8ae9674fe917ce7b54f2bcbe14ea1109a73ad2d3
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 load->value = constant->values[0];
240
241 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
242 val->def = &load->def;
243 } else {
244 assert(glsl_type_is_matrix(type));
245 unsigned rows = glsl_get_vector_elements(val->type);
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248
249 for (unsigned i = 0; i < columns; i++) {
250 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
251 col_val->type = glsl_get_column_type(val->type);
252 nir_load_const_instr *load =
253 nir_load_const_instr_create(b->shader, rows, bit_size);
254
255 load->value = constant->values[i];
256
257 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
258 col_val->def = &load->def;
259
260 val->elems[i] = col_val;
261 }
262 }
263 break;
264 }
265
266 case GLSL_TYPE_ARRAY: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
270 for (unsigned i = 0; i < elems; i++)
271 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
272 elem_type);
273 break;
274 }
275
276 case GLSL_TYPE_STRUCT: {
277 unsigned elems = glsl_get_length(val->type);
278 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
279 for (unsigned i = 0; i < elems; i++) {
280 const struct glsl_type *elem_type =
281 glsl_get_struct_field(val->type, i);
282 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
283 elem_type);
284 }
285 break;
286 }
287
288 default:
289 vtn_fail("bad constant type");
290 }
291
292 return val;
293 }
294
295 struct vtn_ssa_value *
296 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
297 {
298 struct vtn_value *val = vtn_untyped_value(b, value_id);
299 switch (val->value_type) {
300 case vtn_value_type_undef:
301 return vtn_undef_ssa_value(b, val->type->type);
302
303 case vtn_value_type_constant:
304 return vtn_const_ssa_value(b, val->constant, val->type->type);
305
306 case vtn_value_type_ssa:
307 return val->ssa;
308
309 case vtn_value_type_pointer:
310 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
311 struct vtn_ssa_value *ssa =
312 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
313 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
314 return ssa;
315
316 default:
317 vtn_fail("Invalid type for an SSA value");
318 }
319 }
320
321 static char *
322 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
323 unsigned word_count, unsigned *words_used)
324 {
325 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
326 if (words_used) {
327 /* Ammount of space taken by the string (including the null) */
328 unsigned len = strlen(dup) + 1;
329 *words_used = DIV_ROUND_UP(len, sizeof(*words));
330 }
331 return dup;
332 }
333
334 const uint32_t *
335 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
336 const uint32_t *end, vtn_instruction_handler handler)
337 {
338 b->file = NULL;
339 b->line = -1;
340 b->col = -1;
341
342 const uint32_t *w = start;
343 while (w < end) {
344 SpvOp opcode = w[0] & SpvOpCodeMask;
345 unsigned count = w[0] >> SpvWordCountShift;
346 vtn_assert(count >= 1 && w + count <= end);
347
348 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
349
350 switch (opcode) {
351 case SpvOpNop:
352 break; /* Do nothing */
353
354 case SpvOpLine:
355 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
356 b->line = w[2];
357 b->col = w[3];
358 break;
359
360 case SpvOpNoLine:
361 b->file = NULL;
362 b->line = -1;
363 b->col = -1;
364 break;
365
366 default:
367 if (!handler(b, opcode, w, count))
368 return w;
369 break;
370 }
371
372 w += count;
373 }
374
375 b->spirv_offset = 0;
376 b->file = NULL;
377 b->line = -1;
378 b->col = -1;
379
380 assert(w == end);
381 return w;
382 }
383
384 static void
385 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
386 const uint32_t *w, unsigned count)
387 {
388 const char *ext = (const char *)&w[2];
389 switch (opcode) {
390 case SpvOpExtInstImport: {
391 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
392 if (strcmp(ext, "GLSL.std.450") == 0) {
393 val->ext_handler = vtn_handle_glsl450_instruction;
394 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
395 && (b->options && b->options->caps.gcn_shader)) {
396 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
397 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
398 && (b->options && b->options->caps.trinary_minmax)) {
399 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
400 } else if (strcmp(ext, "OpenCL.std") == 0) {
401 val->ext_handler = vtn_handle_opencl_instruction;
402 } else {
403 vtn_fail("Unsupported extension: %s", ext);
404 }
405 break;
406 }
407
408 case SpvOpExtInst: {
409 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
410 bool handled = val->ext_handler(b, w[4], w, count);
411 vtn_assert(handled);
412 break;
413 }
414
415 default:
416 vtn_fail("Unhandled opcode");
417 }
418 }
419
420 static void
421 _foreach_decoration_helper(struct vtn_builder *b,
422 struct vtn_value *base_value,
423 int parent_member,
424 struct vtn_value *value,
425 vtn_decoration_foreach_cb cb, void *data)
426 {
427 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
428 int member;
429 if (dec->scope == VTN_DEC_DECORATION) {
430 member = parent_member;
431 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
432 vtn_fail_if(value->value_type != vtn_value_type_type ||
433 value->type->base_type != vtn_base_type_struct,
434 "OpMemberDecorate and OpGroupMemberDecorate are only "
435 "allowed on OpTypeStruct");
436 /* This means we haven't recursed yet */
437 assert(value == base_value);
438
439 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
440
441 vtn_fail_if(member >= base_value->type->length,
442 "OpMemberDecorate specifies member %d but the "
443 "OpTypeStruct has only %u members",
444 member, base_value->type->length);
445 } else {
446 /* Not a decoration */
447 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
448 continue;
449 }
450
451 if (dec->group) {
452 assert(dec->group->value_type == vtn_value_type_decoration_group);
453 _foreach_decoration_helper(b, base_value, member, dec->group,
454 cb, data);
455 } else {
456 cb(b, base_value, member, dec, data);
457 }
458 }
459 }
460
461 /** Iterates (recursively if needed) over all of the decorations on a value
462 *
463 * This function iterates over all of the decorations applied to a given
464 * value. If it encounters a decoration group, it recurses into the group
465 * and iterates over all of those decorations as well.
466 */
467 void
468 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
469 vtn_decoration_foreach_cb cb, void *data)
470 {
471 _foreach_decoration_helper(b, value, -1, value, cb, data);
472 }
473
474 void
475 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
476 vtn_execution_mode_foreach_cb cb, void *data)
477 {
478 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
479 if (dec->scope != VTN_DEC_EXECUTION_MODE)
480 continue;
481
482 assert(dec->group == NULL);
483 cb(b, value, dec, data);
484 }
485 }
486
487 void
488 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
489 const uint32_t *w, unsigned count)
490 {
491 const uint32_t *w_end = w + count;
492 const uint32_t target = w[1];
493 w += 2;
494
495 switch (opcode) {
496 case SpvOpDecorationGroup:
497 vtn_push_value(b, target, vtn_value_type_decoration_group);
498 break;
499
500 case SpvOpDecorate:
501 case SpvOpMemberDecorate:
502 case SpvOpDecorateStringGOOGLE:
503 case SpvOpMemberDecorateStringGOOGLE:
504 case SpvOpExecutionMode:
505 case SpvOpExecutionModeId: {
506 struct vtn_value *val = vtn_untyped_value(b, target);
507
508 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
509 switch (opcode) {
510 case SpvOpDecorate:
511 case SpvOpDecorateStringGOOGLE:
512 dec->scope = VTN_DEC_DECORATION;
513 break;
514 case SpvOpMemberDecorate:
515 case SpvOpMemberDecorateStringGOOGLE:
516 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
517 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
518 "Member argument of OpMemberDecorate too large");
519 break;
520 case SpvOpExecutionMode:
521 case SpvOpExecutionModeId:
522 dec->scope = VTN_DEC_EXECUTION_MODE;
523 break;
524 default:
525 unreachable("Invalid decoration opcode");
526 }
527 dec->decoration = *(w++);
528 dec->literals = w;
529
530 /* Link into the list */
531 dec->next = val->decoration;
532 val->decoration = dec;
533 break;
534 }
535
536 case SpvOpGroupMemberDecorate:
537 case SpvOpGroupDecorate: {
538 struct vtn_value *group =
539 vtn_value(b, target, vtn_value_type_decoration_group);
540
541 for (; w < w_end; w++) {
542 struct vtn_value *val = vtn_untyped_value(b, *w);
543 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
544
545 dec->group = group;
546 if (opcode == SpvOpGroupDecorate) {
547 dec->scope = VTN_DEC_DECORATION;
548 } else {
549 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
550 vtn_fail_if(dec->scope < 0, /* Check for overflow */
551 "Member argument of OpGroupMemberDecorate too large");
552 }
553
554 /* Link into the list */
555 dec->next = val->decoration;
556 val->decoration = dec;
557 }
558 break;
559 }
560
561 default:
562 unreachable("Unhandled opcode");
563 }
564 }
565
566 struct member_decoration_ctx {
567 unsigned num_fields;
568 struct glsl_struct_field *fields;
569 struct vtn_type *type;
570 };
571
572 /**
573 * Returns true if the given type contains a struct decorated Block or
574 * BufferBlock
575 */
576 bool
577 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
578 {
579 switch (type->base_type) {
580 case vtn_base_type_array:
581 return vtn_type_contains_block(b, type->array_element);
582 case vtn_base_type_struct:
583 if (type->block || type->buffer_block)
584 return true;
585 for (unsigned i = 0; i < type->length; i++) {
586 if (vtn_type_contains_block(b, type->members[i]))
587 return true;
588 }
589 return false;
590 default:
591 return false;
592 }
593 }
594
595 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
596 * OpStore, or OpCopyMemory between them without breaking anything.
597 * Technically, the SPIR-V rules require the exact same type ID but this lets
598 * us internally be a bit looser.
599 */
600 bool
601 vtn_types_compatible(struct vtn_builder *b,
602 struct vtn_type *t1, struct vtn_type *t2)
603 {
604 if (t1->id == t2->id)
605 return true;
606
607 if (t1->base_type != t2->base_type)
608 return false;
609
610 switch (t1->base_type) {
611 case vtn_base_type_void:
612 case vtn_base_type_scalar:
613 case vtn_base_type_vector:
614 case vtn_base_type_matrix:
615 case vtn_base_type_image:
616 case vtn_base_type_sampler:
617 case vtn_base_type_sampled_image:
618 return t1->type == t2->type;
619
620 case vtn_base_type_array:
621 return t1->length == t2->length &&
622 vtn_types_compatible(b, t1->array_element, t2->array_element);
623
624 case vtn_base_type_pointer:
625 return vtn_types_compatible(b, t1->deref, t2->deref);
626
627 case vtn_base_type_struct:
628 if (t1->length != t2->length)
629 return false;
630
631 for (unsigned i = 0; i < t1->length; i++) {
632 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
633 return false;
634 }
635 return true;
636
637 case vtn_base_type_function:
638 /* This case shouldn't get hit since you can't copy around function
639 * types. Just require them to be identical.
640 */
641 return false;
642 }
643
644 vtn_fail("Invalid base type");
645 }
646
647 /* does a shallow copy of a vtn_type */
648
649 static struct vtn_type *
650 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
651 {
652 struct vtn_type *dest = ralloc(b, struct vtn_type);
653 *dest = *src;
654
655 switch (src->base_type) {
656 case vtn_base_type_void:
657 case vtn_base_type_scalar:
658 case vtn_base_type_vector:
659 case vtn_base_type_matrix:
660 case vtn_base_type_array:
661 case vtn_base_type_pointer:
662 case vtn_base_type_image:
663 case vtn_base_type_sampler:
664 case vtn_base_type_sampled_image:
665 /* Nothing more to do */
666 break;
667
668 case vtn_base_type_struct:
669 dest->members = ralloc_array(b, struct vtn_type *, src->length);
670 memcpy(dest->members, src->members,
671 src->length * sizeof(src->members[0]));
672
673 dest->offsets = ralloc_array(b, unsigned, src->length);
674 memcpy(dest->offsets, src->offsets,
675 src->length * sizeof(src->offsets[0]));
676 break;
677
678 case vtn_base_type_function:
679 dest->params = ralloc_array(b, struct vtn_type *, src->length);
680 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
681 break;
682 }
683
684 return dest;
685 }
686
687 static struct vtn_type *
688 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
689 {
690 type->members[member] = vtn_type_copy(b, type->members[member]);
691 type = type->members[member];
692
693 /* We may have an array of matrices.... Oh, joy! */
694 while (glsl_type_is_array(type->type)) {
695 type->array_element = vtn_type_copy(b, type->array_element);
696 type = type->array_element;
697 }
698
699 vtn_assert(glsl_type_is_matrix(type->type));
700
701 return type;
702 }
703
704 static void
705 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
706 int member, enum gl_access_qualifier access)
707 {
708 type->members[member] = vtn_type_copy(b, type->members[member]);
709 type = type->members[member];
710
711 type->access |= access;
712 }
713
714 static void
715 array_stride_decoration_cb(struct vtn_builder *b,
716 struct vtn_value *val, int member,
717 const struct vtn_decoration *dec, void *void_ctx)
718 {
719 struct vtn_type *type = val->type;
720
721 if (dec->decoration == SpvDecorationArrayStride) {
722 vtn_fail_if(dec->literals[0] == 0, "ArrayStride must be non-zero");
723 type->stride = dec->literals[0];
724 }
725 }
726
727 static void
728 struct_member_decoration_cb(struct vtn_builder *b,
729 struct vtn_value *val, int member,
730 const struct vtn_decoration *dec, void *void_ctx)
731 {
732 struct member_decoration_ctx *ctx = void_ctx;
733
734 if (member < 0)
735 return;
736
737 assert(member < ctx->num_fields);
738
739 switch (dec->decoration) {
740 case SpvDecorationRelaxedPrecision:
741 case SpvDecorationUniform:
742 break; /* FIXME: Do nothing with this for now. */
743 case SpvDecorationNonWritable:
744 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
745 break;
746 case SpvDecorationNonReadable:
747 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
748 break;
749 case SpvDecorationVolatile:
750 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
751 break;
752 case SpvDecorationCoherent:
753 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
754 break;
755 case SpvDecorationNoPerspective:
756 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
757 break;
758 case SpvDecorationFlat:
759 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
760 break;
761 case SpvDecorationCentroid:
762 ctx->fields[member].centroid = true;
763 break;
764 case SpvDecorationSample:
765 ctx->fields[member].sample = true;
766 break;
767 case SpvDecorationStream:
768 /* Vulkan only allows one GS stream */
769 vtn_assert(dec->literals[0] == 0);
770 break;
771 case SpvDecorationLocation:
772 ctx->fields[member].location = dec->literals[0];
773 break;
774 case SpvDecorationComponent:
775 break; /* FIXME: What should we do with these? */
776 case SpvDecorationBuiltIn:
777 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
778 ctx->type->members[member]->is_builtin = true;
779 ctx->type->members[member]->builtin = dec->literals[0];
780 ctx->type->builtin_block = true;
781 break;
782 case SpvDecorationOffset:
783 ctx->type->offsets[member] = dec->literals[0];
784 ctx->fields[member].offset = dec->literals[0];
785 break;
786 case SpvDecorationMatrixStride:
787 /* Handled as a second pass */
788 break;
789 case SpvDecorationColMajor:
790 break; /* Nothing to do here. Column-major is the default. */
791 case SpvDecorationRowMajor:
792 mutable_matrix_member(b, ctx->type, member)->row_major = true;
793 break;
794
795 case SpvDecorationPatch:
796 break;
797
798 case SpvDecorationSpecId:
799 case SpvDecorationBlock:
800 case SpvDecorationBufferBlock:
801 case SpvDecorationArrayStride:
802 case SpvDecorationGLSLShared:
803 case SpvDecorationGLSLPacked:
804 case SpvDecorationInvariant:
805 case SpvDecorationRestrict:
806 case SpvDecorationAliased:
807 case SpvDecorationConstant:
808 case SpvDecorationIndex:
809 case SpvDecorationBinding:
810 case SpvDecorationDescriptorSet:
811 case SpvDecorationLinkageAttributes:
812 case SpvDecorationNoContraction:
813 case SpvDecorationInputAttachmentIndex:
814 vtn_warn("Decoration not allowed on struct members: %s",
815 spirv_decoration_to_string(dec->decoration));
816 break;
817
818 case SpvDecorationXfbBuffer:
819 case SpvDecorationXfbStride:
820 vtn_warn("Vulkan does not have transform feedback");
821 break;
822
823 case SpvDecorationCPacked:
824 if (b->shader->info.stage != MESA_SHADER_KERNEL)
825 vtn_warn("Decoration only allowed for CL-style kernels: %s",
826 spirv_decoration_to_string(dec->decoration));
827 else
828 ctx->type->packed = true;
829 break;
830
831 case SpvDecorationSaturatedConversion:
832 case SpvDecorationFuncParamAttr:
833 case SpvDecorationFPRoundingMode:
834 case SpvDecorationFPFastMathMode:
835 case SpvDecorationAlignment:
836 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
837 vtn_warn("Decoration only allowed for CL-style kernels: %s",
838 spirv_decoration_to_string(dec->decoration));
839 }
840 break;
841
842 case SpvDecorationHlslSemanticGOOGLE:
843 /* HLSL semantic decorations can safely be ignored by the driver. */
844 break;
845
846 default:
847 vtn_fail("Unhandled decoration");
848 }
849 }
850
851 /** Chases the array type all the way down to the tail and rewrites the
852 * glsl_types to be based off the tail's glsl_type.
853 */
854 static void
855 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
856 {
857 if (type->base_type != vtn_base_type_array)
858 return;
859
860 vtn_array_type_rewrite_glsl_type(type->array_element);
861
862 type->type = glsl_array_type(type->array_element->type,
863 type->length, type->stride);
864 }
865
866 /* Matrix strides are handled as a separate pass because we need to know
867 * whether the matrix is row-major or not first.
868 */
869 static void
870 struct_member_matrix_stride_cb(struct vtn_builder *b,
871 struct vtn_value *val, int member,
872 const struct vtn_decoration *dec,
873 void *void_ctx)
874 {
875 if (dec->decoration != SpvDecorationMatrixStride)
876 return;
877
878 vtn_fail_if(member < 0,
879 "The MatrixStride decoration is only allowed on members "
880 "of OpTypeStruct");
881 vtn_fail_if(dec->literals[0] == 0, "MatrixStride must be non-zero");
882
883 struct member_decoration_ctx *ctx = void_ctx;
884
885 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
886 if (mat_type->row_major) {
887 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
888 mat_type->stride = mat_type->array_element->stride;
889 mat_type->array_element->stride = dec->literals[0];
890
891 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
892 dec->literals[0], true);
893 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
894 } else {
895 vtn_assert(mat_type->array_element->stride > 0);
896 mat_type->stride = dec->literals[0];
897
898 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
899 dec->literals[0], false);
900 }
901
902 /* Now that we've replaced the glsl_type with a properly strided matrix
903 * type, rewrite the member type so that it's an array of the proper kind
904 * of glsl_type.
905 */
906 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
907 ctx->fields[member].type = ctx->type->members[member]->type;
908 }
909
910 static void
911 type_decoration_cb(struct vtn_builder *b,
912 struct vtn_value *val, int member,
913 const struct vtn_decoration *dec, void *ctx)
914 {
915 struct vtn_type *type = val->type;
916
917 if (member != -1) {
918 /* This should have been handled by OpTypeStruct */
919 assert(val->type->base_type == vtn_base_type_struct);
920 assert(member >= 0 && member < val->type->length);
921 return;
922 }
923
924 switch (dec->decoration) {
925 case SpvDecorationArrayStride:
926 vtn_assert(type->base_type == vtn_base_type_array ||
927 type->base_type == vtn_base_type_pointer);
928 break;
929 case SpvDecorationBlock:
930 vtn_assert(type->base_type == vtn_base_type_struct);
931 type->block = true;
932 break;
933 case SpvDecorationBufferBlock:
934 vtn_assert(type->base_type == vtn_base_type_struct);
935 type->buffer_block = true;
936 break;
937 case SpvDecorationGLSLShared:
938 case SpvDecorationGLSLPacked:
939 /* Ignore these, since we get explicit offsets anyways */
940 break;
941
942 case SpvDecorationRowMajor:
943 case SpvDecorationColMajor:
944 case SpvDecorationMatrixStride:
945 case SpvDecorationBuiltIn:
946 case SpvDecorationNoPerspective:
947 case SpvDecorationFlat:
948 case SpvDecorationPatch:
949 case SpvDecorationCentroid:
950 case SpvDecorationSample:
951 case SpvDecorationVolatile:
952 case SpvDecorationCoherent:
953 case SpvDecorationNonWritable:
954 case SpvDecorationNonReadable:
955 case SpvDecorationUniform:
956 case SpvDecorationLocation:
957 case SpvDecorationComponent:
958 case SpvDecorationOffset:
959 case SpvDecorationXfbBuffer:
960 case SpvDecorationXfbStride:
961 case SpvDecorationHlslSemanticGOOGLE:
962 vtn_warn("Decoration only allowed for struct members: %s",
963 spirv_decoration_to_string(dec->decoration));
964 break;
965
966 case SpvDecorationStream:
967 /* We don't need to do anything here, as stream is filled up when
968 * aplying the decoration to a variable, just check that if it is not a
969 * struct member, it should be a struct.
970 */
971 vtn_assert(type->base_type == vtn_base_type_struct);
972 break;
973
974 case SpvDecorationRelaxedPrecision:
975 case SpvDecorationSpecId:
976 case SpvDecorationInvariant:
977 case SpvDecorationRestrict:
978 case SpvDecorationAliased:
979 case SpvDecorationConstant:
980 case SpvDecorationIndex:
981 case SpvDecorationBinding:
982 case SpvDecorationDescriptorSet:
983 case SpvDecorationLinkageAttributes:
984 case SpvDecorationNoContraction:
985 case SpvDecorationInputAttachmentIndex:
986 vtn_warn("Decoration not allowed on types: %s",
987 spirv_decoration_to_string(dec->decoration));
988 break;
989
990 case SpvDecorationCPacked:
991 if (b->shader->info.stage != MESA_SHADER_KERNEL)
992 vtn_warn("Decoration only allowed for CL-style kernels: %s",
993 spirv_decoration_to_string(dec->decoration));
994 else
995 type->packed = true;
996 break;
997
998 case SpvDecorationSaturatedConversion:
999 case SpvDecorationFuncParamAttr:
1000 case SpvDecorationFPRoundingMode:
1001 case SpvDecorationFPFastMathMode:
1002 case SpvDecorationAlignment:
1003 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1004 spirv_decoration_to_string(dec->decoration));
1005 break;
1006
1007 default:
1008 vtn_fail("Unhandled decoration");
1009 }
1010 }
1011
1012 static unsigned
1013 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1014 {
1015 switch (format) {
1016 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1017 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1018 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1019 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1020 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1021 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1022 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1023 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1024 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1025 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1026 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1027 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1028 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1029 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1030 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1031 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1032 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1033 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1034 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1035 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1036 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1037 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1038 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1039 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1040 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1041 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1042 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1043 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1044 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1045 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1046 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1047 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1048 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1049 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1050 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1051 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1052 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1053 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1054 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1055 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1056 default:
1057 vtn_fail("Invalid image format");
1058 }
1059 }
1060
1061 static struct vtn_type *
1062 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
1063 uint32_t *size_out, uint32_t *align_out)
1064 {
1065 switch (type->base_type) {
1066 case vtn_base_type_scalar: {
1067 uint32_t comp_size = glsl_type_is_boolean(type->type)
1068 ? 4 : glsl_get_bit_size(type->type) / 8;
1069 *size_out = comp_size;
1070 *align_out = comp_size;
1071 return type;
1072 }
1073
1074 case vtn_base_type_vector: {
1075 uint32_t comp_size = glsl_type_is_boolean(type->type)
1076 ? 4 : glsl_get_bit_size(type->type) / 8;
1077 unsigned align_comps = type->length == 3 ? 4 : type->length;
1078 *size_out = comp_size * type->length,
1079 *align_out = comp_size * align_comps;
1080 return type;
1081 }
1082
1083 case vtn_base_type_matrix:
1084 case vtn_base_type_array: {
1085 /* We're going to add an array stride */
1086 type = vtn_type_copy(b, type);
1087 uint32_t elem_size, elem_align;
1088 type->array_element = vtn_type_layout_std430(b, type->array_element,
1089 &elem_size, &elem_align);
1090 type->stride = vtn_align_u32(elem_size, elem_align);
1091 *size_out = type->stride * type->length;
1092 *align_out = elem_align;
1093 return type;
1094 }
1095
1096 case vtn_base_type_struct: {
1097 /* We're going to add member offsets */
1098 type = vtn_type_copy(b, type);
1099 uint32_t offset = 0;
1100 uint32_t align = 0;
1101 for (unsigned i = 0; i < type->length; i++) {
1102 uint32_t mem_size, mem_align;
1103 type->members[i] = vtn_type_layout_std430(b, type->members[i],
1104 &mem_size, &mem_align);
1105 offset = vtn_align_u32(offset, mem_align);
1106 type->offsets[i] = offset;
1107 offset += mem_size;
1108 align = MAX2(align, mem_align);
1109 }
1110 *size_out = offset;
1111 *align_out = align;
1112 return type;
1113 }
1114
1115 default:
1116 unreachable("Invalid SPIR-V type for std430");
1117 }
1118 }
1119
1120 static void
1121 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1122 const uint32_t *w, unsigned count)
1123 {
1124 struct vtn_value *val = NULL;
1125
1126 /* In order to properly handle forward declarations, we have to defer
1127 * allocation for pointer types.
1128 */
1129 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1130 val = vtn_push_value(b, w[1], vtn_value_type_type);
1131 vtn_fail_if(val->type != NULL,
1132 "Only pointers can have forward declarations");
1133 val->type = rzalloc(b, struct vtn_type);
1134 val->type->id = w[1];
1135 }
1136
1137 switch (opcode) {
1138 case SpvOpTypeVoid:
1139 val->type->base_type = vtn_base_type_void;
1140 val->type->type = glsl_void_type();
1141 break;
1142 case SpvOpTypeBool:
1143 val->type->base_type = vtn_base_type_scalar;
1144 val->type->type = glsl_bool_type();
1145 val->type->length = 1;
1146 break;
1147 case SpvOpTypeInt: {
1148 int bit_size = w[2];
1149 const bool signedness = w[3];
1150 val->type->base_type = vtn_base_type_scalar;
1151 switch (bit_size) {
1152 case 64:
1153 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1154 break;
1155 case 32:
1156 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1157 break;
1158 case 16:
1159 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1160 break;
1161 case 8:
1162 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1163 break;
1164 default:
1165 vtn_fail("Invalid int bit size");
1166 }
1167 val->type->length = 1;
1168 break;
1169 }
1170
1171 case SpvOpTypeFloat: {
1172 int bit_size = w[2];
1173 val->type->base_type = vtn_base_type_scalar;
1174 switch (bit_size) {
1175 case 16:
1176 val->type->type = glsl_float16_t_type();
1177 break;
1178 case 32:
1179 val->type->type = glsl_float_type();
1180 break;
1181 case 64:
1182 val->type->type = glsl_double_type();
1183 break;
1184 default:
1185 vtn_fail("Invalid float bit size");
1186 }
1187 val->type->length = 1;
1188 break;
1189 }
1190
1191 case SpvOpTypeVector: {
1192 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1193 unsigned elems = w[3];
1194
1195 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1196 "Base type for OpTypeVector must be a scalar");
1197 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1198 "Invalid component count for OpTypeVector");
1199
1200 val->type->base_type = vtn_base_type_vector;
1201 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1202 val->type->length = elems;
1203 val->type->stride = glsl_type_is_boolean(val->type->type)
1204 ? 4 : glsl_get_bit_size(base->type) / 8;
1205 val->type->array_element = base;
1206 break;
1207 }
1208
1209 case SpvOpTypeMatrix: {
1210 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1211 unsigned columns = w[3];
1212
1213 vtn_fail_if(base->base_type != vtn_base_type_vector,
1214 "Base type for OpTypeMatrix must be a vector");
1215 vtn_fail_if(columns < 2 || columns > 4,
1216 "Invalid column count for OpTypeMatrix");
1217
1218 val->type->base_type = vtn_base_type_matrix;
1219 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1220 glsl_get_vector_elements(base->type),
1221 columns);
1222 vtn_fail_if(glsl_type_is_error(val->type->type),
1223 "Unsupported base type for OpTypeMatrix");
1224 assert(!glsl_type_is_error(val->type->type));
1225 val->type->length = columns;
1226 val->type->array_element = base;
1227 val->type->row_major = false;
1228 val->type->stride = 0;
1229 break;
1230 }
1231
1232 case SpvOpTypeRuntimeArray:
1233 case SpvOpTypeArray: {
1234 struct vtn_type *array_element =
1235 vtn_value(b, w[2], vtn_value_type_type)->type;
1236
1237 if (opcode == SpvOpTypeRuntimeArray) {
1238 /* A length of 0 is used to denote unsized arrays */
1239 val->type->length = 0;
1240 } else {
1241 val->type->length =
1242 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
1243 }
1244
1245 val->type->base_type = vtn_base_type_array;
1246 val->type->array_element = array_element;
1247 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1248 val->type->stride = glsl_get_cl_size(array_element->type);
1249
1250 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1251 val->type->type = glsl_array_type(array_element->type, val->type->length,
1252 val->type->stride);
1253 break;
1254 }
1255
1256 case SpvOpTypeStruct: {
1257 unsigned num_fields = count - 2;
1258 val->type->base_type = vtn_base_type_struct;
1259 val->type->length = num_fields;
1260 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1261 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1262 val->type->packed = false;
1263
1264 NIR_VLA(struct glsl_struct_field, fields, count);
1265 for (unsigned i = 0; i < num_fields; i++) {
1266 val->type->members[i] =
1267 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1268 fields[i] = (struct glsl_struct_field) {
1269 .type = val->type->members[i]->type,
1270 .name = ralloc_asprintf(b, "field%d", i),
1271 .location = -1,
1272 .offset = -1,
1273 };
1274 }
1275
1276 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1277 unsigned offset = 0;
1278 for (unsigned i = 0; i < num_fields; i++) {
1279 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1280 fields[i].offset = offset;
1281 offset += glsl_get_cl_size(fields[i].type);
1282 }
1283 }
1284
1285 struct member_decoration_ctx ctx = {
1286 .num_fields = num_fields,
1287 .fields = fields,
1288 .type = val->type
1289 };
1290
1291 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1292 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1293
1294 const char *name = val->name ? val->name : "struct";
1295
1296 val->type->type = glsl_struct_type(fields, num_fields, name, false);
1297 break;
1298 }
1299
1300 case SpvOpTypeFunction: {
1301 val->type->base_type = vtn_base_type_function;
1302 val->type->type = NULL;
1303
1304 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1305
1306 const unsigned num_params = count - 3;
1307 val->type->length = num_params;
1308 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1309 for (unsigned i = 0; i < count - 3; i++) {
1310 val->type->params[i] =
1311 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1312 }
1313 break;
1314 }
1315
1316 case SpvOpTypePointer:
1317 case SpvOpTypeForwardPointer: {
1318 /* We can't blindly push the value because it might be a forward
1319 * declaration.
1320 */
1321 val = vtn_untyped_value(b, w[1]);
1322
1323 SpvStorageClass storage_class = w[2];
1324
1325 if (val->value_type == vtn_value_type_invalid) {
1326 val->value_type = vtn_value_type_type;
1327 val->type = rzalloc(b, struct vtn_type);
1328 val->type->id = w[1];
1329 val->type->base_type = vtn_base_type_pointer;
1330 val->type->storage_class = storage_class;
1331
1332 /* These can actually be stored to nir_variables and used as SSA
1333 * values so they need a real glsl_type.
1334 */
1335 switch (storage_class) {
1336 case SpvStorageClassUniform:
1337 val->type->type = b->options->ubo_ptr_type;
1338 break;
1339 case SpvStorageClassStorageBuffer:
1340 val->type->type = b->options->ssbo_ptr_type;
1341 break;
1342 case SpvStorageClassPhysicalStorageBufferEXT:
1343 val->type->type = b->options->phys_ssbo_ptr_type;
1344 break;
1345 case SpvStorageClassPushConstant:
1346 val->type->type = b->options->push_const_ptr_type;
1347 break;
1348 case SpvStorageClassWorkgroup:
1349 val->type->type = b->options->shared_ptr_type;
1350 break;
1351 case SpvStorageClassCrossWorkgroup:
1352 val->type->type = b->options->global_ptr_type;
1353 break;
1354 case SpvStorageClassFunction:
1355 if (b->physical_ptrs)
1356 val->type->type = b->options->temp_ptr_type;
1357 break;
1358 default:
1359 /* In this case, no variable pointers are allowed so all deref
1360 * chains are complete back to the variable and it doesn't matter
1361 * what type gets used so we leave it NULL.
1362 */
1363 break;
1364 }
1365 } else {
1366 vtn_fail_if(val->type->storage_class != storage_class,
1367 "The storage classes of an OpTypePointer and any "
1368 "OpTypeForwardPointers that provide forward "
1369 "declarations of it must match.");
1370 }
1371
1372 if (opcode == SpvOpTypePointer) {
1373 vtn_fail_if(val->type->deref != NULL,
1374 "While OpTypeForwardPointer can be used to provide a "
1375 "forward declaration of a pointer, OpTypePointer can "
1376 "only be used once for a given id.");
1377
1378 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1379
1380 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1381
1382 if (b->physical_ptrs) {
1383 switch (storage_class) {
1384 case SpvStorageClassFunction:
1385 case SpvStorageClassWorkgroup:
1386 case SpvStorageClassCrossWorkgroup:
1387 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1388 glsl_get_cl_alignment(val->type->deref->type));
1389 break;
1390 default:
1391 break;
1392 }
1393 }
1394
1395 if (storage_class == SpvStorageClassWorkgroup &&
1396 b->options->lower_workgroup_access_to_offsets) {
1397 uint32_t size, align;
1398 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1399 &size, &align);
1400 val->type->length = size;
1401 val->type->align = align;
1402 }
1403 }
1404 break;
1405 }
1406
1407 case SpvOpTypeImage: {
1408 val->type->base_type = vtn_base_type_image;
1409
1410 const struct vtn_type *sampled_type =
1411 vtn_value(b, w[2], vtn_value_type_type)->type;
1412
1413 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1414 glsl_get_bit_size(sampled_type->type) != 32,
1415 "Sampled type of OpTypeImage must be a 32-bit scalar");
1416
1417 enum glsl_sampler_dim dim;
1418 switch ((SpvDim)w[3]) {
1419 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1420 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1421 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1422 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1423 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1424 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1425 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1426 default:
1427 vtn_fail("Invalid SPIR-V image dimensionality");
1428 }
1429
1430 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1431 * The “Depth” operand of OpTypeImage is ignored.
1432 */
1433 bool is_array = w[5];
1434 bool multisampled = w[6];
1435 unsigned sampled = w[7];
1436 SpvImageFormat format = w[8];
1437
1438 if (count > 9)
1439 val->type->access_qualifier = w[9];
1440 else
1441 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1442
1443 if (multisampled) {
1444 if (dim == GLSL_SAMPLER_DIM_2D)
1445 dim = GLSL_SAMPLER_DIM_MS;
1446 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1447 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1448 else
1449 vtn_fail("Unsupported multisampled image type");
1450 }
1451
1452 val->type->image_format = translate_image_format(b, format);
1453
1454 enum glsl_base_type sampled_base_type =
1455 glsl_get_base_type(sampled_type->type);
1456 if (sampled == 1) {
1457 val->type->sampled = true;
1458 val->type->type = glsl_sampler_type(dim, false, is_array,
1459 sampled_base_type);
1460 } else if (sampled == 2) {
1461 val->type->sampled = false;
1462 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1463 } else {
1464 vtn_fail("We need to know if the image will be sampled");
1465 }
1466 break;
1467 }
1468
1469 case SpvOpTypeSampledImage:
1470 val->type->base_type = vtn_base_type_sampled_image;
1471 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1472 val->type->type = val->type->image->type;
1473 break;
1474
1475 case SpvOpTypeSampler:
1476 /* The actual sampler type here doesn't really matter. It gets
1477 * thrown away the moment you combine it with an image. What really
1478 * matters is that it's a sampler type as opposed to an integer type
1479 * so the backend knows what to do.
1480 */
1481 val->type->base_type = vtn_base_type_sampler;
1482 val->type->type = glsl_bare_sampler_type();
1483 break;
1484
1485 case SpvOpTypeOpaque:
1486 case SpvOpTypeEvent:
1487 case SpvOpTypeDeviceEvent:
1488 case SpvOpTypeReserveId:
1489 case SpvOpTypeQueue:
1490 case SpvOpTypePipe:
1491 default:
1492 vtn_fail("Unhandled opcode");
1493 }
1494
1495 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1496
1497 if (val->type->base_type == vtn_base_type_struct &&
1498 (val->type->block || val->type->buffer_block)) {
1499 for (unsigned i = 0; i < val->type->length; i++) {
1500 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1501 "Block and BufferBlock decorations cannot decorate a "
1502 "structure type that is nested at any level inside "
1503 "another structure type decorated with Block or "
1504 "BufferBlock.");
1505 }
1506 }
1507 }
1508
1509 static nir_constant *
1510 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1511 {
1512 nir_constant *c = rzalloc(b, nir_constant);
1513
1514 /* For pointers and other typeless things, we have to return something but
1515 * it doesn't matter what.
1516 */
1517 if (!type)
1518 return c;
1519
1520 switch (glsl_get_base_type(type)) {
1521 case GLSL_TYPE_INT:
1522 case GLSL_TYPE_UINT:
1523 case GLSL_TYPE_INT16:
1524 case GLSL_TYPE_UINT16:
1525 case GLSL_TYPE_UINT8:
1526 case GLSL_TYPE_INT8:
1527 case GLSL_TYPE_INT64:
1528 case GLSL_TYPE_UINT64:
1529 case GLSL_TYPE_BOOL:
1530 case GLSL_TYPE_FLOAT:
1531 case GLSL_TYPE_FLOAT16:
1532 case GLSL_TYPE_DOUBLE:
1533 /* Nothing to do here. It's already initialized to zero */
1534 break;
1535
1536 case GLSL_TYPE_ARRAY:
1537 vtn_assert(glsl_get_length(type) > 0);
1538 c->num_elements = glsl_get_length(type);
1539 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1540
1541 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1542 for (unsigned i = 1; i < c->num_elements; i++)
1543 c->elements[i] = c->elements[0];
1544 break;
1545
1546 case GLSL_TYPE_STRUCT:
1547 c->num_elements = glsl_get_length(type);
1548 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1549
1550 for (unsigned i = 0; i < c->num_elements; i++) {
1551 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1552 }
1553 break;
1554
1555 default:
1556 vtn_fail("Invalid type for null constant");
1557 }
1558
1559 return c;
1560 }
1561
1562 static void
1563 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1564 int member, const struct vtn_decoration *dec,
1565 void *data)
1566 {
1567 vtn_assert(member == -1);
1568 if (dec->decoration != SpvDecorationSpecId)
1569 return;
1570
1571 struct spec_constant_value *const_value = data;
1572
1573 for (unsigned i = 0; i < b->num_specializations; i++) {
1574 if (b->specializations[i].id == dec->literals[0]) {
1575 if (const_value->is_double)
1576 const_value->data64 = b->specializations[i].data64;
1577 else
1578 const_value->data32 = b->specializations[i].data32;
1579 return;
1580 }
1581 }
1582 }
1583
1584 static uint32_t
1585 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1586 uint32_t const_value)
1587 {
1588 struct spec_constant_value data;
1589 data.is_double = false;
1590 data.data32 = const_value;
1591 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1592 return data.data32;
1593 }
1594
1595 static uint64_t
1596 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1597 uint64_t const_value)
1598 {
1599 struct spec_constant_value data;
1600 data.is_double = true;
1601 data.data64 = const_value;
1602 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1603 return data.data64;
1604 }
1605
1606 static void
1607 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1608 struct vtn_value *val,
1609 int member,
1610 const struct vtn_decoration *dec,
1611 void *data)
1612 {
1613 vtn_assert(member == -1);
1614 if (dec->decoration != SpvDecorationBuiltIn ||
1615 dec->literals[0] != SpvBuiltInWorkgroupSize)
1616 return;
1617
1618 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1619 b->workgroup_size_builtin = val;
1620 }
1621
1622 static void
1623 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1624 const uint32_t *w, unsigned count)
1625 {
1626 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1627 val->constant = rzalloc(b, nir_constant);
1628 switch (opcode) {
1629 case SpvOpConstantTrue:
1630 case SpvOpConstantFalse:
1631 case SpvOpSpecConstantTrue:
1632 case SpvOpSpecConstantFalse: {
1633 vtn_fail_if(val->type->type != glsl_bool_type(),
1634 "Result type of %s must be OpTypeBool",
1635 spirv_op_to_string(opcode));
1636
1637 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1638 opcode == SpvOpSpecConstantTrue);
1639
1640 if (opcode == SpvOpSpecConstantTrue ||
1641 opcode == SpvOpSpecConstantFalse)
1642 int_val = get_specialization(b, val, int_val);
1643
1644 val->constant->values[0].b[0] = int_val != 0;
1645 break;
1646 }
1647
1648 case SpvOpConstant: {
1649 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1650 "Result type of %s must be a scalar",
1651 spirv_op_to_string(opcode));
1652 int bit_size = glsl_get_bit_size(val->type->type);
1653 switch (bit_size) {
1654 case 64:
1655 val->constant->values->u64[0] = vtn_u64_literal(&w[3]);
1656 break;
1657 case 32:
1658 val->constant->values->u32[0] = w[3];
1659 break;
1660 case 16:
1661 val->constant->values->u16[0] = w[3];
1662 break;
1663 case 8:
1664 val->constant->values->u8[0] = w[3];
1665 break;
1666 default:
1667 vtn_fail("Unsupported SpvOpConstant bit size");
1668 }
1669 break;
1670 }
1671
1672 case SpvOpSpecConstant: {
1673 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1674 "Result type of %s must be a scalar",
1675 spirv_op_to_string(opcode));
1676 int bit_size = glsl_get_bit_size(val->type->type);
1677 switch (bit_size) {
1678 case 64:
1679 val->constant->values[0].u64[0] =
1680 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1681 break;
1682 case 32:
1683 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1684 break;
1685 case 16:
1686 val->constant->values[0].u16[0] = get_specialization(b, val, w[3]);
1687 break;
1688 case 8:
1689 val->constant->values[0].u8[0] = get_specialization(b, val, w[3]);
1690 break;
1691 default:
1692 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1693 }
1694 break;
1695 }
1696
1697 case SpvOpSpecConstantComposite:
1698 case SpvOpConstantComposite: {
1699 unsigned elem_count = count - 3;
1700 vtn_fail_if(elem_count != val->type->length,
1701 "%s has %u constituents, expected %u",
1702 spirv_op_to_string(opcode), elem_count, val->type->length);
1703
1704 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1705 for (unsigned i = 0; i < elem_count; i++) {
1706 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1707
1708 if (val->value_type == vtn_value_type_constant) {
1709 elems[i] = val->constant;
1710 } else {
1711 vtn_fail_if(val->value_type != vtn_value_type_undef,
1712 "only constants or undefs allowed for "
1713 "SpvOpConstantComposite");
1714 /* to make it easier, just insert a NULL constant for now */
1715 elems[i] = vtn_null_constant(b, val->type->type);
1716 }
1717 }
1718
1719 switch (val->type->base_type) {
1720 case vtn_base_type_vector: {
1721 assert(glsl_type_is_vector(val->type->type));
1722 int bit_size = glsl_get_bit_size(val->type->type);
1723 for (unsigned i = 0; i < elem_count; i++) {
1724 switch (bit_size) {
1725 case 64:
1726 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1727 break;
1728 case 32:
1729 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1730 break;
1731 case 16:
1732 val->constant->values[0].u16[i] = elems[i]->values[0].u16[0];
1733 break;
1734 case 8:
1735 val->constant->values[0].u8[i] = elems[i]->values[0].u8[0];
1736 break;
1737 case 1:
1738 val->constant->values[0].b[i] = elems[i]->values[0].b[0];
1739 break;
1740 default:
1741 vtn_fail("Invalid SpvOpConstantComposite bit size");
1742 }
1743 }
1744 break;
1745 }
1746
1747 case vtn_base_type_matrix:
1748 assert(glsl_type_is_matrix(val->type->type));
1749 for (unsigned i = 0; i < elem_count; i++)
1750 val->constant->values[i] = elems[i]->values[0];
1751 break;
1752
1753 case vtn_base_type_struct:
1754 case vtn_base_type_array:
1755 ralloc_steal(val->constant, elems);
1756 val->constant->num_elements = elem_count;
1757 val->constant->elements = elems;
1758 break;
1759
1760 default:
1761 vtn_fail("Result type of %s must be a composite type",
1762 spirv_op_to_string(opcode));
1763 }
1764 break;
1765 }
1766
1767 case SpvOpSpecConstantOp: {
1768 SpvOp opcode = get_specialization(b, val, w[3]);
1769 switch (opcode) {
1770 case SpvOpVectorShuffle: {
1771 struct vtn_value *v0 = &b->values[w[4]];
1772 struct vtn_value *v1 = &b->values[w[5]];
1773
1774 vtn_assert(v0->value_type == vtn_value_type_constant ||
1775 v0->value_type == vtn_value_type_undef);
1776 vtn_assert(v1->value_type == vtn_value_type_constant ||
1777 v1->value_type == vtn_value_type_undef);
1778
1779 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1780 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1781
1782 vtn_assert(len0 + len1 < 16);
1783
1784 unsigned bit_size = glsl_get_bit_size(val->type->type);
1785 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1786 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1787
1788 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1789 (void)bit_size0; (void)bit_size1;
1790
1791 if (bit_size == 64) {
1792 uint64_t u64[8];
1793 if (v0->value_type == vtn_value_type_constant) {
1794 for (unsigned i = 0; i < len0; i++)
1795 u64[i] = v0->constant->values[0].u64[i];
1796 }
1797 if (v1->value_type == vtn_value_type_constant) {
1798 for (unsigned i = 0; i < len1; i++)
1799 u64[len0 + i] = v1->constant->values[0].u64[i];
1800 }
1801
1802 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1803 uint32_t comp = w[i + 6];
1804 /* If component is not used, set the value to a known constant
1805 * to detect if it is wrongly used.
1806 */
1807 if (comp == (uint32_t)-1)
1808 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1809 else
1810 val->constant->values[0].u64[j] = u64[comp];
1811 }
1812 } else {
1813 /* This is for both 32-bit and 16-bit values */
1814 uint32_t u32[8];
1815 if (v0->value_type == vtn_value_type_constant) {
1816 for (unsigned i = 0; i < len0; i++)
1817 u32[i] = v0->constant->values[0].u32[i];
1818 }
1819 if (v1->value_type == vtn_value_type_constant) {
1820 for (unsigned i = 0; i < len1; i++)
1821 u32[len0 + i] = v1->constant->values[0].u32[i];
1822 }
1823
1824 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1825 uint32_t comp = w[i + 6];
1826 /* If component is not used, set the value to a known constant
1827 * to detect if it is wrongly used.
1828 */
1829 if (comp == (uint32_t)-1)
1830 val->constant->values[0].u32[j] = 0xdeadbeef;
1831 else
1832 val->constant->values[0].u32[j] = u32[comp];
1833 }
1834 }
1835 break;
1836 }
1837
1838 case SpvOpCompositeExtract:
1839 case SpvOpCompositeInsert: {
1840 struct vtn_value *comp;
1841 unsigned deref_start;
1842 struct nir_constant **c;
1843 if (opcode == SpvOpCompositeExtract) {
1844 comp = vtn_value(b, w[4], vtn_value_type_constant);
1845 deref_start = 5;
1846 c = &comp->constant;
1847 } else {
1848 comp = vtn_value(b, w[5], vtn_value_type_constant);
1849 deref_start = 6;
1850 val->constant = nir_constant_clone(comp->constant,
1851 (nir_variable *)b);
1852 c = &val->constant;
1853 }
1854
1855 int elem = -1;
1856 int col = 0;
1857 const struct vtn_type *type = comp->type;
1858 for (unsigned i = deref_start; i < count; i++) {
1859 vtn_fail_if(w[i] > type->length,
1860 "%uth index of %s is %u but the type has only "
1861 "%u elements", i - deref_start,
1862 spirv_op_to_string(opcode), w[i], type->length);
1863
1864 switch (type->base_type) {
1865 case vtn_base_type_vector:
1866 elem = w[i];
1867 type = type->array_element;
1868 break;
1869
1870 case vtn_base_type_matrix:
1871 assert(col == 0 && elem == -1);
1872 col = w[i];
1873 elem = 0;
1874 type = type->array_element;
1875 break;
1876
1877 case vtn_base_type_array:
1878 c = &(*c)->elements[w[i]];
1879 type = type->array_element;
1880 break;
1881
1882 case vtn_base_type_struct:
1883 c = &(*c)->elements[w[i]];
1884 type = type->members[w[i]];
1885 break;
1886
1887 default:
1888 vtn_fail("%s must only index into composite types",
1889 spirv_op_to_string(opcode));
1890 }
1891 }
1892
1893 if (opcode == SpvOpCompositeExtract) {
1894 if (elem == -1) {
1895 val->constant = *c;
1896 } else {
1897 unsigned num_components = type->length;
1898 unsigned bit_size = glsl_get_bit_size(type->type);
1899 for (unsigned i = 0; i < num_components; i++)
1900 switch(bit_size) {
1901 case 64:
1902 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1903 break;
1904 case 32:
1905 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1906 break;
1907 case 16:
1908 val->constant->values[0].u16[i] = (*c)->values[col].u16[elem + i];
1909 break;
1910 case 8:
1911 val->constant->values[0].u8[i] = (*c)->values[col].u8[elem + i];
1912 break;
1913 case 1:
1914 val->constant->values[0].b[i] = (*c)->values[col].b[elem + i];
1915 break;
1916 default:
1917 vtn_fail("Invalid SpvOpCompositeExtract bit size");
1918 }
1919 }
1920 } else {
1921 struct vtn_value *insert =
1922 vtn_value(b, w[4], vtn_value_type_constant);
1923 vtn_assert(insert->type == type);
1924 if (elem == -1) {
1925 *c = insert->constant;
1926 } else {
1927 unsigned num_components = type->length;
1928 unsigned bit_size = glsl_get_bit_size(type->type);
1929 for (unsigned i = 0; i < num_components; i++)
1930 switch (bit_size) {
1931 case 64:
1932 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1933 break;
1934 case 32:
1935 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1936 break;
1937 case 16:
1938 (*c)->values[col].u16[elem + i] = insert->constant->values[0].u16[i];
1939 break;
1940 case 8:
1941 (*c)->values[col].u8[elem + i] = insert->constant->values[0].u8[i];
1942 break;
1943 case 1:
1944 (*c)->values[col].b[elem + i] = insert->constant->values[0].b[i];
1945 break;
1946 default:
1947 vtn_fail("Invalid SpvOpCompositeInsert bit size");
1948 }
1949 }
1950 }
1951 break;
1952 }
1953
1954 default: {
1955 bool swap;
1956 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1957 nir_alu_type src_alu_type = dst_alu_type;
1958 unsigned num_components = glsl_get_vector_elements(val->type->type);
1959 unsigned bit_size;
1960
1961 vtn_assert(count <= 7);
1962
1963 switch (opcode) {
1964 case SpvOpSConvert:
1965 case SpvOpFConvert:
1966 /* We have a source in a conversion */
1967 src_alu_type =
1968 nir_get_nir_type_for_glsl_type(
1969 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1970 /* We use the bitsize of the conversion source to evaluate the opcode later */
1971 bit_size = glsl_get_bit_size(
1972 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1973 break;
1974 default:
1975 bit_size = glsl_get_bit_size(val->type->type);
1976 };
1977
1978 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1979 nir_alu_type_get_type_size(src_alu_type),
1980 nir_alu_type_get_type_size(dst_alu_type));
1981 nir_const_value src[4];
1982
1983 for (unsigned i = 0; i < count - 4; i++) {
1984 struct vtn_value *src_val =
1985 vtn_value(b, w[4 + i], vtn_value_type_constant);
1986
1987 /* If this is an unsized source, pull the bit size from the
1988 * source; otherwise, we'll use the bit size from the destination.
1989 */
1990 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1991 bit_size = glsl_get_bit_size(src_val->type->type);
1992
1993 unsigned j = swap ? 1 - i : i;
1994 src[j] = src_val->constant->values[0];
1995 }
1996
1997 /* fix up fixed size sources */
1998 switch (op) {
1999 case nir_op_ishl:
2000 case nir_op_ishr:
2001 case nir_op_ushr: {
2002 if (bit_size == 32)
2003 break;
2004 for (unsigned i = 0; i < num_components; ++i) {
2005 switch (bit_size) {
2006 case 64: src[1].u32[i] = src[1].u64[i]; break;
2007 case 16: src[1].u32[i] = src[1].u16[i]; break;
2008 case 8: src[1].u32[i] = src[1].u8[i]; break;
2009 }
2010 }
2011 break;
2012 }
2013 default:
2014 break;
2015 }
2016
2017 val->constant->values[0] =
2018 nir_eval_const_opcode(op, num_components, bit_size, src);
2019 break;
2020 } /* default */
2021 }
2022 break;
2023 }
2024
2025 case SpvOpConstantNull:
2026 val->constant = vtn_null_constant(b, val->type->type);
2027 break;
2028
2029 case SpvOpConstantSampler:
2030 vtn_fail("OpConstantSampler requires Kernel Capability");
2031 break;
2032
2033 default:
2034 vtn_fail("Unhandled opcode");
2035 }
2036
2037 /* Now that we have the value, update the workgroup size if needed */
2038 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
2039 }
2040
2041 struct vtn_ssa_value *
2042 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2043 {
2044 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2045 val->type = type;
2046
2047 if (!glsl_type_is_vector_or_scalar(type)) {
2048 unsigned elems = glsl_get_length(type);
2049 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2050 for (unsigned i = 0; i < elems; i++) {
2051 const struct glsl_type *child_type;
2052
2053 switch (glsl_get_base_type(type)) {
2054 case GLSL_TYPE_INT:
2055 case GLSL_TYPE_UINT:
2056 case GLSL_TYPE_INT16:
2057 case GLSL_TYPE_UINT16:
2058 case GLSL_TYPE_UINT8:
2059 case GLSL_TYPE_INT8:
2060 case GLSL_TYPE_INT64:
2061 case GLSL_TYPE_UINT64:
2062 case GLSL_TYPE_BOOL:
2063 case GLSL_TYPE_FLOAT:
2064 case GLSL_TYPE_FLOAT16:
2065 case GLSL_TYPE_DOUBLE:
2066 child_type = glsl_get_column_type(type);
2067 break;
2068 case GLSL_TYPE_ARRAY:
2069 child_type = glsl_get_array_element(type);
2070 break;
2071 case GLSL_TYPE_STRUCT:
2072 child_type = glsl_get_struct_field(type, i);
2073 break;
2074 default:
2075 vtn_fail("unkown base type");
2076 }
2077
2078 val->elems[i] = vtn_create_ssa_value(b, child_type);
2079 }
2080 }
2081
2082 return val;
2083 }
2084
2085 static nir_tex_src
2086 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2087 {
2088 nir_tex_src src;
2089 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2090 src.src_type = type;
2091 return src;
2092 }
2093
2094 static void
2095 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2096 const uint32_t *w, unsigned count)
2097 {
2098 if (opcode == SpvOpSampledImage) {
2099 struct vtn_value *val =
2100 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2101 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2102 val->sampled_image->type =
2103 vtn_value(b, w[1], vtn_value_type_type)->type;
2104 val->sampled_image->image =
2105 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2106 val->sampled_image->sampler =
2107 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2108 return;
2109 } else if (opcode == SpvOpImage) {
2110 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2111 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2112 if (src_val->value_type == vtn_value_type_sampled_image) {
2113 val->pointer = src_val->sampled_image->image;
2114 } else {
2115 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2116 val->pointer = src_val->pointer;
2117 }
2118 return;
2119 }
2120
2121 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2122 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2123
2124 struct vtn_sampled_image sampled;
2125 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2126 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2127 sampled = *sampled_val->sampled_image;
2128 } else {
2129 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2130 sampled.type = sampled_val->pointer->type;
2131 sampled.image = NULL;
2132 sampled.sampler = sampled_val->pointer;
2133 }
2134
2135 const struct glsl_type *image_type = sampled.type->type;
2136 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2137 const bool is_array = glsl_sampler_type_is_array(image_type);
2138
2139 /* Figure out the base texture operation */
2140 nir_texop texop;
2141 switch (opcode) {
2142 case SpvOpImageSampleImplicitLod:
2143 case SpvOpImageSampleDrefImplicitLod:
2144 case SpvOpImageSampleProjImplicitLod:
2145 case SpvOpImageSampleProjDrefImplicitLod:
2146 texop = nir_texop_tex;
2147 break;
2148
2149 case SpvOpImageSampleExplicitLod:
2150 case SpvOpImageSampleDrefExplicitLod:
2151 case SpvOpImageSampleProjExplicitLod:
2152 case SpvOpImageSampleProjDrefExplicitLod:
2153 texop = nir_texop_txl;
2154 break;
2155
2156 case SpvOpImageFetch:
2157 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2158 texop = nir_texop_txf_ms;
2159 } else {
2160 texop = nir_texop_txf;
2161 }
2162 break;
2163
2164 case SpvOpImageGather:
2165 case SpvOpImageDrefGather:
2166 texop = nir_texop_tg4;
2167 break;
2168
2169 case SpvOpImageQuerySizeLod:
2170 case SpvOpImageQuerySize:
2171 texop = nir_texop_txs;
2172 break;
2173
2174 case SpvOpImageQueryLod:
2175 texop = nir_texop_lod;
2176 break;
2177
2178 case SpvOpImageQueryLevels:
2179 texop = nir_texop_query_levels;
2180 break;
2181
2182 case SpvOpImageQuerySamples:
2183 texop = nir_texop_texture_samples;
2184 break;
2185
2186 default:
2187 vtn_fail("Unhandled opcode");
2188 }
2189
2190 nir_tex_src srcs[10]; /* 10 should be enough */
2191 nir_tex_src *p = srcs;
2192
2193 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2194 nir_deref_instr *texture =
2195 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2196
2197 p->src = nir_src_for_ssa(&texture->dest.ssa);
2198 p->src_type = nir_tex_src_texture_deref;
2199 p++;
2200
2201 switch (texop) {
2202 case nir_texop_tex:
2203 case nir_texop_txb:
2204 case nir_texop_txl:
2205 case nir_texop_txd:
2206 case nir_texop_tg4:
2207 case nir_texop_lod:
2208 /* These operations require a sampler */
2209 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2210 p->src_type = nir_tex_src_sampler_deref;
2211 p++;
2212 break;
2213 case nir_texop_txf:
2214 case nir_texop_txf_ms:
2215 case nir_texop_txs:
2216 case nir_texop_query_levels:
2217 case nir_texop_texture_samples:
2218 case nir_texop_samples_identical:
2219 /* These don't */
2220 break;
2221 case nir_texop_txf_ms_mcs:
2222 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2223 }
2224
2225 unsigned idx = 4;
2226
2227 struct nir_ssa_def *coord;
2228 unsigned coord_components;
2229 switch (opcode) {
2230 case SpvOpImageSampleImplicitLod:
2231 case SpvOpImageSampleExplicitLod:
2232 case SpvOpImageSampleDrefImplicitLod:
2233 case SpvOpImageSampleDrefExplicitLod:
2234 case SpvOpImageSampleProjImplicitLod:
2235 case SpvOpImageSampleProjExplicitLod:
2236 case SpvOpImageSampleProjDrefImplicitLod:
2237 case SpvOpImageSampleProjDrefExplicitLod:
2238 case SpvOpImageFetch:
2239 case SpvOpImageGather:
2240 case SpvOpImageDrefGather:
2241 case SpvOpImageQueryLod: {
2242 /* All these types have the coordinate as their first real argument */
2243 switch (sampler_dim) {
2244 case GLSL_SAMPLER_DIM_1D:
2245 case GLSL_SAMPLER_DIM_BUF:
2246 coord_components = 1;
2247 break;
2248 case GLSL_SAMPLER_DIM_2D:
2249 case GLSL_SAMPLER_DIM_RECT:
2250 case GLSL_SAMPLER_DIM_MS:
2251 coord_components = 2;
2252 break;
2253 case GLSL_SAMPLER_DIM_3D:
2254 case GLSL_SAMPLER_DIM_CUBE:
2255 coord_components = 3;
2256 break;
2257 default:
2258 vtn_fail("Invalid sampler type");
2259 }
2260
2261 if (is_array && texop != nir_texop_lod)
2262 coord_components++;
2263
2264 coord = vtn_ssa_value(b, w[idx++])->def;
2265 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2266 (1 << coord_components) - 1));
2267 p->src_type = nir_tex_src_coord;
2268 p++;
2269 break;
2270 }
2271
2272 default:
2273 coord = NULL;
2274 coord_components = 0;
2275 break;
2276 }
2277
2278 switch (opcode) {
2279 case SpvOpImageSampleProjImplicitLod:
2280 case SpvOpImageSampleProjExplicitLod:
2281 case SpvOpImageSampleProjDrefImplicitLod:
2282 case SpvOpImageSampleProjDrefExplicitLod:
2283 /* These have the projector as the last coordinate component */
2284 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2285 p->src_type = nir_tex_src_projector;
2286 p++;
2287 break;
2288
2289 default:
2290 break;
2291 }
2292
2293 bool is_shadow = false;
2294 unsigned gather_component = 0;
2295 switch (opcode) {
2296 case SpvOpImageSampleDrefImplicitLod:
2297 case SpvOpImageSampleDrefExplicitLod:
2298 case SpvOpImageSampleProjDrefImplicitLod:
2299 case SpvOpImageSampleProjDrefExplicitLod:
2300 case SpvOpImageDrefGather:
2301 /* These all have an explicit depth value as their next source */
2302 is_shadow = true;
2303 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2304 break;
2305
2306 case SpvOpImageGather:
2307 /* This has a component as its next source */
2308 gather_component =
2309 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
2310 break;
2311
2312 default:
2313 break;
2314 }
2315
2316 /* For OpImageQuerySizeLod, we always have an LOD */
2317 if (opcode == SpvOpImageQuerySizeLod)
2318 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2319
2320 /* Now we need to handle some number of optional arguments */
2321 struct vtn_value *gather_offsets = NULL;
2322 if (idx < count) {
2323 uint32_t operands = w[idx++];
2324
2325 if (operands & SpvImageOperandsBiasMask) {
2326 vtn_assert(texop == nir_texop_tex);
2327 texop = nir_texop_txb;
2328 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2329 }
2330
2331 if (operands & SpvImageOperandsLodMask) {
2332 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2333 texop == nir_texop_txs);
2334 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2335 }
2336
2337 if (operands & SpvImageOperandsGradMask) {
2338 vtn_assert(texop == nir_texop_txl);
2339 texop = nir_texop_txd;
2340 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2341 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2342 }
2343
2344 if (operands & SpvImageOperandsOffsetMask ||
2345 operands & SpvImageOperandsConstOffsetMask)
2346 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2347
2348 if (operands & SpvImageOperandsConstOffsetsMask) {
2349 vtn_assert(texop == nir_texop_tg4);
2350 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2351 }
2352
2353 if (operands & SpvImageOperandsSampleMask) {
2354 vtn_assert(texop == nir_texop_txf_ms);
2355 texop = nir_texop_txf_ms;
2356 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2357 }
2358
2359 if (operands & SpvImageOperandsMinLodMask) {
2360 vtn_assert(texop == nir_texop_tex ||
2361 texop == nir_texop_txb ||
2362 texop == nir_texop_txd);
2363 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2364 }
2365 }
2366 /* We should have now consumed exactly all of the arguments */
2367 vtn_assert(idx == count);
2368
2369 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2370 instr->op = texop;
2371
2372 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2373
2374 instr->coord_components = coord_components;
2375 instr->sampler_dim = sampler_dim;
2376 instr->is_array = is_array;
2377 instr->is_shadow = is_shadow;
2378 instr->is_new_style_shadow =
2379 is_shadow && glsl_get_components(ret_type->type) == 1;
2380 instr->component = gather_component;
2381
2382 switch (glsl_get_sampler_result_type(image_type)) {
2383 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2384 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2385 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2386 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2387 default:
2388 vtn_fail("Invalid base type for sampler result");
2389 }
2390
2391 nir_ssa_dest_init(&instr->instr, &instr->dest,
2392 nir_tex_instr_dest_size(instr), 32, NULL);
2393
2394 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2395 nir_tex_instr_dest_size(instr));
2396
2397 if (gather_offsets) {
2398 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2399 gather_offsets->type->length != 4,
2400 "ConstOffsets must be an array of size four of vectors "
2401 "of two integer components");
2402
2403 struct vtn_type *vec_type = gather_offsets->type->array_element;
2404 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2405 vec_type->length != 2 ||
2406 !glsl_type_is_integer(vec_type->type),
2407 "ConstOffsets must be an array of size four of vectors "
2408 "of two integer components");
2409
2410 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2411 for (uint32_t i = 0; i < 4; i++) {
2412 const nir_const_value *cvec =
2413 &gather_offsets->constant->elements[i]->values[0];
2414 for (uint32_t j = 0; j < 2; j++) {
2415 switch (bit_size) {
2416 case 8: instr->tg4_offsets[i][j] = cvec->i8[j]; break;
2417 case 16: instr->tg4_offsets[i][j] = cvec->i16[j]; break;
2418 case 32: instr->tg4_offsets[i][j] = cvec->i32[j]; break;
2419 case 64: instr->tg4_offsets[i][j] = cvec->i64[j]; break;
2420 default:
2421 vtn_fail("Unsupported bit size");
2422 }
2423 }
2424 }
2425 }
2426
2427 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2428 val->ssa->def = &instr->dest.ssa;
2429
2430 nir_builder_instr_insert(&b->nb, &instr->instr);
2431 }
2432
2433 static void
2434 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2435 const uint32_t *w, nir_src *src)
2436 {
2437 switch (opcode) {
2438 case SpvOpAtomicIIncrement:
2439 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2440 break;
2441
2442 case SpvOpAtomicIDecrement:
2443 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2444 break;
2445
2446 case SpvOpAtomicISub:
2447 src[0] =
2448 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2449 break;
2450
2451 case SpvOpAtomicCompareExchange:
2452 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2453 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2454 break;
2455
2456 case SpvOpAtomicExchange:
2457 case SpvOpAtomicIAdd:
2458 case SpvOpAtomicSMin:
2459 case SpvOpAtomicUMin:
2460 case SpvOpAtomicSMax:
2461 case SpvOpAtomicUMax:
2462 case SpvOpAtomicAnd:
2463 case SpvOpAtomicOr:
2464 case SpvOpAtomicXor:
2465 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2466 break;
2467
2468 default:
2469 vtn_fail("Invalid SPIR-V atomic");
2470 }
2471 }
2472
2473 static nir_ssa_def *
2474 get_image_coord(struct vtn_builder *b, uint32_t value)
2475 {
2476 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2477
2478 /* The image_load_store intrinsics assume a 4-dim coordinate */
2479 unsigned dim = glsl_get_vector_elements(coord->type);
2480 unsigned swizzle[4];
2481 for (unsigned i = 0; i < 4; i++)
2482 swizzle[i] = MIN2(i, dim - 1);
2483
2484 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2485 }
2486
2487 static nir_ssa_def *
2488 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2489 {
2490 if (value->num_components == 4)
2491 return value;
2492
2493 unsigned swiz[4];
2494 for (unsigned i = 0; i < 4; i++)
2495 swiz[i] = i < value->num_components ? i : 0;
2496 return nir_swizzle(b, value, swiz, 4, false);
2497 }
2498
2499 static void
2500 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2501 const uint32_t *w, unsigned count)
2502 {
2503 /* Just get this one out of the way */
2504 if (opcode == SpvOpImageTexelPointer) {
2505 struct vtn_value *val =
2506 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2507 val->image = ralloc(b, struct vtn_image_pointer);
2508
2509 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2510 val->image->coord = get_image_coord(b, w[4]);
2511 val->image->sample = vtn_ssa_value(b, w[5])->def;
2512 return;
2513 }
2514
2515 struct vtn_image_pointer image;
2516
2517 switch (opcode) {
2518 case SpvOpAtomicExchange:
2519 case SpvOpAtomicCompareExchange:
2520 case SpvOpAtomicCompareExchangeWeak:
2521 case SpvOpAtomicIIncrement:
2522 case SpvOpAtomicIDecrement:
2523 case SpvOpAtomicIAdd:
2524 case SpvOpAtomicISub:
2525 case SpvOpAtomicLoad:
2526 case SpvOpAtomicSMin:
2527 case SpvOpAtomicUMin:
2528 case SpvOpAtomicSMax:
2529 case SpvOpAtomicUMax:
2530 case SpvOpAtomicAnd:
2531 case SpvOpAtomicOr:
2532 case SpvOpAtomicXor:
2533 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2534 break;
2535
2536 case SpvOpAtomicStore:
2537 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2538 break;
2539
2540 case SpvOpImageQuerySize:
2541 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2542 image.coord = NULL;
2543 image.sample = NULL;
2544 break;
2545
2546 case SpvOpImageRead:
2547 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2548 image.coord = get_image_coord(b, w[4]);
2549
2550 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2551 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2552 image.sample = vtn_ssa_value(b, w[6])->def;
2553 } else {
2554 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2555 }
2556 break;
2557
2558 case SpvOpImageWrite:
2559 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2560 image.coord = get_image_coord(b, w[2]);
2561
2562 /* texel = w[3] */
2563
2564 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2565 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2566 image.sample = vtn_ssa_value(b, w[5])->def;
2567 } else {
2568 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2569 }
2570 break;
2571
2572 default:
2573 vtn_fail("Invalid image opcode");
2574 }
2575
2576 nir_intrinsic_op op;
2577 switch (opcode) {
2578 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2579 OP(ImageQuerySize, size)
2580 OP(ImageRead, load)
2581 OP(ImageWrite, store)
2582 OP(AtomicLoad, load)
2583 OP(AtomicStore, store)
2584 OP(AtomicExchange, atomic_exchange)
2585 OP(AtomicCompareExchange, atomic_comp_swap)
2586 OP(AtomicIIncrement, atomic_add)
2587 OP(AtomicIDecrement, atomic_add)
2588 OP(AtomicIAdd, atomic_add)
2589 OP(AtomicISub, atomic_add)
2590 OP(AtomicSMin, atomic_min)
2591 OP(AtomicUMin, atomic_min)
2592 OP(AtomicSMax, atomic_max)
2593 OP(AtomicUMax, atomic_max)
2594 OP(AtomicAnd, atomic_and)
2595 OP(AtomicOr, atomic_or)
2596 OP(AtomicXor, atomic_xor)
2597 #undef OP
2598 default:
2599 vtn_fail("Invalid image opcode");
2600 }
2601
2602 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2603
2604 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2605 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2606
2607 /* ImageQuerySize doesn't take any extra parameters */
2608 if (opcode != SpvOpImageQuerySize) {
2609 /* The image coordinate is always 4 components but we may not have that
2610 * many. Swizzle to compensate.
2611 */
2612 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2613 intrin->src[2] = nir_src_for_ssa(image.sample);
2614 }
2615
2616 switch (opcode) {
2617 case SpvOpAtomicLoad:
2618 case SpvOpImageQuerySize:
2619 case SpvOpImageRead:
2620 break;
2621 case SpvOpAtomicStore:
2622 case SpvOpImageWrite: {
2623 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2624 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2625 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2626 assert(op == nir_intrinsic_image_deref_store);
2627 intrin->num_components = 4;
2628 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2629 break;
2630 }
2631
2632 case SpvOpAtomicCompareExchange:
2633 case SpvOpAtomicIIncrement:
2634 case SpvOpAtomicIDecrement:
2635 case SpvOpAtomicExchange:
2636 case SpvOpAtomicIAdd:
2637 case SpvOpAtomicISub:
2638 case SpvOpAtomicSMin:
2639 case SpvOpAtomicUMin:
2640 case SpvOpAtomicSMax:
2641 case SpvOpAtomicUMax:
2642 case SpvOpAtomicAnd:
2643 case SpvOpAtomicOr:
2644 case SpvOpAtomicXor:
2645 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2646 break;
2647
2648 default:
2649 vtn_fail("Invalid image opcode");
2650 }
2651
2652 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2653 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2654 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2655
2656 unsigned dest_components = glsl_get_vector_elements(type->type);
2657 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2658 if (intrin->num_components == 0)
2659 intrin->num_components = dest_components;
2660
2661 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2662 intrin->num_components, 32, NULL);
2663
2664 nir_builder_instr_insert(&b->nb, &intrin->instr);
2665
2666 nir_ssa_def *result = &intrin->dest.ssa;
2667 if (intrin->num_components != dest_components)
2668 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2669
2670 val->ssa = vtn_create_ssa_value(b, type->type);
2671 val->ssa->def = result;
2672 } else {
2673 nir_builder_instr_insert(&b->nb, &intrin->instr);
2674 }
2675 }
2676
2677 static nir_intrinsic_op
2678 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2679 {
2680 switch (opcode) {
2681 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2682 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2683 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2684 OP(AtomicExchange, atomic_exchange)
2685 OP(AtomicCompareExchange, atomic_comp_swap)
2686 OP(AtomicIIncrement, atomic_add)
2687 OP(AtomicIDecrement, atomic_add)
2688 OP(AtomicIAdd, atomic_add)
2689 OP(AtomicISub, atomic_add)
2690 OP(AtomicSMin, atomic_imin)
2691 OP(AtomicUMin, atomic_umin)
2692 OP(AtomicSMax, atomic_imax)
2693 OP(AtomicUMax, atomic_umax)
2694 OP(AtomicAnd, atomic_and)
2695 OP(AtomicOr, atomic_or)
2696 OP(AtomicXor, atomic_xor)
2697 #undef OP
2698 default:
2699 vtn_fail("Invalid SSBO atomic");
2700 }
2701 }
2702
2703 static nir_intrinsic_op
2704 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2705 {
2706 switch (opcode) {
2707 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2708 OP(AtomicLoad, read_deref)
2709 OP(AtomicExchange, exchange)
2710 OP(AtomicCompareExchange, comp_swap)
2711 OP(AtomicIIncrement, inc_deref)
2712 OP(AtomicIDecrement, post_dec_deref)
2713 OP(AtomicIAdd, add_deref)
2714 OP(AtomicISub, add_deref)
2715 OP(AtomicUMin, min_deref)
2716 OP(AtomicUMax, max_deref)
2717 OP(AtomicAnd, and_deref)
2718 OP(AtomicOr, or_deref)
2719 OP(AtomicXor, xor_deref)
2720 #undef OP
2721 default:
2722 /* We left the following out: AtomicStore, AtomicSMin and
2723 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2724 * moment Atomic Counter support is needed for ARB_spirv support, so is
2725 * only need to support GLSL Atomic Counters that are uints and don't
2726 * allow direct storage.
2727 */
2728 unreachable("Invalid uniform atomic");
2729 }
2730 }
2731
2732 static nir_intrinsic_op
2733 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2734 {
2735 switch (opcode) {
2736 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2737 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2738 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2739 OP(AtomicExchange, atomic_exchange)
2740 OP(AtomicCompareExchange, atomic_comp_swap)
2741 OP(AtomicIIncrement, atomic_add)
2742 OP(AtomicIDecrement, atomic_add)
2743 OP(AtomicIAdd, atomic_add)
2744 OP(AtomicISub, atomic_add)
2745 OP(AtomicSMin, atomic_imin)
2746 OP(AtomicUMin, atomic_umin)
2747 OP(AtomicSMax, atomic_imax)
2748 OP(AtomicUMax, atomic_umax)
2749 OP(AtomicAnd, atomic_and)
2750 OP(AtomicOr, atomic_or)
2751 OP(AtomicXor, atomic_xor)
2752 #undef OP
2753 default:
2754 vtn_fail("Invalid shared atomic");
2755 }
2756 }
2757
2758 static nir_intrinsic_op
2759 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2760 {
2761 switch (opcode) {
2762 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2763 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2764 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2765 OP(AtomicExchange, atomic_exchange)
2766 OP(AtomicCompareExchange, atomic_comp_swap)
2767 OP(AtomicIIncrement, atomic_add)
2768 OP(AtomicIDecrement, atomic_add)
2769 OP(AtomicIAdd, atomic_add)
2770 OP(AtomicISub, atomic_add)
2771 OP(AtomicSMin, atomic_imin)
2772 OP(AtomicUMin, atomic_umin)
2773 OP(AtomicSMax, atomic_imax)
2774 OP(AtomicUMax, atomic_umax)
2775 OP(AtomicAnd, atomic_and)
2776 OP(AtomicOr, atomic_or)
2777 OP(AtomicXor, atomic_xor)
2778 #undef OP
2779 default:
2780 vtn_fail("Invalid shared atomic");
2781 }
2782 }
2783
2784 /*
2785 * Handles shared atomics, ssbo atomics and atomic counters.
2786 */
2787 static void
2788 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2789 const uint32_t *w, unsigned count)
2790 {
2791 struct vtn_pointer *ptr;
2792 nir_intrinsic_instr *atomic;
2793
2794 switch (opcode) {
2795 case SpvOpAtomicLoad:
2796 case SpvOpAtomicExchange:
2797 case SpvOpAtomicCompareExchange:
2798 case SpvOpAtomicCompareExchangeWeak:
2799 case SpvOpAtomicIIncrement:
2800 case SpvOpAtomicIDecrement:
2801 case SpvOpAtomicIAdd:
2802 case SpvOpAtomicISub:
2803 case SpvOpAtomicSMin:
2804 case SpvOpAtomicUMin:
2805 case SpvOpAtomicSMax:
2806 case SpvOpAtomicUMax:
2807 case SpvOpAtomicAnd:
2808 case SpvOpAtomicOr:
2809 case SpvOpAtomicXor:
2810 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2811 break;
2812
2813 case SpvOpAtomicStore:
2814 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2815 break;
2816
2817 default:
2818 vtn_fail("Invalid SPIR-V atomic");
2819 }
2820
2821 /*
2822 SpvScope scope = w[4];
2823 SpvMemorySemanticsMask semantics = w[5];
2824 */
2825
2826 /* uniform as "atomic counter uniform" */
2827 if (ptr->mode == vtn_variable_mode_uniform) {
2828 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2829 const struct glsl_type *deref_type = deref->type;
2830 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2831 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2832 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2833
2834 /* SSBO needs to initialize index/offset. In this case we don't need to,
2835 * as that info is already stored on the ptr->var->var nir_variable (see
2836 * vtn_create_variable)
2837 */
2838
2839 switch (opcode) {
2840 case SpvOpAtomicLoad:
2841 atomic->num_components = glsl_get_vector_elements(deref_type);
2842 break;
2843
2844 case SpvOpAtomicStore:
2845 atomic->num_components = glsl_get_vector_elements(deref_type);
2846 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2847 break;
2848
2849 case SpvOpAtomicExchange:
2850 case SpvOpAtomicCompareExchange:
2851 case SpvOpAtomicCompareExchangeWeak:
2852 case SpvOpAtomicIIncrement:
2853 case SpvOpAtomicIDecrement:
2854 case SpvOpAtomicIAdd:
2855 case SpvOpAtomicISub:
2856 case SpvOpAtomicSMin:
2857 case SpvOpAtomicUMin:
2858 case SpvOpAtomicSMax:
2859 case SpvOpAtomicUMax:
2860 case SpvOpAtomicAnd:
2861 case SpvOpAtomicOr:
2862 case SpvOpAtomicXor:
2863 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2864 * atomic counter uniforms doesn't have sources
2865 */
2866 break;
2867
2868 default:
2869 unreachable("Invalid SPIR-V atomic");
2870
2871 }
2872 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2873 nir_ssa_def *offset, *index;
2874 offset = vtn_pointer_to_offset(b, ptr, &index);
2875
2876 nir_intrinsic_op op;
2877 if (ptr->mode == vtn_variable_mode_ssbo) {
2878 op = get_ssbo_nir_atomic_op(b, opcode);
2879 } else {
2880 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2881 b->options->lower_workgroup_access_to_offsets);
2882 op = get_shared_nir_atomic_op(b, opcode);
2883 }
2884
2885 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2886
2887 int src = 0;
2888 switch (opcode) {
2889 case SpvOpAtomicLoad:
2890 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2891 nir_intrinsic_set_align(atomic, 4, 0);
2892 if (ptr->mode == vtn_variable_mode_ssbo)
2893 atomic->src[src++] = nir_src_for_ssa(index);
2894 atomic->src[src++] = nir_src_for_ssa(offset);
2895 break;
2896
2897 case SpvOpAtomicStore:
2898 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2899 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2900 nir_intrinsic_set_align(atomic, 4, 0);
2901 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2902 if (ptr->mode == vtn_variable_mode_ssbo)
2903 atomic->src[src++] = nir_src_for_ssa(index);
2904 atomic->src[src++] = nir_src_for_ssa(offset);
2905 break;
2906
2907 case SpvOpAtomicExchange:
2908 case SpvOpAtomicCompareExchange:
2909 case SpvOpAtomicCompareExchangeWeak:
2910 case SpvOpAtomicIIncrement:
2911 case SpvOpAtomicIDecrement:
2912 case SpvOpAtomicIAdd:
2913 case SpvOpAtomicISub:
2914 case SpvOpAtomicSMin:
2915 case SpvOpAtomicUMin:
2916 case SpvOpAtomicSMax:
2917 case SpvOpAtomicUMax:
2918 case SpvOpAtomicAnd:
2919 case SpvOpAtomicOr:
2920 case SpvOpAtomicXor:
2921 if (ptr->mode == vtn_variable_mode_ssbo)
2922 atomic->src[src++] = nir_src_for_ssa(index);
2923 atomic->src[src++] = nir_src_for_ssa(offset);
2924 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2925 break;
2926
2927 default:
2928 vtn_fail("Invalid SPIR-V atomic");
2929 }
2930 } else {
2931 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2932 const struct glsl_type *deref_type = deref->type;
2933 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2934 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2935 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2936
2937 switch (opcode) {
2938 case SpvOpAtomicLoad:
2939 atomic->num_components = glsl_get_vector_elements(deref_type);
2940 break;
2941
2942 case SpvOpAtomicStore:
2943 atomic->num_components = glsl_get_vector_elements(deref_type);
2944 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2945 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2946 break;
2947
2948 case SpvOpAtomicExchange:
2949 case SpvOpAtomicCompareExchange:
2950 case SpvOpAtomicCompareExchangeWeak:
2951 case SpvOpAtomicIIncrement:
2952 case SpvOpAtomicIDecrement:
2953 case SpvOpAtomicIAdd:
2954 case SpvOpAtomicISub:
2955 case SpvOpAtomicSMin:
2956 case SpvOpAtomicUMin:
2957 case SpvOpAtomicSMax:
2958 case SpvOpAtomicUMax:
2959 case SpvOpAtomicAnd:
2960 case SpvOpAtomicOr:
2961 case SpvOpAtomicXor:
2962 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2963 break;
2964
2965 default:
2966 vtn_fail("Invalid SPIR-V atomic");
2967 }
2968 }
2969
2970 if (opcode != SpvOpAtomicStore) {
2971 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2972
2973 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2974 glsl_get_vector_elements(type->type),
2975 glsl_get_bit_size(type->type), NULL);
2976
2977 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2978 val->ssa = rzalloc(b, struct vtn_ssa_value);
2979 val->ssa->def = &atomic->dest.ssa;
2980 val->ssa->type = type->type;
2981 }
2982
2983 nir_builder_instr_insert(&b->nb, &atomic->instr);
2984 }
2985
2986 static nir_alu_instr *
2987 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2988 {
2989 nir_op op;
2990 switch (num_components) {
2991 case 1: op = nir_op_imov; break;
2992 case 2: op = nir_op_vec2; break;
2993 case 3: op = nir_op_vec3; break;
2994 case 4: op = nir_op_vec4; break;
2995 default: vtn_fail("bad vector size");
2996 }
2997
2998 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2999 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
3000 bit_size, NULL);
3001 vec->dest.write_mask = (1 << num_components) - 1;
3002
3003 return vec;
3004 }
3005
3006 struct vtn_ssa_value *
3007 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3008 {
3009 if (src->transposed)
3010 return src->transposed;
3011
3012 struct vtn_ssa_value *dest =
3013 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3014
3015 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3016 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3017 glsl_get_bit_size(src->type));
3018 if (glsl_type_is_vector_or_scalar(src->type)) {
3019 vec->src[0].src = nir_src_for_ssa(src->def);
3020 vec->src[0].swizzle[0] = i;
3021 } else {
3022 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3023 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3024 vec->src[j].swizzle[0] = i;
3025 }
3026 }
3027 nir_builder_instr_insert(&b->nb, &vec->instr);
3028 dest->elems[i]->def = &vec->dest.dest.ssa;
3029 }
3030
3031 dest->transposed = src;
3032
3033 return dest;
3034 }
3035
3036 nir_ssa_def *
3037 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3038 {
3039 return nir_channel(&b->nb, src, index);
3040 }
3041
3042 nir_ssa_def *
3043 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3044 unsigned index)
3045 {
3046 nir_alu_instr *vec = create_vec(b, src->num_components,
3047 src->bit_size);
3048
3049 for (unsigned i = 0; i < src->num_components; i++) {
3050 if (i == index) {
3051 vec->src[i].src = nir_src_for_ssa(insert);
3052 } else {
3053 vec->src[i].src = nir_src_for_ssa(src);
3054 vec->src[i].swizzle[0] = i;
3055 }
3056 }
3057
3058 nir_builder_instr_insert(&b->nb, &vec->instr);
3059
3060 return &vec->dest.dest.ssa;
3061 }
3062
3063 static nir_ssa_def *
3064 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3065 {
3066 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3067 }
3068
3069 nir_ssa_def *
3070 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3071 nir_ssa_def *index)
3072 {
3073 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3074 }
3075
3076 nir_ssa_def *
3077 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3078 nir_ssa_def *insert, nir_ssa_def *index)
3079 {
3080 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3081 for (unsigned i = 1; i < src->num_components; i++)
3082 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3083 vtn_vector_insert(b, src, insert, i), dest);
3084
3085 return dest;
3086 }
3087
3088 static nir_ssa_def *
3089 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3090 nir_ssa_def *src0, nir_ssa_def *src1,
3091 const uint32_t *indices)
3092 {
3093 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3094
3095 for (unsigned i = 0; i < num_components; i++) {
3096 uint32_t index = indices[i];
3097 if (index == 0xffffffff) {
3098 vec->src[i].src =
3099 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3100 } else if (index < src0->num_components) {
3101 vec->src[i].src = nir_src_for_ssa(src0);
3102 vec->src[i].swizzle[0] = index;
3103 } else {
3104 vec->src[i].src = nir_src_for_ssa(src1);
3105 vec->src[i].swizzle[0] = index - src0->num_components;
3106 }
3107 }
3108
3109 nir_builder_instr_insert(&b->nb, &vec->instr);
3110
3111 return &vec->dest.dest.ssa;
3112 }
3113
3114 /*
3115 * Concatentates a number of vectors/scalars together to produce a vector
3116 */
3117 static nir_ssa_def *
3118 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3119 unsigned num_srcs, nir_ssa_def **srcs)
3120 {
3121 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3122
3123 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3124 *
3125 * "When constructing a vector, there must be at least two Constituent
3126 * operands."
3127 */
3128 vtn_assert(num_srcs >= 2);
3129
3130 unsigned dest_idx = 0;
3131 for (unsigned i = 0; i < num_srcs; i++) {
3132 nir_ssa_def *src = srcs[i];
3133 vtn_assert(dest_idx + src->num_components <= num_components);
3134 for (unsigned j = 0; j < src->num_components; j++) {
3135 vec->src[dest_idx].src = nir_src_for_ssa(src);
3136 vec->src[dest_idx].swizzle[0] = j;
3137 dest_idx++;
3138 }
3139 }
3140
3141 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3142 *
3143 * "When constructing a vector, the total number of components in all
3144 * the operands must equal the number of components in Result Type."
3145 */
3146 vtn_assert(dest_idx == num_components);
3147
3148 nir_builder_instr_insert(&b->nb, &vec->instr);
3149
3150 return &vec->dest.dest.ssa;
3151 }
3152
3153 static struct vtn_ssa_value *
3154 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3155 {
3156 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3157 dest->type = src->type;
3158
3159 if (glsl_type_is_vector_or_scalar(src->type)) {
3160 dest->def = src->def;
3161 } else {
3162 unsigned elems = glsl_get_length(src->type);
3163
3164 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3165 for (unsigned i = 0; i < elems; i++)
3166 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3167 }
3168
3169 return dest;
3170 }
3171
3172 static struct vtn_ssa_value *
3173 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3174 struct vtn_ssa_value *insert, const uint32_t *indices,
3175 unsigned num_indices)
3176 {
3177 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3178
3179 struct vtn_ssa_value *cur = dest;
3180 unsigned i;
3181 for (i = 0; i < num_indices - 1; i++) {
3182 cur = cur->elems[indices[i]];
3183 }
3184
3185 if (glsl_type_is_vector_or_scalar(cur->type)) {
3186 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3187 * the component granularity. In that case, the last index will be
3188 * the index to insert the scalar into the vector.
3189 */
3190
3191 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3192 } else {
3193 cur->elems[indices[i]] = insert;
3194 }
3195
3196 return dest;
3197 }
3198
3199 static struct vtn_ssa_value *
3200 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3201 const uint32_t *indices, unsigned num_indices)
3202 {
3203 struct vtn_ssa_value *cur = src;
3204 for (unsigned i = 0; i < num_indices; i++) {
3205 if (glsl_type_is_vector_or_scalar(cur->type)) {
3206 vtn_assert(i == num_indices - 1);
3207 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3208 * the component granularity. The last index will be the index of the
3209 * vector to extract.
3210 */
3211
3212 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3213 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3214 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3215 return ret;
3216 } else {
3217 cur = cur->elems[indices[i]];
3218 }
3219 }
3220
3221 return cur;
3222 }
3223
3224 static void
3225 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3226 const uint32_t *w, unsigned count)
3227 {
3228 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
3229 const struct glsl_type *type =
3230 vtn_value(b, w[1], vtn_value_type_type)->type->type;
3231 val->ssa = vtn_create_ssa_value(b, type);
3232
3233 switch (opcode) {
3234 case SpvOpVectorExtractDynamic:
3235 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3236 vtn_ssa_value(b, w[4])->def);
3237 break;
3238
3239 case SpvOpVectorInsertDynamic:
3240 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3241 vtn_ssa_value(b, w[4])->def,
3242 vtn_ssa_value(b, w[5])->def);
3243 break;
3244
3245 case SpvOpVectorShuffle:
3246 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
3247 vtn_ssa_value(b, w[3])->def,
3248 vtn_ssa_value(b, w[4])->def,
3249 w + 5);
3250 break;
3251
3252 case SpvOpCompositeConstruct: {
3253 unsigned elems = count - 3;
3254 assume(elems >= 1);
3255 if (glsl_type_is_vector_or_scalar(type)) {
3256 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3257 for (unsigned i = 0; i < elems; i++)
3258 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3259 val->ssa->def =
3260 vtn_vector_construct(b, glsl_get_vector_elements(type),
3261 elems, srcs);
3262 } else {
3263 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3264 for (unsigned i = 0; i < elems; i++)
3265 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3266 }
3267 break;
3268 }
3269 case SpvOpCompositeExtract:
3270 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3271 w + 4, count - 4);
3272 break;
3273
3274 case SpvOpCompositeInsert:
3275 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3276 vtn_ssa_value(b, w[3]),
3277 w + 5, count - 5);
3278 break;
3279
3280 case SpvOpCopyObject:
3281 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3282 break;
3283
3284 default:
3285 vtn_fail("unknown composite operation");
3286 }
3287 }
3288
3289 static void
3290 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3291 {
3292 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3293 nir_builder_instr_insert(&b->nb, &intrin->instr);
3294 }
3295
3296 static void
3297 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3298 SpvMemorySemanticsMask semantics)
3299 {
3300 static const SpvMemorySemanticsMask all_memory_semantics =
3301 SpvMemorySemanticsUniformMemoryMask |
3302 SpvMemorySemanticsWorkgroupMemoryMask |
3303 SpvMemorySemanticsAtomicCounterMemoryMask |
3304 SpvMemorySemanticsImageMemoryMask;
3305
3306 /* If we're not actually doing a memory barrier, bail */
3307 if (!(semantics & all_memory_semantics))
3308 return;
3309
3310 /* GL and Vulkan don't have these */
3311 vtn_assert(scope != SpvScopeCrossDevice);
3312
3313 if (scope == SpvScopeSubgroup)
3314 return; /* Nothing to do here */
3315
3316 if (scope == SpvScopeWorkgroup) {
3317 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3318 return;
3319 }
3320
3321 /* There's only two scopes thing left */
3322 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3323
3324 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3325 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3326 return;
3327 }
3328
3329 /* Issue a bunch of more specific barriers */
3330 uint32_t bits = semantics;
3331 while (bits) {
3332 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3333 switch (semantic) {
3334 case SpvMemorySemanticsUniformMemoryMask:
3335 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3336 break;
3337 case SpvMemorySemanticsWorkgroupMemoryMask:
3338 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3339 break;
3340 case SpvMemorySemanticsAtomicCounterMemoryMask:
3341 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3342 break;
3343 case SpvMemorySemanticsImageMemoryMask:
3344 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3345 break;
3346 default:
3347 break;;
3348 }
3349 }
3350 }
3351
3352 static void
3353 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3354 const uint32_t *w, unsigned count)
3355 {
3356 switch (opcode) {
3357 case SpvOpEmitVertex:
3358 case SpvOpEmitStreamVertex:
3359 case SpvOpEndPrimitive:
3360 case SpvOpEndStreamPrimitive: {
3361 nir_intrinsic_op intrinsic_op;
3362 switch (opcode) {
3363 case SpvOpEmitVertex:
3364 case SpvOpEmitStreamVertex:
3365 intrinsic_op = nir_intrinsic_emit_vertex;
3366 break;
3367 case SpvOpEndPrimitive:
3368 case SpvOpEndStreamPrimitive:
3369 intrinsic_op = nir_intrinsic_end_primitive;
3370 break;
3371 default:
3372 unreachable("Invalid opcode");
3373 }
3374
3375 nir_intrinsic_instr *intrin =
3376 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3377
3378 switch (opcode) {
3379 case SpvOpEmitStreamVertex:
3380 case SpvOpEndStreamPrimitive: {
3381 unsigned stream = vtn_constant_uint(b, w[1]);
3382 nir_intrinsic_set_stream_id(intrin, stream);
3383 break;
3384 }
3385
3386 default:
3387 break;
3388 }
3389
3390 nir_builder_instr_insert(&b->nb, &intrin->instr);
3391 break;
3392 }
3393
3394 case SpvOpMemoryBarrier: {
3395 SpvScope scope = vtn_constant_uint(b, w[1]);
3396 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3397 vtn_emit_memory_barrier(b, scope, semantics);
3398 return;
3399 }
3400
3401 case SpvOpControlBarrier: {
3402 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3403 if (execution_scope == SpvScopeWorkgroup)
3404 vtn_emit_barrier(b, nir_intrinsic_barrier);
3405
3406 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3407 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3408 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3409 break;
3410 }
3411
3412 default:
3413 unreachable("unknown barrier instruction");
3414 }
3415 }
3416
3417 static unsigned
3418 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3419 SpvExecutionMode mode)
3420 {
3421 switch (mode) {
3422 case SpvExecutionModeInputPoints:
3423 case SpvExecutionModeOutputPoints:
3424 return 0; /* GL_POINTS */
3425 case SpvExecutionModeInputLines:
3426 return 1; /* GL_LINES */
3427 case SpvExecutionModeInputLinesAdjacency:
3428 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3429 case SpvExecutionModeTriangles:
3430 return 4; /* GL_TRIANGLES */
3431 case SpvExecutionModeInputTrianglesAdjacency:
3432 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3433 case SpvExecutionModeQuads:
3434 return 7; /* GL_QUADS */
3435 case SpvExecutionModeIsolines:
3436 return 0x8E7A; /* GL_ISOLINES */
3437 case SpvExecutionModeOutputLineStrip:
3438 return 3; /* GL_LINE_STRIP */
3439 case SpvExecutionModeOutputTriangleStrip:
3440 return 5; /* GL_TRIANGLE_STRIP */
3441 default:
3442 vtn_fail("Invalid primitive type");
3443 }
3444 }
3445
3446 static unsigned
3447 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3448 SpvExecutionMode mode)
3449 {
3450 switch (mode) {
3451 case SpvExecutionModeInputPoints:
3452 return 1;
3453 case SpvExecutionModeInputLines:
3454 return 2;
3455 case SpvExecutionModeInputLinesAdjacency:
3456 return 4;
3457 case SpvExecutionModeTriangles:
3458 return 3;
3459 case SpvExecutionModeInputTrianglesAdjacency:
3460 return 6;
3461 default:
3462 vtn_fail("Invalid GS input mode");
3463 }
3464 }
3465
3466 static gl_shader_stage
3467 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3468 {
3469 switch (model) {
3470 case SpvExecutionModelVertex:
3471 return MESA_SHADER_VERTEX;
3472 case SpvExecutionModelTessellationControl:
3473 return MESA_SHADER_TESS_CTRL;
3474 case SpvExecutionModelTessellationEvaluation:
3475 return MESA_SHADER_TESS_EVAL;
3476 case SpvExecutionModelGeometry:
3477 return MESA_SHADER_GEOMETRY;
3478 case SpvExecutionModelFragment:
3479 return MESA_SHADER_FRAGMENT;
3480 case SpvExecutionModelGLCompute:
3481 return MESA_SHADER_COMPUTE;
3482 case SpvExecutionModelKernel:
3483 return MESA_SHADER_KERNEL;
3484 default:
3485 vtn_fail("Unsupported execution model");
3486 }
3487 }
3488
3489 #define spv_check_supported(name, cap) do { \
3490 if (!(b->options && b->options->caps.name)) \
3491 vtn_warn("Unsupported SPIR-V capability: %s", \
3492 spirv_capability_to_string(cap)); \
3493 } while(0)
3494
3495
3496 void
3497 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3498 unsigned count)
3499 {
3500 struct vtn_value *entry_point = &b->values[w[2]];
3501 /* Let this be a name label regardless */
3502 unsigned name_words;
3503 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3504
3505 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3506 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3507 return;
3508
3509 vtn_assert(b->entry_point == NULL);
3510 b->entry_point = entry_point;
3511 }
3512
3513 static bool
3514 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3515 const uint32_t *w, unsigned count)
3516 {
3517 switch (opcode) {
3518 case SpvOpSource: {
3519 const char *lang;
3520 switch (w[1]) {
3521 default:
3522 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3523 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3524 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3525 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3526 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3527 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3528 }
3529
3530 uint32_t version = w[2];
3531
3532 const char *file =
3533 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3534
3535 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3536 break;
3537 }
3538
3539 case SpvOpSourceExtension:
3540 case SpvOpSourceContinued:
3541 case SpvOpExtension:
3542 case SpvOpModuleProcessed:
3543 /* Unhandled, but these are for debug so that's ok. */
3544 break;
3545
3546 case SpvOpCapability: {
3547 SpvCapability cap = w[1];
3548 switch (cap) {
3549 case SpvCapabilityMatrix:
3550 case SpvCapabilityShader:
3551 case SpvCapabilityGeometry:
3552 case SpvCapabilityGeometryPointSize:
3553 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3554 case SpvCapabilitySampledImageArrayDynamicIndexing:
3555 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3556 case SpvCapabilityStorageImageArrayDynamicIndexing:
3557 case SpvCapabilityImageRect:
3558 case SpvCapabilitySampledRect:
3559 case SpvCapabilitySampled1D:
3560 case SpvCapabilityImage1D:
3561 case SpvCapabilitySampledCubeArray:
3562 case SpvCapabilityImageCubeArray:
3563 case SpvCapabilitySampledBuffer:
3564 case SpvCapabilityImageBuffer:
3565 case SpvCapabilityImageQuery:
3566 case SpvCapabilityDerivativeControl:
3567 case SpvCapabilityInterpolationFunction:
3568 case SpvCapabilityMultiViewport:
3569 case SpvCapabilitySampleRateShading:
3570 case SpvCapabilityClipDistance:
3571 case SpvCapabilityCullDistance:
3572 case SpvCapabilityInputAttachment:
3573 case SpvCapabilityImageGatherExtended:
3574 case SpvCapabilityStorageImageExtendedFormats:
3575 break;
3576
3577 case SpvCapabilityLinkage:
3578 case SpvCapabilityVector16:
3579 case SpvCapabilityFloat16Buffer:
3580 case SpvCapabilityFloat16:
3581 case SpvCapabilitySparseResidency:
3582 vtn_warn("Unsupported SPIR-V capability: %s",
3583 spirv_capability_to_string(cap));
3584 break;
3585
3586 case SpvCapabilityMinLod:
3587 spv_check_supported(min_lod, cap);
3588 break;
3589
3590 case SpvCapabilityAtomicStorage:
3591 spv_check_supported(atomic_storage, cap);
3592 break;
3593
3594 case SpvCapabilityFloat64:
3595 spv_check_supported(float64, cap);
3596 break;
3597 case SpvCapabilityInt64:
3598 spv_check_supported(int64, cap);
3599 break;
3600 case SpvCapabilityInt16:
3601 spv_check_supported(int16, cap);
3602 break;
3603
3604 case SpvCapabilityTransformFeedback:
3605 spv_check_supported(transform_feedback, cap);
3606 break;
3607
3608 case SpvCapabilityGeometryStreams:
3609 spv_check_supported(geometry_streams, cap);
3610 break;
3611
3612 case SpvCapabilityInt64Atomics:
3613 spv_check_supported(int64_atomics, cap);
3614 break;
3615
3616 case SpvCapabilityInt8:
3617 spv_check_supported(int8, cap);
3618 break;
3619
3620 case SpvCapabilityStorageImageMultisample:
3621 spv_check_supported(storage_image_ms, cap);
3622 break;
3623
3624 case SpvCapabilityAddresses:
3625 spv_check_supported(address, cap);
3626 break;
3627
3628 case SpvCapabilityKernel:
3629 spv_check_supported(kernel, cap);
3630 break;
3631
3632 case SpvCapabilityImageBasic:
3633 case SpvCapabilityImageReadWrite:
3634 case SpvCapabilityImageMipmap:
3635 case SpvCapabilityPipes:
3636 case SpvCapabilityGroups:
3637 case SpvCapabilityDeviceEnqueue:
3638 case SpvCapabilityLiteralSampler:
3639 case SpvCapabilityGenericPointer:
3640 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3641 spirv_capability_to_string(cap));
3642 break;
3643
3644 case SpvCapabilityImageMSArray:
3645 spv_check_supported(image_ms_array, cap);
3646 break;
3647
3648 case SpvCapabilityTessellation:
3649 case SpvCapabilityTessellationPointSize:
3650 spv_check_supported(tessellation, cap);
3651 break;
3652
3653 case SpvCapabilityDrawParameters:
3654 spv_check_supported(draw_parameters, cap);
3655 break;
3656
3657 case SpvCapabilityStorageImageReadWithoutFormat:
3658 spv_check_supported(image_read_without_format, cap);
3659 break;
3660
3661 case SpvCapabilityStorageImageWriteWithoutFormat:
3662 spv_check_supported(image_write_without_format, cap);
3663 break;
3664
3665 case SpvCapabilityDeviceGroup:
3666 spv_check_supported(device_group, cap);
3667 break;
3668
3669 case SpvCapabilityMultiView:
3670 spv_check_supported(multiview, cap);
3671 break;
3672
3673 case SpvCapabilityGroupNonUniform:
3674 spv_check_supported(subgroup_basic, cap);
3675 break;
3676
3677 case SpvCapabilityGroupNonUniformVote:
3678 spv_check_supported(subgroup_vote, cap);
3679 break;
3680
3681 case SpvCapabilitySubgroupBallotKHR:
3682 case SpvCapabilityGroupNonUniformBallot:
3683 spv_check_supported(subgroup_ballot, cap);
3684 break;
3685
3686 case SpvCapabilityGroupNonUniformShuffle:
3687 case SpvCapabilityGroupNonUniformShuffleRelative:
3688 spv_check_supported(subgroup_shuffle, cap);
3689 break;
3690
3691 case SpvCapabilityGroupNonUniformQuad:
3692 spv_check_supported(subgroup_quad, cap);
3693 break;
3694
3695 case SpvCapabilityGroupNonUniformArithmetic:
3696 case SpvCapabilityGroupNonUniformClustered:
3697 spv_check_supported(subgroup_arithmetic, cap);
3698 break;
3699
3700 case SpvCapabilityVariablePointersStorageBuffer:
3701 case SpvCapabilityVariablePointers:
3702 spv_check_supported(variable_pointers, cap);
3703 b->variable_pointers = true;
3704 break;
3705
3706 case SpvCapabilityStorageUniformBufferBlock16:
3707 case SpvCapabilityStorageUniform16:
3708 case SpvCapabilityStoragePushConstant16:
3709 case SpvCapabilityStorageInputOutput16:
3710 spv_check_supported(storage_16bit, cap);
3711 break;
3712
3713 case SpvCapabilityShaderViewportIndexLayerEXT:
3714 spv_check_supported(shader_viewport_index_layer, cap);
3715 break;
3716
3717 case SpvCapabilityStorageBuffer8BitAccess:
3718 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3719 case SpvCapabilityStoragePushConstant8:
3720 spv_check_supported(storage_8bit, cap);
3721 break;
3722
3723 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3724 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3725 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3726 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3727 break;
3728
3729 case SpvCapabilityRuntimeDescriptorArrayEXT:
3730 spv_check_supported(runtime_descriptor_array, cap);
3731 break;
3732
3733 case SpvCapabilityStencilExportEXT:
3734 spv_check_supported(stencil_export, cap);
3735 break;
3736
3737 case SpvCapabilitySampleMaskPostDepthCoverage:
3738 spv_check_supported(post_depth_coverage, cap);
3739 break;
3740
3741 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3742 spv_check_supported(physical_storage_buffer_address, cap);
3743 break;
3744
3745 default:
3746 vtn_fail("Unhandled capability");
3747 }
3748 break;
3749 }
3750
3751 case SpvOpExtInstImport:
3752 vtn_handle_extension(b, opcode, w, count);
3753 break;
3754
3755 case SpvOpMemoryModel:
3756 switch (w[1]) {
3757 case SpvAddressingModelPhysical32:
3758 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3759 "AddressingModelPhysical32 only supported for kernels");
3760 b->shader->info.cs.ptr_size = 32;
3761 b->physical_ptrs = true;
3762 b->options->shared_ptr_type = glsl_uint_type();
3763 b->options->global_ptr_type = glsl_uint_type();
3764 b->options->temp_ptr_type = glsl_uint_type();
3765 break;
3766 case SpvAddressingModelPhysical64:
3767 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3768 "AddressingModelPhysical64 only supported for kernels");
3769 b->shader->info.cs.ptr_size = 64;
3770 b->physical_ptrs = true;
3771 b->options->shared_ptr_type = glsl_uint64_t_type();
3772 b->options->global_ptr_type = glsl_uint64_t_type();
3773 b->options->temp_ptr_type = glsl_uint64_t_type();
3774 break;
3775 case SpvAddressingModelLogical:
3776 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3777 "AddressingModelLogical only supported for shaders");
3778 b->shader->info.cs.ptr_size = 0;
3779 b->physical_ptrs = false;
3780 break;
3781 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3782 vtn_fail_if(!b->options ||
3783 !b->options->caps.physical_storage_buffer_address,
3784 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3785 break;
3786 default:
3787 vtn_fail("Unknown addressing model");
3788 break;
3789 }
3790
3791 vtn_assert(w[2] == SpvMemoryModelSimple ||
3792 w[2] == SpvMemoryModelGLSL450 ||
3793 w[2] == SpvMemoryModelOpenCL);
3794 break;
3795
3796 case SpvOpEntryPoint:
3797 vtn_handle_entry_point(b, w, count);
3798 break;
3799
3800 case SpvOpString:
3801 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3802 vtn_string_literal(b, &w[2], count - 2, NULL);
3803 break;
3804
3805 case SpvOpName:
3806 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3807 break;
3808
3809 case SpvOpMemberName:
3810 /* TODO */
3811 break;
3812
3813 case SpvOpExecutionMode:
3814 case SpvOpExecutionModeId:
3815 case SpvOpDecorationGroup:
3816 case SpvOpDecorate:
3817 case SpvOpMemberDecorate:
3818 case SpvOpGroupDecorate:
3819 case SpvOpGroupMemberDecorate:
3820 case SpvOpDecorateStringGOOGLE:
3821 case SpvOpMemberDecorateStringGOOGLE:
3822 vtn_handle_decoration(b, opcode, w, count);
3823 break;
3824
3825 default:
3826 return false; /* End of preamble */
3827 }
3828
3829 return true;
3830 }
3831
3832 static void
3833 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3834 const struct vtn_decoration *mode, void *data)
3835 {
3836 vtn_assert(b->entry_point == entry_point);
3837
3838 switch(mode->exec_mode) {
3839 case SpvExecutionModeOriginUpperLeft:
3840 case SpvExecutionModeOriginLowerLeft:
3841 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3842 b->shader->info.fs.origin_upper_left =
3843 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3844 break;
3845
3846 case SpvExecutionModeEarlyFragmentTests:
3847 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3848 b->shader->info.fs.early_fragment_tests = true;
3849 break;
3850
3851 case SpvExecutionModePostDepthCoverage:
3852 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3853 b->shader->info.fs.post_depth_coverage = true;
3854 break;
3855
3856 case SpvExecutionModeInvocations:
3857 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3858 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
3859 break;
3860
3861 case SpvExecutionModeDepthReplacing:
3862 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3863 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3864 break;
3865 case SpvExecutionModeDepthGreater:
3866 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3867 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3868 break;
3869 case SpvExecutionModeDepthLess:
3870 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3871 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3872 break;
3873 case SpvExecutionModeDepthUnchanged:
3874 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3875 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3876 break;
3877
3878 case SpvExecutionModeLocalSize:
3879 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3880 b->shader->info.cs.local_size[0] = mode->literals[0];
3881 b->shader->info.cs.local_size[1] = mode->literals[1];
3882 b->shader->info.cs.local_size[2] = mode->literals[2];
3883 break;
3884
3885 case SpvExecutionModeLocalSizeId:
3886 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->literals[0]);
3887 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->literals[1]);
3888 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->literals[2]);
3889 break;
3890
3891 case SpvExecutionModeLocalSizeHint:
3892 case SpvExecutionModeLocalSizeHintId:
3893 break; /* Nothing to do with this */
3894
3895 case SpvExecutionModeOutputVertices:
3896 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3897 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3898 b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3899 } else {
3900 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3901 b->shader->info.gs.vertices_out = mode->literals[0];
3902 }
3903 break;
3904
3905 case SpvExecutionModeInputPoints:
3906 case SpvExecutionModeInputLines:
3907 case SpvExecutionModeInputLinesAdjacency:
3908 case SpvExecutionModeTriangles:
3909 case SpvExecutionModeInputTrianglesAdjacency:
3910 case SpvExecutionModeQuads:
3911 case SpvExecutionModeIsolines:
3912 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3913 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3914 b->shader->info.tess.primitive_mode =
3915 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3916 } else {
3917 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3918 b->shader->info.gs.vertices_in =
3919 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3920 b->shader->info.gs.input_primitive =
3921 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3922 }
3923 break;
3924
3925 case SpvExecutionModeOutputPoints:
3926 case SpvExecutionModeOutputLineStrip:
3927 case SpvExecutionModeOutputTriangleStrip:
3928 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3929 b->shader->info.gs.output_primitive =
3930 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3931 break;
3932
3933 case SpvExecutionModeSpacingEqual:
3934 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3935 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3936 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3937 break;
3938 case SpvExecutionModeSpacingFractionalEven:
3939 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3940 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3941 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3942 break;
3943 case SpvExecutionModeSpacingFractionalOdd:
3944 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3945 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3946 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3947 break;
3948 case SpvExecutionModeVertexOrderCw:
3949 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3950 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3951 b->shader->info.tess.ccw = false;
3952 break;
3953 case SpvExecutionModeVertexOrderCcw:
3954 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3955 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3956 b->shader->info.tess.ccw = true;
3957 break;
3958 case SpvExecutionModePointMode:
3959 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3960 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3961 b->shader->info.tess.point_mode = true;
3962 break;
3963
3964 case SpvExecutionModePixelCenterInteger:
3965 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3966 b->shader->info.fs.pixel_center_integer = true;
3967 break;
3968
3969 case SpvExecutionModeXfb:
3970 b->shader->info.has_transform_feedback_varyings = true;
3971 break;
3972
3973 case SpvExecutionModeVecTypeHint:
3974 break; /* OpenCL */
3975
3976 case SpvExecutionModeContractionOff:
3977 if (b->shader->info.stage != MESA_SHADER_KERNEL)
3978 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
3979 spirv_executionmode_to_string(mode->exec_mode));
3980 else
3981 b->exact = true;
3982 break;
3983
3984 case SpvExecutionModeStencilRefReplacingEXT:
3985 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3986 break;
3987
3988 default:
3989 vtn_fail("Unhandled execution mode");
3990 }
3991 }
3992
3993 static bool
3994 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3995 const uint32_t *w, unsigned count)
3996 {
3997 vtn_set_instruction_result_type(b, opcode, w, count);
3998
3999 switch (opcode) {
4000 case SpvOpSource:
4001 case SpvOpSourceContinued:
4002 case SpvOpSourceExtension:
4003 case SpvOpExtension:
4004 case SpvOpCapability:
4005 case SpvOpExtInstImport:
4006 case SpvOpMemoryModel:
4007 case SpvOpEntryPoint:
4008 case SpvOpExecutionMode:
4009 case SpvOpString:
4010 case SpvOpName:
4011 case SpvOpMemberName:
4012 case SpvOpDecorationGroup:
4013 case SpvOpDecorate:
4014 case SpvOpMemberDecorate:
4015 case SpvOpGroupDecorate:
4016 case SpvOpGroupMemberDecorate:
4017 case SpvOpDecorateStringGOOGLE:
4018 case SpvOpMemberDecorateStringGOOGLE:
4019 vtn_fail("Invalid opcode types and variables section");
4020 break;
4021
4022 case SpvOpTypeVoid:
4023 case SpvOpTypeBool:
4024 case SpvOpTypeInt:
4025 case SpvOpTypeFloat:
4026 case SpvOpTypeVector:
4027 case SpvOpTypeMatrix:
4028 case SpvOpTypeImage:
4029 case SpvOpTypeSampler:
4030 case SpvOpTypeSampledImage:
4031 case SpvOpTypeArray:
4032 case SpvOpTypeRuntimeArray:
4033 case SpvOpTypeStruct:
4034 case SpvOpTypeOpaque:
4035 case SpvOpTypePointer:
4036 case SpvOpTypeForwardPointer:
4037 case SpvOpTypeFunction:
4038 case SpvOpTypeEvent:
4039 case SpvOpTypeDeviceEvent:
4040 case SpvOpTypeReserveId:
4041 case SpvOpTypeQueue:
4042 case SpvOpTypePipe:
4043 vtn_handle_type(b, opcode, w, count);
4044 break;
4045
4046 case SpvOpConstantTrue:
4047 case SpvOpConstantFalse:
4048 case SpvOpConstant:
4049 case SpvOpConstantComposite:
4050 case SpvOpConstantSampler:
4051 case SpvOpConstantNull:
4052 case SpvOpSpecConstantTrue:
4053 case SpvOpSpecConstantFalse:
4054 case SpvOpSpecConstant:
4055 case SpvOpSpecConstantComposite:
4056 case SpvOpSpecConstantOp:
4057 vtn_handle_constant(b, opcode, w, count);
4058 break;
4059
4060 case SpvOpUndef:
4061 case SpvOpVariable:
4062 vtn_handle_variables(b, opcode, w, count);
4063 break;
4064
4065 default:
4066 return false; /* End of preamble */
4067 }
4068
4069 return true;
4070 }
4071
4072 static bool
4073 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4074 const uint32_t *w, unsigned count)
4075 {
4076 switch (opcode) {
4077 case SpvOpLabel:
4078 break;
4079
4080 case SpvOpLoopMerge:
4081 case SpvOpSelectionMerge:
4082 /* This is handled by cfg pre-pass and walk_blocks */
4083 break;
4084
4085 case SpvOpUndef: {
4086 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4087 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4088 break;
4089 }
4090
4091 case SpvOpExtInst:
4092 vtn_handle_extension(b, opcode, w, count);
4093 break;
4094
4095 case SpvOpVariable:
4096 case SpvOpLoad:
4097 case SpvOpStore:
4098 case SpvOpCopyMemory:
4099 case SpvOpCopyMemorySized:
4100 case SpvOpAccessChain:
4101 case SpvOpPtrAccessChain:
4102 case SpvOpInBoundsAccessChain:
4103 case SpvOpInBoundsPtrAccessChain:
4104 case SpvOpArrayLength:
4105 case SpvOpConvertPtrToU:
4106 case SpvOpConvertUToPtr:
4107 vtn_handle_variables(b, opcode, w, count);
4108 break;
4109
4110 case SpvOpFunctionCall:
4111 vtn_handle_function_call(b, opcode, w, count);
4112 break;
4113
4114 case SpvOpSampledImage:
4115 case SpvOpImage:
4116 case SpvOpImageSampleImplicitLod:
4117 case SpvOpImageSampleExplicitLod:
4118 case SpvOpImageSampleDrefImplicitLod:
4119 case SpvOpImageSampleDrefExplicitLod:
4120 case SpvOpImageSampleProjImplicitLod:
4121 case SpvOpImageSampleProjExplicitLod:
4122 case SpvOpImageSampleProjDrefImplicitLod:
4123 case SpvOpImageSampleProjDrefExplicitLod:
4124 case SpvOpImageFetch:
4125 case SpvOpImageGather:
4126 case SpvOpImageDrefGather:
4127 case SpvOpImageQuerySizeLod:
4128 case SpvOpImageQueryLod:
4129 case SpvOpImageQueryLevels:
4130 case SpvOpImageQuerySamples:
4131 vtn_handle_texture(b, opcode, w, count);
4132 break;
4133
4134 case SpvOpImageRead:
4135 case SpvOpImageWrite:
4136 case SpvOpImageTexelPointer:
4137 vtn_handle_image(b, opcode, w, count);
4138 break;
4139
4140 case SpvOpImageQuerySize: {
4141 struct vtn_pointer *image =
4142 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4143 if (glsl_type_is_image(image->type->type)) {
4144 vtn_handle_image(b, opcode, w, count);
4145 } else {
4146 vtn_assert(glsl_type_is_sampler(image->type->type));
4147 vtn_handle_texture(b, opcode, w, count);
4148 }
4149 break;
4150 }
4151
4152 case SpvOpAtomicLoad:
4153 case SpvOpAtomicExchange:
4154 case SpvOpAtomicCompareExchange:
4155 case SpvOpAtomicCompareExchangeWeak:
4156 case SpvOpAtomicIIncrement:
4157 case SpvOpAtomicIDecrement:
4158 case SpvOpAtomicIAdd:
4159 case SpvOpAtomicISub:
4160 case SpvOpAtomicSMin:
4161 case SpvOpAtomicUMin:
4162 case SpvOpAtomicSMax:
4163 case SpvOpAtomicUMax:
4164 case SpvOpAtomicAnd:
4165 case SpvOpAtomicOr:
4166 case SpvOpAtomicXor: {
4167 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4168 if (pointer->value_type == vtn_value_type_image_pointer) {
4169 vtn_handle_image(b, opcode, w, count);
4170 } else {
4171 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4172 vtn_handle_atomics(b, opcode, w, count);
4173 }
4174 break;
4175 }
4176
4177 case SpvOpAtomicStore: {
4178 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4179 if (pointer->value_type == vtn_value_type_image_pointer) {
4180 vtn_handle_image(b, opcode, w, count);
4181 } else {
4182 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4183 vtn_handle_atomics(b, opcode, w, count);
4184 }
4185 break;
4186 }
4187
4188 case SpvOpSelect: {
4189 /* Handle OpSelect up-front here because it needs to be able to handle
4190 * pointers and not just regular vectors and scalars.
4191 */
4192 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4193 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
4194 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4195 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4196
4197 const struct glsl_type *sel_type;
4198 switch (res_val->type->base_type) {
4199 case vtn_base_type_scalar:
4200 sel_type = glsl_bool_type();
4201 break;
4202 case vtn_base_type_vector:
4203 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
4204 break;
4205 case vtn_base_type_pointer:
4206 /* We need to have actual storage for pointer types */
4207 vtn_fail_if(res_val->type->type == NULL,
4208 "Invalid pointer result type for OpSelect");
4209 sel_type = glsl_bool_type();
4210 break;
4211 default:
4212 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
4213 }
4214
4215 if (unlikely(sel_val->type->type != sel_type)) {
4216 if (sel_val->type->type == glsl_bool_type()) {
4217 /* This case is illegal but some older versions of GLSLang produce
4218 * it. The GLSLang issue was fixed on March 30, 2017:
4219 *
4220 * https://github.com/KhronosGroup/glslang/issues/809
4221 *
4222 * Unfortunately, there are applications in the wild which are
4223 * shipping with this bug so it isn't nice to fail on them so we
4224 * throw a warning instead. It's not actually a problem for us as
4225 * nir_builder will just splat the condition out which is most
4226 * likely what the client wanted anyway.
4227 */
4228 vtn_warn("Condition type of OpSelect must have the same number "
4229 "of components as Result Type");
4230 } else {
4231 vtn_fail("Condition type of OpSelect must be a scalar or vector "
4232 "of Boolean type. It must have the same number of "
4233 "components as Result Type");
4234 }
4235 }
4236
4237 vtn_fail_if(obj1_val->type != res_val->type ||
4238 obj2_val->type != res_val->type,
4239 "Object types must match the result type in OpSelect");
4240
4241 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4242 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
4243 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
4244 vtn_ssa_value(b, w[4])->def,
4245 vtn_ssa_value(b, w[5])->def);
4246 vtn_push_ssa(b, w[2], res_type, ssa);
4247 break;
4248 }
4249
4250 case SpvOpSNegate:
4251 case SpvOpFNegate:
4252 case SpvOpNot:
4253 case SpvOpAny:
4254 case SpvOpAll:
4255 case SpvOpConvertFToU:
4256 case SpvOpConvertFToS:
4257 case SpvOpConvertSToF:
4258 case SpvOpConvertUToF:
4259 case SpvOpUConvert:
4260 case SpvOpSConvert:
4261 case SpvOpFConvert:
4262 case SpvOpQuantizeToF16:
4263 case SpvOpPtrCastToGeneric:
4264 case SpvOpGenericCastToPtr:
4265 case SpvOpBitcast:
4266 case SpvOpIsNan:
4267 case SpvOpIsInf:
4268 case SpvOpIsFinite:
4269 case SpvOpIsNormal:
4270 case SpvOpSignBitSet:
4271 case SpvOpLessOrGreater:
4272 case SpvOpOrdered:
4273 case SpvOpUnordered:
4274 case SpvOpIAdd:
4275 case SpvOpFAdd:
4276 case SpvOpISub:
4277 case SpvOpFSub:
4278 case SpvOpIMul:
4279 case SpvOpFMul:
4280 case SpvOpUDiv:
4281 case SpvOpSDiv:
4282 case SpvOpFDiv:
4283 case SpvOpUMod:
4284 case SpvOpSRem:
4285 case SpvOpSMod:
4286 case SpvOpFRem:
4287 case SpvOpFMod:
4288 case SpvOpVectorTimesScalar:
4289 case SpvOpDot:
4290 case SpvOpIAddCarry:
4291 case SpvOpISubBorrow:
4292 case SpvOpUMulExtended:
4293 case SpvOpSMulExtended:
4294 case SpvOpShiftRightLogical:
4295 case SpvOpShiftRightArithmetic:
4296 case SpvOpShiftLeftLogical:
4297 case SpvOpLogicalEqual:
4298 case SpvOpLogicalNotEqual:
4299 case SpvOpLogicalOr:
4300 case SpvOpLogicalAnd:
4301 case SpvOpLogicalNot:
4302 case SpvOpBitwiseOr:
4303 case SpvOpBitwiseXor:
4304 case SpvOpBitwiseAnd:
4305 case SpvOpIEqual:
4306 case SpvOpFOrdEqual:
4307 case SpvOpFUnordEqual:
4308 case SpvOpINotEqual:
4309 case SpvOpFOrdNotEqual:
4310 case SpvOpFUnordNotEqual:
4311 case SpvOpULessThan:
4312 case SpvOpSLessThan:
4313 case SpvOpFOrdLessThan:
4314 case SpvOpFUnordLessThan:
4315 case SpvOpUGreaterThan:
4316 case SpvOpSGreaterThan:
4317 case SpvOpFOrdGreaterThan:
4318 case SpvOpFUnordGreaterThan:
4319 case SpvOpULessThanEqual:
4320 case SpvOpSLessThanEqual:
4321 case SpvOpFOrdLessThanEqual:
4322 case SpvOpFUnordLessThanEqual:
4323 case SpvOpUGreaterThanEqual:
4324 case SpvOpSGreaterThanEqual:
4325 case SpvOpFOrdGreaterThanEqual:
4326 case SpvOpFUnordGreaterThanEqual:
4327 case SpvOpDPdx:
4328 case SpvOpDPdy:
4329 case SpvOpFwidth:
4330 case SpvOpDPdxFine:
4331 case SpvOpDPdyFine:
4332 case SpvOpFwidthFine:
4333 case SpvOpDPdxCoarse:
4334 case SpvOpDPdyCoarse:
4335 case SpvOpFwidthCoarse:
4336 case SpvOpBitFieldInsert:
4337 case SpvOpBitFieldSExtract:
4338 case SpvOpBitFieldUExtract:
4339 case SpvOpBitReverse:
4340 case SpvOpBitCount:
4341 case SpvOpTranspose:
4342 case SpvOpOuterProduct:
4343 case SpvOpMatrixTimesScalar:
4344 case SpvOpVectorTimesMatrix:
4345 case SpvOpMatrixTimesVector:
4346 case SpvOpMatrixTimesMatrix:
4347 vtn_handle_alu(b, opcode, w, count);
4348 break;
4349
4350 case SpvOpVectorExtractDynamic:
4351 case SpvOpVectorInsertDynamic:
4352 case SpvOpVectorShuffle:
4353 case SpvOpCompositeConstruct:
4354 case SpvOpCompositeExtract:
4355 case SpvOpCompositeInsert:
4356 case SpvOpCopyObject:
4357 vtn_handle_composite(b, opcode, w, count);
4358 break;
4359
4360 case SpvOpEmitVertex:
4361 case SpvOpEndPrimitive:
4362 case SpvOpEmitStreamVertex:
4363 case SpvOpEndStreamPrimitive:
4364 case SpvOpControlBarrier:
4365 case SpvOpMemoryBarrier:
4366 vtn_handle_barrier(b, opcode, w, count);
4367 break;
4368
4369 case SpvOpGroupNonUniformElect:
4370 case SpvOpGroupNonUniformAll:
4371 case SpvOpGroupNonUniformAny:
4372 case SpvOpGroupNonUniformAllEqual:
4373 case SpvOpGroupNonUniformBroadcast:
4374 case SpvOpGroupNonUniformBroadcastFirst:
4375 case SpvOpGroupNonUniformBallot:
4376 case SpvOpGroupNonUniformInverseBallot:
4377 case SpvOpGroupNonUniformBallotBitExtract:
4378 case SpvOpGroupNonUniformBallotBitCount:
4379 case SpvOpGroupNonUniformBallotFindLSB:
4380 case SpvOpGroupNonUniformBallotFindMSB:
4381 case SpvOpGroupNonUniformShuffle:
4382 case SpvOpGroupNonUniformShuffleXor:
4383 case SpvOpGroupNonUniformShuffleUp:
4384 case SpvOpGroupNonUniformShuffleDown:
4385 case SpvOpGroupNonUniformIAdd:
4386 case SpvOpGroupNonUniformFAdd:
4387 case SpvOpGroupNonUniformIMul:
4388 case SpvOpGroupNonUniformFMul:
4389 case SpvOpGroupNonUniformSMin:
4390 case SpvOpGroupNonUniformUMin:
4391 case SpvOpGroupNonUniformFMin:
4392 case SpvOpGroupNonUniformSMax:
4393 case SpvOpGroupNonUniformUMax:
4394 case SpvOpGroupNonUniformFMax:
4395 case SpvOpGroupNonUniformBitwiseAnd:
4396 case SpvOpGroupNonUniformBitwiseOr:
4397 case SpvOpGroupNonUniformBitwiseXor:
4398 case SpvOpGroupNonUniformLogicalAnd:
4399 case SpvOpGroupNonUniformLogicalOr:
4400 case SpvOpGroupNonUniformLogicalXor:
4401 case SpvOpGroupNonUniformQuadBroadcast:
4402 case SpvOpGroupNonUniformQuadSwap:
4403 vtn_handle_subgroup(b, opcode, w, count);
4404 break;
4405
4406 default:
4407 vtn_fail("Unhandled opcode");
4408 }
4409
4410 return true;
4411 }
4412
4413 struct vtn_builder*
4414 vtn_create_builder(const uint32_t *words, size_t word_count,
4415 gl_shader_stage stage, const char *entry_point_name,
4416 const struct spirv_to_nir_options *options)
4417 {
4418 /* Initialize the vtn_builder object */
4419 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4420 struct spirv_to_nir_options *dup_options =
4421 ralloc(b, struct spirv_to_nir_options);
4422 *dup_options = *options;
4423
4424 b->spirv = words;
4425 b->spirv_word_count = word_count;
4426 b->file = NULL;
4427 b->line = -1;
4428 b->col = -1;
4429 exec_list_make_empty(&b->functions);
4430 b->entry_point_stage = stage;
4431 b->entry_point_name = entry_point_name;
4432 b->options = dup_options;
4433
4434 /*
4435 * Handle the SPIR-V header (first 5 dwords).
4436 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4437 */
4438 if (word_count <= 5)
4439 goto fail;
4440
4441 if (words[0] != SpvMagicNumber) {
4442 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4443 goto fail;
4444 }
4445 if (words[1] < 0x10000) {
4446 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4447 goto fail;
4448 }
4449
4450 uint16_t generator_id = words[2] >> 16;
4451 uint16_t generator_version = words[2];
4452
4453 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4454 * but this should at least let us shut the workaround off for modern
4455 * versions of GLSLang.
4456 */
4457 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4458
4459 /* words[2] == generator magic */
4460 unsigned value_id_bound = words[3];
4461 if (words[4] != 0) {
4462 vtn_err("words[4] was %u, want 0", words[4]);
4463 goto fail;
4464 }
4465
4466 b->value_id_bound = value_id_bound;
4467 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4468
4469 return b;
4470 fail:
4471 ralloc_free(b);
4472 return NULL;
4473 }
4474
4475 static nir_function *
4476 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4477 nir_function *entry_point)
4478 {
4479 vtn_assert(entry_point == b->entry_point->func->impl->function);
4480 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4481 const char *func_name =
4482 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4483
4484 /* we shouldn't have any inputs yet */
4485 vtn_assert(!entry_point->shader->num_inputs);
4486 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4487
4488 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4489 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4490 nir_builder_init(&b->nb, main_entry_point->impl);
4491 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4492 b->func_param_idx = 0;
4493
4494 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4495
4496 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4497 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4498
4499 /* consider all pointers to function memory to be parameters passed
4500 * by value
4501 */
4502 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4503 param_type->storage_class == SpvStorageClassFunction;
4504
4505 /* input variable */
4506 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4507 in_var->data.mode = nir_var_shader_in;
4508 in_var->data.read_only = true;
4509 in_var->data.location = i;
4510
4511 if (is_by_val)
4512 in_var->type = param_type->deref->type;
4513 else
4514 in_var->type = param_type->type;
4515
4516 nir_shader_add_variable(b->nb.shader, in_var);
4517 b->nb.shader->num_inputs++;
4518
4519 /* we have to copy the entire variable into function memory */
4520 if (is_by_val) {
4521 nir_variable *copy_var =
4522 nir_local_variable_create(main_entry_point->impl, in_var->type,
4523 "copy_in");
4524 nir_copy_var(&b->nb, copy_var, in_var);
4525 call->params[i] =
4526 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4527 } else {
4528 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4529 }
4530 }
4531
4532 nir_builder_instr_insert(&b->nb, &call->instr);
4533
4534 return main_entry_point;
4535 }
4536
4537 nir_function *
4538 spirv_to_nir(const uint32_t *words, size_t word_count,
4539 struct nir_spirv_specialization *spec, unsigned num_spec,
4540 gl_shader_stage stage, const char *entry_point_name,
4541 const struct spirv_to_nir_options *options,
4542 const nir_shader_compiler_options *nir_options)
4543
4544 {
4545 const uint32_t *word_end = words + word_count;
4546
4547 struct vtn_builder *b = vtn_create_builder(words, word_count,
4548 stage, entry_point_name,
4549 options);
4550
4551 if (b == NULL)
4552 return NULL;
4553
4554 /* See also _vtn_fail() */
4555 if (setjmp(b->fail_jump)) {
4556 ralloc_free(b);
4557 return NULL;
4558 }
4559
4560 /* Skip the SPIR-V header, handled at vtn_create_builder */
4561 words+= 5;
4562
4563 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4564
4565 /* Handle all the preamble instructions */
4566 words = vtn_foreach_instruction(b, words, word_end,
4567 vtn_handle_preamble_instruction);
4568
4569 if (b->entry_point == NULL) {
4570 vtn_fail("Entry point not found");
4571 ralloc_free(b);
4572 return NULL;
4573 }
4574
4575 /* Set shader info defaults */
4576 b->shader->info.gs.invocations = 1;
4577
4578 b->specializations = spec;
4579 b->num_specializations = num_spec;
4580
4581 /* Handle all variable, type, and constant instructions */
4582 words = vtn_foreach_instruction(b, words, word_end,
4583 vtn_handle_variable_or_type_instruction);
4584
4585 /* Parse execution modes */
4586 vtn_foreach_execution_mode(b, b->entry_point,
4587 vtn_handle_execution_mode, NULL);
4588
4589 if (b->workgroup_size_builtin) {
4590 vtn_assert(b->workgroup_size_builtin->type->type ==
4591 glsl_vector_type(GLSL_TYPE_UINT, 3));
4592
4593 nir_const_value *const_size =
4594 &b->workgroup_size_builtin->constant->values[0];
4595
4596 b->shader->info.cs.local_size[0] = const_size->u32[0];
4597 b->shader->info.cs.local_size[1] = const_size->u32[1];
4598 b->shader->info.cs.local_size[2] = const_size->u32[2];
4599 }
4600
4601 /* Set types on all vtn_values */
4602 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4603
4604 vtn_build_cfg(b, words, word_end);
4605
4606 assert(b->entry_point->value_type == vtn_value_type_function);
4607 b->entry_point->func->referenced = true;
4608
4609 bool progress;
4610 do {
4611 progress = false;
4612 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4613 if (func->referenced && !func->emitted) {
4614 b->const_table = _mesa_pointer_hash_table_create(b);
4615
4616 vtn_function_emit(b, func, vtn_handle_body_instruction);
4617 progress = true;
4618 }
4619 }
4620 } while (progress);
4621
4622 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4623 nir_function *entry_point = b->entry_point->func->impl->function;
4624 vtn_assert(entry_point);
4625
4626 /* post process entry_points with input params */
4627 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4628 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4629
4630 entry_point->is_entrypoint = true;
4631
4632 /* When multiple shader stages exist in the same SPIR-V module, we
4633 * generate input and output variables for every stage, in the same
4634 * NIR program. These dead variables can be invalid NIR. For example,
4635 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4636 * VS output variables wouldn't be.
4637 *
4638 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4639 * right away. In order to do so, we must lower any constant initializers
4640 * on outputs so nir_remove_dead_variables sees that they're written to.
4641 */
4642 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4643 nir_remove_dead_variables(b->shader,
4644 nir_var_shader_in | nir_var_shader_out);
4645
4646 /* We sometimes generate bogus derefs that, while never used, give the
4647 * validator a bit of heartburn. Run dead code to get rid of them.
4648 */
4649 nir_opt_dce(b->shader);
4650
4651 /* Unparent the shader from the vtn_builder before we delete the builder */
4652 ralloc_steal(NULL, b->shader);
4653
4654 ralloc_free(b);
4655
4656 return entry_point;
4657 }