spirv: Add vtn_fail and vtn_assert helpers
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33
34 void
35 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
36 size_t spirv_offset, const char *message)
37 {
38 if (b->options->debug.func) {
39 b->options->debug.func(b->options->debug.private_data,
40 level, spirv_offset, message);
41 }
42
43 #ifndef NDEBUG
44 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
45 fprintf(stderr, "%s\n", message);
46 #endif
47 }
48
49 void
50 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
51 size_t spirv_offset, const char *fmt, ...)
52 {
53 va_list args;
54 char *msg;
55
56 va_start(args, fmt);
57 msg = ralloc_vasprintf(NULL, fmt, args);
58 va_end(args);
59
60 vtn_log(b, level, spirv_offset, msg);
61
62 ralloc_free(msg);
63 }
64
65 static void
66 vtn_log_err(struct vtn_builder *b,
67 enum nir_spirv_debug_level level, const char *prefix,
68 const char *file, unsigned line,
69 const char *fmt, va_list args)
70 {
71 char *msg;
72
73 msg = ralloc_strdup(NULL, prefix);
74
75 #ifndef NDEBUG
76 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
77 #endif
78
79 ralloc_asprintf_append(&msg, " ");
80
81 ralloc_vasprintf_append(&msg, fmt, args);
82
83 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
84 b->spirv_offset);
85
86 if (b->file) {
87 ralloc_asprintf_append(&msg,
88 "\n in SPIR-V source file %s, line %d, col %d",
89 b->file, b->line, b->col);
90 }
91
92 vtn_log(b, level, b->spirv_offset, msg);
93
94 ralloc_free(msg);
95 }
96
97 void
98 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
99 const char *fmt, ...)
100 {
101 va_list args;
102
103 va_start(args, fmt);
104 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
105 file, line, fmt, args);
106 va_end(args);
107 }
108
109 void
110 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
111 const char *fmt, ...)
112 {
113 va_list args;
114
115 va_start(args, fmt);
116 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
117 file, line, fmt, args);
118 va_end(args);
119
120 longjmp(b->fail_jump, 1);
121 }
122
123 struct spec_constant_value {
124 bool is_double;
125 union {
126 uint32_t data32;
127 uint64_t data64;
128 };
129 };
130
131 static struct vtn_ssa_value *
132 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
133 {
134 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
135 val->type = type;
136
137 if (glsl_type_is_vector_or_scalar(type)) {
138 unsigned num_components = glsl_get_vector_elements(val->type);
139 unsigned bit_size = glsl_get_bit_size(val->type);
140 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
141 } else {
142 unsigned elems = glsl_get_length(val->type);
143 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
144 if (glsl_type_is_matrix(type)) {
145 const struct glsl_type *elem_type =
146 glsl_vector_type(glsl_get_base_type(type),
147 glsl_get_vector_elements(type));
148
149 for (unsigned i = 0; i < elems; i++)
150 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
151 } else if (glsl_type_is_array(type)) {
152 const struct glsl_type *elem_type = glsl_get_array_element(type);
153 for (unsigned i = 0; i < elems; i++)
154 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
155 } else {
156 for (unsigned i = 0; i < elems; i++) {
157 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
158 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
159 }
160 }
161 }
162
163 return val;
164 }
165
166 static struct vtn_ssa_value *
167 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
168 const struct glsl_type *type)
169 {
170 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
171
172 if (entry)
173 return entry->data;
174
175 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
176 val->type = type;
177
178 switch (glsl_get_base_type(type)) {
179 case GLSL_TYPE_INT:
180 case GLSL_TYPE_UINT:
181 case GLSL_TYPE_INT64:
182 case GLSL_TYPE_UINT64:
183 case GLSL_TYPE_BOOL:
184 case GLSL_TYPE_FLOAT:
185 case GLSL_TYPE_DOUBLE: {
186 int bit_size = glsl_get_bit_size(type);
187 if (glsl_type_is_vector_or_scalar(type)) {
188 unsigned num_components = glsl_get_vector_elements(val->type);
189 nir_load_const_instr *load =
190 nir_load_const_instr_create(b->shader, num_components, bit_size);
191
192 load->value = constant->values[0];
193
194 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
195 val->def = &load->def;
196 } else {
197 assert(glsl_type_is_matrix(type));
198 unsigned rows = glsl_get_vector_elements(val->type);
199 unsigned columns = glsl_get_matrix_columns(val->type);
200 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
201
202 for (unsigned i = 0; i < columns; i++) {
203 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
204 col_val->type = glsl_get_column_type(val->type);
205 nir_load_const_instr *load =
206 nir_load_const_instr_create(b->shader, rows, bit_size);
207
208 load->value = constant->values[i];
209
210 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
211 col_val->def = &load->def;
212
213 val->elems[i] = col_val;
214 }
215 }
216 break;
217 }
218
219 case GLSL_TYPE_ARRAY: {
220 unsigned elems = glsl_get_length(val->type);
221 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
222 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
223 for (unsigned i = 0; i < elems; i++)
224 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
225 elem_type);
226 break;
227 }
228
229 case GLSL_TYPE_STRUCT: {
230 unsigned elems = glsl_get_length(val->type);
231 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
232 for (unsigned i = 0; i < elems; i++) {
233 const struct glsl_type *elem_type =
234 glsl_get_struct_field(val->type, i);
235 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
236 elem_type);
237 }
238 break;
239 }
240
241 default:
242 unreachable("bad constant type");
243 }
244
245 return val;
246 }
247
248 struct vtn_ssa_value *
249 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
250 {
251 struct vtn_value *val = vtn_untyped_value(b, value_id);
252 switch (val->value_type) {
253 case vtn_value_type_undef:
254 return vtn_undef_ssa_value(b, val->type->type);
255
256 case vtn_value_type_constant:
257 return vtn_const_ssa_value(b, val->constant, val->const_type);
258
259 case vtn_value_type_ssa:
260 return val->ssa;
261
262 case vtn_value_type_pointer:
263 assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
264 struct vtn_ssa_value *ssa =
265 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
266 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
267 return ssa;
268
269 default:
270 unreachable("Invalid type for an SSA value");
271 }
272 }
273
274 static char *
275 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
276 unsigned word_count, unsigned *words_used)
277 {
278 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
279 if (words_used) {
280 /* Ammount of space taken by the string (including the null) */
281 unsigned len = strlen(dup) + 1;
282 *words_used = DIV_ROUND_UP(len, sizeof(*words));
283 }
284 return dup;
285 }
286
287 const uint32_t *
288 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
289 const uint32_t *end, vtn_instruction_handler handler)
290 {
291 b->file = NULL;
292 b->line = -1;
293 b->col = -1;
294
295 const uint32_t *w = start;
296 while (w < end) {
297 SpvOp opcode = w[0] & SpvOpCodeMask;
298 unsigned count = w[0] >> SpvWordCountShift;
299 assert(count >= 1 && w + count <= end);
300
301 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
302
303 switch (opcode) {
304 case SpvOpNop:
305 break; /* Do nothing */
306
307 case SpvOpLine:
308 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
309 b->line = w[2];
310 b->col = w[3];
311 break;
312
313 case SpvOpNoLine:
314 b->file = NULL;
315 b->line = -1;
316 b->col = -1;
317 break;
318
319 default:
320 if (!handler(b, opcode, w, count))
321 return w;
322 break;
323 }
324
325 w += count;
326 }
327
328 b->spirv_offset = 0;
329 b->file = NULL;
330 b->line = -1;
331 b->col = -1;
332
333 assert(w == end);
334 return w;
335 }
336
337 static void
338 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
339 const uint32_t *w, unsigned count)
340 {
341 switch (opcode) {
342 case SpvOpExtInstImport: {
343 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
344 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
345 val->ext_handler = vtn_handle_glsl450_instruction;
346 } else {
347 unreachable("Unsupported extension");
348 }
349 break;
350 }
351
352 case SpvOpExtInst: {
353 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
354 bool handled = val->ext_handler(b, w[4], w, count);
355 (void)handled;
356 assert(handled);
357 break;
358 }
359
360 default:
361 unreachable("Unhandled opcode");
362 }
363 }
364
365 static void
366 _foreach_decoration_helper(struct vtn_builder *b,
367 struct vtn_value *base_value,
368 int parent_member,
369 struct vtn_value *value,
370 vtn_decoration_foreach_cb cb, void *data)
371 {
372 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
373 int member;
374 if (dec->scope == VTN_DEC_DECORATION) {
375 member = parent_member;
376 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
377 assert(parent_member == -1);
378 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
379 } else {
380 /* Not a decoration */
381 continue;
382 }
383
384 if (dec->group) {
385 assert(dec->group->value_type == vtn_value_type_decoration_group);
386 _foreach_decoration_helper(b, base_value, member, dec->group,
387 cb, data);
388 } else {
389 cb(b, base_value, member, dec, data);
390 }
391 }
392 }
393
394 /** Iterates (recursively if needed) over all of the decorations on a value
395 *
396 * This function iterates over all of the decorations applied to a given
397 * value. If it encounters a decoration group, it recurses into the group
398 * and iterates over all of those decorations as well.
399 */
400 void
401 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
402 vtn_decoration_foreach_cb cb, void *data)
403 {
404 _foreach_decoration_helper(b, value, -1, value, cb, data);
405 }
406
407 void
408 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
409 vtn_execution_mode_foreach_cb cb, void *data)
410 {
411 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
412 if (dec->scope != VTN_DEC_EXECUTION_MODE)
413 continue;
414
415 assert(dec->group == NULL);
416 cb(b, value, dec, data);
417 }
418 }
419
420 static void
421 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
422 const uint32_t *w, unsigned count)
423 {
424 const uint32_t *w_end = w + count;
425 const uint32_t target = w[1];
426 w += 2;
427
428 switch (opcode) {
429 case SpvOpDecorationGroup:
430 vtn_push_value(b, target, vtn_value_type_decoration_group);
431 break;
432
433 case SpvOpDecorate:
434 case SpvOpMemberDecorate:
435 case SpvOpExecutionMode: {
436 struct vtn_value *val = &b->values[target];
437
438 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
439 switch (opcode) {
440 case SpvOpDecorate:
441 dec->scope = VTN_DEC_DECORATION;
442 break;
443 case SpvOpMemberDecorate:
444 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
445 break;
446 case SpvOpExecutionMode:
447 dec->scope = VTN_DEC_EXECUTION_MODE;
448 break;
449 default:
450 unreachable("Invalid decoration opcode");
451 }
452 dec->decoration = *(w++);
453 dec->literals = w;
454
455 /* Link into the list */
456 dec->next = val->decoration;
457 val->decoration = dec;
458 break;
459 }
460
461 case SpvOpGroupMemberDecorate:
462 case SpvOpGroupDecorate: {
463 struct vtn_value *group =
464 vtn_value(b, target, vtn_value_type_decoration_group);
465
466 for (; w < w_end; w++) {
467 struct vtn_value *val = vtn_untyped_value(b, *w);
468 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
469
470 dec->group = group;
471 if (opcode == SpvOpGroupDecorate) {
472 dec->scope = VTN_DEC_DECORATION;
473 } else {
474 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
475 }
476
477 /* Link into the list */
478 dec->next = val->decoration;
479 val->decoration = dec;
480 }
481 break;
482 }
483
484 default:
485 unreachable("Unhandled opcode");
486 }
487 }
488
489 struct member_decoration_ctx {
490 unsigned num_fields;
491 struct glsl_struct_field *fields;
492 struct vtn_type *type;
493 };
494
495 /* does a shallow copy of a vtn_type */
496
497 static struct vtn_type *
498 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
499 {
500 struct vtn_type *dest = ralloc(b, struct vtn_type);
501 *dest = *src;
502
503 switch (src->base_type) {
504 case vtn_base_type_void:
505 case vtn_base_type_scalar:
506 case vtn_base_type_vector:
507 case vtn_base_type_matrix:
508 case vtn_base_type_array:
509 case vtn_base_type_pointer:
510 case vtn_base_type_image:
511 case vtn_base_type_sampler:
512 /* Nothing more to do */
513 break;
514
515 case vtn_base_type_struct:
516 dest->members = ralloc_array(b, struct vtn_type *, src->length);
517 memcpy(dest->members, src->members,
518 src->length * sizeof(src->members[0]));
519
520 dest->offsets = ralloc_array(b, unsigned, src->length);
521 memcpy(dest->offsets, src->offsets,
522 src->length * sizeof(src->offsets[0]));
523 break;
524
525 case vtn_base_type_function:
526 dest->params = ralloc_array(b, struct vtn_type *, src->length);
527 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
528 break;
529 }
530
531 return dest;
532 }
533
534 static struct vtn_type *
535 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
536 {
537 type->members[member] = vtn_type_copy(b, type->members[member]);
538 type = type->members[member];
539
540 /* We may have an array of matrices.... Oh, joy! */
541 while (glsl_type_is_array(type->type)) {
542 type->array_element = vtn_type_copy(b, type->array_element);
543 type = type->array_element;
544 }
545
546 assert(glsl_type_is_matrix(type->type));
547
548 return type;
549 }
550
551 static void
552 struct_member_decoration_cb(struct vtn_builder *b,
553 struct vtn_value *val, int member,
554 const struct vtn_decoration *dec, void *void_ctx)
555 {
556 struct member_decoration_ctx *ctx = void_ctx;
557
558 if (member < 0)
559 return;
560
561 assert(member < ctx->num_fields);
562
563 switch (dec->decoration) {
564 case SpvDecorationNonWritable:
565 case SpvDecorationNonReadable:
566 case SpvDecorationRelaxedPrecision:
567 case SpvDecorationVolatile:
568 case SpvDecorationCoherent:
569 case SpvDecorationUniform:
570 break; /* FIXME: Do nothing with this for now. */
571 case SpvDecorationNoPerspective:
572 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
573 break;
574 case SpvDecorationFlat:
575 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
576 break;
577 case SpvDecorationCentroid:
578 ctx->fields[member].centroid = true;
579 break;
580 case SpvDecorationSample:
581 ctx->fields[member].sample = true;
582 break;
583 case SpvDecorationStream:
584 /* Vulkan only allows one GS stream */
585 assert(dec->literals[0] == 0);
586 break;
587 case SpvDecorationLocation:
588 ctx->fields[member].location = dec->literals[0];
589 break;
590 case SpvDecorationComponent:
591 break; /* FIXME: What should we do with these? */
592 case SpvDecorationBuiltIn:
593 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
594 ctx->type->members[member]->is_builtin = true;
595 ctx->type->members[member]->builtin = dec->literals[0];
596 ctx->type->builtin_block = true;
597 break;
598 case SpvDecorationOffset:
599 ctx->type->offsets[member] = dec->literals[0];
600 break;
601 case SpvDecorationMatrixStride:
602 /* Handled as a second pass */
603 break;
604 case SpvDecorationColMajor:
605 break; /* Nothing to do here. Column-major is the default. */
606 case SpvDecorationRowMajor:
607 mutable_matrix_member(b, ctx->type, member)->row_major = true;
608 break;
609
610 case SpvDecorationPatch:
611 break;
612
613 case SpvDecorationSpecId:
614 case SpvDecorationBlock:
615 case SpvDecorationBufferBlock:
616 case SpvDecorationArrayStride:
617 case SpvDecorationGLSLShared:
618 case SpvDecorationGLSLPacked:
619 case SpvDecorationInvariant:
620 case SpvDecorationRestrict:
621 case SpvDecorationAliased:
622 case SpvDecorationConstant:
623 case SpvDecorationIndex:
624 case SpvDecorationBinding:
625 case SpvDecorationDescriptorSet:
626 case SpvDecorationLinkageAttributes:
627 case SpvDecorationNoContraction:
628 case SpvDecorationInputAttachmentIndex:
629 vtn_warn("Decoration not allowed on struct members: %s",
630 spirv_decoration_to_string(dec->decoration));
631 break;
632
633 case SpvDecorationXfbBuffer:
634 case SpvDecorationXfbStride:
635 vtn_warn("Vulkan does not have transform feedback");
636 break;
637
638 case SpvDecorationCPacked:
639 case SpvDecorationSaturatedConversion:
640 case SpvDecorationFuncParamAttr:
641 case SpvDecorationFPRoundingMode:
642 case SpvDecorationFPFastMathMode:
643 case SpvDecorationAlignment:
644 vtn_warn("Decoration only allowed for CL-style kernels: %s",
645 spirv_decoration_to_string(dec->decoration));
646 break;
647
648 default:
649 unreachable("Unhandled decoration");
650 }
651 }
652
653 /* Matrix strides are handled as a separate pass because we need to know
654 * whether the matrix is row-major or not first.
655 */
656 static void
657 struct_member_matrix_stride_cb(struct vtn_builder *b,
658 struct vtn_value *val, int member,
659 const struct vtn_decoration *dec,
660 void *void_ctx)
661 {
662 if (dec->decoration != SpvDecorationMatrixStride)
663 return;
664 assert(member >= 0);
665
666 struct member_decoration_ctx *ctx = void_ctx;
667
668 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
669 if (mat_type->row_major) {
670 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
671 mat_type->stride = mat_type->array_element->stride;
672 mat_type->array_element->stride = dec->literals[0];
673 } else {
674 assert(mat_type->array_element->stride > 0);
675 mat_type->stride = dec->literals[0];
676 }
677 }
678
679 static void
680 type_decoration_cb(struct vtn_builder *b,
681 struct vtn_value *val, int member,
682 const struct vtn_decoration *dec, void *ctx)
683 {
684 struct vtn_type *type = val->type;
685
686 if (member != -1)
687 return;
688
689 switch (dec->decoration) {
690 case SpvDecorationArrayStride:
691 assert(type->base_type == vtn_base_type_matrix ||
692 type->base_type == vtn_base_type_array ||
693 type->base_type == vtn_base_type_pointer);
694 type->stride = dec->literals[0];
695 break;
696 case SpvDecorationBlock:
697 assert(type->base_type == vtn_base_type_struct);
698 type->block = true;
699 break;
700 case SpvDecorationBufferBlock:
701 assert(type->base_type == vtn_base_type_struct);
702 type->buffer_block = true;
703 break;
704 case SpvDecorationGLSLShared:
705 case SpvDecorationGLSLPacked:
706 /* Ignore these, since we get explicit offsets anyways */
707 break;
708
709 case SpvDecorationRowMajor:
710 case SpvDecorationColMajor:
711 case SpvDecorationMatrixStride:
712 case SpvDecorationBuiltIn:
713 case SpvDecorationNoPerspective:
714 case SpvDecorationFlat:
715 case SpvDecorationPatch:
716 case SpvDecorationCentroid:
717 case SpvDecorationSample:
718 case SpvDecorationVolatile:
719 case SpvDecorationCoherent:
720 case SpvDecorationNonWritable:
721 case SpvDecorationNonReadable:
722 case SpvDecorationUniform:
723 case SpvDecorationStream:
724 case SpvDecorationLocation:
725 case SpvDecorationComponent:
726 case SpvDecorationOffset:
727 case SpvDecorationXfbBuffer:
728 case SpvDecorationXfbStride:
729 vtn_warn("Decoration only allowed for struct members: %s",
730 spirv_decoration_to_string(dec->decoration));
731 break;
732
733 case SpvDecorationRelaxedPrecision:
734 case SpvDecorationSpecId:
735 case SpvDecorationInvariant:
736 case SpvDecorationRestrict:
737 case SpvDecorationAliased:
738 case SpvDecorationConstant:
739 case SpvDecorationIndex:
740 case SpvDecorationBinding:
741 case SpvDecorationDescriptorSet:
742 case SpvDecorationLinkageAttributes:
743 case SpvDecorationNoContraction:
744 case SpvDecorationInputAttachmentIndex:
745 vtn_warn("Decoration not allowed on types: %s",
746 spirv_decoration_to_string(dec->decoration));
747 break;
748
749 case SpvDecorationCPacked:
750 case SpvDecorationSaturatedConversion:
751 case SpvDecorationFuncParamAttr:
752 case SpvDecorationFPRoundingMode:
753 case SpvDecorationFPFastMathMode:
754 case SpvDecorationAlignment:
755 vtn_warn("Decoration only allowed for CL-style kernels: %s",
756 spirv_decoration_to_string(dec->decoration));
757 break;
758
759 default:
760 unreachable("Unhandled decoration");
761 }
762 }
763
764 static unsigned
765 translate_image_format(SpvImageFormat format)
766 {
767 switch (format) {
768 case SpvImageFormatUnknown: return 0; /* GL_NONE */
769 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
770 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
771 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
772 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
773 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
774 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
775 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
776 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
777 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
778 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
779 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
780 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
781 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
782 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
783 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
784 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
785 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
786 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
787 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
788 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
789 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
790 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
791 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
792 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
793 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
794 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
795 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
796 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
797 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
798 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
799 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
800 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
801 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
802 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
803 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
804 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
805 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
806 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
807 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
808 default:
809 unreachable("Invalid image format");
810 return 0;
811 }
812 }
813
814 static void
815 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
816 const uint32_t *w, unsigned count)
817 {
818 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
819
820 val->type = rzalloc(b, struct vtn_type);
821 val->type->val = val;
822
823 switch (opcode) {
824 case SpvOpTypeVoid:
825 val->type->base_type = vtn_base_type_void;
826 val->type->type = glsl_void_type();
827 break;
828 case SpvOpTypeBool:
829 val->type->base_type = vtn_base_type_scalar;
830 val->type->type = glsl_bool_type();
831 break;
832 case SpvOpTypeInt: {
833 int bit_size = w[2];
834 const bool signedness = w[3];
835 val->type->base_type = vtn_base_type_scalar;
836 if (bit_size == 64)
837 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
838 else
839 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
840 break;
841 }
842 case SpvOpTypeFloat: {
843 int bit_size = w[2];
844 val->type->base_type = vtn_base_type_scalar;
845 val->type->type = bit_size == 64 ? glsl_double_type() : glsl_float_type();
846 break;
847 }
848
849 case SpvOpTypeVector: {
850 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
851 unsigned elems = w[3];
852
853 assert(glsl_type_is_scalar(base->type));
854 val->type->base_type = vtn_base_type_vector;
855 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
856 val->type->stride = glsl_get_bit_size(base->type) / 8;
857 val->type->array_element = base;
858 break;
859 }
860
861 case SpvOpTypeMatrix: {
862 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
863 unsigned columns = w[3];
864
865 assert(glsl_type_is_vector(base->type));
866 val->type->base_type = vtn_base_type_matrix;
867 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
868 glsl_get_vector_elements(base->type),
869 columns);
870 assert(!glsl_type_is_error(val->type->type));
871 val->type->length = columns;
872 val->type->array_element = base;
873 val->type->row_major = false;
874 val->type->stride = 0;
875 break;
876 }
877
878 case SpvOpTypeRuntimeArray:
879 case SpvOpTypeArray: {
880 struct vtn_type *array_element =
881 vtn_value(b, w[2], vtn_value_type_type)->type;
882
883 if (opcode == SpvOpTypeRuntimeArray) {
884 /* A length of 0 is used to denote unsized arrays */
885 val->type->length = 0;
886 } else {
887 val->type->length =
888 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
889 }
890
891 val->type->base_type = vtn_base_type_array;
892 val->type->type = glsl_array_type(array_element->type, val->type->length);
893 val->type->array_element = array_element;
894 val->type->stride = 0;
895 break;
896 }
897
898 case SpvOpTypeStruct: {
899 unsigned num_fields = count - 2;
900 val->type->base_type = vtn_base_type_struct;
901 val->type->length = num_fields;
902 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
903 val->type->offsets = ralloc_array(b, unsigned, num_fields);
904
905 NIR_VLA(struct glsl_struct_field, fields, count);
906 for (unsigned i = 0; i < num_fields; i++) {
907 val->type->members[i] =
908 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
909 fields[i] = (struct glsl_struct_field) {
910 .type = val->type->members[i]->type,
911 .name = ralloc_asprintf(b, "field%d", i),
912 .location = -1,
913 };
914 }
915
916 struct member_decoration_ctx ctx = {
917 .num_fields = num_fields,
918 .fields = fields,
919 .type = val->type
920 };
921
922 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
923 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
924
925 const char *name = val->name ? val->name : "struct";
926
927 val->type->type = glsl_struct_type(fields, num_fields, name);
928 break;
929 }
930
931 case SpvOpTypeFunction: {
932 val->type->base_type = vtn_base_type_function;
933 val->type->type = NULL;
934
935 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
936
937 const unsigned num_params = count - 3;
938 val->type->length = num_params;
939 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
940 for (unsigned i = 0; i < count - 3; i++) {
941 val->type->params[i] =
942 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
943 }
944 break;
945 }
946
947 case SpvOpTypePointer: {
948 SpvStorageClass storage_class = w[2];
949 struct vtn_type *deref_type =
950 vtn_value(b, w[3], vtn_value_type_type)->type;
951
952 val->type->base_type = vtn_base_type_pointer;
953 val->type->storage_class = storage_class;
954 val->type->deref = deref_type;
955
956 if (storage_class == SpvStorageClassUniform ||
957 storage_class == SpvStorageClassStorageBuffer) {
958 /* These can actually be stored to nir_variables and used as SSA
959 * values so they need a real glsl_type.
960 */
961 val->type->type = glsl_vector_type(GLSL_TYPE_UINT, 2);
962 }
963 break;
964 }
965
966 case SpvOpTypeImage: {
967 val->type->base_type = vtn_base_type_image;
968
969 const struct glsl_type *sampled_type =
970 vtn_value(b, w[2], vtn_value_type_type)->type->type;
971
972 assert(glsl_type_is_vector_or_scalar(sampled_type));
973
974 enum glsl_sampler_dim dim;
975 switch ((SpvDim)w[3]) {
976 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
977 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
978 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
979 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
980 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
981 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
982 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
983 default:
984 unreachable("Invalid SPIR-V Sampler dimension");
985 }
986
987 bool is_shadow = w[4];
988 bool is_array = w[5];
989 bool multisampled = w[6];
990 unsigned sampled = w[7];
991 SpvImageFormat format = w[8];
992
993 if (count > 9)
994 val->type->access_qualifier = w[9];
995 else
996 val->type->access_qualifier = SpvAccessQualifierReadWrite;
997
998 if (multisampled) {
999 if (dim == GLSL_SAMPLER_DIM_2D)
1000 dim = GLSL_SAMPLER_DIM_MS;
1001 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1002 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1003 else
1004 unreachable("Unsupported multisampled image type");
1005 }
1006
1007 val->type->image_format = translate_image_format(format);
1008
1009 if (sampled == 1) {
1010 val->type->sampled = true;
1011 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
1012 glsl_get_base_type(sampled_type));
1013 } else if (sampled == 2) {
1014 assert(!is_shadow);
1015 val->type->sampled = false;
1016 val->type->type = glsl_image_type(dim, is_array,
1017 glsl_get_base_type(sampled_type));
1018 } else {
1019 unreachable("We need to know if the image will be sampled");
1020 }
1021 break;
1022 }
1023
1024 case SpvOpTypeSampledImage:
1025 val->type = vtn_value(b, w[2], vtn_value_type_type)->type;
1026 break;
1027
1028 case SpvOpTypeSampler:
1029 /* The actual sampler type here doesn't really matter. It gets
1030 * thrown away the moment you combine it with an image. What really
1031 * matters is that it's a sampler type as opposed to an integer type
1032 * so the backend knows what to do.
1033 */
1034 val->type->base_type = vtn_base_type_sampler;
1035 val->type->type = glsl_bare_sampler_type();
1036 break;
1037
1038 case SpvOpTypeOpaque:
1039 case SpvOpTypeEvent:
1040 case SpvOpTypeDeviceEvent:
1041 case SpvOpTypeReserveId:
1042 case SpvOpTypeQueue:
1043 case SpvOpTypePipe:
1044 default:
1045 unreachable("Unhandled opcode");
1046 }
1047
1048 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1049 }
1050
1051 static nir_constant *
1052 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1053 {
1054 nir_constant *c = rzalloc(b, nir_constant);
1055
1056 /* For pointers and other typeless things, we have to return something but
1057 * it doesn't matter what.
1058 */
1059 if (!type)
1060 return c;
1061
1062 switch (glsl_get_base_type(type)) {
1063 case GLSL_TYPE_INT:
1064 case GLSL_TYPE_UINT:
1065 case GLSL_TYPE_INT64:
1066 case GLSL_TYPE_UINT64:
1067 case GLSL_TYPE_BOOL:
1068 case GLSL_TYPE_FLOAT:
1069 case GLSL_TYPE_DOUBLE:
1070 /* Nothing to do here. It's already initialized to zero */
1071 break;
1072
1073 case GLSL_TYPE_ARRAY:
1074 assert(glsl_get_length(type) > 0);
1075 c->num_elements = glsl_get_length(type);
1076 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1077
1078 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1079 for (unsigned i = 1; i < c->num_elements; i++)
1080 c->elements[i] = c->elements[0];
1081 break;
1082
1083 case GLSL_TYPE_STRUCT:
1084 c->num_elements = glsl_get_length(type);
1085 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1086
1087 for (unsigned i = 0; i < c->num_elements; i++) {
1088 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1089 }
1090 break;
1091
1092 default:
1093 unreachable("Invalid type for null constant");
1094 }
1095
1096 return c;
1097 }
1098
1099 static void
1100 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1101 int member, const struct vtn_decoration *dec,
1102 void *data)
1103 {
1104 assert(member == -1);
1105 if (dec->decoration != SpvDecorationSpecId)
1106 return;
1107
1108 struct spec_constant_value *const_value = data;
1109
1110 for (unsigned i = 0; i < b->num_specializations; i++) {
1111 if (b->specializations[i].id == dec->literals[0]) {
1112 if (const_value->is_double)
1113 const_value->data64 = b->specializations[i].data64;
1114 else
1115 const_value->data32 = b->specializations[i].data32;
1116 return;
1117 }
1118 }
1119 }
1120
1121 static uint32_t
1122 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1123 uint32_t const_value)
1124 {
1125 struct spec_constant_value data;
1126 data.is_double = false;
1127 data.data32 = const_value;
1128 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1129 return data.data32;
1130 }
1131
1132 static uint64_t
1133 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1134 uint64_t const_value)
1135 {
1136 struct spec_constant_value data;
1137 data.is_double = true;
1138 data.data64 = const_value;
1139 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1140 return data.data64;
1141 }
1142
1143 static void
1144 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1145 struct vtn_value *val,
1146 int member,
1147 const struct vtn_decoration *dec,
1148 void *data)
1149 {
1150 assert(member == -1);
1151 if (dec->decoration != SpvDecorationBuiltIn ||
1152 dec->literals[0] != SpvBuiltInWorkgroupSize)
1153 return;
1154
1155 assert(val->const_type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1156
1157 b->shader->info.cs.local_size[0] = val->constant->values[0].u32[0];
1158 b->shader->info.cs.local_size[1] = val->constant->values[0].u32[1];
1159 b->shader->info.cs.local_size[2] = val->constant->values[0].u32[2];
1160 }
1161
1162 static void
1163 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1164 const uint32_t *w, unsigned count)
1165 {
1166 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1167 val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
1168 val->constant = rzalloc(b, nir_constant);
1169 switch (opcode) {
1170 case SpvOpConstantTrue:
1171 assert(val->const_type == glsl_bool_type());
1172 val->constant->values[0].u32[0] = NIR_TRUE;
1173 break;
1174 case SpvOpConstantFalse:
1175 assert(val->const_type == glsl_bool_type());
1176 val->constant->values[0].u32[0] = NIR_FALSE;
1177 break;
1178
1179 case SpvOpSpecConstantTrue:
1180 case SpvOpSpecConstantFalse: {
1181 assert(val->const_type == glsl_bool_type());
1182 uint32_t int_val =
1183 get_specialization(b, val, (opcode == SpvOpSpecConstantTrue));
1184 val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE;
1185 break;
1186 }
1187
1188 case SpvOpConstant: {
1189 assert(glsl_type_is_scalar(val->const_type));
1190 int bit_size = glsl_get_bit_size(val->const_type);
1191 if (bit_size == 64) {
1192 val->constant->values->u32[0] = w[3];
1193 val->constant->values->u32[1] = w[4];
1194 } else {
1195 assert(bit_size == 32);
1196 val->constant->values->u32[0] = w[3];
1197 }
1198 break;
1199 }
1200 case SpvOpSpecConstant: {
1201 assert(glsl_type_is_scalar(val->const_type));
1202 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1203 int bit_size = glsl_get_bit_size(val->const_type);
1204 if (bit_size == 64)
1205 val->constant->values[0].u64[0] =
1206 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1207 else
1208 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1209 break;
1210 }
1211 case SpvOpSpecConstantComposite:
1212 case SpvOpConstantComposite: {
1213 unsigned elem_count = count - 3;
1214 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1215 for (unsigned i = 0; i < elem_count; i++)
1216 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1217
1218 switch (glsl_get_base_type(val->const_type)) {
1219 case GLSL_TYPE_UINT:
1220 case GLSL_TYPE_INT:
1221 case GLSL_TYPE_UINT64:
1222 case GLSL_TYPE_INT64:
1223 case GLSL_TYPE_FLOAT:
1224 case GLSL_TYPE_BOOL:
1225 case GLSL_TYPE_DOUBLE: {
1226 int bit_size = glsl_get_bit_size(val->const_type);
1227 if (glsl_type_is_matrix(val->const_type)) {
1228 assert(glsl_get_matrix_columns(val->const_type) == elem_count);
1229 for (unsigned i = 0; i < elem_count; i++)
1230 val->constant->values[i] = elems[i]->values[0];
1231 } else {
1232 assert(glsl_type_is_vector(val->const_type));
1233 assert(glsl_get_vector_elements(val->const_type) == elem_count);
1234 for (unsigned i = 0; i < elem_count; i++) {
1235 if (bit_size == 64) {
1236 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1237 } else {
1238 assert(bit_size == 32);
1239 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1240 }
1241 }
1242 }
1243 ralloc_free(elems);
1244 break;
1245 }
1246 case GLSL_TYPE_STRUCT:
1247 case GLSL_TYPE_ARRAY:
1248 ralloc_steal(val->constant, elems);
1249 val->constant->num_elements = elem_count;
1250 val->constant->elements = elems;
1251 break;
1252
1253 default:
1254 unreachable("Unsupported type for constants");
1255 }
1256 break;
1257 }
1258
1259 case SpvOpSpecConstantOp: {
1260 SpvOp opcode = get_specialization(b, val, w[3]);
1261 switch (opcode) {
1262 case SpvOpVectorShuffle: {
1263 struct vtn_value *v0 = &b->values[w[4]];
1264 struct vtn_value *v1 = &b->values[w[5]];
1265
1266 assert(v0->value_type == vtn_value_type_constant ||
1267 v0->value_type == vtn_value_type_undef);
1268 assert(v1->value_type == vtn_value_type_constant ||
1269 v1->value_type == vtn_value_type_undef);
1270
1271 unsigned len0 = v0->value_type == vtn_value_type_constant ?
1272 glsl_get_vector_elements(v0->const_type) :
1273 glsl_get_vector_elements(v0->type->type);
1274 unsigned len1 = v1->value_type == vtn_value_type_constant ?
1275 glsl_get_vector_elements(v1->const_type) :
1276 glsl_get_vector_elements(v1->type->type);
1277
1278 assert(len0 + len1 < 16);
1279
1280 unsigned bit_size = glsl_get_bit_size(val->const_type);
1281 unsigned bit_size0 = v0->value_type == vtn_value_type_constant ?
1282 glsl_get_bit_size(v0->const_type) :
1283 glsl_get_bit_size(v0->type->type);
1284 unsigned bit_size1 = v1->value_type == vtn_value_type_constant ?
1285 glsl_get_bit_size(v1->const_type) :
1286 glsl_get_bit_size(v1->type->type);
1287
1288 assert(bit_size == bit_size0 && bit_size == bit_size1);
1289 (void)bit_size0; (void)bit_size1;
1290
1291 if (bit_size == 64) {
1292 uint64_t u64[8];
1293 if (v0->value_type == vtn_value_type_constant) {
1294 for (unsigned i = 0; i < len0; i++)
1295 u64[i] = v0->constant->values[0].u64[i];
1296 }
1297 if (v1->value_type == vtn_value_type_constant) {
1298 for (unsigned i = 0; i < len1; i++)
1299 u64[len0 + i] = v1->constant->values[0].u64[i];
1300 }
1301
1302 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1303 uint32_t comp = w[i + 6];
1304 /* If component is not used, set the value to a known constant
1305 * to detect if it is wrongly used.
1306 */
1307 if (comp == (uint32_t)-1)
1308 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1309 else
1310 val->constant->values[0].u64[j] = u64[comp];
1311 }
1312 } else {
1313 uint32_t u32[8];
1314 if (v0->value_type == vtn_value_type_constant) {
1315 for (unsigned i = 0; i < len0; i++)
1316 u32[i] = v0->constant->values[0].u32[i];
1317 }
1318 if (v1->value_type == vtn_value_type_constant) {
1319 for (unsigned i = 0; i < len1; i++)
1320 u32[len0 + i] = v1->constant->values[0].u32[i];
1321 }
1322
1323 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1324 uint32_t comp = w[i + 6];
1325 /* If component is not used, set the value to a known constant
1326 * to detect if it is wrongly used.
1327 */
1328 if (comp == (uint32_t)-1)
1329 val->constant->values[0].u32[j] = 0xdeadbeef;
1330 else
1331 val->constant->values[0].u32[j] = u32[comp];
1332 }
1333 }
1334 break;
1335 }
1336
1337 case SpvOpCompositeExtract:
1338 case SpvOpCompositeInsert: {
1339 struct vtn_value *comp;
1340 unsigned deref_start;
1341 struct nir_constant **c;
1342 if (opcode == SpvOpCompositeExtract) {
1343 comp = vtn_value(b, w[4], vtn_value_type_constant);
1344 deref_start = 5;
1345 c = &comp->constant;
1346 } else {
1347 comp = vtn_value(b, w[5], vtn_value_type_constant);
1348 deref_start = 6;
1349 val->constant = nir_constant_clone(comp->constant,
1350 (nir_variable *)b);
1351 c = &val->constant;
1352 }
1353
1354 int elem = -1;
1355 int col = 0;
1356 const struct glsl_type *type = comp->const_type;
1357 for (unsigned i = deref_start; i < count; i++) {
1358 switch (glsl_get_base_type(type)) {
1359 case GLSL_TYPE_UINT:
1360 case GLSL_TYPE_INT:
1361 case GLSL_TYPE_UINT64:
1362 case GLSL_TYPE_INT64:
1363 case GLSL_TYPE_FLOAT:
1364 case GLSL_TYPE_DOUBLE:
1365 case GLSL_TYPE_BOOL:
1366 /* If we hit this granularity, we're picking off an element */
1367 if (glsl_type_is_matrix(type)) {
1368 assert(col == 0 && elem == -1);
1369 col = w[i];
1370 elem = 0;
1371 type = glsl_get_column_type(type);
1372 } else {
1373 assert(elem <= 0 && glsl_type_is_vector(type));
1374 elem = w[i];
1375 type = glsl_scalar_type(glsl_get_base_type(type));
1376 }
1377 continue;
1378
1379 case GLSL_TYPE_ARRAY:
1380 c = &(*c)->elements[w[i]];
1381 type = glsl_get_array_element(type);
1382 continue;
1383
1384 case GLSL_TYPE_STRUCT:
1385 c = &(*c)->elements[w[i]];
1386 type = glsl_get_struct_field(type, w[i]);
1387 continue;
1388
1389 default:
1390 unreachable("Invalid constant type");
1391 }
1392 }
1393
1394 if (opcode == SpvOpCompositeExtract) {
1395 if (elem == -1) {
1396 val->constant = *c;
1397 } else {
1398 unsigned num_components = glsl_get_vector_elements(type);
1399 unsigned bit_size = glsl_get_bit_size(type);
1400 for (unsigned i = 0; i < num_components; i++)
1401 if (bit_size == 64) {
1402 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1403 } else {
1404 assert(bit_size == 32);
1405 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1406 }
1407 }
1408 } else {
1409 struct vtn_value *insert =
1410 vtn_value(b, w[4], vtn_value_type_constant);
1411 assert(insert->const_type == type);
1412 if (elem == -1) {
1413 *c = insert->constant;
1414 } else {
1415 unsigned num_components = glsl_get_vector_elements(type);
1416 unsigned bit_size = glsl_get_bit_size(type);
1417 for (unsigned i = 0; i < num_components; i++)
1418 if (bit_size == 64) {
1419 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1420 } else {
1421 assert(bit_size == 32);
1422 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1423 }
1424 }
1425 }
1426 break;
1427 }
1428
1429 default: {
1430 bool swap;
1431 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->const_type);
1432 nir_alu_type src_alu_type = dst_alu_type;
1433 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap, src_alu_type, dst_alu_type);
1434
1435 unsigned num_components = glsl_get_vector_elements(val->const_type);
1436 unsigned bit_size =
1437 glsl_get_bit_size(val->const_type);
1438
1439 nir_const_value src[4];
1440 assert(count <= 7);
1441 for (unsigned i = 0; i < count - 4; i++) {
1442 nir_constant *c =
1443 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1444
1445 unsigned j = swap ? 1 - i : i;
1446 assert(bit_size == 32);
1447 src[j] = c->values[0];
1448 }
1449
1450 val->constant->values[0] =
1451 nir_eval_const_opcode(op, num_components, bit_size, src);
1452 break;
1453 } /* default */
1454 }
1455 break;
1456 }
1457
1458 case SpvOpConstantNull:
1459 val->constant = vtn_null_constant(b, val->const_type);
1460 break;
1461
1462 case SpvOpConstantSampler:
1463 unreachable("OpConstantSampler requires Kernel Capability");
1464 break;
1465
1466 default:
1467 unreachable("Unhandled opcode");
1468 }
1469
1470 /* Now that we have the value, update the workgroup size if needed */
1471 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1472 }
1473
1474 static void
1475 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1476 const uint32_t *w, unsigned count)
1477 {
1478 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1479 struct vtn_function *vtn_callee =
1480 vtn_value(b, w[3], vtn_value_type_function)->func;
1481 struct nir_function *callee = vtn_callee->impl->function;
1482
1483 vtn_callee->referenced = true;
1484
1485 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1486 for (unsigned i = 0; i < call->num_params; i++) {
1487 unsigned arg_id = w[4 + i];
1488 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1489 if (arg->value_type == vtn_value_type_pointer &&
1490 arg->pointer->ptr_type->type == NULL) {
1491 nir_deref_var *d = vtn_pointer_to_deref(b, arg->pointer);
1492 call->params[i] = nir_deref_var_clone(d, call);
1493 } else {
1494 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1495
1496 /* Make a temporary to store the argument in */
1497 nir_variable *tmp =
1498 nir_local_variable_create(b->nb.impl, arg_ssa->type, "arg_tmp");
1499 call->params[i] = nir_deref_var_create(call, tmp);
1500
1501 vtn_local_store(b, arg_ssa, call->params[i]);
1502 }
1503 }
1504
1505 nir_variable *out_tmp = NULL;
1506 assert(res_type->type == callee->return_type);
1507 if (!glsl_type_is_void(callee->return_type)) {
1508 out_tmp = nir_local_variable_create(b->nb.impl, callee->return_type,
1509 "out_tmp");
1510 call->return_deref = nir_deref_var_create(call, out_tmp);
1511 }
1512
1513 nir_builder_instr_insert(&b->nb, &call->instr);
1514
1515 if (glsl_type_is_void(callee->return_type)) {
1516 vtn_push_value(b, w[2], vtn_value_type_undef);
1517 } else {
1518 vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, call->return_deref));
1519 }
1520 }
1521
1522 struct vtn_ssa_value *
1523 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1524 {
1525 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1526 val->type = type;
1527
1528 if (!glsl_type_is_vector_or_scalar(type)) {
1529 unsigned elems = glsl_get_length(type);
1530 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1531 for (unsigned i = 0; i < elems; i++) {
1532 const struct glsl_type *child_type;
1533
1534 switch (glsl_get_base_type(type)) {
1535 case GLSL_TYPE_INT:
1536 case GLSL_TYPE_UINT:
1537 case GLSL_TYPE_INT64:
1538 case GLSL_TYPE_UINT64:
1539 case GLSL_TYPE_BOOL:
1540 case GLSL_TYPE_FLOAT:
1541 case GLSL_TYPE_DOUBLE:
1542 child_type = glsl_get_column_type(type);
1543 break;
1544 case GLSL_TYPE_ARRAY:
1545 child_type = glsl_get_array_element(type);
1546 break;
1547 case GLSL_TYPE_STRUCT:
1548 child_type = glsl_get_struct_field(type, i);
1549 break;
1550 default:
1551 unreachable("unkown base type");
1552 }
1553
1554 val->elems[i] = vtn_create_ssa_value(b, child_type);
1555 }
1556 }
1557
1558 return val;
1559 }
1560
1561 static nir_tex_src
1562 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1563 {
1564 nir_tex_src src;
1565 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1566 src.src_type = type;
1567 return src;
1568 }
1569
1570 static void
1571 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1572 const uint32_t *w, unsigned count)
1573 {
1574 if (opcode == SpvOpSampledImage) {
1575 struct vtn_value *val =
1576 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1577 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1578 val->sampled_image->type =
1579 vtn_value(b, w[1], vtn_value_type_type)->type;
1580 val->sampled_image->image =
1581 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1582 val->sampled_image->sampler =
1583 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1584 return;
1585 } else if (opcode == SpvOpImage) {
1586 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
1587 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1588 if (src_val->value_type == vtn_value_type_sampled_image) {
1589 val->pointer = src_val->sampled_image->image;
1590 } else {
1591 assert(src_val->value_type == vtn_value_type_pointer);
1592 val->pointer = src_val->pointer;
1593 }
1594 return;
1595 }
1596
1597 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1598 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1599
1600 struct vtn_sampled_image sampled;
1601 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1602 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1603 sampled = *sampled_val->sampled_image;
1604 } else {
1605 assert(sampled_val->value_type == vtn_value_type_pointer);
1606 sampled.type = sampled_val->pointer->type;
1607 sampled.image = NULL;
1608 sampled.sampler = sampled_val->pointer;
1609 }
1610
1611 const struct glsl_type *image_type = sampled.type->type;
1612 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
1613 const bool is_array = glsl_sampler_type_is_array(image_type);
1614 const bool is_shadow = glsl_sampler_type_is_shadow(image_type);
1615
1616 /* Figure out the base texture operation */
1617 nir_texop texop;
1618 switch (opcode) {
1619 case SpvOpImageSampleImplicitLod:
1620 case SpvOpImageSampleDrefImplicitLod:
1621 case SpvOpImageSampleProjImplicitLod:
1622 case SpvOpImageSampleProjDrefImplicitLod:
1623 texop = nir_texop_tex;
1624 break;
1625
1626 case SpvOpImageSampleExplicitLod:
1627 case SpvOpImageSampleDrefExplicitLod:
1628 case SpvOpImageSampleProjExplicitLod:
1629 case SpvOpImageSampleProjDrefExplicitLod:
1630 texop = nir_texop_txl;
1631 break;
1632
1633 case SpvOpImageFetch:
1634 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1635 texop = nir_texop_txf_ms;
1636 } else {
1637 texop = nir_texop_txf;
1638 }
1639 break;
1640
1641 case SpvOpImageGather:
1642 case SpvOpImageDrefGather:
1643 texop = nir_texop_tg4;
1644 break;
1645
1646 case SpvOpImageQuerySizeLod:
1647 case SpvOpImageQuerySize:
1648 texop = nir_texop_txs;
1649 break;
1650
1651 case SpvOpImageQueryLod:
1652 texop = nir_texop_lod;
1653 break;
1654
1655 case SpvOpImageQueryLevels:
1656 texop = nir_texop_query_levels;
1657 break;
1658
1659 case SpvOpImageQuerySamples:
1660 texop = nir_texop_texture_samples;
1661 break;
1662
1663 default:
1664 unreachable("Unhandled opcode");
1665 }
1666
1667 nir_tex_src srcs[8]; /* 8 should be enough */
1668 nir_tex_src *p = srcs;
1669
1670 unsigned idx = 4;
1671
1672 struct nir_ssa_def *coord;
1673 unsigned coord_components;
1674 switch (opcode) {
1675 case SpvOpImageSampleImplicitLod:
1676 case SpvOpImageSampleExplicitLod:
1677 case SpvOpImageSampleDrefImplicitLod:
1678 case SpvOpImageSampleDrefExplicitLod:
1679 case SpvOpImageSampleProjImplicitLod:
1680 case SpvOpImageSampleProjExplicitLod:
1681 case SpvOpImageSampleProjDrefImplicitLod:
1682 case SpvOpImageSampleProjDrefExplicitLod:
1683 case SpvOpImageFetch:
1684 case SpvOpImageGather:
1685 case SpvOpImageDrefGather:
1686 case SpvOpImageQueryLod: {
1687 /* All these types have the coordinate as their first real argument */
1688 switch (sampler_dim) {
1689 case GLSL_SAMPLER_DIM_1D:
1690 case GLSL_SAMPLER_DIM_BUF:
1691 coord_components = 1;
1692 break;
1693 case GLSL_SAMPLER_DIM_2D:
1694 case GLSL_SAMPLER_DIM_RECT:
1695 case GLSL_SAMPLER_DIM_MS:
1696 coord_components = 2;
1697 break;
1698 case GLSL_SAMPLER_DIM_3D:
1699 case GLSL_SAMPLER_DIM_CUBE:
1700 coord_components = 3;
1701 break;
1702 default:
1703 unreachable("Invalid sampler type");
1704 }
1705
1706 if (is_array && texop != nir_texop_lod)
1707 coord_components++;
1708
1709 coord = vtn_ssa_value(b, w[idx++])->def;
1710 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
1711 (1 << coord_components) - 1));
1712 p->src_type = nir_tex_src_coord;
1713 p++;
1714 break;
1715 }
1716
1717 default:
1718 coord = NULL;
1719 coord_components = 0;
1720 break;
1721 }
1722
1723 switch (opcode) {
1724 case SpvOpImageSampleProjImplicitLod:
1725 case SpvOpImageSampleProjExplicitLod:
1726 case SpvOpImageSampleProjDrefImplicitLod:
1727 case SpvOpImageSampleProjDrefExplicitLod:
1728 /* These have the projector as the last coordinate component */
1729 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
1730 p->src_type = nir_tex_src_projector;
1731 p++;
1732 break;
1733
1734 default:
1735 break;
1736 }
1737
1738 unsigned gather_component = 0;
1739 switch (opcode) {
1740 case SpvOpImageSampleDrefImplicitLod:
1741 case SpvOpImageSampleDrefExplicitLod:
1742 case SpvOpImageSampleProjDrefImplicitLod:
1743 case SpvOpImageSampleProjDrefExplicitLod:
1744 case SpvOpImageDrefGather:
1745 /* These all have an explicit depth value as their next source */
1746 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
1747 break;
1748
1749 case SpvOpImageGather:
1750 /* This has a component as its next source */
1751 gather_component =
1752 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
1753 break;
1754
1755 default:
1756 break;
1757 }
1758
1759 /* For OpImageQuerySizeLod, we always have an LOD */
1760 if (opcode == SpvOpImageQuerySizeLod)
1761 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1762
1763 /* Now we need to handle some number of optional arguments */
1764 const struct vtn_ssa_value *gather_offsets = NULL;
1765 if (idx < count) {
1766 uint32_t operands = w[idx++];
1767
1768 if (operands & SpvImageOperandsBiasMask) {
1769 assert(texop == nir_texop_tex);
1770 texop = nir_texop_txb;
1771 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
1772 }
1773
1774 if (operands & SpvImageOperandsLodMask) {
1775 assert(texop == nir_texop_txl || texop == nir_texop_txf ||
1776 texop == nir_texop_txs);
1777 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1778 }
1779
1780 if (operands & SpvImageOperandsGradMask) {
1781 assert(texop == nir_texop_txl);
1782 texop = nir_texop_txd;
1783 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
1784 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
1785 }
1786
1787 if (operands & SpvImageOperandsOffsetMask ||
1788 operands & SpvImageOperandsConstOffsetMask)
1789 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
1790
1791 if (operands & SpvImageOperandsConstOffsetsMask) {
1792 gather_offsets = vtn_ssa_value(b, w[idx++]);
1793 (*p++) = (nir_tex_src){};
1794 }
1795
1796 if (operands & SpvImageOperandsSampleMask) {
1797 assert(texop == nir_texop_txf_ms);
1798 texop = nir_texop_txf_ms;
1799 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
1800 }
1801 }
1802 /* We should have now consumed exactly all of the arguments */
1803 assert(idx == count);
1804
1805 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
1806 instr->op = texop;
1807
1808 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
1809
1810 instr->coord_components = coord_components;
1811 instr->sampler_dim = sampler_dim;
1812 instr->is_array = is_array;
1813 instr->is_shadow = is_shadow;
1814 instr->is_new_style_shadow =
1815 is_shadow && glsl_get_components(ret_type->type) == 1;
1816 instr->component = gather_component;
1817
1818 switch (glsl_get_sampler_result_type(image_type)) {
1819 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
1820 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
1821 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
1822 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
1823 default:
1824 unreachable("Invalid base type for sampler result");
1825 }
1826
1827 nir_deref_var *sampler = vtn_pointer_to_deref(b, sampled.sampler);
1828 nir_deref_var *texture;
1829 if (sampled.image) {
1830 nir_deref_var *image = vtn_pointer_to_deref(b, sampled.image);
1831 texture = image;
1832 } else {
1833 texture = sampler;
1834 }
1835
1836 instr->texture = nir_deref_var_clone(texture, instr);
1837
1838 switch (instr->op) {
1839 case nir_texop_tex:
1840 case nir_texop_txb:
1841 case nir_texop_txl:
1842 case nir_texop_txd:
1843 case nir_texop_tg4:
1844 /* These operations require a sampler */
1845 instr->sampler = nir_deref_var_clone(sampler, instr);
1846 break;
1847 case nir_texop_txf:
1848 case nir_texop_txf_ms:
1849 case nir_texop_txs:
1850 case nir_texop_lod:
1851 case nir_texop_query_levels:
1852 case nir_texop_texture_samples:
1853 case nir_texop_samples_identical:
1854 /* These don't */
1855 instr->sampler = NULL;
1856 break;
1857 case nir_texop_txf_ms_mcs:
1858 unreachable("unexpected nir_texop_txf_ms_mcs");
1859 }
1860
1861 nir_ssa_dest_init(&instr->instr, &instr->dest,
1862 nir_tex_instr_dest_size(instr), 32, NULL);
1863
1864 assert(glsl_get_vector_elements(ret_type->type) ==
1865 nir_tex_instr_dest_size(instr));
1866
1867 nir_ssa_def *def;
1868 nir_instr *instruction;
1869 if (gather_offsets) {
1870 assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
1871 assert(glsl_get_length(gather_offsets->type) == 4);
1872 nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
1873
1874 /* Copy the current instruction 4x */
1875 for (uint32_t i = 1; i < 4; i++) {
1876 instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
1877 instrs[i]->op = instr->op;
1878 instrs[i]->coord_components = instr->coord_components;
1879 instrs[i]->sampler_dim = instr->sampler_dim;
1880 instrs[i]->is_array = instr->is_array;
1881 instrs[i]->is_shadow = instr->is_shadow;
1882 instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
1883 instrs[i]->component = instr->component;
1884 instrs[i]->dest_type = instr->dest_type;
1885 instrs[i]->texture = nir_deref_var_clone(texture, instrs[i]);
1886 instrs[i]->sampler = NULL;
1887
1888 memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
1889
1890 nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
1891 nir_tex_instr_dest_size(instr), 32, NULL);
1892 }
1893
1894 /* Fill in the last argument with the offset from the passed in offsets
1895 * and insert the instruction into the stream.
1896 */
1897 for (uint32_t i = 0; i < 4; i++) {
1898 nir_tex_src src;
1899 src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
1900 src.src_type = nir_tex_src_offset;
1901 instrs[i]->src[instrs[i]->num_srcs - 1] = src;
1902 nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
1903 }
1904
1905 /* Combine the results of the 4 instructions by taking their .w
1906 * components
1907 */
1908 nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
1909 nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
1910 vec4->dest.write_mask = 0xf;
1911 for (uint32_t i = 0; i < 4; i++) {
1912 vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
1913 vec4->src[i].swizzle[0] = 3;
1914 }
1915 def = &vec4->dest.dest.ssa;
1916 instruction = &vec4->instr;
1917 } else {
1918 def = &instr->dest.ssa;
1919 instruction = &instr->instr;
1920 }
1921
1922 val->ssa = vtn_create_ssa_value(b, ret_type->type);
1923 val->ssa->def = def;
1924
1925 nir_builder_instr_insert(&b->nb, instruction);
1926 }
1927
1928 static void
1929 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
1930 const uint32_t *w, nir_src *src)
1931 {
1932 switch (opcode) {
1933 case SpvOpAtomicIIncrement:
1934 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1935 break;
1936
1937 case SpvOpAtomicIDecrement:
1938 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1939 break;
1940
1941 case SpvOpAtomicISub:
1942 src[0] =
1943 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1944 break;
1945
1946 case SpvOpAtomicCompareExchange:
1947 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
1948 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1949 break;
1950
1951 case SpvOpAtomicExchange:
1952 case SpvOpAtomicIAdd:
1953 case SpvOpAtomicSMin:
1954 case SpvOpAtomicUMin:
1955 case SpvOpAtomicSMax:
1956 case SpvOpAtomicUMax:
1957 case SpvOpAtomicAnd:
1958 case SpvOpAtomicOr:
1959 case SpvOpAtomicXor:
1960 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1961 break;
1962
1963 default:
1964 unreachable("Invalid SPIR-V atomic");
1965 }
1966 }
1967
1968 static nir_ssa_def *
1969 get_image_coord(struct vtn_builder *b, uint32_t value)
1970 {
1971 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
1972
1973 /* The image_load_store intrinsics assume a 4-dim coordinate */
1974 unsigned dim = glsl_get_vector_elements(coord->type);
1975 unsigned swizzle[4];
1976 for (unsigned i = 0; i < 4; i++)
1977 swizzle[i] = MIN2(i, dim - 1);
1978
1979 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
1980 }
1981
1982 static void
1983 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
1984 const uint32_t *w, unsigned count)
1985 {
1986 /* Just get this one out of the way */
1987 if (opcode == SpvOpImageTexelPointer) {
1988 struct vtn_value *val =
1989 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
1990 val->image = ralloc(b, struct vtn_image_pointer);
1991
1992 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1993 val->image->coord = get_image_coord(b, w[4]);
1994 val->image->sample = vtn_ssa_value(b, w[5])->def;
1995 return;
1996 }
1997
1998 struct vtn_image_pointer image;
1999
2000 switch (opcode) {
2001 case SpvOpAtomicExchange:
2002 case SpvOpAtomicCompareExchange:
2003 case SpvOpAtomicCompareExchangeWeak:
2004 case SpvOpAtomicIIncrement:
2005 case SpvOpAtomicIDecrement:
2006 case SpvOpAtomicIAdd:
2007 case SpvOpAtomicISub:
2008 case SpvOpAtomicLoad:
2009 case SpvOpAtomicSMin:
2010 case SpvOpAtomicUMin:
2011 case SpvOpAtomicSMax:
2012 case SpvOpAtomicUMax:
2013 case SpvOpAtomicAnd:
2014 case SpvOpAtomicOr:
2015 case SpvOpAtomicXor:
2016 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2017 break;
2018
2019 case SpvOpAtomicStore:
2020 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2021 break;
2022
2023 case SpvOpImageQuerySize:
2024 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2025 image.coord = NULL;
2026 image.sample = NULL;
2027 break;
2028
2029 case SpvOpImageRead:
2030 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2031 image.coord = get_image_coord(b, w[4]);
2032
2033 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2034 assert(w[5] == SpvImageOperandsSampleMask);
2035 image.sample = vtn_ssa_value(b, w[6])->def;
2036 } else {
2037 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2038 }
2039 break;
2040
2041 case SpvOpImageWrite:
2042 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2043 image.coord = get_image_coord(b, w[2]);
2044
2045 /* texel = w[3] */
2046
2047 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2048 assert(w[4] == SpvImageOperandsSampleMask);
2049 image.sample = vtn_ssa_value(b, w[5])->def;
2050 } else {
2051 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2052 }
2053 break;
2054
2055 default:
2056 unreachable("Invalid image opcode");
2057 }
2058
2059 nir_intrinsic_op op;
2060 switch (opcode) {
2061 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
2062 OP(ImageQuerySize, size)
2063 OP(ImageRead, load)
2064 OP(ImageWrite, store)
2065 OP(AtomicLoad, load)
2066 OP(AtomicStore, store)
2067 OP(AtomicExchange, atomic_exchange)
2068 OP(AtomicCompareExchange, atomic_comp_swap)
2069 OP(AtomicIIncrement, atomic_add)
2070 OP(AtomicIDecrement, atomic_add)
2071 OP(AtomicIAdd, atomic_add)
2072 OP(AtomicISub, atomic_add)
2073 OP(AtomicSMin, atomic_min)
2074 OP(AtomicUMin, atomic_min)
2075 OP(AtomicSMax, atomic_max)
2076 OP(AtomicUMax, atomic_max)
2077 OP(AtomicAnd, atomic_and)
2078 OP(AtomicOr, atomic_or)
2079 OP(AtomicXor, atomic_xor)
2080 #undef OP
2081 default:
2082 unreachable("Invalid image opcode");
2083 }
2084
2085 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2086
2087 nir_deref_var *image_deref = vtn_pointer_to_deref(b, image.image);
2088 intrin->variables[0] = nir_deref_var_clone(image_deref, intrin);
2089
2090 /* ImageQuerySize doesn't take any extra parameters */
2091 if (opcode != SpvOpImageQuerySize) {
2092 /* The image coordinate is always 4 components but we may not have that
2093 * many. Swizzle to compensate.
2094 */
2095 unsigned swiz[4];
2096 for (unsigned i = 0; i < 4; i++)
2097 swiz[i] = i < image.coord->num_components ? i : 0;
2098 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
2099 swiz, 4, false));
2100 intrin->src[1] = nir_src_for_ssa(image.sample);
2101 }
2102
2103 switch (opcode) {
2104 case SpvOpAtomicLoad:
2105 case SpvOpImageQuerySize:
2106 case SpvOpImageRead:
2107 break;
2108 case SpvOpAtomicStore:
2109 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2110 break;
2111 case SpvOpImageWrite:
2112 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
2113 break;
2114
2115 case SpvOpAtomicCompareExchange:
2116 case SpvOpAtomicIIncrement:
2117 case SpvOpAtomicIDecrement:
2118 case SpvOpAtomicExchange:
2119 case SpvOpAtomicIAdd:
2120 case SpvOpAtomicISub:
2121 case SpvOpAtomicSMin:
2122 case SpvOpAtomicUMin:
2123 case SpvOpAtomicSMax:
2124 case SpvOpAtomicUMax:
2125 case SpvOpAtomicAnd:
2126 case SpvOpAtomicOr:
2127 case SpvOpAtomicXor:
2128 fill_common_atomic_sources(b, opcode, w, &intrin->src[2]);
2129 break;
2130
2131 default:
2132 unreachable("Invalid image opcode");
2133 }
2134
2135 if (opcode != SpvOpImageWrite) {
2136 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2137 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2138
2139 unsigned dest_components =
2140 nir_intrinsic_infos[intrin->intrinsic].dest_components;
2141 if (intrin->intrinsic == nir_intrinsic_image_size) {
2142 dest_components = intrin->num_components =
2143 glsl_get_vector_elements(type->type);
2144 }
2145
2146 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2147 dest_components, 32, NULL);
2148
2149 nir_builder_instr_insert(&b->nb, &intrin->instr);
2150
2151 val->ssa = vtn_create_ssa_value(b, type->type);
2152 val->ssa->def = &intrin->dest.ssa;
2153 } else {
2154 nir_builder_instr_insert(&b->nb, &intrin->instr);
2155 }
2156 }
2157
2158 static nir_intrinsic_op
2159 get_ssbo_nir_atomic_op(SpvOp opcode)
2160 {
2161 switch (opcode) {
2162 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2163 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2164 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2165 OP(AtomicExchange, atomic_exchange)
2166 OP(AtomicCompareExchange, atomic_comp_swap)
2167 OP(AtomicIIncrement, atomic_add)
2168 OP(AtomicIDecrement, atomic_add)
2169 OP(AtomicIAdd, atomic_add)
2170 OP(AtomicISub, atomic_add)
2171 OP(AtomicSMin, atomic_imin)
2172 OP(AtomicUMin, atomic_umin)
2173 OP(AtomicSMax, atomic_imax)
2174 OP(AtomicUMax, atomic_umax)
2175 OP(AtomicAnd, atomic_and)
2176 OP(AtomicOr, atomic_or)
2177 OP(AtomicXor, atomic_xor)
2178 #undef OP
2179 default:
2180 unreachable("Invalid SSBO atomic");
2181 }
2182 }
2183
2184 static nir_intrinsic_op
2185 get_shared_nir_atomic_op(SpvOp opcode)
2186 {
2187 switch (opcode) {
2188 case SpvOpAtomicLoad: return nir_intrinsic_load_var;
2189 case SpvOpAtomicStore: return nir_intrinsic_store_var;
2190 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
2191 OP(AtomicExchange, atomic_exchange)
2192 OP(AtomicCompareExchange, atomic_comp_swap)
2193 OP(AtomicIIncrement, atomic_add)
2194 OP(AtomicIDecrement, atomic_add)
2195 OP(AtomicIAdd, atomic_add)
2196 OP(AtomicISub, atomic_add)
2197 OP(AtomicSMin, atomic_imin)
2198 OP(AtomicUMin, atomic_umin)
2199 OP(AtomicSMax, atomic_imax)
2200 OP(AtomicUMax, atomic_umax)
2201 OP(AtomicAnd, atomic_and)
2202 OP(AtomicOr, atomic_or)
2203 OP(AtomicXor, atomic_xor)
2204 #undef OP
2205 default:
2206 unreachable("Invalid shared atomic");
2207 }
2208 }
2209
2210 static void
2211 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
2212 const uint32_t *w, unsigned count)
2213 {
2214 struct vtn_pointer *ptr;
2215 nir_intrinsic_instr *atomic;
2216
2217 switch (opcode) {
2218 case SpvOpAtomicLoad:
2219 case SpvOpAtomicExchange:
2220 case SpvOpAtomicCompareExchange:
2221 case SpvOpAtomicCompareExchangeWeak:
2222 case SpvOpAtomicIIncrement:
2223 case SpvOpAtomicIDecrement:
2224 case SpvOpAtomicIAdd:
2225 case SpvOpAtomicISub:
2226 case SpvOpAtomicSMin:
2227 case SpvOpAtomicUMin:
2228 case SpvOpAtomicSMax:
2229 case SpvOpAtomicUMax:
2230 case SpvOpAtomicAnd:
2231 case SpvOpAtomicOr:
2232 case SpvOpAtomicXor:
2233 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2234 break;
2235
2236 case SpvOpAtomicStore:
2237 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2238 break;
2239
2240 default:
2241 unreachable("Invalid SPIR-V atomic");
2242 }
2243
2244 /*
2245 SpvScope scope = w[4];
2246 SpvMemorySemanticsMask semantics = w[5];
2247 */
2248
2249 if (ptr->mode == vtn_variable_mode_workgroup) {
2250 nir_deref_var *deref = vtn_pointer_to_deref(b, ptr);
2251 const struct glsl_type *deref_type = nir_deref_tail(&deref->deref)->type;
2252 nir_intrinsic_op op = get_shared_nir_atomic_op(opcode);
2253 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2254 atomic->variables[0] = nir_deref_var_clone(deref, atomic);
2255
2256 switch (opcode) {
2257 case SpvOpAtomicLoad:
2258 atomic->num_components = glsl_get_vector_elements(deref_type);
2259 break;
2260
2261 case SpvOpAtomicStore:
2262 atomic->num_components = glsl_get_vector_elements(deref_type);
2263 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2264 atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2265 break;
2266
2267 case SpvOpAtomicExchange:
2268 case SpvOpAtomicCompareExchange:
2269 case SpvOpAtomicCompareExchangeWeak:
2270 case SpvOpAtomicIIncrement:
2271 case SpvOpAtomicIDecrement:
2272 case SpvOpAtomicIAdd:
2273 case SpvOpAtomicISub:
2274 case SpvOpAtomicSMin:
2275 case SpvOpAtomicUMin:
2276 case SpvOpAtomicSMax:
2277 case SpvOpAtomicUMax:
2278 case SpvOpAtomicAnd:
2279 case SpvOpAtomicOr:
2280 case SpvOpAtomicXor:
2281 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
2282 break;
2283
2284 default:
2285 unreachable("Invalid SPIR-V atomic");
2286
2287 }
2288 } else {
2289 assert(ptr->mode == vtn_variable_mode_ssbo);
2290 nir_ssa_def *offset, *index;
2291 offset = vtn_pointer_to_offset(b, ptr, &index, NULL);
2292
2293 nir_intrinsic_op op = get_ssbo_nir_atomic_op(opcode);
2294
2295 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2296
2297 switch (opcode) {
2298 case SpvOpAtomicLoad:
2299 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2300 atomic->src[0] = nir_src_for_ssa(index);
2301 atomic->src[1] = nir_src_for_ssa(offset);
2302 break;
2303
2304 case SpvOpAtomicStore:
2305 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2306 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2307 atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2308 atomic->src[1] = nir_src_for_ssa(index);
2309 atomic->src[2] = nir_src_for_ssa(offset);
2310 break;
2311
2312 case SpvOpAtomicExchange:
2313 case SpvOpAtomicCompareExchange:
2314 case SpvOpAtomicCompareExchangeWeak:
2315 case SpvOpAtomicIIncrement:
2316 case SpvOpAtomicIDecrement:
2317 case SpvOpAtomicIAdd:
2318 case SpvOpAtomicISub:
2319 case SpvOpAtomicSMin:
2320 case SpvOpAtomicUMin:
2321 case SpvOpAtomicSMax:
2322 case SpvOpAtomicUMax:
2323 case SpvOpAtomicAnd:
2324 case SpvOpAtomicOr:
2325 case SpvOpAtomicXor:
2326 atomic->src[0] = nir_src_for_ssa(index);
2327 atomic->src[1] = nir_src_for_ssa(offset);
2328 fill_common_atomic_sources(b, opcode, w, &atomic->src[2]);
2329 break;
2330
2331 default:
2332 unreachable("Invalid SPIR-V atomic");
2333 }
2334 }
2335
2336 if (opcode != SpvOpAtomicStore) {
2337 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2338
2339 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2340 glsl_get_vector_elements(type->type),
2341 glsl_get_bit_size(type->type), NULL);
2342
2343 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2344 val->ssa = rzalloc(b, struct vtn_ssa_value);
2345 val->ssa->def = &atomic->dest.ssa;
2346 val->ssa->type = type->type;
2347 }
2348
2349 nir_builder_instr_insert(&b->nb, &atomic->instr);
2350 }
2351
2352 static nir_alu_instr *
2353 create_vec(nir_shader *shader, unsigned num_components, unsigned bit_size)
2354 {
2355 nir_op op;
2356 switch (num_components) {
2357 case 1: op = nir_op_fmov; break;
2358 case 2: op = nir_op_vec2; break;
2359 case 3: op = nir_op_vec3; break;
2360 case 4: op = nir_op_vec4; break;
2361 default: unreachable("bad vector size");
2362 }
2363
2364 nir_alu_instr *vec = nir_alu_instr_create(shader, op);
2365 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2366 bit_size, NULL);
2367 vec->dest.write_mask = (1 << num_components) - 1;
2368
2369 return vec;
2370 }
2371
2372 struct vtn_ssa_value *
2373 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2374 {
2375 if (src->transposed)
2376 return src->transposed;
2377
2378 struct vtn_ssa_value *dest =
2379 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2380
2381 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2382 nir_alu_instr *vec = create_vec(b->shader,
2383 glsl_get_matrix_columns(src->type),
2384 glsl_get_bit_size(src->type));
2385 if (glsl_type_is_vector_or_scalar(src->type)) {
2386 vec->src[0].src = nir_src_for_ssa(src->def);
2387 vec->src[0].swizzle[0] = i;
2388 } else {
2389 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2390 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2391 vec->src[j].swizzle[0] = i;
2392 }
2393 }
2394 nir_builder_instr_insert(&b->nb, &vec->instr);
2395 dest->elems[i]->def = &vec->dest.dest.ssa;
2396 }
2397
2398 dest->transposed = src;
2399
2400 return dest;
2401 }
2402
2403 nir_ssa_def *
2404 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2405 {
2406 unsigned swiz[4] = { index };
2407 return nir_swizzle(&b->nb, src, swiz, 1, true);
2408 }
2409
2410 nir_ssa_def *
2411 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2412 unsigned index)
2413 {
2414 nir_alu_instr *vec = create_vec(b->shader, src->num_components,
2415 src->bit_size);
2416
2417 for (unsigned i = 0; i < src->num_components; i++) {
2418 if (i == index) {
2419 vec->src[i].src = nir_src_for_ssa(insert);
2420 } else {
2421 vec->src[i].src = nir_src_for_ssa(src);
2422 vec->src[i].swizzle[0] = i;
2423 }
2424 }
2425
2426 nir_builder_instr_insert(&b->nb, &vec->instr);
2427
2428 return &vec->dest.dest.ssa;
2429 }
2430
2431 nir_ssa_def *
2432 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2433 nir_ssa_def *index)
2434 {
2435 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
2436 for (unsigned i = 1; i < src->num_components; i++)
2437 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2438 vtn_vector_extract(b, src, i), dest);
2439
2440 return dest;
2441 }
2442
2443 nir_ssa_def *
2444 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2445 nir_ssa_def *insert, nir_ssa_def *index)
2446 {
2447 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2448 for (unsigned i = 1; i < src->num_components; i++)
2449 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2450 vtn_vector_insert(b, src, insert, i), dest);
2451
2452 return dest;
2453 }
2454
2455 static nir_ssa_def *
2456 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2457 nir_ssa_def *src0, nir_ssa_def *src1,
2458 const uint32_t *indices)
2459 {
2460 nir_alu_instr *vec = create_vec(b->shader, num_components, src0->bit_size);
2461
2462 for (unsigned i = 0; i < num_components; i++) {
2463 uint32_t index = indices[i];
2464 if (index == 0xffffffff) {
2465 vec->src[i].src =
2466 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2467 } else if (index < src0->num_components) {
2468 vec->src[i].src = nir_src_for_ssa(src0);
2469 vec->src[i].swizzle[0] = index;
2470 } else {
2471 vec->src[i].src = nir_src_for_ssa(src1);
2472 vec->src[i].swizzle[0] = index - src0->num_components;
2473 }
2474 }
2475
2476 nir_builder_instr_insert(&b->nb, &vec->instr);
2477
2478 return &vec->dest.dest.ssa;
2479 }
2480
2481 /*
2482 * Concatentates a number of vectors/scalars together to produce a vector
2483 */
2484 static nir_ssa_def *
2485 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2486 unsigned num_srcs, nir_ssa_def **srcs)
2487 {
2488 nir_alu_instr *vec = create_vec(b->shader, num_components,
2489 srcs[0]->bit_size);
2490
2491 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2492 *
2493 * "When constructing a vector, there must be at least two Constituent
2494 * operands."
2495 */
2496 assert(num_srcs >= 2);
2497
2498 unsigned dest_idx = 0;
2499 for (unsigned i = 0; i < num_srcs; i++) {
2500 nir_ssa_def *src = srcs[i];
2501 assert(dest_idx + src->num_components <= num_components);
2502 for (unsigned j = 0; j < src->num_components; j++) {
2503 vec->src[dest_idx].src = nir_src_for_ssa(src);
2504 vec->src[dest_idx].swizzle[0] = j;
2505 dest_idx++;
2506 }
2507 }
2508
2509 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2510 *
2511 * "When constructing a vector, the total number of components in all
2512 * the operands must equal the number of components in Result Type."
2513 */
2514 assert(dest_idx == num_components);
2515
2516 nir_builder_instr_insert(&b->nb, &vec->instr);
2517
2518 return &vec->dest.dest.ssa;
2519 }
2520
2521 static struct vtn_ssa_value *
2522 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2523 {
2524 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2525 dest->type = src->type;
2526
2527 if (glsl_type_is_vector_or_scalar(src->type)) {
2528 dest->def = src->def;
2529 } else {
2530 unsigned elems = glsl_get_length(src->type);
2531
2532 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2533 for (unsigned i = 0; i < elems; i++)
2534 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2535 }
2536
2537 return dest;
2538 }
2539
2540 static struct vtn_ssa_value *
2541 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2542 struct vtn_ssa_value *insert, const uint32_t *indices,
2543 unsigned num_indices)
2544 {
2545 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2546
2547 struct vtn_ssa_value *cur = dest;
2548 unsigned i;
2549 for (i = 0; i < num_indices - 1; i++) {
2550 cur = cur->elems[indices[i]];
2551 }
2552
2553 if (glsl_type_is_vector_or_scalar(cur->type)) {
2554 /* According to the SPIR-V spec, OpCompositeInsert may work down to
2555 * the component granularity. In that case, the last index will be
2556 * the index to insert the scalar into the vector.
2557 */
2558
2559 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2560 } else {
2561 cur->elems[indices[i]] = insert;
2562 }
2563
2564 return dest;
2565 }
2566
2567 static struct vtn_ssa_value *
2568 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2569 const uint32_t *indices, unsigned num_indices)
2570 {
2571 struct vtn_ssa_value *cur = src;
2572 for (unsigned i = 0; i < num_indices; i++) {
2573 if (glsl_type_is_vector_or_scalar(cur->type)) {
2574 assert(i == num_indices - 1);
2575 /* According to the SPIR-V spec, OpCompositeExtract may work down to
2576 * the component granularity. The last index will be the index of the
2577 * vector to extract.
2578 */
2579
2580 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2581 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2582 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2583 return ret;
2584 } else {
2585 cur = cur->elems[indices[i]];
2586 }
2587 }
2588
2589 return cur;
2590 }
2591
2592 static void
2593 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2594 const uint32_t *w, unsigned count)
2595 {
2596 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2597 const struct glsl_type *type =
2598 vtn_value(b, w[1], vtn_value_type_type)->type->type;
2599 val->ssa = vtn_create_ssa_value(b, type);
2600
2601 switch (opcode) {
2602 case SpvOpVectorExtractDynamic:
2603 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2604 vtn_ssa_value(b, w[4])->def);
2605 break;
2606
2607 case SpvOpVectorInsertDynamic:
2608 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2609 vtn_ssa_value(b, w[4])->def,
2610 vtn_ssa_value(b, w[5])->def);
2611 break;
2612
2613 case SpvOpVectorShuffle:
2614 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2615 vtn_ssa_value(b, w[3])->def,
2616 vtn_ssa_value(b, w[4])->def,
2617 w + 5);
2618 break;
2619
2620 case SpvOpCompositeConstruct: {
2621 unsigned elems = count - 3;
2622 if (glsl_type_is_vector_or_scalar(type)) {
2623 nir_ssa_def *srcs[4];
2624 for (unsigned i = 0; i < elems; i++)
2625 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2626 val->ssa->def =
2627 vtn_vector_construct(b, glsl_get_vector_elements(type),
2628 elems, srcs);
2629 } else {
2630 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2631 for (unsigned i = 0; i < elems; i++)
2632 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2633 }
2634 break;
2635 }
2636 case SpvOpCompositeExtract:
2637 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2638 w + 4, count - 4);
2639 break;
2640
2641 case SpvOpCompositeInsert:
2642 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2643 vtn_ssa_value(b, w[3]),
2644 w + 5, count - 5);
2645 break;
2646
2647 case SpvOpCopyObject:
2648 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2649 break;
2650
2651 default:
2652 unreachable("unknown composite operation");
2653 }
2654 }
2655
2656 static void
2657 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
2658 const uint32_t *w, unsigned count)
2659 {
2660 nir_intrinsic_op intrinsic_op;
2661 switch (opcode) {
2662 case SpvOpEmitVertex:
2663 case SpvOpEmitStreamVertex:
2664 intrinsic_op = nir_intrinsic_emit_vertex;
2665 break;
2666 case SpvOpEndPrimitive:
2667 case SpvOpEndStreamPrimitive:
2668 intrinsic_op = nir_intrinsic_end_primitive;
2669 break;
2670 case SpvOpMemoryBarrier:
2671 intrinsic_op = nir_intrinsic_memory_barrier;
2672 break;
2673 case SpvOpControlBarrier:
2674 intrinsic_op = nir_intrinsic_barrier;
2675 break;
2676 default:
2677 unreachable("unknown barrier instruction");
2678 }
2679
2680 nir_intrinsic_instr *intrin =
2681 nir_intrinsic_instr_create(b->shader, intrinsic_op);
2682
2683 if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
2684 nir_intrinsic_set_stream_id(intrin, w[1]);
2685
2686 nir_builder_instr_insert(&b->nb, &intrin->instr);
2687 }
2688
2689 static unsigned
2690 gl_primitive_from_spv_execution_mode(SpvExecutionMode mode)
2691 {
2692 switch (mode) {
2693 case SpvExecutionModeInputPoints:
2694 case SpvExecutionModeOutputPoints:
2695 return 0; /* GL_POINTS */
2696 case SpvExecutionModeInputLines:
2697 return 1; /* GL_LINES */
2698 case SpvExecutionModeInputLinesAdjacency:
2699 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
2700 case SpvExecutionModeTriangles:
2701 return 4; /* GL_TRIANGLES */
2702 case SpvExecutionModeInputTrianglesAdjacency:
2703 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
2704 case SpvExecutionModeQuads:
2705 return 7; /* GL_QUADS */
2706 case SpvExecutionModeIsolines:
2707 return 0x8E7A; /* GL_ISOLINES */
2708 case SpvExecutionModeOutputLineStrip:
2709 return 3; /* GL_LINE_STRIP */
2710 case SpvExecutionModeOutputTriangleStrip:
2711 return 5; /* GL_TRIANGLE_STRIP */
2712 default:
2713 unreachable("Invalid primitive type");
2714 return 4;
2715 }
2716 }
2717
2718 static unsigned
2719 vertices_in_from_spv_execution_mode(SpvExecutionMode mode)
2720 {
2721 switch (mode) {
2722 case SpvExecutionModeInputPoints:
2723 return 1;
2724 case SpvExecutionModeInputLines:
2725 return 2;
2726 case SpvExecutionModeInputLinesAdjacency:
2727 return 4;
2728 case SpvExecutionModeTriangles:
2729 return 3;
2730 case SpvExecutionModeInputTrianglesAdjacency:
2731 return 6;
2732 default:
2733 unreachable("Invalid GS input mode");
2734 return 0;
2735 }
2736 }
2737
2738 static gl_shader_stage
2739 stage_for_execution_model(SpvExecutionModel model)
2740 {
2741 switch (model) {
2742 case SpvExecutionModelVertex:
2743 return MESA_SHADER_VERTEX;
2744 case SpvExecutionModelTessellationControl:
2745 return MESA_SHADER_TESS_CTRL;
2746 case SpvExecutionModelTessellationEvaluation:
2747 return MESA_SHADER_TESS_EVAL;
2748 case SpvExecutionModelGeometry:
2749 return MESA_SHADER_GEOMETRY;
2750 case SpvExecutionModelFragment:
2751 return MESA_SHADER_FRAGMENT;
2752 case SpvExecutionModelGLCompute:
2753 return MESA_SHADER_COMPUTE;
2754 default:
2755 unreachable("Unsupported execution model");
2756 }
2757 }
2758
2759 #define spv_check_supported(name, cap) do { \
2760 if (!(b->options && b->options->caps.name)) \
2761 vtn_warn("Unsupported SPIR-V capability: %s", \
2762 spirv_capability_to_string(cap)); \
2763 } while(0)
2764
2765 static bool
2766 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
2767 const uint32_t *w, unsigned count)
2768 {
2769 switch (opcode) {
2770 case SpvOpSource: {
2771 const char *lang;
2772 switch (w[1]) {
2773 default:
2774 case SpvSourceLanguageUnknown: lang = "unknown"; break;
2775 case SpvSourceLanguageESSL: lang = "ESSL"; break;
2776 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
2777 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
2778 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
2779 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
2780 }
2781
2782 uint32_t version = w[2];
2783
2784 const char *file =
2785 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
2786
2787 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
2788 break;
2789 }
2790
2791 case SpvOpSourceExtension:
2792 case SpvOpSourceContinued:
2793 case SpvOpExtension:
2794 /* Unhandled, but these are for debug so that's ok. */
2795 break;
2796
2797 case SpvOpCapability: {
2798 SpvCapability cap = w[1];
2799 switch (cap) {
2800 case SpvCapabilityMatrix:
2801 case SpvCapabilityShader:
2802 case SpvCapabilityGeometry:
2803 case SpvCapabilityGeometryPointSize:
2804 case SpvCapabilityUniformBufferArrayDynamicIndexing:
2805 case SpvCapabilitySampledImageArrayDynamicIndexing:
2806 case SpvCapabilityStorageBufferArrayDynamicIndexing:
2807 case SpvCapabilityStorageImageArrayDynamicIndexing:
2808 case SpvCapabilityImageRect:
2809 case SpvCapabilitySampledRect:
2810 case SpvCapabilitySampled1D:
2811 case SpvCapabilityImage1D:
2812 case SpvCapabilitySampledCubeArray:
2813 case SpvCapabilityImageCubeArray:
2814 case SpvCapabilitySampledBuffer:
2815 case SpvCapabilityImageBuffer:
2816 case SpvCapabilityImageQuery:
2817 case SpvCapabilityDerivativeControl:
2818 case SpvCapabilityInterpolationFunction:
2819 case SpvCapabilityMultiViewport:
2820 case SpvCapabilitySampleRateShading:
2821 case SpvCapabilityClipDistance:
2822 case SpvCapabilityCullDistance:
2823 case SpvCapabilityInputAttachment:
2824 case SpvCapabilityImageGatherExtended:
2825 case SpvCapabilityStorageImageExtendedFormats:
2826 break;
2827
2828 case SpvCapabilityGeometryStreams:
2829 case SpvCapabilityLinkage:
2830 case SpvCapabilityVector16:
2831 case SpvCapabilityFloat16Buffer:
2832 case SpvCapabilityFloat16:
2833 case SpvCapabilityInt64Atomics:
2834 case SpvCapabilityAtomicStorage:
2835 case SpvCapabilityInt16:
2836 case SpvCapabilityStorageImageMultisample:
2837 case SpvCapabilityInt8:
2838 case SpvCapabilitySparseResidency:
2839 case SpvCapabilityMinLod:
2840 case SpvCapabilityTransformFeedback:
2841 vtn_warn("Unsupported SPIR-V capability: %s",
2842 spirv_capability_to_string(cap));
2843 break;
2844
2845 case SpvCapabilityFloat64:
2846 spv_check_supported(float64, cap);
2847 break;
2848 case SpvCapabilityInt64:
2849 spv_check_supported(int64, cap);
2850 break;
2851
2852 case SpvCapabilityAddresses:
2853 case SpvCapabilityKernel:
2854 case SpvCapabilityImageBasic:
2855 case SpvCapabilityImageReadWrite:
2856 case SpvCapabilityImageMipmap:
2857 case SpvCapabilityPipes:
2858 case SpvCapabilityGroups:
2859 case SpvCapabilityDeviceEnqueue:
2860 case SpvCapabilityLiteralSampler:
2861 case SpvCapabilityGenericPointer:
2862 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
2863 spirv_capability_to_string(cap));
2864 break;
2865
2866 case SpvCapabilityImageMSArray:
2867 spv_check_supported(image_ms_array, cap);
2868 break;
2869
2870 case SpvCapabilityTessellation:
2871 case SpvCapabilityTessellationPointSize:
2872 spv_check_supported(tessellation, cap);
2873 break;
2874
2875 case SpvCapabilityDrawParameters:
2876 spv_check_supported(draw_parameters, cap);
2877 break;
2878
2879 case SpvCapabilityStorageImageReadWithoutFormat:
2880 spv_check_supported(image_read_without_format, cap);
2881 break;
2882
2883 case SpvCapabilityStorageImageWriteWithoutFormat:
2884 spv_check_supported(image_write_without_format, cap);
2885 break;
2886
2887 case SpvCapabilityMultiView:
2888 spv_check_supported(multiview, cap);
2889 break;
2890
2891 case SpvCapabilityVariablePointersStorageBuffer:
2892 case SpvCapabilityVariablePointers:
2893 spv_check_supported(variable_pointers, cap);
2894 break;
2895
2896 default:
2897 unreachable("Unhandled capability");
2898 }
2899 break;
2900 }
2901
2902 case SpvOpExtInstImport:
2903 vtn_handle_extension(b, opcode, w, count);
2904 break;
2905
2906 case SpvOpMemoryModel:
2907 assert(w[1] == SpvAddressingModelLogical);
2908 assert(w[2] == SpvMemoryModelSimple ||
2909 w[2] == SpvMemoryModelGLSL450);
2910 break;
2911
2912 case SpvOpEntryPoint: {
2913 struct vtn_value *entry_point = &b->values[w[2]];
2914 /* Let this be a name label regardless */
2915 unsigned name_words;
2916 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
2917
2918 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
2919 stage_for_execution_model(w[1]) != b->entry_point_stage)
2920 break;
2921
2922 assert(b->entry_point == NULL);
2923 b->entry_point = entry_point;
2924 break;
2925 }
2926
2927 case SpvOpString:
2928 vtn_push_value(b, w[1], vtn_value_type_string)->str =
2929 vtn_string_literal(b, &w[2], count - 2, NULL);
2930 break;
2931
2932 case SpvOpName:
2933 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
2934 break;
2935
2936 case SpvOpMemberName:
2937 /* TODO */
2938 break;
2939
2940 case SpvOpExecutionMode:
2941 case SpvOpDecorationGroup:
2942 case SpvOpDecorate:
2943 case SpvOpMemberDecorate:
2944 case SpvOpGroupDecorate:
2945 case SpvOpGroupMemberDecorate:
2946 vtn_handle_decoration(b, opcode, w, count);
2947 break;
2948
2949 default:
2950 return false; /* End of preamble */
2951 }
2952
2953 return true;
2954 }
2955
2956 static void
2957 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
2958 const struct vtn_decoration *mode, void *data)
2959 {
2960 assert(b->entry_point == entry_point);
2961
2962 switch(mode->exec_mode) {
2963 case SpvExecutionModeOriginUpperLeft:
2964 case SpvExecutionModeOriginLowerLeft:
2965 b->origin_upper_left =
2966 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
2967 break;
2968
2969 case SpvExecutionModeEarlyFragmentTests:
2970 assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
2971 b->shader->info.fs.early_fragment_tests = true;
2972 break;
2973
2974 case SpvExecutionModeInvocations:
2975 assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
2976 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
2977 break;
2978
2979 case SpvExecutionModeDepthReplacing:
2980 assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
2981 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
2982 break;
2983 case SpvExecutionModeDepthGreater:
2984 assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
2985 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
2986 break;
2987 case SpvExecutionModeDepthLess:
2988 assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
2989 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
2990 break;
2991 case SpvExecutionModeDepthUnchanged:
2992 assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
2993 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2994 break;
2995
2996 case SpvExecutionModeLocalSize:
2997 assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
2998 b->shader->info.cs.local_size[0] = mode->literals[0];
2999 b->shader->info.cs.local_size[1] = mode->literals[1];
3000 b->shader->info.cs.local_size[2] = mode->literals[2];
3001 break;
3002 case SpvExecutionModeLocalSizeHint:
3003 break; /* Nothing to do with this */
3004
3005 case SpvExecutionModeOutputVertices:
3006 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3007 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3008 b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3009 } else {
3010 assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3011 b->shader->info.gs.vertices_out = mode->literals[0];
3012 }
3013 break;
3014
3015 case SpvExecutionModeInputPoints:
3016 case SpvExecutionModeInputLines:
3017 case SpvExecutionModeInputLinesAdjacency:
3018 case SpvExecutionModeTriangles:
3019 case SpvExecutionModeInputTrianglesAdjacency:
3020 case SpvExecutionModeQuads:
3021 case SpvExecutionModeIsolines:
3022 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3023 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3024 b->shader->info.tess.primitive_mode =
3025 gl_primitive_from_spv_execution_mode(mode->exec_mode);
3026 } else {
3027 assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3028 b->shader->info.gs.vertices_in =
3029 vertices_in_from_spv_execution_mode(mode->exec_mode);
3030 }
3031 break;
3032
3033 case SpvExecutionModeOutputPoints:
3034 case SpvExecutionModeOutputLineStrip:
3035 case SpvExecutionModeOutputTriangleStrip:
3036 assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3037 b->shader->info.gs.output_primitive =
3038 gl_primitive_from_spv_execution_mode(mode->exec_mode);
3039 break;
3040
3041 case SpvExecutionModeSpacingEqual:
3042 assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3043 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3044 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3045 break;
3046 case SpvExecutionModeSpacingFractionalEven:
3047 assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3048 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3049 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3050 break;
3051 case SpvExecutionModeSpacingFractionalOdd:
3052 assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3053 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3054 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3055 break;
3056 case SpvExecutionModeVertexOrderCw:
3057 assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3058 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3059 b->shader->info.tess.ccw = false;
3060 break;
3061 case SpvExecutionModeVertexOrderCcw:
3062 assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3063 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3064 b->shader->info.tess.ccw = true;
3065 break;
3066 case SpvExecutionModePointMode:
3067 assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3068 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3069 b->shader->info.tess.point_mode = true;
3070 break;
3071
3072 case SpvExecutionModePixelCenterInteger:
3073 b->pixel_center_integer = true;
3074 break;
3075
3076 case SpvExecutionModeXfb:
3077 unreachable("Unhandled execution mode");
3078 break;
3079
3080 case SpvExecutionModeVecTypeHint:
3081 case SpvExecutionModeContractionOff:
3082 break; /* OpenCL */
3083
3084 default:
3085 unreachable("Unhandled execution mode");
3086 }
3087 }
3088
3089 static bool
3090 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3091 const uint32_t *w, unsigned count)
3092 {
3093 switch (opcode) {
3094 case SpvOpSource:
3095 case SpvOpSourceContinued:
3096 case SpvOpSourceExtension:
3097 case SpvOpExtension:
3098 case SpvOpCapability:
3099 case SpvOpExtInstImport:
3100 case SpvOpMemoryModel:
3101 case SpvOpEntryPoint:
3102 case SpvOpExecutionMode:
3103 case SpvOpString:
3104 case SpvOpName:
3105 case SpvOpMemberName:
3106 case SpvOpDecorationGroup:
3107 case SpvOpDecorate:
3108 case SpvOpMemberDecorate:
3109 case SpvOpGroupDecorate:
3110 case SpvOpGroupMemberDecorate:
3111 unreachable("Invalid opcode types and variables section");
3112 break;
3113
3114 case SpvOpTypeVoid:
3115 case SpvOpTypeBool:
3116 case SpvOpTypeInt:
3117 case SpvOpTypeFloat:
3118 case SpvOpTypeVector:
3119 case SpvOpTypeMatrix:
3120 case SpvOpTypeImage:
3121 case SpvOpTypeSampler:
3122 case SpvOpTypeSampledImage:
3123 case SpvOpTypeArray:
3124 case SpvOpTypeRuntimeArray:
3125 case SpvOpTypeStruct:
3126 case SpvOpTypeOpaque:
3127 case SpvOpTypePointer:
3128 case SpvOpTypeFunction:
3129 case SpvOpTypeEvent:
3130 case SpvOpTypeDeviceEvent:
3131 case SpvOpTypeReserveId:
3132 case SpvOpTypeQueue:
3133 case SpvOpTypePipe:
3134 vtn_handle_type(b, opcode, w, count);
3135 break;
3136
3137 case SpvOpConstantTrue:
3138 case SpvOpConstantFalse:
3139 case SpvOpConstant:
3140 case SpvOpConstantComposite:
3141 case SpvOpConstantSampler:
3142 case SpvOpConstantNull:
3143 case SpvOpSpecConstantTrue:
3144 case SpvOpSpecConstantFalse:
3145 case SpvOpSpecConstant:
3146 case SpvOpSpecConstantComposite:
3147 case SpvOpSpecConstantOp:
3148 vtn_handle_constant(b, opcode, w, count);
3149 break;
3150
3151 case SpvOpUndef:
3152 case SpvOpVariable:
3153 vtn_handle_variables(b, opcode, w, count);
3154 break;
3155
3156 default:
3157 return false; /* End of preamble */
3158 }
3159
3160 return true;
3161 }
3162
3163 static bool
3164 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
3165 const uint32_t *w, unsigned count)
3166 {
3167 switch (opcode) {
3168 case SpvOpLabel:
3169 break;
3170
3171 case SpvOpLoopMerge:
3172 case SpvOpSelectionMerge:
3173 /* This is handled by cfg pre-pass and walk_blocks */
3174 break;
3175
3176 case SpvOpUndef: {
3177 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
3178 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
3179 break;
3180 }
3181
3182 case SpvOpExtInst:
3183 vtn_handle_extension(b, opcode, w, count);
3184 break;
3185
3186 case SpvOpVariable:
3187 case SpvOpLoad:
3188 case SpvOpStore:
3189 case SpvOpCopyMemory:
3190 case SpvOpCopyMemorySized:
3191 case SpvOpAccessChain:
3192 case SpvOpPtrAccessChain:
3193 case SpvOpInBoundsAccessChain:
3194 case SpvOpArrayLength:
3195 vtn_handle_variables(b, opcode, w, count);
3196 break;
3197
3198 case SpvOpFunctionCall:
3199 vtn_handle_function_call(b, opcode, w, count);
3200 break;
3201
3202 case SpvOpSampledImage:
3203 case SpvOpImage:
3204 case SpvOpImageSampleImplicitLod:
3205 case SpvOpImageSampleExplicitLod:
3206 case SpvOpImageSampleDrefImplicitLod:
3207 case SpvOpImageSampleDrefExplicitLod:
3208 case SpvOpImageSampleProjImplicitLod:
3209 case SpvOpImageSampleProjExplicitLod:
3210 case SpvOpImageSampleProjDrefImplicitLod:
3211 case SpvOpImageSampleProjDrefExplicitLod:
3212 case SpvOpImageFetch:
3213 case SpvOpImageGather:
3214 case SpvOpImageDrefGather:
3215 case SpvOpImageQuerySizeLod:
3216 case SpvOpImageQueryLod:
3217 case SpvOpImageQueryLevels:
3218 case SpvOpImageQuerySamples:
3219 vtn_handle_texture(b, opcode, w, count);
3220 break;
3221
3222 case SpvOpImageRead:
3223 case SpvOpImageWrite:
3224 case SpvOpImageTexelPointer:
3225 vtn_handle_image(b, opcode, w, count);
3226 break;
3227
3228 case SpvOpImageQuerySize: {
3229 struct vtn_pointer *image =
3230 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3231 if (image->mode == vtn_variable_mode_image) {
3232 vtn_handle_image(b, opcode, w, count);
3233 } else {
3234 assert(image->mode == vtn_variable_mode_sampler);
3235 vtn_handle_texture(b, opcode, w, count);
3236 }
3237 break;
3238 }
3239
3240 case SpvOpAtomicLoad:
3241 case SpvOpAtomicExchange:
3242 case SpvOpAtomicCompareExchange:
3243 case SpvOpAtomicCompareExchangeWeak:
3244 case SpvOpAtomicIIncrement:
3245 case SpvOpAtomicIDecrement:
3246 case SpvOpAtomicIAdd:
3247 case SpvOpAtomicISub:
3248 case SpvOpAtomicSMin:
3249 case SpvOpAtomicUMin:
3250 case SpvOpAtomicSMax:
3251 case SpvOpAtomicUMax:
3252 case SpvOpAtomicAnd:
3253 case SpvOpAtomicOr:
3254 case SpvOpAtomicXor: {
3255 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
3256 if (pointer->value_type == vtn_value_type_image_pointer) {
3257 vtn_handle_image(b, opcode, w, count);
3258 } else {
3259 assert(pointer->value_type == vtn_value_type_pointer);
3260 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3261 }
3262 break;
3263 }
3264
3265 case SpvOpAtomicStore: {
3266 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
3267 if (pointer->value_type == vtn_value_type_image_pointer) {
3268 vtn_handle_image(b, opcode, w, count);
3269 } else {
3270 assert(pointer->value_type == vtn_value_type_pointer);
3271 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3272 }
3273 break;
3274 }
3275
3276 case SpvOpSelect: {
3277 /* Handle OpSelect up-front here because it needs to be able to handle
3278 * pointers and not just regular vectors and scalars.
3279 */
3280 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
3281 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
3282 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
3283 vtn_ssa_value(b, w[4])->def,
3284 vtn_ssa_value(b, w[5])->def);
3285 vtn_push_ssa(b, w[2], res_type, ssa);
3286 break;
3287 }
3288
3289 case SpvOpSNegate:
3290 case SpvOpFNegate:
3291 case SpvOpNot:
3292 case SpvOpAny:
3293 case SpvOpAll:
3294 case SpvOpConvertFToU:
3295 case SpvOpConvertFToS:
3296 case SpvOpConvertSToF:
3297 case SpvOpConvertUToF:
3298 case SpvOpUConvert:
3299 case SpvOpSConvert:
3300 case SpvOpFConvert:
3301 case SpvOpQuantizeToF16:
3302 case SpvOpConvertPtrToU:
3303 case SpvOpConvertUToPtr:
3304 case SpvOpPtrCastToGeneric:
3305 case SpvOpGenericCastToPtr:
3306 case SpvOpBitcast:
3307 case SpvOpIsNan:
3308 case SpvOpIsInf:
3309 case SpvOpIsFinite:
3310 case SpvOpIsNormal:
3311 case SpvOpSignBitSet:
3312 case SpvOpLessOrGreater:
3313 case SpvOpOrdered:
3314 case SpvOpUnordered:
3315 case SpvOpIAdd:
3316 case SpvOpFAdd:
3317 case SpvOpISub:
3318 case SpvOpFSub:
3319 case SpvOpIMul:
3320 case SpvOpFMul:
3321 case SpvOpUDiv:
3322 case SpvOpSDiv:
3323 case SpvOpFDiv:
3324 case SpvOpUMod:
3325 case SpvOpSRem:
3326 case SpvOpSMod:
3327 case SpvOpFRem:
3328 case SpvOpFMod:
3329 case SpvOpVectorTimesScalar:
3330 case SpvOpDot:
3331 case SpvOpIAddCarry:
3332 case SpvOpISubBorrow:
3333 case SpvOpUMulExtended:
3334 case SpvOpSMulExtended:
3335 case SpvOpShiftRightLogical:
3336 case SpvOpShiftRightArithmetic:
3337 case SpvOpShiftLeftLogical:
3338 case SpvOpLogicalEqual:
3339 case SpvOpLogicalNotEqual:
3340 case SpvOpLogicalOr:
3341 case SpvOpLogicalAnd:
3342 case SpvOpLogicalNot:
3343 case SpvOpBitwiseOr:
3344 case SpvOpBitwiseXor:
3345 case SpvOpBitwiseAnd:
3346 case SpvOpIEqual:
3347 case SpvOpFOrdEqual:
3348 case SpvOpFUnordEqual:
3349 case SpvOpINotEqual:
3350 case SpvOpFOrdNotEqual:
3351 case SpvOpFUnordNotEqual:
3352 case SpvOpULessThan:
3353 case SpvOpSLessThan:
3354 case SpvOpFOrdLessThan:
3355 case SpvOpFUnordLessThan:
3356 case SpvOpUGreaterThan:
3357 case SpvOpSGreaterThan:
3358 case SpvOpFOrdGreaterThan:
3359 case SpvOpFUnordGreaterThan:
3360 case SpvOpULessThanEqual:
3361 case SpvOpSLessThanEqual:
3362 case SpvOpFOrdLessThanEqual:
3363 case SpvOpFUnordLessThanEqual:
3364 case SpvOpUGreaterThanEqual:
3365 case SpvOpSGreaterThanEqual:
3366 case SpvOpFOrdGreaterThanEqual:
3367 case SpvOpFUnordGreaterThanEqual:
3368 case SpvOpDPdx:
3369 case SpvOpDPdy:
3370 case SpvOpFwidth:
3371 case SpvOpDPdxFine:
3372 case SpvOpDPdyFine:
3373 case SpvOpFwidthFine:
3374 case SpvOpDPdxCoarse:
3375 case SpvOpDPdyCoarse:
3376 case SpvOpFwidthCoarse:
3377 case SpvOpBitFieldInsert:
3378 case SpvOpBitFieldSExtract:
3379 case SpvOpBitFieldUExtract:
3380 case SpvOpBitReverse:
3381 case SpvOpBitCount:
3382 case SpvOpTranspose:
3383 case SpvOpOuterProduct:
3384 case SpvOpMatrixTimesScalar:
3385 case SpvOpVectorTimesMatrix:
3386 case SpvOpMatrixTimesVector:
3387 case SpvOpMatrixTimesMatrix:
3388 vtn_handle_alu(b, opcode, w, count);
3389 break;
3390
3391 case SpvOpVectorExtractDynamic:
3392 case SpvOpVectorInsertDynamic:
3393 case SpvOpVectorShuffle:
3394 case SpvOpCompositeConstruct:
3395 case SpvOpCompositeExtract:
3396 case SpvOpCompositeInsert:
3397 case SpvOpCopyObject:
3398 vtn_handle_composite(b, opcode, w, count);
3399 break;
3400
3401 case SpvOpEmitVertex:
3402 case SpvOpEndPrimitive:
3403 case SpvOpEmitStreamVertex:
3404 case SpvOpEndStreamPrimitive:
3405 case SpvOpControlBarrier:
3406 case SpvOpMemoryBarrier:
3407 vtn_handle_barrier(b, opcode, w, count);
3408 break;
3409
3410 default:
3411 unreachable("Unhandled opcode");
3412 }
3413
3414 return true;
3415 }
3416
3417 nir_function *
3418 spirv_to_nir(const uint32_t *words, size_t word_count,
3419 struct nir_spirv_specialization *spec, unsigned num_spec,
3420 gl_shader_stage stage, const char *entry_point_name,
3421 const struct spirv_to_nir_options *options,
3422 const nir_shader_compiler_options *nir_options)
3423 {
3424 /* Initialize the stn_builder object */
3425 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
3426 b->spirv = words;
3427 b->file = NULL;
3428 b->line = -1;
3429 b->col = -1;
3430 exec_list_make_empty(&b->functions);
3431 b->entry_point_stage = stage;
3432 b->entry_point_name = entry_point_name;
3433 b->options = options;
3434
3435 /* See also _vtn_fail() */
3436 if (setjmp(b->fail_jump)) {
3437 ralloc_free(b);
3438 return NULL;
3439 }
3440
3441 const uint32_t *word_end = words + word_count;
3442
3443 /* Handle the SPIR-V header (first 4 dwords) */
3444 assert(word_count > 5);
3445
3446 assert(words[0] == SpvMagicNumber);
3447 assert(words[1] >= 0x10000);
3448 /* words[2] == generator magic */
3449 unsigned value_id_bound = words[3];
3450 assert(words[4] == 0);
3451
3452 words+= 5;
3453
3454 b->value_id_bound = value_id_bound;
3455 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
3456
3457 /* Handle all the preamble instructions */
3458 words = vtn_foreach_instruction(b, words, word_end,
3459 vtn_handle_preamble_instruction);
3460
3461 if (b->entry_point == NULL) {
3462 assert(!"Entry point not found");
3463 ralloc_free(b);
3464 return NULL;
3465 }
3466
3467 b->shader = nir_shader_create(b, stage, nir_options, NULL);
3468
3469 /* Set shader info defaults */
3470 b->shader->info.gs.invocations = 1;
3471
3472 /* Parse execution modes */
3473 vtn_foreach_execution_mode(b, b->entry_point,
3474 vtn_handle_execution_mode, NULL);
3475
3476 b->specializations = spec;
3477 b->num_specializations = num_spec;
3478
3479 /* Handle all variable, type, and constant instructions */
3480 words = vtn_foreach_instruction(b, words, word_end,
3481 vtn_handle_variable_or_type_instruction);
3482
3483 vtn_build_cfg(b, words, word_end);
3484
3485 assert(b->entry_point->value_type == vtn_value_type_function);
3486 b->entry_point->func->referenced = true;
3487
3488 bool progress;
3489 do {
3490 progress = false;
3491 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
3492 if (func->referenced && !func->emitted) {
3493 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
3494 _mesa_key_pointer_equal);
3495
3496 vtn_function_emit(b, func, vtn_handle_body_instruction);
3497 progress = true;
3498 }
3499 }
3500 } while (progress);
3501
3502 assert(b->entry_point->value_type == vtn_value_type_function);
3503 nir_function *entry_point = b->entry_point->func->impl->function;
3504 assert(entry_point);
3505
3506 /* Unparent the shader from the vtn_builder before we delete the builder */
3507 ralloc_steal(NULL, b->shader);
3508
3509 ralloc_free(b);
3510
3511 return entry_point;
3512 }