpvDecorationFlat:
763 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
764 break;
765 case SpvDecorationCentroid:
766 ctx->fields[member].centroid = true;
767 break;
768 case SpvDecorationSample:
769 ctx->fields[member].sample = true;
770 break;
771 case SpvDecorationStream:
772 /* Vulkan only allows one GS stream */
773 vtn_assert(dec->operands[0] == 0);
774 break;
775 case SpvDecorationLocation:
776 ctx->fields[member].location = dec->operands[0];
777 break;
778 case SpvDecorationComponent:
779 break; /* FIXME: What should we do with these? */
780 case SpvDecorationBuiltIn:
781 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
782 ctx->type->members[member]->is_builtin = true;
783 ctx->type->members[member]->builtin = dec->operands[0];
784 ctx->type->builtin_block = true;
785 break;
786 case SpvDecorationOffset:
787 ctx->type->offsets[member] = dec->operands[0];
788 ctx->fields[member].offset = dec->operands[0];
789 break;
790 case SpvDecorationMatrixStride:
791 /* Handled as a second pass */
792 break;
793 case SpvDecorationColMajor:
794 break; /* Nothing to do here. Column-major is the default. */
795 case SpvDecorationRowMajor:
796 mutable_matrix_member(b, ctx->type, member)->row_major = true;
797 break;
798
799 case SpvDecorationPatch:
800 break;
801
802 case SpvDecorationSpecId:
803 case SpvDecorationBlock:
804 case SpvDecorationBufferBlock:
805 case SpvDecorationArrayStride:
806 case SpvDecorationGLSLShared:
807 case SpvDecorationGLSLPacked:
808 case SpvDecorationInvariant:
809 case SpvDecorationRestrict:
810 case SpvDecorationAliased:
811 case SpvDecorationConstant:
812 case SpvDecorationIndex:
813 case SpvDecorationBinding:
814 case SpvDecorationDescriptorSet:
815 case SpvDecorationLinkageAttributes:
816 case SpvDecorationNoContraction:
817 case SpvDecorationInputAttachmentIndex:
818 vtn_warn("Decoration not allowed on struct members: %s",
819 spirv_decoration_to_string(dec->decoration));
820 break;
821
822 case SpvDecorationXfbBuffer:
823 case SpvDecorationXfbStride:
824 vtn_warn("Vulkan does not have transform feedback");
825 break;
826
827 case SpvDecorationCPacked:
828 if (b->shader->info.stage != MESA_SHADER_KERNEL)
829 vtn_warn("Decoration only allowed for CL-style kernels: %s",
830 spirv_decoration_to_string(dec->decoration));
831 else
832 ctx->type->packed = true;
833 break;
834
835 case SpvDecorationSaturatedConversion:
836 case SpvDecorationFuncParamAttr:
837 case SpvDecorationFPRoundingMode:
838 case SpvDecorationFPFastMathMode:
839 case SpvDecorationAlignment:
840 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
841 vtn_warn("Decoration only allowed for CL-style kernels: %s",
842 spirv_decoration_to_string(dec->decoration));
843 }
844 break;
845
846 case SpvDecorationHlslSemanticGOOGLE:
847 /* HLSL semantic decorations can safely be ignored by the driver. */
848 break;
849
850 default:
851 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
852 }
853 }
854
855 /** Chases the array type all the way down to the tail and rewrites the
856 * glsl_types to be based off the tail's glsl_type.
857 */
858 static void
859 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
860 {
861 if (type->base_type != vtn_base_type_array)
862 return;
863
864 vtn_array_type_rewrite_glsl_type(type->array_element);
865
866 type->type = glsl_array_type(type->array_element->type,
867 type->length, type->stride);
868 }
869
870 /* Matrix strides are handled as a separate pass because we need to know
871 * whether the matrix is row-major or not first.
872 */
873 static void
874 struct_member_matrix_stride_cb(struct vtn_builder *b,
875 struct vtn_value *val, int member,
876 const struct vtn_decoration *dec,
877 void *void_ctx)
878 {
879 if (dec->decoration != SpvDecorationMatrixStride)
880 return;
881
882 vtn_fail_if(member < 0,
883 "The MatrixStride decoration is only allowed on members "
884 "of OpTypeStruct");
885 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
886
887 struct member_decoration_ctx *ctx = void_ctx;
888
889 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
890 if (mat_type->row_major) {
891 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
892 mat_type->stride = mat_type->array_element->stride;
893 mat_type->array_element->stride = dec->operands[0];
894
895 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
896 dec->operands[0], true);
897 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
898 } else {
899 vtn_assert(mat_type->array_element->stride > 0);
900 mat_type->stride = dec->operands[0];
901
902 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
903 dec->operands[0], false);
904 }
905
906 /* Now that we've replaced the glsl_type with a properly strided matrix
907 * type, rewrite the member type so that it's an array of the proper kind
908 * of glsl_type.
909 */
910 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
911 ctx->fields[member].type = ctx->type->members[member]->type;
912 }
913
914 static void
915 struct_block_decoration_cb(struct vtn_builder *b,
916 struct vtn_value *val, int member,
917 const struct vtn_decoration *dec, void *ctx)
918 {
919 if (member != -1)
920 return;
921
922 struct vtn_type *type = val->type;
923 if (dec->decoration == SpvDecorationBlock)
924 type->block = true;
925 else if (dec->decoration == SpvDecorationBufferBlock)
926 type->buffer_block = true;
927 }
928
929 static void
930 type_decoration_cb(struct vtn_builder *b,
931 struct vtn_value *val, int member,
932 const struct vtn_decoration *dec, void *ctx)
933 {
934 struct vtn_type *type = val->type;
935
936 if (member != -1) {
937 /* This should have been handled by OpTypeStruct */
938 assert(val->type->base_type == vtn_base_type_struct);
939 assert(member >= 0 && member < val->type->length);
940 return;
941 }
942
943 switch (dec->decoration) {
944 case SpvDecorationArrayStride:
945 vtn_assert(type->base_type == vtn_base_type_array ||
946 type->base_type == vtn_base_type_pointer);
947 break;
948 case SpvDecorationBlock:
949 vtn_assert(type->base_type == vtn_base_type_struct);
950 vtn_assert(type->block);
951 break;
952 case SpvDecorationBufferBlock:
953 vtn_assert(type->base_type == vtn_base_type_struct);
954 vtn_assert(type->buffer_block);
955 break;
956 case SpvDecorationGLSLShared:
957 case SpvDecorationGLSLPacked:
958 /* Ignore these, since we get explicit offsets anyways */
959 break;
960
961 case SpvDecorationRowMajor:
962 case SpvDecorationColMajor:
963 case SpvDecorationMatrixStride:
964 case SpvDecorationBuiltIn:
965 case SpvDecorationNoPerspective:
966 case SpvDecorationFlat:
967 case SpvDecorationPatch:
968 case SpvDecorationCentroid:
969 case SpvDecorationSample:
970 case SpvDecorationVolatile:
971 case SpvDecorationCoherent:
972 case SpvDecorationNonWritable:
973 case SpvDecorationNonReadable:
974 case SpvDecorationUniform:
975 case SpvDecorationLocation:
976 case SpvDecorationComponent:
977 case SpvDecorationOffset:
978 case SpvDecorationXfbBuffer:
979 case SpvDecorationXfbStride:
980 case SpvDecorationHlslSemanticGOOGLE:
981 vtn_warn("Decoration only allowed for struct members: %s",
982 spirv_decoration_to_string(dec->decoration));
983 break;
984
985 case SpvDecorationStream:
986 /* We don't need to do anything here, as stream is filled up when
987 * aplying the decoration to a variable, just check that if it is not a
988 * struct member, it should be a struct.
989 */
990 vtn_assert(type->base_type == vtn_base_type_struct);
991 break;
992
993 case SpvDecorationRelaxedPrecision:
994 case SpvDecorationSpecId:
995 case SpvDecorationInvariant:
996 case SpvDecorationRestrict:
997 case SpvDecorationAliased:
998 case SpvDecorationConstant:
999 case SpvDecorationIndex:
1000 case SpvDecorationBinding:
1001 case SpvDecorationDescriptorSet:
1002 case SpvDecorationLinkageAttributes:
1003 case SpvDecorationNoContraction:
1004 case SpvDecorationInputAttachmentIndex:
1005 vtn_warn("Decoration not allowed on types: %s",
1006 spirv_decoration_to_string(dec->decoration));
1007 break;
1008
1009 case SpvDecorationCPacked:
1010 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1011 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1012 spirv_decoration_to_string(dec->decoration));
1013 else
1014 type->packed = true;
1015 break;
1016
1017 case SpvDecorationSaturatedConversion:
1018 case SpvDecorationFuncParamAttr:
1019 case SpvDecorationFPRoundingMode:
1020 case SpvDecorationFPFastMathMode:
1021 case SpvDecorationAlignment:
1022 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1023 spirv_decoration_to_string(dec->decoration));
1024 break;
1025
1026 default:
1027 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1028 }
1029 }
1030
1031 static unsigned
1032 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1033 {
1034 switch (format) {
1035 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1036 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1037 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1038 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1039 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1040 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1041 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1042 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1043 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1044 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1045 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1046 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1047 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1048 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1049 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1050 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1051 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1052 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1053 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1054 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1055 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1056 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1057 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1058 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1059 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1060 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1061 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1062 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1063 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1064 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1065 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1066 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1067 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1068 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1069 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1070 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1071 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1072 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1073 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1074 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1075 default:
1076 vtn_fail("Invalid image format: %s (%u)",
1077 spirv_imageformat_to_string(format), format);
1078 }
1079 }
1080
1081 static struct vtn_type *
1082 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
1083 uint32_t *size_out, uint32_t *align_out)
1084 {
1085 switch (type->base_type) {
1086 case vtn_base_type_scalar: {
1087 uint32_t comp_size = glsl_type_is_boolean(type->type)
1088 ? 4 : glsl_get_bit_size(type->type) / 8;
1089 *size_out = comp_size;
1090 *align_out = comp_size;
1091 return type;
1092 }
1093
1094 case vtn_base_type_vector: {
1095 uint32_t comp_size = glsl_type_is_boolean(type->type)
1096 ? 4 : glsl_get_bit_size(type->type) / 8;
1097 unsigned align_comps = type->length == 3 ? 4 : type->length;
1098 *size_out = comp_size * type->length,
1099 *align_out = comp_size * align_comps;
1100 return type;
1101 }
1102
1103 case vtn_base_type_matrix:
1104 case vtn_base_type_array: {
1105 /* We're going to add an array stride */
1106 type = vtn_type_copy(b, type);
1107 uint32_t elem_size, elem_align;
1108 type->array_element = vtn_type_layout_std430(b, type->array_element,
1109 &elem_size, &elem_align);
1110 type->stride = vtn_align_u32(elem_size, elem_align);
1111 *size_out = type->stride * type->length;
1112 *align_out = elem_align;
1113 return type;
1114 }
1115
1116 case vtn_base_type_struct: {
1117 /* We're going to add member offsets */
1118 type = vtn_type_copy(b, type);
1119 uint32_t offset = 0;
1120 uint32_t align = 0;
1121 for (unsigned i = 0; i < type->length; i++) {
1122 uint32_t mem_size, mem_align;
1123 type->members[i] = vtn_type_layout_std430(b, type->members[i],
1124 &mem_size, &mem_align);
1125 offset = vtn_align_u32(offset, mem_align);
1126 type->offsets[i] = offset;
1127 offset += mem_size;
1128 align = MAX2(align, mem_align);
1129 }
1130 *size_out = offset;
1131 *align_out = align;
1132 return type;
1133 }
1134
1135 default:
1136 unreachable("Invalid SPIR-V type for std430");
1137 }
1138 }
1139
1140 static void
1141 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1142 const uint32_t *w, unsigned count)
1143 {
1144 struct vtn_value *val = NULL;
1145
1146 /* In order to properly handle forward declarations, we have to defer
1147 * allocation for pointer types.
1148 */
1149 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1150 val = vtn_push_value(b, w[1], vtn_value_type_type);
1151 vtn_fail_if(val->type != NULL,
1152 "Only pointers can have forward declarations");
1153 val->type = rzalloc(b, struct vtn_type);
1154 val->type->id = w[1];
1155 }
1156
1157 switch (opcode) {
1158 case SpvOpTypeVoid:
1159 val->type->base_type = vtn_base_type_void;
1160 val->type->type = glsl_void_type();
1161 break;
1162 case SpvOpTypeBool:
1163 val->type->base_type = vtn_base_type_scalar;
1164 val->type->type = glsl_bool_type();
1165 val->type->length = 1;
1166 break;
1167 case SpvOpTypeInt: {
1168 int bit_size = w[2];
1169 const bool signedness = w[3];
1170 val->type->base_type = vtn_base_type_scalar;
1171 switch (bit_size) {
1172 case 64:
1173 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1174 break;
1175 case 32:
1176 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1177 break;
1178 case 16:
1179 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1180 break;
1181 case 8:
1182 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1183 break;
1184 default:
1185 vtn_fail("Invalid int bit size: %u", bit_size);
1186 }
1187 val->type->length = 1;
1188 break;
1189 }
1190
1191 case SpvOpTypeFloat: {
1192 int bit_size = w[2];
1193 val->type->base_type = vtn_base_type_scalar;
1194 switch (bit_size) {
1195 case 16:
1196 val->type->type = glsl_float16_t_type();
1197 break;
1198 case 32:
1199 val->type->type = glsl_float_type();
1200 break;
1201 case 64:
1202 val->type->type = glsl_double_type();
1203 break;
1204 default:
1205 vtn_fail("Invalid float bit size: %u", bit_size);
1206 }
1207 val->type->length = 1;
1208 break;
1209 }
1210
1211 case SpvOpTypeVector: {
1212 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1213 unsigned elems = w[3];
1214
1215 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1216 "Base type for OpTypeVector must be a scalar");
1217 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1218 "Invalid component count for OpTypeVector");
1219
1220 val->type->base_type = vtn_base_type_vector;
1221 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1222 val->type->length = elems;
1223 val->type->stride = glsl_type_is_boolean(val->type->type)
1224 ? 4 : glsl_get_bit_size(base->type) / 8;
1225 val->type->array_element = base;
1226 break;
1227 }
1228
1229 case SpvOpTypeMatrix: {
1230 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1231 unsigned columns = w[3];
1232
1233 vtn_fail_if(base->base_type != vtn_base_type_vector,
1234 "Base type for OpTypeMatrix must be a vector");
1235 vtn_fail_if(columns < 2 || columns > 4,
1236 "Invalid column count for OpTypeMatrix");
1237
1238 val->type->base_type = vtn_base_type_matrix;
1239 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1240 glsl_get_vector_elements(base->type),
1241 columns);
1242 vtn_fail_if(glsl_type_is_error(val->type->type),
1243 "Unsupported base type for OpTypeMatrix");
1244 assert(!glsl_type_is_error(val->type->type));
1245 val->type->length = columns;
1246 val->type->array_element = base;
1247 val->type->row_major = false;
1248 val->type->stride = 0;
1249 break;
1250 }
1251
1252 case SpvOpTypeRuntimeArray:
1253 case SpvOpTypeArray: {
1254 struct vtn_type *array_element =
1255 vtn_value(b, w[2], vtn_value_type_type)->type;
1256
1257 if (opcode == SpvOpTypeRuntimeArray) {
1258 /* A length of 0 is used to denote unsized arrays */
1259 val->type->length = 0;
1260 } else {
1261 val->type->length =
1262 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0][0].u32;
1263 }
1264
1265 val->type->base_type = vtn_base_type_array;
1266 val->type->array_element = array_element;
1267 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1268 val->type->stride = glsl_get_cl_size(array_element->type);
1269
1270 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1271 val->type->type = glsl_array_type(array_element->type, val->type->length,
1272 val->type->stride);
1273 break;
1274 }
1275
1276 case SpvOpTypeStruct: {
1277 unsigned num_fields = count - 2;
1278 val->type->base_type = vtn_base_type_struct;
1279 val->type->length = num_fields;
1280 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1281 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1282 val->type->packed = false;
1283
1284 NIR_VLA(struct glsl_struct_field, fields, count);
1285 for (unsigned i = 0; i < num_fields; i++) {
1286 val->type->members[i] =
1287 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1288 fields[i] = (struct glsl_struct_field) {
1289 .type = val->type->members[i]->type,
1290 .name = ralloc_asprintf(b, "field%d", i),
1291 .location = -1,
1292 .offset = -1,
1293 };
1294 }
1295
1296 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1297 unsigned offset = 0;
1298 for (unsigned i = 0; i < num_fields; i++) {
1299 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1300 fields[i].offset = offset;
1301 offset += glsl_get_cl_size(fields[i].type);
1302 }
1303 }
1304
1305 struct member_decoration_ctx ctx = {
1306 .num_fields = num_fields,
1307 .fields = fields,
1308 .type = val->type
1309 };
1310
1311 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1312 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1313
1314 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1315
1316 const char *name = val->name;
1317
1318 if (val->type->block || val->type->buffer_block) {
1319 /* Packing will be ignored since types coming from SPIR-V are
1320 * explicitly laid out.
1321 */
1322 val->type->type = glsl_interface_type(fields, num_fields,
1323 /* packing */ 0, false,
1324 name ? name : "block");
1325 } else {
1326 val->type->type = glsl_struct_type(fields, num_fields,
1327 name ? name : "struct", false);
1328 }
1329 break;
1330 }
1331
1332 case SpvOpTypeFunction: {
1333 val->type->base_type = vtn_base_type_function;
1334 val->type->type = NULL;
1335
1336 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1337
1338 const unsigned num_params = count - 3;
1339 val->type->length = num_params;
1340 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1341 for (unsigned i = 0; i < count - 3; i++) {
1342 val->type->params[i] =
1343 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1344 }
1345 break;
1346 }
1347
1348 case SpvOpTypePointer:
1349 case SpvOpTypeForwardPointer: {
1350 /* We can't blindly push the value because it might be a forward
1351 * declaration.
1352 */
1353 val = vtn_untyped_value(b, w[1]);
1354
1355 SpvStorageClass storage_class = w[2];
1356
1357 if (val->value_type == vtn_value_type_invalid) {
1358 val->value_type = vtn_value_type_type;
1359 val->type = rzalloc(b, struct vtn_type);
1360 val->type->id = w[1];
1361 val->type->base_type = vtn_base_type_pointer;
1362 val->type->storage_class = storage_class;
1363
1364 /* These can actually be stored to nir_variables and used as SSA
1365 * values so they need a real glsl_type.
1366 */
1367 switch (storage_class) {
1368 case SpvStorageClassUniform:
1369 val->type->type = b->options->ubo_ptr_type;
1370 break;
1371 case SpvStorageClassStorageBuffer:
1372 val->type->type = b->options->ssbo_ptr_type;
1373 break;
1374 case SpvStorageClassPhysicalStorageBufferEXT:
1375 val->type->type = b->options->phys_ssbo_ptr_type;
1376 break;
1377 case SpvStorageClassPushConstant:
1378 val->type->type = b->options->push_const_ptr_type;
1379 break;
1380 case SpvStorageClassWorkgroup:
1381 val->type->type = b->options->shared_ptr_type;
1382 break;
1383 case SpvStorageClassCrossWorkgroup:
1384 val->type->type = b->options->global_ptr_type;
1385 break;
1386 case SpvStorageClassFunction:
1387 if (b->physical_ptrs)
1388 val->type->type = b->options->temp_ptr_type;
1389 break;
1390 default:
1391 /* In this case, no variable pointers are allowed so all deref
1392 * chains are complete back to the variable and it doesn't matter
1393 * what type gets used so we leave it NULL.
1394 */
1395 break;
1396 }
1397 } else {
1398 vtn_fail_if(val->type->storage_class != storage_class,
1399 "The storage classes of an OpTypePointer and any "
1400 "OpTypeForwardPointers that provide forward "
1401 "declarations of it must match.");
1402 }
1403
1404 if (opcode == SpvOpTypePointer) {
1405 vtn_fail_if(val->type->deref != NULL,
1406 "While OpTypeForwardPointer can be used to provide a "
1407 "forward declaration of a pointer, OpTypePointer can "
1408 "only be used once for a given id.");
1409
1410 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1411
1412 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1413
1414 if (b->physical_ptrs) {
1415 switch (storage_class) {
1416 case SpvStorageClassFunction:
1417 case SpvStorageClassWorkgroup:
1418 case SpvStorageClassCrossWorkgroup:
1419 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1420 glsl_get_cl_alignment(val->type->deref->type));
1421 break;
1422 default:
1423 break;
1424 }
1425 }
1426
1427 if (storage_class == SpvStorageClassWorkgroup &&
1428 b->options->lower_workgroup_access_to_offsets) {
1429 uint32_t size, align;
1430 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1431 &size, &align);
1432 val->type->length = size;
1433 val->type->align = align;
1434 }
1435 }
1436 break;
1437 }
1438
1439 case SpvOpTypeImage: {
1440 val->type->base_type = vtn_base_type_image;
1441
1442 const struct vtn_type *sampled_type =
1443 vtn_value(b, w[2], vtn_value_type_type)->type;
1444
1445 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1446 glsl_get_bit_size(sampled_type->type) != 32,
1447 "Sampled type of OpTypeImage must be a 32-bit scalar");
1448
1449 enum glsl_sampler_dim dim;
1450 switch ((SpvDim)w[3]) {
1451 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1452 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1453 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1454 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1455 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1456 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1457 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1458 default:
1459 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1460 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1461 }
1462
1463 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1464 * The “Depth” operand of OpTypeImage is ignored.
1465 */
1466 bool is_array = w[5];
1467 bool multisampled = w[6];
1468 unsigned sampled = w[7];
1469 SpvImageFormat format = w[8];
1470
1471 if (count > 9)
1472 val->type->access_qualifier = w[9];
1473 else
1474 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1475
1476 if (multisampled) {
1477 if (dim == GLSL_SAMPLER_DIM_2D)
1478 dim = GLSL_SAMPLER_DIM_MS;
1479 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1480 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1481 else
1482 vtn_fail("Unsupported multisampled image type");
1483 }
1484
1485 val->type->image_format = translate_image_format(b, format);
1486
1487 enum glsl_base_type sampled_base_type =
1488 glsl_get_base_type(sampled_type->type);
1489 if (sampled == 1) {
1490 val->type->sampled = true;
1491 val->type->type = glsl_sampler_type(dim, false, is_array,
1492 sampled_base_type);
1493 } else if (sampled == 2) {
1494 val->type->sampled = false;
1495 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1496 } else {
1497 vtn_fail("We need to know if the image will be sampled");
1498 }
1499 break;
1500 }
1501
1502 case SpvOpTypeSampledImage:
1503 val->type->base_type = vtn_base_type_sampled_image;
1504 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1505 val->type->type = val->type->image->type;
1506 break;
1507
1508 case SpvOpTypeSampler:
1509 /* The actual sampler type here doesn't really matter. It gets
1510 * thrown away the moment you combine it with an image. What really
1511 * matters is that it's a sampler type as opposed to an integer type
1512 * so the backend knows what to do.
1513 */
1514 val->type->base_type = vtn_base_type_sampler;
1515 val->type->type = glsl_bare_sampler_type();
1516 break;
1517
1518 case SpvOpTypeOpaque:
1519 case SpvOpTypeEvent:
1520 case SpvOpTypeDeviceEvent:
1521 case SpvOpTypeReserveId:
1522 case SpvOpTypeQueue:
1523 case SpvOpTypePipe:
1524 default:
1525 vtn_fail_with_opcode("Unhandled opcode", opcode);
1526 }
1527
1528 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1529
1530 if (val->type->base_type == vtn_base_type_struct &&
1531 (val->type->block || val->type->buffer_block)) {
1532 for (unsigned i = 0; i < val->type->length; i++) {
1533 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1534 "Block and BufferBlock decorations cannot decorate a "
1535 "structure type that is nested at any level inside "
1536 "another structure type decorated with Block or "
1537 "BufferBlock.");
1538 }
1539 }
1540 }
1541
1542 static nir_constant *
1543 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1544 {
1545 nir_constant *c = rzalloc(b, nir_constant);
1546
1547 /* For pointers and other typeless things, we have to return something but
1548 * it doesn't matter what.
1549 */
1550 if (!type)
1551 return c;
1552
1553 switch (glsl_get_base_type(type)) {
1554 case GLSL_TYPE_INT:
1555 case GLSL_TYPE_UINT:
1556 case GLSL_TYPE_INT16:
1557 case GLSL_TYPE_UINT16:
1558 case GLSL_TYPE_UINT8:
1559 case GLSL_TYPE_INT8:
1560 case GLSL_TYPE_INT64:
1561 case GLSL_TYPE_UINT64:
1562 case GLSL_TYPE_BOOL:
1563 case GLSL_TYPE_FLOAT:
1564 case GLSL_TYPE_FLOAT16:
1565 case GLSL_TYPE_DOUBLE:
1566 /* Nothing to do here. It's already initialized to zero */
1567 break;
1568
1569 case GLSL_TYPE_ARRAY:
1570 vtn_assert(glsl_get_length(type) > 0);
1571 c->num_elements = glsl_get_length(type);
1572 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1573
1574 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1575 for (unsigned i = 1; i < c->num_elements; i++)
1576 c->elements[i] = c->elements[0];
1577 break;
1578
1579 case GLSL_TYPE_STRUCT:
1580 c->num_elements = glsl_get_length(type);
1581 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1582
1583 for (unsigned i = 0; i < c->num_elements; i++) {
1584 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1585 }
1586 break;
1587
1588 default:
1589 vtn_fail("Invalid type for null constant");
1590 }
1591
1592 return c;
1593 }
1594
1595 static void
1596 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1597 int member, const struct vtn_decoration *dec,
1598 void *data)
1599 {
1600 vtn_assert(member == -1);
1601 if (dec->decoration != SpvDecorationSpecId)
1602 return;
1603
1604 struct spec_constant_value *const_value = data;
1605
1606 for (unsigned i = 0; i < b->num_specializations; i++) {
1607 if (b->specializations[i].id == dec->operands[0]) {
1608 if (const_value->is_double)
1609 const_value->data64 = b->specializations[i].data64;
1610 else
1611 const_value->data32 = b->specializations[i].data32;
1612 return;
1613 }
1614 }
1615 }
1616
1617 static uint32_t
1618 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1619 uint32_t const_value)
1620 {
1621 struct spec_constant_value data;
1622 data.is_double = false;
1623 data.data32 = const_value;
1624 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1625 return data.data32;
1626 }
1627
1628 static uint64_t
1629 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1630 uint64_t const_value)
1631 {
1632 struct spec_constant_value data;
1633 data.is_double = true;
1634 data.data64 = const_value;
1635 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1636 return data.data64;
1637 }
1638
1639 static void
1640 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1641 struct vtn_value *val,
1642 int member,
1643 const struct vtn_decoration *dec,
1644 void *data)
1645 {
1646 vtn_assert(member == -1);
1647 if (dec->decoration != SpvDecorationBuiltIn ||
1648 dec->operands[0] != SpvBuiltInWorkgroupSize)
1649 return;
1650
1651 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1652 b->workgroup_size_builtin = val;
1653 }
1654
1655 static void
1656 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1657 const uint32_t *w, unsigned count)
1658 {
1659 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1660 val->constant = rzalloc(b, nir_constant);
1661 switch (opcode) {
1662 case SpvOpConstantTrue:
1663 case SpvOpConstantFalse:
1664 case SpvOpSpecConstantTrue:
1665 case SpvOpSpecConstantFalse: {
1666 vtn_fail_if(val->type->type != glsl_bool_type(),
1667 "Result type of %s must be OpTypeBool",
1668 spirv_op_to_string(opcode));
1669
1670 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1671 opcode == SpvOpSpecConstantTrue);
1672
1673 if (opcode == SpvOpSpecConstantTrue ||
1674 opcode == SpvOpSpecConstantFalse)
1675 int_val = get_specialization(b, val, int_val);
1676
1677 val->constant->values[0][0].b = int_val != 0;
1678 break;
1679 }
1680
1681 case SpvOpConstant: {
1682 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1683 "Result type of %s must be a scalar",
1684 spirv_op_to_string(opcode));
1685 int bit_size = glsl_get_bit_size(val->type->type);
1686 switch (bit_size) {
1687 case 64:
1688 val->constant->values[0][0].u64 = vtn_u64_literal(&w[3]);
1689 break;
1690 case 32:
1691 val->constant->values[0][0].u32 = w[3];
1692 break;
1693 case 16:
1694 val->constant->values[0][0].u16 = w[3];
1695 break;
1696 case 8:
1697 val->constant->values[0][0].u8 = w[3];
1698 break;
1699 default:
1700 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1701 }
1702 break;
1703 }
1704
1705 case SpvOpSpecConstant: {
1706 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1707 "Result type of %s must be a scalar",
1708 spirv_op_to_string(opcode));
1709 int bit_size = glsl_get_bit_size(val->type->type);
1710 switch (bit_size) {
1711 case 64:
1712 val->constant->values[0][0].u64 =
1713 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1714 break;
1715 case 32:
1716 val->constant->values[0][0].u32 = get_specialization(b, val, w[3]);
1717 break;
1718 case 16:
1719 val->constant->values[0][0].u16 = get_specialization(b, val, w[3]);
1720 break;
1721 case 8:
1722 val->constant->values[0][0].u8 = get_specialization(b, val, w[3]);
1723 break;
1724 default:
1725 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1726 }
1727 break;
1728 }
1729
1730 case SpvOpSpecConstantComposite:
1731 case SpvOpConstantComposite: {
1732 unsigned elem_count = count - 3;
1733 vtn_fail_if(elem_count != val->type->length,
1734 "%s has %u constituents, expected %u",
1735 spirv_op_to_string(opcode), elem_count, val->type->length);
1736
1737 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1738 for (unsigned i = 0; i < elem_count; i++) {
1739 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1740
1741 if (val->value_type == vtn_value_type_constant) {
1742 elems[i] = val->constant;
1743 } else {
1744 vtn_fail_if(val->value_type != vtn_value_type_undef,
1745 "only constants or undefs allowed for "
1746 "SpvOpConstantComposite");
1747 /* to make it easier, just insert a NULL constant for now */
1748 elems[i] = vtn_null_constant(b, val->type->type);
1749 }
1750 }
1751
1752 switch (val->type->base_type) {
1753 case vtn_base_type_vector: {
1754 assert(glsl_type_is_vector(val->type->type));
1755 for (unsigned i = 0; i < elem_count; i++)
1756 val->constant->values[0][i] = elems[i]->values[0][0];
1757 break;
1758 }
1759
1760 case vtn_base_type_matrix:
1761 assert(glsl_type_is_matrix(val->type->type));
1762 for (unsigned i = 0; i < elem_count; i++) {
1763 unsigned components =
1764 glsl_get_components(glsl_get_column_type(val->type->type));
1765 memcpy(val->constant->values[i], elems[i]->values,
1766 sizeof(nir_const_value) * components);
1767 }
1768 break;
1769
1770 case vtn_base_type_struct:
1771 case vtn_base_type_array:
1772 ralloc_steal(val->constant, elems);
1773 val->constant->num_elements = elem_count;
1774 val->constant->elements = elems;
1775 break;
1776
1777 default:
1778 vtn_fail("Result type of %s must be a composite type",
1779 spirv_op_to_string(opcode));
1780 }
1781 break;
1782 }
1783
1784 case SpvOpSpecConstantOp: {
1785 SpvOp opcode = get_specialization(b, val, w[3]);
1786 switch (opcode) {
1787 case SpvOpVectorShuffle: {
1788 struct vtn_value *v0 = &b->values[w[4]];
1789 struct vtn_value *v1 = &b->values[w[5]];
1790
1791 vtn_assert(v0->value_type == vtn_value_type_constant ||
1792 v0->value_type == vtn_value_type_undef);
1793 vtn_assert(v1->value_type == vtn_value_type_constant ||
1794 v1->value_type == vtn_value_type_undef);
1795
1796 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1797 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1798
1799 vtn_assert(len0 + len1 < 16);
1800
1801 unsigned bit_size = glsl_get_bit_size(val->type->type);
1802 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1803 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1804
1805 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1806 (void)bit_size0; (void)bit_size1;
1807
1808 if (bit_size == 64) {
1809 uint64_t u64[8];
1810 if (v0->value_type == vtn_value_type_constant) {
1811 for (unsigned i = 0; i < len0; i++)
1812 u64[i] = v0->constant->values[0][i].u64;
1813 }
1814 if (v1->value_type == vtn_value_type_constant) {
1815 for (unsigned i = 0; i < len1; i++)
1816 u64[len0 + i] = v1->constant->values[0][i].u64;
1817 }
1818
1819 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1820 uint32_t comp = w[i + 6];
1821 /* If component is not used, set the value to a known constant
1822 * to detect if it is wrongly used.
1823 */
1824 if (comp == (uint32_t)-1)
1825 val->constant->values[0][j].u64 = 0xdeadbeefdeadbeef;
1826 else
1827 val->constant->values[0][j].u64 = u64[comp];
1828 }
1829 } else {
1830 /* This is for both 32-bit and 16-bit values */
1831 uint32_t u32[8];
1832 if (v0->value_type == vtn_value_type_constant) {
1833 for (unsigned i = 0; i < len0; i++)
1834 u32[i] = v0->constant->values[0][i].u32;
1835 }
1836 if (v1->value_type == vtn_value_type_constant) {
1837 for (unsigned i = 0; i < len1; i++)
1838 u32[len0 + i] = v1->constant->values[0][i].u32;
1839 }
1840
1841 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1842 uint32_t comp = w[i + 6];
1843 /* If component is not used, set the value to a known constant
1844 * to detect if it is wrongly used.
1845 */
1846 if (comp == (uint32_t)-1)
1847 val->constant->values[0][j].u32 = 0xdeadbeef;
1848 else
1849 val->constant->values[0][j].u32 = u32[comp];
1850 }
1851 }
1852 break;
1853 }
1854
1855 case SpvOpCompositeExtract:
1856 case SpvOpCompositeInsert: {
1857 struct vtn_value *comp;
1858 unsigned deref_start;
1859 struct nir_constant **c;
1860 if (opcode == SpvOpCompositeExtract) {
1861 comp = vtn_value(b, w[4], vtn_value_type_constant);
1862 deref_start = 5;
1863 c = &comp->constant;
1864 } else {
1865 comp = vtn_value(b, w[5], vtn_value_type_constant);
1866 deref_start = 6;
1867 val->constant = nir_constant_clone(comp->constant,
1868 (nir_variable *)b);
1869 c = &val->constant;
1870 }
1871
1872 int elem = -1;
1873 int col = 0;
1874 const struct vtn_type *type = comp->type;
1875 for (unsigned i = deref_start; i < count; i++) {
1876 vtn_fail_if(w[i] > type->length,
1877 "%uth index of %s is %u but the type has only "
1878 "%u elements", i - deref_start,
1879 spirv_op_to_string(opcode), w[i], type->length);
1880
1881 switch (type->base_type) {
1882 case vtn_base_type_vector:
1883 elem = w[i];
1884 type = type->array_element;
1885 break;
1886
1887 case vtn_base_type_matrix:
1888 assert(col == 0 && elem == -1);
1889 col = w[i];
1890 elem = 0;
1891 type = type->array_element;
1892 break;
1893
1894 case vtn_base_type_array:
1895 c = &(*c)->elements[w[i]];
1896 type = type->array_element;
1897 break;
1898
1899 case vtn_base_type_struct:
1900 c = &(*c)->elements[w[i]];
1901 type = type->members[w[i]];
1902 break;
1903
1904 default:
1905 vtn_fail("%s must only index into composite types",
1906 spirv_op_to_string(opcode));
1907 }
1908 }
1909
1910 if (opcode == SpvOpCompositeExtract) {
1911 if (elem == -1) {
1912 val->constant = *c;
1913 } else {
1914 unsigned num_components = type->length;
1915 for (unsigned i = 0; i < num_components; i++)
1916 val->constant->values[0][i] = (*c)->values[col][elem + i];
1917 }
1918 } else {
1919 struct vtn_value *insert =
1920 vtn_value(b, w[4], vtn_value_type_constant);
1921 vtn_assert(insert->type == type);
1922 if (elem == -1) {
1923 *c = insert->constant;
1924 } else {
1925 unsigned num_components = type->length;
1926 for (unsigned i = 0; i < num_components; i++)
1927 (*c)->values[col][elem + i] = insert->constant->values[0][i];
1928 }
1929 }
1930 break;
1931 }
1932
1933 default: {
1934 bool swap;
1935 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1936 nir_alu_type src_alu_type = dst_alu_type;
1937 unsigned num_components = glsl_get_vector_elements(val->type->type);
1938 unsigned bit_size;
1939
1940 vtn_assert(count <= 7);
1941
1942 switch (opcode) {
1943 case SpvOpSConvert:
1944 case SpvOpFConvert:
1945 /* We have a source in a conversion */
1946 src_alu_type =
1947 nir_get_nir_type_for_glsl_type(
1948 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1949 /* We use the bitsize of the conversion source to evaluate the opcode later */
1950 bit_size = glsl_get_bit_size(
1951 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1952 break;
1953 default:
1954 bit_size = glsl_get_bit_size(val->type->type);
1955 };
1956
1957 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1958 nir_alu_type_get_type_size(src_alu_type),
1959 nir_alu_type_get_type_size(dst_alu_type));
1960 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1961
1962 for (unsigned i = 0; i < count - 4; i++) {
1963 struct vtn_value *src_val =
1964 vtn_value(b, w[4 + i], vtn_value_type_constant);
1965
1966 /* If this is an unsized source, pull the bit size from the
1967 * source; otherwise, we'll use the bit size from the destination.
1968 */
1969 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1970 bit_size = glsl_get_bit_size(src_val->type->type);
1971
1972 unsigned j = swap ? 1 - i : i;
1973 memcpy(src[j], src_val->constant->values[0], sizeof(src[j]));
1974 }
1975
1976 /* fix up fixed size sources */
1977 switch (op) {
1978 case nir_op_ishl:
1979 case nir_op_ishr:
1980 case nir_op_ushr: {
1981 if (bit_size == 32)
1982 break;
1983 for (unsigned i = 0; i < num_components; ++i) {
1984 switch (bit_size) {
1985 case 64: src[1][i].u32 = src[1][i].u64; break;
1986 case 16: src[1][i].u32 = src[1][i].u16; break;
1987 case 8: src[1][i].u32 = src[1][i].u8; break;
1988 }
1989 }
1990 break;
1991 }
1992 default:
1993 break;
1994 }
1995
1996 nir_const_value *srcs[3] = {
1997 src[0], src[1], src[2],
1998 };
1999 nir_eval_const_opcode(op, val->constant->values[0], num_components, bit_size, srcs);
2000 break;
2001 } /* default */
2002 }
2003 break;
2004 }
2005
2006 case SpvOpConstantNull:
2007 val->constant = vtn_null_constant(b, val->type->type);
2008 break;
2009
2010 case SpvOpConstantSampler:
2011 vtn_fail("OpConstantSampler requires Kernel Capability");
2012 break;
2013
2014 default:
2015 vtn_fail_with_opcode("Unhandled opcode", opcode);
2016 }
2017
2018 /* Now that we have the value, update the workgroup size if needed */
2019 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
2020 }
2021
2022 struct vtn_ssa_value *
2023 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2024 {
2025 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2026 val->type = type;
2027
2028 if (!glsl_type_is_vector_or_scalar(type)) {
2029 unsigned elems = glsl_get_length(type);
2030 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2031 for (unsigned i = 0; i < elems; i++) {
2032 const struct glsl_type *child_type;
2033
2034 switch (glsl_get_base_type(type)) {
2035 case GLSL_TYPE_INT:
2036 case GLSL_TYPE_UINT:
2037 case GLSL_TYPE_INT16:
2038 case GLSL_TYPE_UINT16:
2039 case GLSL_TYPE_UINT8:
2040 case GLSL_TYPE_INT8:
2041 case GLSL_TYPE_INT64:
2042 case GLSL_TYPE_UINT64:
2043 case GLSL_TYPE_BOOL:
2044 case GLSL_TYPE_FLOAT:
2045 case GLSL_TYPE_FLOAT16:
2046 case GLSL_TYPE_DOUBLE:
2047 child_type = glsl_get_column_type(type);
2048 break;
2049 case GLSL_TYPE_ARRAY:
2050 child_type = glsl_get_array_element(type);
2051 break;
2052 case GLSL_TYPE_STRUCT:
2053 case GLSL_TYPE_INTERFACE:
2054 child_type = glsl_get_struct_field(type, i);
2055 break;
2056 default:
2057 vtn_fail("unkown base type");
2058 }
2059
2060 val->elems[i] = vtn_create_ssa_value(b, child_type);
2061 }
2062 }
2063
2064 return val;
2065 }
2066
2067 static nir_tex_src
2068 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2069 {
2070 nir_tex_src src;
2071 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2072 src.src_type = type;
2073 return src;
2074 }
2075
2076 static void
2077 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2078 const uint32_t *w, unsigned count)
2079 {
2080 if (opcode == SpvOpSampledImage) {
2081 struct vtn_value *val =
2082 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2083 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2084 val->sampled_image->type =
2085 vtn_value(b, w[1], vtn_value_type_type)->type;
2086 val->sampled_image->image =
2087 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2088 val->sampled_image->sampler =
2089 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2090 return;
2091 } else if (opcode == SpvOpImage) {
2092 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2093 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2094 if (src_val->value_type == vtn_value_type_sampled_image) {
2095 val->pointer = src_val->sampled_image->image;
2096 } else {
2097 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2098 val->pointer = src_val->pointer;
2099 }
2100 return;
2101 }
2102
2103 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2104 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2105
2106 struct vtn_sampled_image sampled;
2107 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2108 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2109 sampled = *sampled_val->sampled_image;
2110 } else {
2111 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2112 sampled.type = sampled_val->pointer->type;
2113 sampled.image = NULL;
2114 sampled.sampler = sampled_val->pointer;
2115 }
2116
2117 const struct glsl_type *image_type = sampled.type->type;
2118 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2119 const bool is_array = glsl_sampler_type_is_array(image_type);
2120
2121 /* Figure out the base texture operation */
2122 nir_texop texop;
2123 switch (opcode) {
2124 case SpvOpImageSampleImplicitLod:
2125 case SpvOpImageSampleDrefImplicitLod:
2126 case SpvOpImageSampleProjImplicitLod:
2127 case SpvOpImageSampleProjDrefImplicitLod:
2128 texop = nir_texop_tex;
2129 break;
2130
2131 case SpvOpImageSampleExplicitLod:
2132 case SpvOpImageSampleDrefExplicitLod:
2133 case SpvOpImageSampleProjExplicitLod:
2134 case SpvOpImageSampleProjDrefExplicitLod:
2135 texop = nir_texop_txl;
2136 break;
2137
2138 case SpvOpImageFetch:
2139 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2140 texop = nir_texop_txf_ms;
2141 } else {
2142 texop = nir_texop_txf;
2143 }
2144 break;
2145
2146 case SpvOpImageGather:
2147 case SpvOpImageDrefGather:
2148 texop = nir_texop_tg4;
2149 break;
2150
2151 case SpvOpImageQuerySizeLod:
2152 case SpvOpImageQuerySize:
2153 texop = nir_texop_txs;
2154 break;
2155
2156 case SpvOpImageQueryLod:
2157 texop = nir_texop_lod;
2158 break;
2159
2160 case SpvOpImageQueryLevels:
2161 texop = nir_texop_query_levels;
2162 break;
2163
2164 case SpvOpImageQuerySamples:
2165 texop = nir_texop_texture_samples;
2166 break;
2167
2168 default:
2169 vtn_fail_with_opcode("Unhandled opcode", opcode);
2170 }
2171
2172 nir_tex_src srcs[10]; /* 10 should be enough */
2173 nir_tex_src *p = srcs;
2174
2175 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2176 nir_deref_instr *texture =
2177 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2178
2179 p->src = nir_src_for_ssa(&texture->dest.ssa);
2180 p->src_type = nir_tex_src_texture_deref;
2181 p++;
2182
2183 switch (texop) {
2184 case nir_texop_tex:
2185 case nir_texop_txb:
2186 case nir_texop_txl:
2187 case nir_texop_txd:
2188 case nir_texop_tg4:
2189 case nir_texop_lod:
2190 /* These operations require a sampler */
2191 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2192 p->src_type = nir_tex_src_sampler_deref;
2193 p++;
2194 break;
2195 case nir_texop_txf:
2196 case nir_texop_txf_ms:
2197 case nir_texop_txs:
2198 case nir_texop_query_levels:
2199 case nir_texop_texture_samples:
2200 case nir_texop_samples_identical:
2201 /* These don't */
2202 break;
2203 case nir_texop_txf_ms_fb:
2204 vtn_fail("unexpected nir_texop_txf_ms_fb");
2205 break;
2206 case nir_texop_txf_ms_mcs:
2207 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2208 }
2209
2210 unsigned idx = 4;
2211
2212 struct nir_ssa_def *coord;
2213 unsigned coord_components;
2214 switch (opcode) {
2215 case SpvOpImageSampleImplicitLod:
2216 case SpvOpImageSampleExplicitLod:
2217 case SpvOpImageSampleDrefImplicitLod:
2218 case SpvOpImageSampleDrefExplicitLod:
2219 case SpvOpImageSampleProjImplicitLod:
2220 case SpvOpImageSampleProjExplicitLod:
2221 case SpvOpImageSampleProjDrefImplicitLod:
2222 case SpvOpImageSampleProjDrefExplicitLod:
2223 case SpvOpImageFetch:
2224 case SpvOpImageGather:
2225 case SpvOpImageDrefGather:
2226 case SpvOpImageQueryLod: {
2227 /* All these types have the coordinate as their first real argument */
2228 switch (sampler_dim) {
2229 case GLSL_SAMPLER_DIM_1D:
2230 case GLSL_SAMPLER_DIM_BUF:
2231 coord_components = 1;
2232 break;
2233 case GLSL_SAMPLER_DIM_2D:
2234 case GLSL_SAMPLER_DIM_RECT:
2235 case GLSL_SAMPLER_DIM_MS:
2236 coord_components = 2;
2237 break;
2238 case GLSL_SAMPLER_DIM_3D:
2239 case GLSL_SAMPLER_DIM_CUBE:
2240 coord_components = 3;
2241 break;
2242 default:
2243 vtn_fail("Invalid sampler type");
2244 }
2245
2246 if (is_array && texop != nir_texop_lod)
2247 coord_components++;
2248
2249 coord = vtn_ssa_value(b, w[idx++])->def;
2250 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2251 (1 << coord_components) - 1));
2252 p->src_type = nir_tex_src_coord;
2253 p++;
2254 break;
2255 }
2256
2257 default:
2258 coord = NULL;
2259 coord_components = 0;
2260 break;
2261 }
2262
2263 switch (opcode) {
2264 case SpvOpImageSampleProjImplicitLod:
2265 case SpvOpImageSampleProjExplicitLod:
2266 case SpvOpImageSampleProjDrefImplicitLod:
2267 case SpvOpImageSampleProjDrefExplicitLod:
2268 /* These have the projector as the last coordinate component */
2269 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2270 p->src_type = nir_tex_src_projector;
2271 p++;
2272 break;
2273
2274 default:
2275 break;
2276 }
2277
2278 bool is_shadow = false;
2279 unsigned gather_component = 0;
2280 switch (opcode) {
2281 case SpvOpImageSampleDrefImplicitLod:
2282 case SpvOpImageSampleDrefExplicitLod:
2283 case SpvOpImageSampleProjDrefImplicitLod:
2284 case SpvOpImageSampleProjDrefExplicitLod:
2285 case SpvOpImageDrefGather:
2286 /* These all have an explicit depth value as their next source */
2287 is_shadow = true;
2288 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2289 break;
2290
2291 case SpvOpImageGather:
2292 /* This has a component as its next source */
2293 gather_component =
2294 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0][0].u32;
2295 break;
2296
2297 default:
2298 break;
2299 }
2300
2301 /* For OpImageQuerySizeLod, we always have an LOD */
2302 if (opcode == SpvOpImageQuerySizeLod)
2303 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2304
2305 /* Now we need to handle some number of optional arguments */
2306 struct vtn_value *gather_offsets = NULL;
2307 if (idx < count) {
2308 uint32_t operands = w[idx++];
2309
2310 if (operands & SpvImageOperandsBiasMask) {
2311 vtn_assert(texop == nir_texop_tex);
2312 texop = nir_texop_txb;
2313 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2314 }
2315
2316 if (operands & SpvImageOperandsLodMask) {
2317 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2318 texop == nir_texop_txs);
2319 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2320 }
2321
2322 if (operands & SpvImageOperandsGradMask) {
2323 vtn_assert(texop == nir_texop_txl);
2324 texop = nir_texop_txd;
2325 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2326 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2327 }
2328
2329 if (operands & SpvImageOperandsOffsetMask ||
2330 operands & SpvImageOperandsConstOffsetMask)
2331 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2332
2333 if (operands & SpvImageOperandsConstOffsetsMask) {
2334 vtn_assert(texop == nir_texop_tg4);
2335 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2336 }
2337
2338 if (operands & SpvImageOperandsSampleMask) {
2339 vtn_assert(texop == nir_texop_txf_ms);
2340 texop = nir_texop_txf_ms;
2341 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2342 }
2343
2344 if (operands & SpvImageOperandsMinLodMask) {
2345 vtn_assert(texop == nir_texop_tex ||
2346 texop == nir_texop_txb ||
2347 texop == nir_texop_txd);
2348 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2349 }
2350 }
2351 /* We should have now consumed exactly all of the arguments */
2352 vtn_assert(idx == count);
2353
2354 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2355 instr->op = texop;
2356
2357 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2358
2359 instr->coord_components = coord_components;
2360 instr->sampler_dim = sampler_dim;
2361 instr->is_array = is_array;
2362 instr->is_shadow = is_shadow;
2363 instr->is_new_style_shadow =
2364 is_shadow && glsl_get_components(ret_type->type) == 1;
2365 instr->component = gather_component;
2366
2367 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2368 instr->texture_non_uniform = true;
2369
2370 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2371 instr->sampler_non_uniform = true;
2372
2373 switch (glsl_get_sampler_result_type(image_type)) {
2374 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2375 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2376 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2377 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2378 default:
2379 vtn_fail("Invalid base type for sampler result");
2380 }
2381
2382 nir_ssa_dest_init(&instr->instr, &instr->dest,
2383 nir_tex_instr_dest_size(instr), 32, NULL);
2384
2385 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2386 nir_tex_instr_dest_size(instr));
2387
2388 if (gather_offsets) {
2389 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2390 gather_offsets->type->length != 4,
2391 "ConstOffsets must be an array of size four of vectors "
2392 "of two integer components");
2393
2394 struct vtn_type *vec_type = gather_offsets->type->array_element;
2395 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2396 vec_type->length != 2 ||
2397 !glsl_type_is_integer(vec_type->type),
2398 "ConstOffsets must be an array of size four of vectors "
2399 "of two integer components");
2400
2401 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2402 for (uint32_t i = 0; i < 4; i++) {
2403 const nir_const_value *cvec =
2404 gather_offsets->constant->elements[i]->values[0];
2405 for (uint32_t j = 0; j < 2; j++) {
2406 switch (bit_size) {
2407 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2408 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2409 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2410 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2411 default:
2412 vtn_fail("Unsupported bit size: %u", bit_size);
2413 }
2414 }
2415 }
2416 }
2417
2418 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2419 val->ssa->def = &instr->dest.ssa;
2420
2421 nir_builder_instr_insert(&b->nb, &instr->instr);
2422 }
2423
2424 static void
2425 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2426 const uint32_t *w, nir_src *src)
2427 {
2428 switch (opcode) {
2429 case SpvOpAtomicIIncrement:
2430 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2431 break;
2432
2433 case SpvOpAtomicIDecrement:
2434 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2435 break;
2436
2437 case SpvOpAtomicISub:
2438 src[0] =
2439 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2440 break;
2441
2442 case SpvOpAtomicCompareExchange:
2443 case SpvOpAtomicCompareExchangeWeak:
2444 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2445 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2446 break;
2447
2448 case SpvOpAtomicExchange:
2449 case SpvOpAtomicIAdd:
2450 case SpvOpAtomicSMin:
2451 case SpvOpAtomicUMin:
2452 case SpvOpAtomicSMax:
2453 case SpvOpAtomicUMax:
2454 case SpvOpAtomicAnd:
2455 case SpvOpAtomicOr:
2456 case SpvOpAtomicXor:
2457 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2458 break;
2459
2460 default:
2461 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2462 }
2463 }
2464
2465 static nir_ssa_def *
2466 get_image_coord(struct vtn_builder *b, uint32_t value)
2467 {
2468 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2469
2470 /* The image_load_store intrinsics assume a 4-dim coordinate */
2471 unsigned dim = glsl_get_vector_elements(coord->type);
2472 unsigned swizzle[4];
2473 for (unsigned i = 0; i < 4; i++)
2474 swizzle[i] = MIN2(i, dim - 1);
2475
2476 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2477 }
2478
2479 static nir_ssa_def *
2480 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2481 {
2482 if (value->num_components == 4)
2483 return value;
2484
2485 unsigned swiz[4];
2486 for (unsigned i = 0; i < 4; i++)
2487 swiz[i] = i < value->num_components ? i : 0;
2488 return nir_swizzle(b, value, swiz, 4, false);
2489 }
2490
2491 static void
2492 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2493 const uint32_t *w, unsigned count)
2494 {
2495 /* Just get this one out of the way */
2496 if (opcode == SpvOpImageTexelPointer) {
2497 struct vtn_value *val =
2498 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2499 val->image = ralloc(b, struct vtn_image_pointer);
2500
2501 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2502 val->image->coord = get_image_coord(b, w[4]);
2503 val->image->sample = vtn_ssa_value(b, w[5])->def;
2504 return;
2505 }
2506
2507 struct vtn_image_pointer image;
2508
2509 switch (opcode) {
2510 case SpvOpAtomicExchange:
2511 case SpvOpAtomicCompareExchange:
2512 case SpvOpAtomicCompareExchangeWeak:
2513 case SpvOpAtomicIIncrement:
2514 case SpvOpAtomicIDecrement:
2515 case SpvOpAtomicIAdd:
2516 case SpvOpAtomicISub:
2517 case SpvOpAtomicLoad:
2518 case SpvOpAtomicSMin:
2519 case SpvOpAtomicUMin:
2520 case SpvOpAtomicSMax:
2521 case SpvOpAtomicUMax:
2522 case SpvOpAtomicAnd:
2523 case SpvOpAtomicOr:
2524 case SpvOpAtomicXor:
2525 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2526 break;
2527
2528 case SpvOpAtomicStore:
2529 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2530 break;
2531
2532 case SpvOpImageQuerySize:
2533 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2534 image.coord = NULL;
2535 image.sample = NULL;
2536 break;
2537
2538 case SpvOpImageRead:
2539 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2540 image.coord = get_image_coord(b, w[4]);
2541
2542 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2543 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2544 image.sample = vtn_ssa_value(b, w[6])->def;
2545 } else {
2546 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2547 }
2548 break;
2549
2550 case SpvOpImageWrite:
2551 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2552 image.coord = get_image_coord(b, w[2]);
2553
2554 /* texel = w[3] */
2555
2556 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2557 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2558 image.sample = vtn_ssa_value(b, w[5])->def;
2559 } else {
2560 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2561 }
2562 break;
2563
2564 default:
2565 vtn_fail_with_opcode("Invalid image opcode", opcode);
2566 }
2567
2568 nir_intrinsic_op op;
2569 switch (opcode) {
2570 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2571 OP(ImageQuerySize, size)
2572 OP(ImageRead, load)
2573 OP(ImageWrite, store)
2574 OP(AtomicLoad, load)
2575 OP(AtomicStore, store)
2576 OP(AtomicExchange, atomic_exchange)
2577 OP(AtomicCompareExchange, atomic_comp_swap)
2578 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2579 OP(AtomicIIncrement, atomic_add)
2580 OP(AtomicIDecrement, atomic_add)
2581 OP(AtomicIAdd, atomic_add)
2582 OP(AtomicISub, atomic_add)
2583 OP(AtomicSMin, atomic_min)
2584 OP(AtomicUMin, atomic_min)
2585 OP(AtomicSMax, atomic_max)
2586 OP(AtomicUMax, atomic_max)
2587 OP(AtomicAnd, atomic_and)
2588 OP(AtomicOr, atomic_or)
2589 OP(AtomicXor, atomic_xor)
2590 #undef OP
2591 default:
2592 vtn_fail_with_opcode("Invalid image opcode", opcode);
2593 }
2594
2595 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2596
2597 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2598 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2599
2600 /* ImageQuerySize doesn't take any extra parameters */
2601 if (opcode != SpvOpImageQuerySize) {
2602 /* The image coordinate is always 4 components but we may not have that
2603 * many. Swizzle to compensate.
2604 */
2605 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2606 intrin->src[2] = nir_src_for_ssa(image.sample);
2607 }
2608
2609 switch (opcode) {
2610 case SpvOpAtomicLoad:
2611 case SpvOpImageQuerySize:
2612 case SpvOpImageRead:
2613 break;
2614 case SpvOpAtomicStore:
2615 case SpvOpImageWrite: {
2616 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2617 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2618 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2619 assert(op == nir_intrinsic_image_deref_store);
2620 intrin->num_components = 4;
2621 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2622 break;
2623 }
2624
2625 case SpvOpAtomicCompareExchange:
2626 case SpvOpAtomicCompareExchangeWeak:
2627 case SpvOpAtomicIIncrement:
2628 case SpvOpAtomicIDecrement:
2629 case SpvOpAtomicExchange:
2630 case SpvOpAtomicIAdd:
2631 case SpvOpAtomicISub:
2632 case SpvOpAtomicSMin:
2633 case SpvOpAtomicUMin:
2634 case SpvOpAtomicSMax:
2635 case SpvOpAtomicUMax:
2636 case SpvOpAtomicAnd:
2637 case SpvOpAtomicOr:
2638 case SpvOpAtomicXor:
2639 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2640 break;
2641
2642 default:
2643 vtn_fail_with_opcode("Invalid image opcode", opcode);
2644 }
2645
2646 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2647 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2648 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2649
2650 unsigned dest_components = glsl_get_vector_elements(type->type);
2651 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2652 if (intrin->num_components == 0)
2653 intrin->num_components = dest_components;
2654
2655 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2656 intrin->num_components, 32, NULL);
2657
2658 nir_builder_instr_insert(&b->nb, &intrin->instr);
2659
2660 nir_ssa_def *result = &intrin->dest.ssa;
2661 if (intrin->num_components != dest_components)
2662 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2663
2664 val->ssa = vtn_create_ssa_value(b, type->type);
2665 val->ssa->def = result;
2666 } else {
2667 nir_builder_instr_insert(&b->nb, &intrin->instr);
2668 }
2669 }
2670
2671 static nir_intrinsic_op
2672 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2673 {
2674 switch (opcode) {
2675 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2676 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2677 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2678 OP(AtomicExchange, atomic_exchange)
2679 OP(AtomicCompareExchange, atomic_comp_swap)
2680 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2681 OP(AtomicIIncrement, atomic_add)
2682 OP(AtomicIDecrement, atomic_add)
2683 OP(AtomicIAdd, atomic_add)
2684 OP(AtomicISub, atomic_add)
2685 OP(AtomicSMin, atomic_imin)
2686 OP(AtomicUMin, atomic_umin)
2687 OP(AtomicSMax, atomic_imax)
2688 OP(AtomicUMax, atomic_umax)
2689 OP(AtomicAnd, atomic_and)
2690 OP(AtomicOr, atomic_or)
2691 OP(AtomicXor, atomic_xor)
2692 #undef OP
2693 default:
2694 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2695 }
2696 }
2697
2698 static nir_intrinsic_op
2699 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2700 {
2701 switch (opcode) {
2702 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2703 OP(AtomicLoad, read_deref)
2704 OP(AtomicExchange, exchange)
2705 OP(AtomicCompareExchange, comp_swap)
2706 OP(AtomicCompareExchangeWeak, comp_swap)
2707 OP(AtomicIIncrement, inc_deref)
2708 OP(AtomicIDecrement, post_dec_deref)
2709 OP(AtomicIAdd, add_deref)
2710 OP(AtomicISub, add_deref)
2711 OP(AtomicUMin, min_deref)
2712 OP(AtomicUMax, max_deref)
2713 OP(AtomicAnd, and_deref)
2714 OP(AtomicOr, or_deref)
2715 OP(AtomicXor, xor_deref)
2716 #undef OP
2717 default:
2718 /* We left the following out: AtomicStore, AtomicSMin and
2719 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2720 * moment Atomic Counter support is needed for ARB_spirv support, so is
2721 * only need to support GLSL Atomic Counters that are uints and don't
2722 * allow direct storage.
2723 */
2724 unreachable("Invalid uniform atomic");
2725 }
2726 }
2727
2728 static nir_intrinsic_op
2729 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2730 {
2731 switch (opcode) {
2732 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2733 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2734 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2735 OP(AtomicExchange, atomic_exchange)
2736 OP(AtomicCompareExchange, atomic_comp_swap)
2737 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2738 OP(AtomicIIncrement, atomic_add)
2739 OP(AtomicIDecrement, atomic_add)
2740 OP(AtomicIAdd, atomic_add)
2741 OP(AtomicISub, atomic_add)
2742 OP(AtomicSMin, atomic_imin)
2743 OP(AtomicUMin, atomic_umin)
2744 OP(AtomicSMax, atomic_imax)
2745 OP(AtomicUMax, atomic_umax)
2746 OP(AtomicAnd, atomic_and)
2747 OP(AtomicOr, atomic_or)
2748 OP(AtomicXor, atomic_xor)
2749 #undef OP
2750 default:
2751 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2752 }
2753 }
2754
2755 static nir_intrinsic_op
2756 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2757 {
2758 switch (opcode) {
2759 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2760 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2761 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2762 OP(AtomicExchange, atomic_exchange)
2763 OP(AtomicCompareExchange, atomic_comp_swap)
2764 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2765 OP(AtomicIIncrement, atomic_add)
2766 OP(AtomicIDecrement, atomic_add)
2767 OP(AtomicIAdd, atomic_add)
2768 OP(AtomicISub, atomic_add)
2769 OP(AtomicSMin, atomic_imin)
2770 OP(AtomicUMin, atomic_umin)
2771 OP(AtomicSMax, atomic_imax)
2772 OP(AtomicUMax, atomic_umax)
2773 OP(AtomicAnd, atomic_and)
2774 OP(AtomicOr, atomic_or)
2775 OP(AtomicXor, atomic_xor)
2776 #undef OP
2777 default:
2778 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2779 }
2780 }
2781
2782 /*
2783 * Handles shared atomics, ssbo atomics and atomic counters.
2784 */
2785 static void
2786 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2787 const uint32_t *w, unsigned count)
2788 {
2789 struct vtn_pointer *ptr;
2790 nir_intrinsic_instr *atomic;
2791
2792 switch (opcode) {
2793 case SpvOpAtomicLoad:
2794 case SpvOpAtomicExchange:
2795 case SpvOpAtomicCompareExchange:
2796 case SpvOpAtomicCompareExchangeWeak:
2797 case SpvOpAtomicIIncrement:
2798 case SpvOpAtomicIDecrement:
2799 case SpvOpAtomicIAdd:
2800 case SpvOpAtomicISub:
2801 case SpvOpAtomicSMin:
2802 case SpvOpAtomicUMin:
2803 case SpvOpAtomicSMax:
2804 case SpvOpAtomicUMax:
2805 case SpvOpAtomicAnd:
2806 case SpvOpAtomicOr:
2807 case SpvOpAtomicXor:
2808 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2809 break;
2810
2811 case SpvOpAtomicStore:
2812 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2813 break;
2814
2815 default:
2816 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2817 }
2818
2819 /*
2820 SpvScope scope = w[4];
2821 SpvMemorySemanticsMask semantics = w[5];
2822 */
2823
2824 /* uniform as "atomic counter uniform" */
2825 if (ptr->mode == vtn_variable_mode_uniform) {
2826 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2827 const struct glsl_type *deref_type = deref->type;
2828 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2829 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2830 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2831
2832 /* SSBO needs to initialize index/offset. In this case we don't need to,
2833 * as that info is already stored on the ptr->var->var nir_variable (see
2834 * vtn_create_variable)
2835 */
2836
2837 switch (opcode) {
2838 case SpvOpAtomicLoad:
2839 atomic->num_components = glsl_get_vector_elements(deref_type);
2840 break;
2841
2842 case SpvOpAtomicStore:
2843 atomic->num_components = glsl_get_vector_elements(deref_type);
2844 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2845 break;
2846
2847 case SpvOpAtomicExchange:
2848 case SpvOpAtomicCompareExchange:
2849 case SpvOpAtomicCompareExchangeWeak:
2850 case SpvOpAtomicIIncrement:
2851 case SpvOpAtomicIDecrement:
2852 case SpvOpAtomicIAdd:
2853 case SpvOpAtomicISub:
2854 case SpvOpAtomicSMin:
2855 case SpvOpAtomicUMin:
2856 case SpvOpAtomicSMax:
2857 case SpvOpAtomicUMax:
2858 case SpvOpAtomicAnd:
2859 case SpvOpAtomicOr:
2860 case SpvOpAtomicXor:
2861 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2862 * atomic counter uniforms doesn't have sources
2863 */
2864 break;
2865
2866 default:
2867 unreachable("Invalid SPIR-V atomic");
2868
2869 }
2870 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2871 nir_ssa_def *offset, *index;
2872 offset = vtn_pointer_to_offset(b, ptr, &index);
2873
2874 nir_intrinsic_op op;
2875 if (ptr->mode == vtn_variable_mode_ssbo) {
2876 op = get_ssbo_nir_atomic_op(b, opcode);
2877 } else {
2878 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2879 b->options->lower_workgroup_access_to_offsets);
2880 op = get_shared_nir_atomic_op(b, opcode);
2881 }
2882
2883 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2884
2885 int src = 0;
2886 switch (opcode) {
2887 case SpvOpAtomicLoad:
2888 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2889 nir_intrinsic_set_align(atomic, 4, 0);
2890 if (ptr->mode == vtn_variable_mode_ssbo)
2891 atomic->src[src++] = nir_src_for_ssa(index);
2892 atomic->src[src++] = nir_src_for_ssa(offset);
2893 break;
2894
2895 case SpvOpAtomicStore:
2896 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2897 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2898 nir_intrinsic_set_align(atomic, 4, 0);
2899 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2900 if (ptr->mode == vtn_variable_mode_ssbo)
2901 atomic->src[src++] = nir_src_for_ssa(index);
2902 atomic->src[src++] = nir_src_for_ssa(offset);
2903 break;
2904
2905 case SpvOpAtomicExchange:
2906 case SpvOpAtomicCompareExchange:
2907 case SpvOpAtomicCompareExchangeWeak:
2908 case SpvOpAtomicIIncrement:
2909 case SpvOpAtomicIDecrement:
2910 case SpvOpAtomicIAdd:
2911 case SpvOpAtomicISub:
2912 case SpvOpAtomicSMin:
2913 case SpvOpAtomicUMin:
2914 case SpvOpAtomicSMax:
2915 case SpvOpAtomicUMax:
2916 case SpvOpAtomicAnd:
2917 case SpvOpAtomicOr:
2918 case SpvOpAtomicXor:
2919 if (ptr->mode == vtn_variable_mode_ssbo)
2920 atomic->src[src++] = nir_src_for_ssa(index);
2921 atomic->src[src++] = nir_src_for_ssa(offset);
2922 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2923 break;
2924
2925 default:
2926 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2927 }
2928 } else {
2929 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2930 const struct glsl_type *deref_type = deref->type;
2931 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2932 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2933 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2934
2935 switch (opcode) {
2936 case SpvOpAtomicLoad:
2937 atomic->num_components = glsl_get_vector_elements(deref_type);
2938 break;
2939
2940 case SpvOpAtomicStore:
2941 atomic->num_components = glsl_get_vector_elements(deref_type);
2942 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2943 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2944 break;
2945
2946 case SpvOpAtomicExchange:
2947 case SpvOpAtomicCompareExchange:
2948 case SpvOpAtomicCompareExchangeWeak:
2949 case SpvOpAtomicIIncrement:
2950 case SpvOpAtomicIDecrement:
2951 case SpvOpAtomicIAdd:
2952 case SpvOpAtomicISub:
2953 case SpvOpAtomicSMin:
2954 case SpvOpAtomicUMin:
2955 case SpvOpAtomicSMax:
2956 case SpvOpAtomicUMax:
2957 case SpvOpAtomicAnd:
2958 case SpvOpAtomicOr:
2959 case SpvOpAtomicXor:
2960 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2961 break;
2962
2963 default:
2964 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2965 }
2966 }
2967
2968 if (opcode != SpvOpAtomicStore) {
2969 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2970
2971 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2972 glsl_get_vector_elements(type->type),
2973 glsl_get_bit_size(type->type), NULL);
2974
2975 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2976 val->ssa = rzalloc(b, struct vtn_ssa_value);
2977 val->ssa->def = &atomic->dest.ssa;
2978 val->ssa->type = type->type;
2979 }
2980
2981 nir_builder_instr_insert(&b->nb, &atomic->instr);
2982 }
2983
2984 static nir_alu_instr *
2985 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2986 {
2987 nir_op op;
2988 switch (num_components) {
2989 case 1: op = nir_op_imov; break;
2990 case 2: op = nir_op_vec2; break;
2991 case 3: op = nir_op_vec3; break;
2992 case 4: op = nir_op_vec4; break;
2993 default: vtn_fail("bad vector size: %u", num_components);
2994 }
2995
2996 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2997 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2998 bit_size, NULL);
2999 vec->dest.write_mask = (1 << num_components) - 1;
3000
3001 return vec;
3002 }
3003
3004 struct vtn_ssa_value *
3005 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3006 {
3007 if (src->transposed)
3008 return src->transposed;
3009
3010 struct vtn_ssa_value *dest =
3011 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3012
3013 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3014 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3015 glsl_get_bit_size(src->type));
3016 if (glsl_type_is_vector_or_scalar(src->type)) {
3017 vec->src[0].src = nir_src_for_ssa(src->def);
3018 vec->src[0].swizzle[0] = i;
3019 } else {
3020 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3021 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3022 vec->src[j].swizzle[0] = i;
3023 }
3024 }
3025 nir_builder_instr_insert(&b->nb, &vec->instr);
3026 dest->elems[i]->def = &vec->dest.dest.ssa;
3027 }
3028
3029 dest->transposed = src;
3030
3031 return dest;
3032 }
3033
3034 nir_ssa_def *
3035 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3036 {
3037 return nir_channel(&b->nb, src, index);
3038 }
3039
3040 nir_ssa_def *
3041 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3042 unsigned index)
3043 {
3044 nir_alu_instr *vec = create_vec(b, src->num_components,
3045 src->bit_size);
3046
3047 for (unsigned i = 0; i < src->num_components; i++) {
3048 if (i == index) {
3049 vec->src[i].src = nir_src_for_ssa(insert);
3050 } else {
3051 vec->src[i].src = nir_src_for_ssa(src);
3052 vec->src[i].swizzle[0] = i;
3053 }
3054 }
3055
3056 nir_builder_instr_insert(&b->nb, &vec->instr);
3057
3058 return &vec->dest.dest.ssa;
3059 }
3060
3061 static nir_ssa_def *
3062 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3063 {
3064 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3065 }
3066
3067 nir_ssa_def *
3068 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3069 nir_ssa_def *index)
3070 {
3071 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3072 }
3073
3074 nir_ssa_def *
3075 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3076 nir_ssa_def *insert, nir_ssa_def *index)
3077 {
3078 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3079 for (unsigned i = 1; i < src->num_components; i++)
3080 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3081 vtn_vector_insert(b, src, insert, i), dest);
3082
3083 return dest;
3084 }
3085
3086 static nir_ssa_def *
3087 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3088 nir_ssa_def *src0, nir_ssa_def *src1,
3089 const uint32_t *indices)
3090 {
3091 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3092
3093 for (unsigned i = 0; i < num_components; i++) {
3094 uint32_t index = indices[i];
3095 if (index == 0xffffffff) {
3096 vec->src[i].src =
3097 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3098 } else if (index < src0->num_components) {
3099 vec->src[i].src = nir_src_for_ssa(src0);
3100 vec->src[i].swizzle[0] = index;
3101 } else {
3102 vec->src[i].src = nir_src_for_ssa(src1);
3103 vec->src[i].swizzle[0] = index - src0->num_components;
3104 }
3105 }
3106
3107 nir_builder_instr_insert(&b->nb, &vec->instr);
3108
3109 return &vec->dest.dest.ssa;
3110 }
3111
3112 /*
3113 * Concatentates a number of vectors/scalars together to produce a vector
3114 */
3115 static nir_ssa_def *
3116 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3117 unsigned num_srcs, nir_ssa_def **srcs)
3118 {
3119 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3120
3121 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3122 *
3123 * "When constructing a vector, there must be at least two Constituent
3124 * operands."
3125 */
3126 vtn_assert(num_srcs >= 2);
3127
3128 unsigned dest_idx = 0;
3129 for (unsigned i = 0; i < num_srcs; i++) {
3130 nir_ssa_def *src = srcs[i];
3131 vtn_assert(dest_idx + src->num_components <= num_components);
3132 for (unsigned j = 0; j < src->num_components; j++) {
3133 vec->src[dest_idx].src = nir_src_for_ssa(src);
3134 vec->src[dest_idx].swizzle[0] = j;
3135 dest_idx++;
3136 }
3137 }
3138
3139 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3140 *
3141 * "When constructing a vector, the total number of components in all
3142 * the operands must equal the number of components in Result Type."
3143 */
3144 vtn_assert(dest_idx == num_components);
3145
3146 nir_builder_instr_insert(&b->nb, &vec->instr);
3147
3148 return &vec->dest.dest.ssa;
3149 }
3150
3151 static struct vtn_ssa_value *
3152 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3153 {
3154 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3155 dest->type = src->type;
3156
3157 if (glsl_type_is_vector_or_scalar(src->type)) {
3158 dest->def = src->def;
3159 } else {
3160 unsigned elems = glsl_get_length(src->type);
3161
3162 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3163 for (unsigned i = 0; i < elems; i++)
3164 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3165 }
3166
3167 return dest;
3168 }
3169
3170 static struct vtn_ssa_value *
3171 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3172 struct vtn_ssa_value *insert, const uint32_t *indices,
3173 unsigned num_indices)
3174 {
3175 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3176
3177 struct vtn_ssa_value *cur = dest;
3178 unsigned i;
3179 for (i = 0; i < num_indices - 1; i++) {
3180 cur = cur->elems[indices[i]];
3181 }
3182
3183 if (glsl_type_is_vector_or_scalar(cur->type)) {
3184 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3185 * the component granularity. In that case, the last index will be
3186 * the index to insert the scalar into the vector.
3187 */
3188
3189 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3190 } else {
3191 cur->elems[indices[i]] = insert;
3192 }
3193
3194 return dest;
3195 }
3196
3197 static struct vtn_ssa_value *
3198 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3199 const uint32_t *indices, unsigned num_indices)
3200 {
3201 struct vtn_ssa_value *cur = src;
3202 for (unsigned i = 0; i < num_indices; i++) {
3203 if (glsl_type_is_vector_or_scalar(cur->type)) {
3204 vtn_assert(i == num_indices - 1);
3205 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3206 * the component granularity. The last index will be the index of the
3207 * vector to extract.
3208 */
3209
3210 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3211 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3212 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3213 return ret;
3214 } else {
3215 cur = cur->elems[indices[i]];
3216 }
3217 }
3218
3219 return cur;
3220 }
3221
3222 static void
3223 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3224 const uint32_t *w, unsigned count)
3225 {
3226 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
3227 const struct glsl_type *type =
3228 vtn_value(b, w[1], vtn_value_type_type)->type->type;
3229 val->ssa = vtn_create_ssa_value(b, type);
3230
3231 switch (opcode) {
3232 case SpvOpVectorExtractDynamic:
3233 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3234 vtn_ssa_value(b, w[4])->def);
3235 break;
3236
3237 case SpvOpVectorInsertDynamic:
3238 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3239 vtn_ssa_value(b, w[4])->def,
3240 vtn_ssa_value(b, w[5])->def);
3241 break;
3242
3243 case SpvOpVectorShuffle:
3244 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
3245 vtn_ssa_value(b, w[3])->def,
3246 vtn_ssa_value(b, w[4])->def,
3247 w + 5);
3248 break;
3249
3250 case SpvOpCompositeConstruct: {
3251 unsigned elems = count - 3;
3252 assume(elems >= 1);
3253 if (glsl_type_is_vector_or_scalar(type)) {
3254 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3255 for (unsigned i = 0; i < elems; i++)
3256 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3257 val->ssa->def =
3258 vtn_vector_construct(b, glsl_get_vector_elements(type),
3259 elems, srcs);
3260 } else {
3261 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3262 for (unsigned i = 0; i < elems; i++)
3263 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3264 }
3265 break;
3266 }
3267 case SpvOpCompositeExtract:
3268 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3269 w + 4, count - 4);
3270 break;
3271
3272 case SpvOpCompositeInsert:
3273 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3274 vtn_ssa_value(b, w[3]),
3275 w + 5, count - 5);
3276 break;
3277
3278 case SpvOpCopyObject:
3279 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3280 break;
3281
3282 default:
3283 vtn_fail_with_opcode("unknown composite operation", opcode);
3284 }
3285 }
3286
3287 static void
3288 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3289 {
3290 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3291 nir_builder_instr_insert(&b->nb, &intrin->instr);
3292 }
3293
3294 static void
3295 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3296 SpvMemorySemanticsMask semantics)
3297 {
3298 static const SpvMemorySemanticsMask all_memory_semantics =
3299 SpvMemorySemanticsUniformMemoryMask |
3300 SpvMemorySemanticsWorkgroupMemoryMask |
3301 SpvMemorySemanticsAtomicCounterMemoryMask |
3302 SpvMemorySemanticsImageMemoryMask;
3303
3304 /* If we're not actually doing a memory barrier, bail */
3305 if (!(semantics & all_memory_semantics))
3306 return;
3307
3308 /* GL and Vulkan don't have these */
3309 vtn_assert(scope != SpvScopeCrossDevice);
3310
3311 if (scope == SpvScopeSubgroup)
3312 return; /* Nothing to do here */
3313
3314 if (scope == SpvScopeWorkgroup) {
3315 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3316 return;
3317 }
3318
3319 /* There's only two scopes thing left */
3320 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3321
3322 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3323 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3324 return;
3325 }
3326
3327 /* Issue a bunch of more specific barriers */
3328 uint32_t bits = semantics;
3329 while (bits) {
3330 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3331 switch (semantic) {
3332 case SpvMemorySemanticsUniformMemoryMask:
3333 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3334 break;
3335 case SpvMemorySemanticsWorkgroupMemoryMask:
3336 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3337 break;
3338 case SpvMemorySemanticsAtomicCounterMemoryMask:
3339 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3340 break;
3341 case SpvMemorySemanticsImageMemoryMask:
3342 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3343 break;
3344 default:
3345 break;;
3346 }
3347 }
3348 }
3349
3350 static void
3351 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3352 const uint32_t *w, unsigned count)
3353 {
3354 switch (opcode) {
3355 case SpvOpEmitVertex:
3356 case SpvOpEmitStreamVertex:
3357 case SpvOpEndPrimitive:
3358 case SpvOpEndStreamPrimitive: {
3359 nir_intrinsic_op intrinsic_op;
3360 switch (opcode) {
3361 case SpvOpEmitVertex:
3362 case SpvOpEmitStreamVertex:
3363 intrinsic_op = nir_intrinsic_emit_vertex;
3364 break;
3365 case SpvOpEndPrimitive:
3366 case SpvOpEndStreamPrimitive:
3367 intrinsic_op = nir_intrinsic_end_primitive;
3368 break;
3369 default:
3370 unreachable("Invalid opcode");
3371 }
3372
3373 nir_intrinsic_instr *intrin =
3374 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3375
3376 switch (opcode) {
3377 case SpvOpEmitStreamVertex:
3378 case SpvOpEndStreamPrimitive: {
3379 unsigned stream = vtn_constant_uint(b, w[1]);
3380 nir_intrinsic_set_stream_id(intrin, stream);
3381 break;
3382 }
3383
3384 default:
3385 break;
3386 }
3387
3388 nir_builder_instr_insert(&b->nb, &intrin->instr);
3389 break;
3390 }
3391
3392 case SpvOpMemoryBarrier: {
3393 SpvScope scope = vtn_constant_uint(b, w[1]);
3394 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3395 vtn_emit_memory_barrier(b, scope, semantics);
3396 return;
3397 }
3398
3399 case SpvOpControlBarrier: {
3400 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3401 if (execution_scope == SpvScopeWorkgroup)
3402 vtn_emit_barrier(b, nir_intrinsic_barrier);
3403
3404 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3405 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3406 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3407 break;
3408 }
3409
3410 default:
3411 unreachable("unknown barrier instruction");
3412 }
3413 }
3414
3415 static unsigned
3416 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3417 SpvExecutionMode mode)
3418 {
3419 switch (mode) {
3420 case SpvExecutionModeInputPoints:
3421 case SpvExecutionModeOutputPoints:
3422 return 0; /* GL_POINTS */
3423 case SpvExecutionModeInputLines:
3424 return 1; /* GL_LINES */
3425 case SpvExecutionModeInputLinesAdjacency:
3426 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3427 case SpvExecutionModeTriangles:
3428 return 4; /* GL_TRIANGLES */
3429 case SpvExecutionModeInputTrianglesAdjacency:
3430 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3431 case SpvExecutionModeQuads:
3432 return 7; /* GL_QUADS */
3433 case SpvExecutionModeIsolines:
3434 return 0x8E7A; /* GL_ISOLINES */
3435 case SpvExecutionModeOutputLineStrip:
3436 return 3; /* GL_LINE_STRIP */
3437 case SpvExecutionModeOutputTriangleStrip:
3438 return 5; /* GL_TRIANGLE_STRIP */
3439 default:
3440 vtn_fail("Invalid primitive type: %s (%u)",
3441 spirv_executionmode_to_string(mode), mode);
3442 }
3443 }
3444
3445 static unsigned
3446 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3447 SpvExecutionMode mode)
3448 {
3449 switch (mode) {
3450 case SpvExecutionModeInputPoints:
3451 return 1;
3452 case SpvExecutionModeInputLines:
3453 return 2;
3454 case SpvExecutionModeInputLinesAdjacency:
3455 return 4;
3456 case SpvExecutionModeTriangles:
3457 return 3;
3458 case SpvExecutionModeInputTrianglesAdjacency:
3459 return 6;
3460 default:
3461 vtn_fail("Invalid GS input mode: %s (%u)",
3462 spirv_executionmode_to_string(mode), mode);
3463 }
3464 }
3465
3466 static gl_shader_stage
3467 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3468 {
3469 switch (model) {
3470 case SpvExecutionModelVertex:
3471 return MESA_SHADER_VERTEX;
3472 case SpvExecutionModelTessellationControl:
3473 return MESA_SHADER_TESS_CTRL;
3474 case SpvExecutionModelTessellationEvaluation:
3475 return MESA_SHADER_TESS_EVAL;
3476 case SpvExecutionModelGeometry:
3477 return MESA_SHADER_GEOMETRY;
3478 case SpvExecutionModelFragment:
3479 return MESA_SHADER_FRAGMENT;
3480 case SpvExecutionModelGLCompute:
3481 return MESA_SHADER_COMPUTE;
3482 case SpvExecutionModelKernel:
3483 return MESA_SHADER_KERNEL;
3484 default:
3485 vtn_fail("Unsupported execution model: %s (%u)",
3486 spirv_executionmodel_to_string(model), model);
3487 }
3488 }
3489
3490 #define spv_check_supported(name, cap) do { \
3491 if (!(b->options && b->options->caps.name)) \
3492 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3493 spirv_capability_to_string(cap), cap); \
3494 } while(0)
3495
3496
3497 void
3498 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3499 unsigned count)
3500 {
3501 struct vtn_value *entry_point = &b->values[w[2]];
3502 /* Let this be a name label regardless */
3503 unsigned name_words;
3504 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3505
3506 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3507 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3508 return;
3509
3510 vtn_assert(b->entry_point == NULL);
3511 b->entry_point = entry_point;
3512 }
3513
3514 static bool
3515 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3516 const uint32_t *w, unsigned count)
3517 {
3518 switch (opcode) {
3519 case SpvOpSource: {
3520 const char *lang;
3521 switch (w[1]) {
3522 default:
3523 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3524 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3525 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3526 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3527 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3528 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3529 }
3530
3531 uint32_t version = w[2];
3532
3533 const char *file =
3534 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3535
3536 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3537 break;
3538 }
3539
3540 case SpvOpSourceExtension:
3541 case SpvOpSourceContinued:
3542 case SpvOpExtension:
3543 case SpvOpModuleProcessed:
3544 /* Unhandled, but these are for debug so that's ok. */
3545 break;
3546
3547 case SpvOpCapability: {
3548 SpvCapability cap = w[1];
3549 switch (cap) {
3550 case SpvCapabilityMatrix:
3551 case SpvCapabilityShader:
3552 case SpvCapabilityGeometry:
3553 case SpvCapabilityGeometryPointSize:
3554 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3555 case SpvCapabilitySampledImageArrayDynamicIndexing:
3556 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3557 case SpvCapabilityStorageImageArrayDynamicIndexing:
3558 case SpvCapabilityImageRect:
3559 case SpvCapabilitySampledRect:
3560 case SpvCapabilitySampled1D:
3561 case SpvCapabilityImage1D:
3562 case SpvCapabilitySampledCubeArray:
3563 case SpvCapabilityImageCubeArray:
3564 case SpvCapabilitySampledBuffer:
3565 case SpvCapabilityImageBuffer:
3566 case SpvCapabilityImageQuery:
3567 case SpvCapabilityDerivativeControl:
3568 case SpvCapabilityInterpolationFunction:
3569 case SpvCapabilityMultiViewport:
3570 case SpvCapabilitySampleRateShading:
3571 case SpvCapabilityClipDistance:
3572 case SpvCapabilityCullDistance:
3573 case SpvCapabilityInputAttachment:
3574 case SpvCapabilityImageGatherExtended:
3575 case SpvCapabilityStorageImageExtendedFormats:
3576 break;
3577
3578 case SpvCapabilityLinkage:
3579 case SpvCapabilityVector16:
3580 case SpvCapabilityFloat16Buffer:
3581 case SpvCapabilitySparseResidency:
3582 vtn_warn("Unsupported SPIR-V capability: %s",
3583 spirv_capability_to_string(cap));
3584 break;
3585
3586 case SpvCapabilityMinLod:
3587 spv_check_supported(min_lod, cap);
3588 break;
3589
3590 case SpvCapabilityAtomicStorage:
3591 spv_check_supported(atomic_storage, cap);
3592 break;
3593
3594 case SpvCapabilityFloat64:
3595 spv_check_supported(float64, cap);
3596 break;
3597 case SpvCapabilityInt64:
3598 spv_check_supported(int64, cap);
3599 break;
3600 case SpvCapabilityInt16:
3601 spv_check_supported(int16, cap);
3602 break;
3603 case SpvCapabilityInt8:
3604 spv_check_supported(int8, cap);
3605 break;
3606
3607 case SpvCapabilityTransformFeedback:
3608 spv_check_supported(transform_feedback, cap);
3609 break;
3610
3611 case SpvCapabilityGeometryStreams:
3612 spv_check_supported(geometry_streams, cap);
3613 break;
3614
3615 case SpvCapabilityInt64Atomics:
3616 spv_check_supported(int64_atomics, cap);
3617 break;
3618
3619 case SpvCapabilityStorageImageMultisample:
3620 spv_check_supported(storage_image_ms, cap);
3621 break;
3622
3623 case SpvCapabilityAddresses:
3624 spv_check_supported(address, cap);
3625 break;
3626
3627 case SpvCapabilityKernel:
3628 spv_check_supported(kernel, cap);
3629 break;
3630
3631 case SpvCapabilityImageBasic:
3632 case SpvCapabilityImageReadWrite:
3633 case SpvCapabilityImageMipmap:
3634 case SpvCapabilityPipes:
3635 case SpvCapabilityGroups:
3636 case SpvCapabilityDeviceEnqueue:
3637 case SpvCapabilityLiteralSampler:
3638 case SpvCapabilityGenericPointer:
3639 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3640 spirv_capability_to_string(cap));
3641 break;
3642
3643 case SpvCapabilityImageMSArray:
3644 spv_check_supported(image_ms_array, cap);
3645 break;
3646
3647 case SpvCapabilityTessellation:
3648 case SpvCapabilityTessellationPointSize:
3649 spv_check_supported(tessellation, cap);
3650 break;
3651
3652 case SpvCapabilityDrawParameters:
3653 spv_check_supported(draw_parameters, cap);
3654 break;
3655
3656 case SpvCapabilityStorageImageReadWithoutFormat:
3657 spv_check_supported(image_read_without_format, cap);
3658 break;
3659
3660 case SpvCapabilityStorageImageWriteWithoutFormat:
3661 spv_check_supported(image_write_without_format, cap);
3662 break;
3663
3664 case SpvCapabilityDeviceGroup:
3665 spv_check_supported(device_group, cap);
3666 break;
3667
3668 case SpvCapabilityMultiView:
3669 spv_check_supported(multiview, cap);
3670 break;
3671
3672 case SpvCapabilityGroupNonUniform:
3673 spv_check_supported(subgroup_basic, cap);
3674 break;
3675
3676 case SpvCapabilityGroupNonUniformVote:
3677 spv_check_supported(subgroup_vote, cap);
3678 break;
3679
3680 case SpvCapabilitySubgroupBallotKHR:
3681 case SpvCapabilityGroupNonUniformBallot:
3682 spv_check_supported(subgroup_ballot, cap);
3683 break;
3684
3685 case SpvCapabilityGroupNonUniformShuffle:
3686 case SpvCapabilityGroupNonUniformShuffleRelative:
3687 spv_check_supported(subgroup_shuffle, cap);
3688 break;
3689
3690 case SpvCapabilityGroupNonUniformQuad:
3691 spv_check_supported(subgroup_quad, cap);
3692 break;
3693
3694 case SpvCapabilityGroupNonUniformArithmetic:
3695 case SpvCapabilityGroupNonUniformClustered:
3696 spv_check_supported(subgroup_arithmetic, cap);
3697 break;
3698
3699 case SpvCapabilityVariablePointersStorageBuffer:
3700 case SpvCapabilityVariablePointers:
3701 spv_check_supported(variable_pointers, cap);
3702 b->variable_pointers = true;
3703 break;
3704
3705 case SpvCapabilityStorageUniformBufferBlock16:
3706 case SpvCapabilityStorageUniform16:
3707 case SpvCapabilityStoragePushConstant16:
3708 case SpvCapabilityStorageInputOutput16:
3709 spv_check_supported(storage_16bit, cap);
3710 break;
3711
3712 case SpvCapabilityShaderViewportIndexLayerEXT:
3713 spv_check_supported(shader_viewport_index_layer, cap);
3714 break;
3715
3716 case SpvCapabilityStorageBuffer8BitAccess:
3717 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3718 case SpvCapabilityStoragePushConstant8:
3719 spv_check_supported(storage_8bit, cap);
3720 break;
3721
3722 case SpvCapabilityShaderNonUniformEXT:
3723 spv_check_supported(descriptor_indexing, cap);
3724 break;
3725
3726 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3727 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3728 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3729 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3730 break;
3731
3732 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3733 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3734 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3735 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3736 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3737 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3738 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3739 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3740 break;
3741
3742 case SpvCapabilityRuntimeDescriptorArrayEXT:
3743 spv_check_supported(runtime_descriptor_array, cap);
3744 break;
3745
3746 case SpvCapabilityStencilExportEXT:
3747 spv_check_supported(stencil_export, cap);
3748 break;
3749
3750 case SpvCapabilitySampleMaskPostDepthCoverage:
3751 spv_check_supported(post_depth_coverage, cap);
3752 break;
3753
3754 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3755 spv_check_supported(physical_storage_buffer_address, cap);
3756 break;
3757
3758 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3759 case SpvCapabilityComputeDerivativeGroupLinearNV:
3760 spv_check_supported(derivative_group, cap);
3761 break;
3762
3763 case SpvCapabilityFloat16:
3764 spv_check_supported(float16, cap);
3765 break;
3766
3767 default:
3768 vtn_fail("Unhandled capability: %s (%u)",
3769 spirv_capability_to_string(cap), cap);
3770 }
3771 break;
3772 }
3773
3774 case SpvOpExtInstImport:
3775 vtn_handle_extension(b, opcode, w, count);
3776 break;
3777
3778 case SpvOpMemoryModel:
3779 switch (w[1]) {
3780 case SpvAddressingModelPhysical32:
3781 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3782 "AddressingModelPhysical32 only supported for kernels");
3783 b->shader->info.cs.ptr_size = 32;
3784 b->physical_ptrs = true;
3785 b->options->shared_ptr_type = glsl_uint_type();
3786 b->options->global_ptr_type = glsl_uint_type();
3787 b->options->temp_ptr_type = glsl_uint_type();
3788 break;
3789 case SpvAddressingModelPhysical64:
3790 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3791 "AddressingModelPhysical64 only supported for kernels");
3792 b->shader->info.cs.ptr_size = 64;
3793 b->physical_ptrs = true;
3794 b->options->shared_ptr_type = glsl_uint64_t_type();
3795 b->options->global_ptr_type = glsl_uint64_t_type();
3796 b->options->temp_ptr_type = glsl_uint64_t_type();
3797 break;
3798 case SpvAddressingModelLogical:
3799 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3800 "AddressingModelLogical only supported for shaders");
3801 b->shader->info.cs.ptr_size = 0;
3802 b->physical_ptrs = false;
3803 break;
3804 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3805 vtn_fail_if(!b->options ||
3806 !b->options->caps.physical_storage_buffer_address,
3807 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3808 break;
3809 default:
3810 vtn_fail("Unknown addressing model: %s (%u)",
3811 spirv_addressingmodel_to_string(w[1]), w[1]);
3812 break;
3813 }
3814
3815 vtn_assert(w[2] == SpvMemoryModelSimple ||
3816 w[2] == SpvMemoryModelGLSL450 ||
3817 w[2] == SpvMemoryModelOpenCL);
3818 break;
3819
3820 case SpvOpEntryPoint:
3821 vtn_handle_entry_point(b, w, count);
3822 break;
3823
3824 case SpvOpString:
3825 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3826 vtn_string_literal(b, &w[2], count - 2, NULL);
3827 break;
3828
3829 case SpvOpName:
3830 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3831 break;
3832
3833 case SpvOpMemberName:
3834 /* TODO */
3835 break;
3836
3837 case SpvOpExecutionMode:
3838 case SpvOpExecutionModeId:
3839 case SpvOpDecorationGroup:
3840 case SpvOpDecorate:
3841 case SpvOpDecorateId:
3842 case SpvOpMemberDecorate:
3843 case SpvOpGroupDecorate:
3844 case SpvOpGroupMemberDecorate:
3845 case SpvOpDecorateStringGOOGLE:
3846 case SpvOpMemberDecorateStringGOOGLE:
3847 vtn_handle_decoration(b, opcode, w, count);
3848 break;
3849
3850 default:
3851 return false; /* End of preamble */
3852 }
3853
3854 return true;
3855 }
3856
3857 static void
3858 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3859 const struct vtn_decoration *mode, void *data)
3860 {
3861 vtn_assert(b->entry_point == entry_point);
3862
3863 switch(mode->exec_mode) {
3864 case SpvExecutionModeOriginUpperLeft:
3865 case SpvExecutionModeOriginLowerLeft:
3866 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3867 b->shader->info.fs.origin_upper_left =
3868 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3869 break;
3870
3871 case SpvExecutionModeEarlyFragmentTests:
3872 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3873 b->shader->info.fs.early_fragment_tests = true;
3874 break;
3875
3876 case SpvExecutionModePostDepthCoverage:
3877 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3878 b->shader->info.fs.post_depth_coverage = true;
3879 break;
3880
3881 case SpvExecutionModeInvocations:
3882 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3883 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
3884 break;
3885
3886 case SpvExecutionModeDepthReplacing:
3887 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3888 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3889 break;
3890 case SpvExecutionModeDepthGreater:
3891 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3892 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3893 break;
3894 case SpvExecutionModeDepthLess:
3895 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3896 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3897 break;
3898 case SpvExecutionModeDepthUnchanged:
3899 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3900 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3901 break;
3902
3903 case SpvExecutionModeLocalSize:
3904 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3905 b->shader->info.cs.local_size[0] = mode->operands[0];
3906 b->shader->info.cs.local_size[1] = mode->operands[1];
3907 b->shader->info.cs.local_size[2] = mode->operands[2];
3908 break;
3909
3910 case SpvExecutionModeLocalSizeId:
3911 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
3912 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
3913 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
3914 break;
3915
3916 case SpvExecutionModeLocalSizeHint:
3917 case SpvExecutionModeLocalSizeHintId:
3918 break; /* Nothing to do with this */
3919
3920 case SpvExecutionModeOutputVertices:
3921 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3922 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3923 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
3924 } else {
3925 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3926 b->shader->info.gs.vertices_out = mode->operands[0];
3927 }
3928 break;
3929
3930 case SpvExecutionModeInputPoints:
3931 case SpvExecutionModeInputLines:
3932 case SpvExecutionModeInputLinesAdjacency:
3933 case SpvExecutionModeTriangles:
3934 case SpvExecutionModeInputTrianglesAdjacency:
3935 case SpvExecutionModeQuads:
3936 case SpvExecutionModeIsolines:
3937 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3938 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3939 b->shader->info.tess.primitive_mode =
3940 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3941 } else {
3942 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3943 b->shader->info.gs.vertices_in =
3944 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3945 b->shader->info.gs.input_primitive =
3946 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3947 }
3948 break;
3949
3950 case SpvExecutionModeOutputPoints:
3951 case SpvExecutionModeOutputLineStrip:
3952 case SpvExecutionModeOutputTriangleStrip:
3953 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3954 b->shader->info.gs.output_primitive =
3955 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3956 break;
3957
3958 case SpvExecutionModeSpacingEqual:
3959 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3960 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3961 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3962 break;
3963 case SpvExecutionModeSpacingFractionalEven:
3964 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3965 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3966 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3967 break;
3968 case SpvExecutionModeSpacingFractionalOdd:
3969 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3970 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3971 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3972 break;
3973 case SpvExecutionModeVertexOrderCw:
3974 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3975 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3976 b->shader->info.tess.ccw = false;
3977 break;
3978 case SpvExecutionModeVertexOrderCcw:
3979 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3980 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3981 b->shader->info.tess.ccw = true;
3982 break;
3983 case SpvExecutionModePointMode:
3984 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3985 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3986 b->shader->info.tess.point_mode = true;
3987 break;
3988
3989 case SpvExecutionModePixelCenterInteger:
3990 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3991 b->shader->info.fs.pixel_center_integer = true;
3992 break;
3993
3994 case SpvExecutionModeXfb:
3995 b->shader->info.has_transform_feedback_varyings = true;
3996 break;
3997
3998 case SpvExecutionModeVecTypeHint:
3999 break; /* OpenCL */
4000
4001 case SpvExecutionModeContractionOff:
4002 if (b->shader->info.stage != MESA_SHADER_KERNEL)
4003 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
4004 spirv_executionmode_to_string(mode->exec_mode));
4005 else
4006 b->exact = true;
4007 break;
4008
4009 case SpvExecutionModeStencilRefReplacingEXT:
4010 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4011 break;
4012
4013 case SpvExecutionModeDerivativeGroupQuadsNV:
4014 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4015 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
4016 break;
4017
4018 case SpvExecutionModeDerivativeGroupLinearNV:
4019 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4020 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
4021 break;
4022
4023 default:
4024 vtn_fail("Unhandled execution mode: %s (%u)",
4025 spirv_executionmode_to_string(mode->exec_mode),
4026 mode->exec_mode);
4027 }
4028 }
4029
4030 static bool
4031 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4032 const uint32_t *w, unsigned count)
4033 {
4034 vtn_set_instruction_result_type(b, opcode, w, count);
4035
4036 switch (opcode) {
4037 case SpvOpSource:
4038 case SpvOpSourceContinued:
4039 case SpvOpSourceExtension:
4040 case SpvOpExtension:
4041 case SpvOpCapability:
4042 case SpvOpExtInstImport:
4043 case SpvOpMemoryModel:
4044 case SpvOpEntryPoint:
4045 case SpvOpExecutionMode:
4046 case SpvOpString:
4047 case SpvOpName:
4048 case SpvOpMemberName:
4049 case SpvOpDecorationGroup:
4050 case SpvOpDecorate:
4051 case SpvOpDecorateId:
4052 case SpvOpMemberDecorate:
4053 case SpvOpGroupDecorate:
4054 case SpvOpGroupMemberDecorate:
4055 case SpvOpDecorateStringGOOGLE:
4056 case SpvOpMemberDecorateStringGOOGLE:
4057 vtn_fail("Invalid opcode types and variables section");
4058 break;
4059
4060 case SpvOpTypeVoid:
4061 case SpvOpTypeBool:
4062 case SpvOpTypeInt:
4063 case SpvOpTypeFloat:
4064 case SpvOpTypeVector:
4065 case SpvOpTypeMatrix:
4066 case SpvOpTypeImage:
4067 case SpvOpTypeSampler:
4068 case SpvOpTypeSampledImage:
4069 case SpvOpTypeArray:
4070 case SpvOpTypeRuntimeArray:
4071 case SpvOpTypeStruct:
4072 case SpvOpTypeOpaque:
4073 case SpvOpTypePointer:
4074 case SpvOpTypeForwardPointer:
4075 case SpvOpTypeFunction:
4076 case SpvOpTypeEvent:
4077 case SpvOpTypeDeviceEvent:
4078 case SpvOpTypeReserveId:
4079 case SpvOpTypeQueue:
4080 case SpvOpTypePipe:
4081 vtn_handle_type(b, opcode, w, count);
4082 break;
4083
4084 case SpvOpConstantTrue:
4085 case SpvOpConstantFalse:
4086 case SpvOpConstant:
4087 case SpvOpConstantComposite:
4088 case SpvOpConstantSampler:
4089 case SpvOpConstantNull:
4090 case SpvOpSpecConstantTrue:
4091 case SpvOpSpecConstantFalse:
4092 case SpvOpSpecConstant:
4093 case SpvOpSpecConstantComposite:
4094 case SpvOpSpecConstantOp:
4095 vtn_handle_constant(b, opcode, w, count);
4096 break;
4097
4098 case SpvOpUndef:
4099 case SpvOpVariable:
4100 vtn_handle_variables(b, opcode, w, count);
4101 break;
4102
4103 default:
4104 return false; /* End of preamble */
4105 }
4106
4107 return true;
4108 }
4109
4110 static bool
4111 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4112 const uint32_t *w, unsigned count)
4113 {
4114 switch (opcode) {
4115 case SpvOpLabel:
4116 break;
4117
4118 case SpvOpLoopMerge:
4119 case SpvOpSelectionMerge:
4120 /* This is handled by cfg pre-pass and walk_blocks */
4121 break;
4122
4123 case SpvOpUndef: {
4124 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4125 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4126 break;
4127 }
4128
4129 case SpvOpExtInst:
4130 vtn_handle_extension(b, opcode, w, count);
4131 break;
4132
4133 case SpvOpVariable:
4134 case SpvOpLoad:
4135 case SpvOpStore:
4136 case SpvOpCopyMemory:
4137 case SpvOpCopyMemorySized:
4138 case SpvOpAccessChain:
4139 case SpvOpPtrAccessChain:
4140 case SpvOpInBoundsAccessChain:
4141 case SpvOpInBoundsPtrAccessChain:
4142 case SpvOpArrayLength:
4143 case SpvOpConvertPtrToU:
4144 case SpvOpConvertUToPtr:
4145 vtn_handle_variables(b, opcode, w, count);
4146 break;
4147
4148 case SpvOpFunctionCall:
4149 vtn_handle_function_call(b, opcode, w, count);
4150 break;
4151
4152 case SpvOpSampledImage:
4153 case SpvOpImage:
4154 case SpvOpImageSampleImplicitLod:
4155 case SpvOpImageSampleExplicitLod:
4156 case SpvOpImageSampleDrefImplicitLod:
4157 case SpvOpImageSampleDrefExplicitLod:
4158 case SpvOpImageSampleProjImplicitLod:
4159 case SpvOpImageSampleProjExplicitLod:
4160 case SpvOpImageSampleProjDrefImplicitLod:
4161 case SpvOpImageSampleProjDrefExplicitLod:
4162 case SpvOpImageFetch:
4163 case SpvOpImageGather:
4164 case SpvOpImageDrefGather:
4165 case SpvOpImageQuerySizeLod:
4166 case SpvOpImageQueryLod:
4167 case SpvOpImageQueryLevels:
4168 case SpvOpImageQuerySamples:
4169 vtn_handle_texture(b, opcode, w, count);
4170 break;
4171
4172 case SpvOpImageRead:
4173 case SpvOpImageWrite:
4174 case SpvOpImageTexelPointer:
4175 vtn_handle_image(b, opcode, w, count);
4176 break;
4177
4178 case SpvOpImageQuerySize: {
4179 struct vtn_pointer *image =
4180 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4181 if (glsl_type_is_image(image->type->type)) {
4182 vtn_handle_image(b, opcode, w, count);
4183 } else {
4184 vtn_assert(glsl_type_is_sampler(image->type->type));
4185 vtn_handle_texture(b, opcode, w, count);
4186 }
4187 break;
4188 }
4189
4190 case SpvOpAtomicLoad:
4191 case SpvOpAtomicExchange:
4192 case SpvOpAtomicCompareExchange:
4193 case SpvOpAtomicCompareExchangeWeak:
4194 case SpvOpAtomicIIncrement:
4195 case SpvOpAtomicIDecrement:
4196 case SpvOpAtomicIAdd:
4197 case SpvOpAtomicISub:
4198 case SpvOpAtomicSMin:
4199 case SpvOpAtomicUMin:
4200 case SpvOpAtomicSMax:
4201 case SpvOpAtomicUMax:
4202 case SpvOpAtomicAnd:
4203 case SpvOpAtomicOr:
4204 case SpvOpAtomicXor: {
4205 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4206 if (pointer->value_type == vtn_value_type_image_pointer) {
4207 vtn_handle_image(b, opcode, w, count);
4208 } else {
4209 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4210 vtn_handle_atomics(b, opcode, w, count);
4211 }
4212 break;
4213 }
4214
4215 case SpvOpAtomicStore: {
4216 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4217 if (pointer->value_type == vtn_value_type_image_pointer) {
4218 vtn_handle_image(b, opcode, w, count);
4219 } else {
4220 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4221 vtn_handle_atomics(b, opcode, w, count);
4222 }
4223 break;
4224 }
4225
4226 case SpvOpSelect: {
4227 /* Handle OpSelect up-front here because it needs to be able to handle
4228 * pointers and not just regular vectors and scalars.
4229 */
4230 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4231 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
4232 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4233 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4234
4235 const struct glsl_type *sel_type;
4236 switch (res_val->type->base_type) {
4237 case vtn_base_type_scalar:
4238 sel_type = glsl_bool_type();
4239 break;
4240 case vtn_base_type_vector:
4241 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
4242 break;
4243 case vtn_base_type_pointer:
4244 /* We need to have actual storage for pointer types */
4245 vtn_fail_if(res_val->type->type == NULL,
4246 "Invalid pointer result type for OpSelect");
4247 sel_type = glsl_bool_type();
4248 break;
4249 default:
4250 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
4251 }
4252
4253 if (unlikely(sel_val->type->type != sel_type)) {
4254 if (sel_val->type->type == glsl_bool_type()) {
4255 /* This case is illegal but some older versions of GLSLang produce
4256 * it. The GLSLang issue was fixed on March 30, 2017:
4257 *
4258 * https://github.com/KhronosGroup/glslang/issues/809
4259 *
4260 * Unfortunately, there are applications in the wild which are
4261 * shipping with this bug so it isn't nice to fail on them so we
4262 * throw a warning instead. It's not actually a problem for us as
4263 * nir_builder will just splat the condition out which is most
4264 * likely what the client wanted anyway.
4265 */
4266 vtn_warn("Condition type of OpSelect must have the same number "
4267 "of components as Result Type");
4268 } else {
4269 vtn_fail("Condition type of OpSelect must be a scalar or vector "
4270 "of Boolean type. It must have the same number of "
4271 "components as Result Type");
4272 }
4273 }
4274
4275 vtn_fail_if(obj1_val->type != res_val->type ||
4276 obj2_val->type != res_val->type,
4277 "Object types must match the result type in OpSelect");
4278
4279 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4280 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
4281 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
4282 vtn_ssa_value(b, w[4])->def,
4283 vtn_ssa_value(b, w[5])->def);
4284 vtn_push_ssa(b, w[2], res_type, ssa);
4285 break;
4286 }
4287
4288 case SpvOpSNegate:
4289 case SpvOpFNegate:
4290 case SpvOpNot:
4291 case SpvOpAny:
4292 case SpvOpAll:
4293 case SpvOpConvertFToU:
4294 case SpvOpConvertFToS:
4295 case SpvOpConvertSToF:
4296 case SpvOpConvertUToF:
4297 case SpvOpUConvert:
4298 case SpvOpSConvert:
4299 case SpvOpFConvert:
4300 case SpvOpQuantizeToF16:
4301 case SpvOpPtrCastToGeneric:
4302 case SpvOpGenericCastToPtr:
4303 case SpvOpIsNan:
4304 case SpvOpIsInf:
4305 case SpvOpIsFinite:
4306 case SpvOpIsNormal:
4307 case SpvOpSignBitSet:
4308 case SpvOpLessOrGreater:
4309 case SpvOpOrdered:
4310 case SpvOpUnordered:
4311 case SpvOpIAdd:
4312 case SpvOpFAdd:
4313 case SpvOpISub:
4314 case SpvOpFSub:
4315 case SpvOpIMul:
4316 case SpvOpFMul:
4317 case SpvOpUDiv:
4318 case SpvOpSDiv:
4319 case SpvOpFDiv:
4320 case SpvOpUMod:
4321 case SpvOpSRem:
4322 case SpvOpSMod:
4323 case SpvOpFRem:
4324 case SpvOpFMod:
4325 case SpvOpVectorTimesScalar:
4326 case SpvOpDot:
4327 case SpvOpIAddCarry:
4328 case SpvOpISubBorrow:
4329 case SpvOpUMulExtended:
4330 case SpvOpSMulExtended:
4331 case SpvOpShiftRightLogical:
4332 case SpvOpShiftRightArithmetic:
4333 case SpvOpShiftLeftLogical:
4334 case SpvOpLogicalEqual:
4335 case SpvOpLogicalNotEqual:
4336 case SpvOpLogicalOr:
4337 case SpvOpLogicalAnd:
4338 case SpvOpLogicalNot:
4339 case SpvOpBitwiseOr:
4340 case SpvOpBitwiseXor:
4341 case SpvOpBitwiseAnd:
4342 case SpvOpIEqual:
4343 case SpvOpFOrdEqual:
4344 case SpvOpFUnordEqual:
4345 case SpvOpINotEqual:
4346 case SpvOpFOrdNotEqual:
4347 case SpvOpFUnordNotEqual:
4348 case SpvOpULessThan:
4349 case SpvOpSLessThan:
4350 case SpvOpFOrdLessThan:
4351 case SpvOpFUnordLessThan:
4352 case SpvOpUGreaterThan:
4353 case SpvOpSGreaterThan:
4354 case SpvOpFOrdGreaterThan:
4355 case SpvOpFUnordGreaterThan:
4356 case SpvOpULessThanEqual:
4357 case SpvOpSLessThanEqual:
4358 case SpvOpFOrdLessThanEqual:
4359 case SpvOpFUnordLessThanEqual:
4360 case SpvOpUGreaterThanEqual:
4361 case SpvOpSGreaterThanEqual:
4362 case SpvOpFOrdGreaterThanEqual:
4363 case SpvOpFUnordGreaterThanEqual:
4364 case SpvOpDPdx:
4365 case SpvOpDPdy:
4366 case SpvOpFwidth:
4367 case SpvOpDPdxFine:
4368 case SpvOpDPdyFine:
4369 case SpvOpFwidthFine:
4370 case SpvOpDPdxCoarse:
4371 case SpvOpDPdyCoarse:
4372 case SpvOpFwidthCoarse:
4373 case SpvOpBitFieldInsert:
4374 case SpvOpBitFieldSExtract:
4375 case SpvOpBitFieldUExtract:
4376 case SpvOpBitReverse:
4377 case SpvOpBitCount:
4378 case SpvOpTranspose:
4379 case SpvOpOuterProduct:
4380 case SpvOpMatrixTimesScalar:
4381 case SpvOpVectorTimesMatrix:
4382 case SpvOpMatrixTimesVector:
4383 case SpvOpMatrixTimesMatrix:
4384 vtn_handle_alu(b, opcode, w, count);
4385 break;
4386
4387 case SpvOpBitcast:
4388 vtn_handle_bitcast(b, w, count);
4389 break;
4390
4391 case SpvOpVectorExtractDynamic:
4392 case SpvOpVectorInsertDynamic:
4393 case SpvOpVectorShuffle:
4394 case SpvOpCompositeConstruct:
4395 case SpvOpCompositeExtract:
4396 case SpvOpCompositeInsert:
4397 case SpvOpCopyObject:
4398 vtn_handle_composite(b, opcode, w, count);
4399 break;
4400
4401 case SpvOpEmitVertex:
4402 case SpvOpEndPrimitive:
4403 case SpvOpEmitStreamVertex:
4404 case SpvOpEndStreamPrimitive:
4405 case SpvOpControlBarrier:
4406 case SpvOpMemoryBarrier:
4407 vtn_handle_barrier(b, opcode, w, count);
4408 break;
4409
4410 case SpvOpGroupNonUniformElect:
4411 case SpvOpGroupNonUniformAll:
4412 case SpvOpGroupNonUniformAny:
4413 case SpvOpGroupNonUniformAllEqual:
4414 case SpvOpGroupNonUniformBroadcast:
4415 case SpvOpGroupNonUniformBroadcastFirst:
4416 case SpvOpGroupNonUniformBallot:
4417 case SpvOpGroupNonUniformInverseBallot:
4418 case SpvOpGroupNonUniformBallotBitExtract:
4419 case SpvOpGroupNonUniformBallotBitCount:
4420 case SpvOpGroupNonUniformBallotFindLSB:
4421 case SpvOpGroupNonUniformBallotFindMSB:
4422 case SpvOpGroupNonUniformShuffle:
4423 case SpvOpGroupNonUniformShuffleXor:
4424 case SpvOpGroupNonUniformShuffleUp:
4425 case SpvOpGroupNonUniformShuffleDown:
4426 case SpvOpGroupNonUniformIAdd:
4427 case SpvOpGroupNonUniformFAdd:
4428 case SpvOpGroupNonUniformIMul:
4429 case SpvOpGroupNonUniformFMul:
4430 case SpvOpGroupNonUniformSMin:
4431 case SpvOpGroupNonUniformUMin:
4432 case SpvOpGroupNonUniformFMin:
4433 case SpvOpGroupNonUniformSMax:
4434 case SpvOpGroupNonUniformUMax:
4435 case SpvOpGroupNonUniformFMax:
4436 case SpvOpGroupNonUniformBitwiseAnd:
4437 case SpvOpGroupNonUniformBitwiseOr:
4438 case SpvOpGroupNonUniformBitwiseXor:
4439 case SpvOpGroupNonUniformLogicalAnd:
4440 case SpvOpGroupNonUniformLogicalOr:
4441 case SpvOpGroupNonUniformLogicalXor:
4442 case SpvOpGroupNonUniformQuadBroadcast:
4443 case SpvOpGroupNonUniformQuadSwap:
4444 vtn_handle_subgroup(b, opcode, w, count);
4445 break;
4446
4447 default:
4448 vtn_fail_with_opcode("Unhandled opcode", opcode);
4449 }
4450
4451 return true;
4452 }
4453
4454 struct vtn_builder*
4455 vtn_create_builder(const uint32_t *words, size_t word_count,
4456 gl_shader_stage stage, const char *entry_point_name,
4457 const struct spirv_to_nir_options *options)
4458 {
4459 /* Initialize the vtn_builder object */
4460 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4461 struct spirv_to_nir_options *dup_options =
4462 ralloc(b, struct spirv_to_nir_options);
4463 *dup_options = *options;
4464
4465 b->spirv = words;
4466 b->spirv_word_count = word_count;
4467 b->file = NULL;
4468 b->line = -1;
4469 b->col = -1;
4470 exec_list_make_empty(&b->functions);
4471 b->entry_point_stage = stage;
4472 b->entry_point_name = entry_point_name;
4473 b->options = dup_options;
4474
4475 /*
4476 * Handle the SPIR-V header (first 5 dwords).
4477 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4478 */
4479 if (word_count <= 5)
4480 goto fail;
4481
4482 if (words[0] != SpvMagicNumber) {
4483 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4484 goto fail;
4485 }
4486 if (words[1] < 0x10000) {
4487 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4488 goto fail;
4489 }
4490
4491 uint16_t generator_id = words[2] >> 16;
4492 uint16_t generator_version = words[2];
4493
4494 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4495 * but this should at least let us shut the workaround off for modern
4496 * versions of GLSLang.
4497 */
4498 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4499
4500 /* words[2] == generator magic */
4501 unsigned value_id_bound = words[3];
4502 if (words[4] != 0) {
4503 vtn_err("words[4] was %u, want 0", words[4]);
4504 goto fail;
4505 }
4506
4507 b->value_id_bound = value_id_bound;
4508 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4509
4510 return b;
4511 fail:
4512 ralloc_free(b);
4513 return NULL;
4514 }
4515
4516 static nir_function *
4517 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4518 nir_function *entry_point)
4519 {
4520 vtn_assert(entry_point == b->entry_point->func->impl->function);
4521 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4522 const char *func_name =
4523 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4524
4525 /* we shouldn't have any inputs yet */
4526 vtn_assert(!entry_point->shader->num_inputs);
4527 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4528
4529 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4530 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4531 nir_builder_init(&b->nb, main_entry_point->impl);
4532 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4533 b->func_param_idx = 0;
4534
4535 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4536
4537 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4538 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4539
4540 /* consider all pointers to function memory to be parameters passed
4541 * by value
4542 */
4543 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4544 param_type->storage_class == SpvStorageClassFunction;
4545
4546 /* input variable */
4547 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4548 in_var->data.mode = nir_var_shader_in;
4549 in_var->data.read_only = true;
4550 in_var->data.location = i;
4551
4552 if (is_by_val)
4553 in_var->type = param_type->deref->type;
4554 else
4555 in_var->type = param_type->type;
4556
4557 nir_shader_add_variable(b->nb.shader, in_var);
4558 b->nb.shader->num_inputs++;
4559
4560 /* we have to copy the entire variable into function memory */
4561 if (is_by_val) {
4562 nir_variable *copy_var =
4563 nir_local_variable_create(main_entry_point->impl, in_var->type,
4564 "copy_in");
4565 nir_copy_var(&b->nb, copy_var, in_var);
4566 call->params[i] =
4567 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4568 } else {
4569 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4570 }
4571 }
4572
4573 nir_builder_instr_insert(&b->nb, &call->instr);
4574
4575 return main_entry_point;
4576 }
4577
4578 nir_function *
4579 spirv_to_nir(const uint32_t *words, size_t word_count,
4580 struct nir_spirv_specialization *spec, unsigned num_spec,
4581 gl_shader_stage stage, const char *entry_point_name,
4582 const struct spirv_to_nir_options *options,
4583 const nir_shader_compiler_options *nir_options)
4584
4585 {
4586 const uint32_t *word_end = words + word_count;
4587
4588 struct vtn_builder *b = vtn_create_builder(words, word_count,
4589 stage, entry_point_name,
4590 options);
4591
4592 if (b == NULL)
4593 return NULL;
4594
4595 /* See also _vtn_fail() */
4596 if (setjmp(b->fail_jump)) {
4597 ralloc_free(b);
4598 return NULL;
4599 }
4600
4601 /* Skip the SPIR-V header, handled at vtn_create_builder */
4602 words+= 5;
4603
4604 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4605
4606 /* Handle all the preamble instructions */
4607 words = vtn_foreach_instruction(b, words, word_end,
4608 vtn_handle_preamble_instruction);
4609
4610 if (b->entry_point == NULL) {
4611 vtn_fail("Entry point not found");
4612 ralloc_free(b);
4613 return NULL;
4614 }
4615
4616 /* Set shader info defaults */
4617 b->shader->info.gs.invocations = 1;
4618
4619 b->specializations = spec;
4620 b->num_specializations = num_spec;
4621
4622 /* Handle all variable, type, and constant instructions */
4623 words = vtn_foreach_instruction(b, words, word_end,
4624 vtn_handle_variable_or_type_instruction);
4625
4626 /* Parse execution modes */
4627 vtn_foreach_execution_mode(b, b->entry_point,
4628 vtn_handle_execution_mode, NULL);
4629
4630 if (b->workgroup_size_builtin) {
4631 vtn_assert(b->workgroup_size_builtin->type->type ==
4632 glsl_vector_type(GLSL_TYPE_UINT, 3));
4633
4634 nir_const_value *const_size =
4635 b->workgroup_size_builtin->constant->values[0];
4636
4637 b->shader->info.cs.local_size[0] = const_size[0].u32;
4638 b->shader->info.cs.local_size[1] = const_size[1].u32;
4639 b->shader->info.cs.local_size[2] = const_size[2].u32;
4640 }
4641
4642 /* Set types on all vtn_values */
4643 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4644
4645 vtn_build_cfg(b, words, word_end);
4646
4647 assert(b->entry_point->value_type == vtn_value_type_function);
4648 b->entry_point->func->referenced = true;
4649
4650 bool progress;
4651 do {
4652 progress = false;
4653 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4654 if (func->referenced && !func->emitted) {
4655 b->const_table = _mesa_pointer_hash_table_create(b);
4656
4657 vtn_function_emit(b, func, vtn_handle_body_instruction);
4658 progress = true;
4659 }
4660 }
4661 } while (progress);
4662
4663 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4664 nir_function *entry_point = b->entry_point->func->impl->function;
4665 vtn_assert(entry_point);
4666
4667 /* post process entry_points with input params */
4668 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4669 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4670
4671 entry_point->is_entrypoint = true;
4672
4673 /* When multiple shader stages exist in the same SPIR-V module, we
4674 * generate input and output variables for every stage, in the same
4675 * NIR program. These dead variables can be invalid NIR. For example,
4676 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4677 * VS output variables wouldn't be.
4678 *
4679 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4680 * right away. In order to do so, we must lower any constant initializers
4681 * on outputs so nir_remove_dead_variables sees that they're written to.
4682 */
4683 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4684 nir_remove_dead_variables(b->shader,
4685 nir_var_shader_in | nir_var_shader_out);
4686
4687 /* We sometimes generate bogus derefs that, while never used, give the
4688 * validator a bit of heartburn. Run dead code to get rid of them.
4689 */
4690 nir_opt_dce(b->shader);
4691
4692 /* Unparent the shader from the vtn_builder before we delete the builder */
4693 ralloc_steal(NULL, b->shader);
4694
4695 ralloc_free(b);
4696
4697 return entry_point;
4698 }