spirv: Get rid of vtn_variable_mode_image/sampler
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33
34 #include <stdio.h>
35
36 void
37 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
38 size_t spirv_offset, const char *message)
39 {
40 if (b->options->debug.func) {
41 b->options->debug.func(b->options->debug.private_data,
42 level, spirv_offset, message);
43 }
44
45 #ifndef NDEBUG
46 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
47 fprintf(stderr, "%s\n", message);
48 #endif
49 }
50
51 void
52 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
53 size_t spirv_offset, const char *fmt, ...)
54 {
55 va_list args;
56 char *msg;
57
58 va_start(args, fmt);
59 msg = ralloc_vasprintf(NULL, fmt, args);
60 va_end(args);
61
62 vtn_log(b, level, spirv_offset, msg);
63
64 ralloc_free(msg);
65 }
66
67 static void
68 vtn_log_err(struct vtn_builder *b,
69 enum nir_spirv_debug_level level, const char *prefix,
70 const char *file, unsigned line,
71 const char *fmt, va_list args)
72 {
73 char *msg;
74
75 msg = ralloc_strdup(NULL, prefix);
76
77 #ifndef NDEBUG
78 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
79 #endif
80
81 ralloc_asprintf_append(&msg, " ");
82
83 ralloc_vasprintf_append(&msg, fmt, args);
84
85 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
86 b->spirv_offset);
87
88 if (b->file) {
89 ralloc_asprintf_append(&msg,
90 "\n in SPIR-V source file %s, line %d, col %d",
91 b->file, b->line, b->col);
92 }
93
94 vtn_log(b, level, b->spirv_offset, msg);
95
96 ralloc_free(msg);
97 }
98
99 static void
100 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
101 {
102 static int idx = 0;
103
104 char filename[1024];
105 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
106 path, prefix, idx++);
107 if (len < 0 || len >= sizeof(filename))
108 return;
109
110 FILE *f = fopen(filename, "w");
111 if (f == NULL)
112 return;
113
114 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
115 fclose(f);
116
117 vtn_info("SPIR-V shader dumped to %s", filename);
118 }
119
120 void
121 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
122 const char *fmt, ...)
123 {
124 va_list args;
125
126 va_start(args, fmt);
127 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
128 file, line, fmt, args);
129 va_end(args);
130 }
131
132 void
133 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
134 const char *fmt, ...)
135 {
136 va_list args;
137
138 va_start(args, fmt);
139 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
140 file, line, fmt, args);
141 va_end(args);
142 }
143
144 void
145 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
146 const char *fmt, ...)
147 {
148 va_list args;
149
150 va_start(args, fmt);
151 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
152 file, line, fmt, args);
153 va_end(args);
154
155 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
156 if (dump_path)
157 vtn_dump_shader(b, dump_path, "fail");
158
159 longjmp(b->fail_jump, 1);
160 }
161
162 struct spec_constant_value {
163 bool is_double;
164 union {
165 uint32_t data32;
166 uint64_t data64;
167 };
168 };
169
170 static struct vtn_ssa_value *
171 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
172 {
173 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
174 val->type = type;
175
176 if (glsl_type_is_vector_or_scalar(type)) {
177 unsigned num_components = glsl_get_vector_elements(val->type);
178 unsigned bit_size = glsl_get_bit_size(val->type);
179 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
180 } else {
181 unsigned elems = glsl_get_length(val->type);
182 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
183 if (glsl_type_is_matrix(type)) {
184 const struct glsl_type *elem_type =
185 glsl_vector_type(glsl_get_base_type(type),
186 glsl_get_vector_elements(type));
187
188 for (unsigned i = 0; i < elems; i++)
189 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
190 } else if (glsl_type_is_array(type)) {
191 const struct glsl_type *elem_type = glsl_get_array_element(type);
192 for (unsigned i = 0; i < elems; i++)
193 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
194 } else {
195 for (unsigned i = 0; i < elems; i++) {
196 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
197 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
198 }
199 }
200 }
201
202 return val;
203 }
204
205 static struct vtn_ssa_value *
206 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
207 const struct glsl_type *type)
208 {
209 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
210
211 if (entry)
212 return entry->data;
213
214 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
215 val->type = type;
216
217 switch (glsl_get_base_type(type)) {
218 case GLSL_TYPE_INT:
219 case GLSL_TYPE_UINT:
220 case GLSL_TYPE_INT16:
221 case GLSL_TYPE_UINT16:
222 case GLSL_TYPE_UINT8:
223 case GLSL_TYPE_INT8:
224 case GLSL_TYPE_INT64:
225 case GLSL_TYPE_UINT64:
226 case GLSL_TYPE_BOOL:
227 case GLSL_TYPE_FLOAT:
228 case GLSL_TYPE_FLOAT16:
229 case GLSL_TYPE_DOUBLE: {
230 int bit_size = glsl_get_bit_size(type);
231 if (glsl_type_is_vector_or_scalar(type)) {
232 unsigned num_components = glsl_get_vector_elements(val->type);
233 nir_load_const_instr *load =
234 nir_load_const_instr_create(b->shader, num_components, bit_size);
235
236 load->value = constant->values[0];
237
238 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
239 val->def = &load->def;
240 } else {
241 assert(glsl_type_is_matrix(type));
242 unsigned rows = glsl_get_vector_elements(val->type);
243 unsigned columns = glsl_get_matrix_columns(val->type);
244 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
245
246 for (unsigned i = 0; i < columns; i++) {
247 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
248 col_val->type = glsl_get_column_type(val->type);
249 nir_load_const_instr *load =
250 nir_load_const_instr_create(b->shader, rows, bit_size);
251
252 load->value = constant->values[i];
253
254 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
255 col_val->def = &load->def;
256
257 val->elems[i] = col_val;
258 }
259 }
260 break;
261 }
262
263 case GLSL_TYPE_ARRAY: {
264 unsigned elems = glsl_get_length(val->type);
265 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
266 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
267 for (unsigned i = 0; i < elems; i++)
268 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
269 elem_type);
270 break;
271 }
272
273 case GLSL_TYPE_STRUCT: {
274 unsigned elems = glsl_get_length(val->type);
275 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
276 for (unsigned i = 0; i < elems; i++) {
277 const struct glsl_type *elem_type =
278 glsl_get_struct_field(val->type, i);
279 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
280 elem_type);
281 }
282 break;
283 }
284
285 default:
286 vtn_fail("bad constant type");
287 }
288
289 return val;
290 }
291
292 struct vtn_ssa_value *
293 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
294 {
295 struct vtn_value *val = vtn_untyped_value(b, value_id);
296 switch (val->value_type) {
297 case vtn_value_type_undef:
298 return vtn_undef_ssa_value(b, val->type->type);
299
300 case vtn_value_type_constant:
301 return vtn_const_ssa_value(b, val->constant, val->type->type);
302
303 case vtn_value_type_ssa:
304 return val->ssa;
305
306 case vtn_value_type_pointer:
307 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
308 struct vtn_ssa_value *ssa =
309 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
310 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
311 return ssa;
312
313 default:
314 vtn_fail("Invalid type for an SSA value");
315 }
316 }
317
318 static char *
319 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
320 unsigned word_count, unsigned *words_used)
321 {
322 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
323 if (words_used) {
324 /* Ammount of space taken by the string (including the null) */
325 unsigned len = strlen(dup) + 1;
326 *words_used = DIV_ROUND_UP(len, sizeof(*words));
327 }
328 return dup;
329 }
330
331 const uint32_t *
332 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
333 const uint32_t *end, vtn_instruction_handler handler)
334 {
335 b->file = NULL;
336 b->line = -1;
337 b->col = -1;
338
339 const uint32_t *w = start;
340 while (w < end) {
341 SpvOp opcode = w[0] & SpvOpCodeMask;
342 unsigned count = w[0] >> SpvWordCountShift;
343 vtn_assert(count >= 1 && w + count <= end);
344
345 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
346
347 switch (opcode) {
348 case SpvOpNop:
349 break; /* Do nothing */
350
351 case SpvOpLine:
352 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
353 b->line = w[2];
354 b->col = w[3];
355 break;
356
357 case SpvOpNoLine:
358 b->file = NULL;
359 b->line = -1;
360 b->col = -1;
361 break;
362
363 default:
364 if (!handler(b, opcode, w, count))
365 return w;
366 break;
367 }
368
369 w += count;
370 }
371
372 b->spirv_offset = 0;
373 b->file = NULL;
374 b->line = -1;
375 b->col = -1;
376
377 assert(w == end);
378 return w;
379 }
380
381 static void
382 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
383 const uint32_t *w, unsigned count)
384 {
385 switch (opcode) {
386 case SpvOpExtInstImport: {
387 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
388 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
389 val->ext_handler = vtn_handle_glsl450_instruction;
390 } else if ((strcmp((const char *)&w[2], "SPV_AMD_gcn_shader") == 0)
391 && (b->options && b->options->caps.gcn_shader)) {
392 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
393 } else if ((strcmp((const char *)&w[2], "SPV_AMD_shader_trinary_minmax") == 0)
394 && (b->options && b->options->caps.trinary_minmax)) {
395 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
396 } else {
397 vtn_fail("Unsupported extension");
398 }
399 break;
400 }
401
402 case SpvOpExtInst: {
403 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
404 bool handled = val->ext_handler(b, w[4], w, count);
405 vtn_assert(handled);
406 break;
407 }
408
409 default:
410 vtn_fail("Unhandled opcode");
411 }
412 }
413
414 static void
415 _foreach_decoration_helper(struct vtn_builder *b,
416 struct vtn_value *base_value,
417 int parent_member,
418 struct vtn_value *value,
419 vtn_decoration_foreach_cb cb, void *data)
420 {
421 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
422 int member;
423 if (dec->scope == VTN_DEC_DECORATION) {
424 member = parent_member;
425 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
426 vtn_fail_if(value->value_type != vtn_value_type_type ||
427 value->type->base_type != vtn_base_type_struct,
428 "OpMemberDecorate and OpGroupMemberDecorate are only "
429 "allowed on OpTypeStruct");
430 /* This means we haven't recursed yet */
431 assert(value == base_value);
432
433 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
434
435 vtn_fail_if(member >= base_value->type->length,
436 "OpMemberDecorate specifies member %d but the "
437 "OpTypeStruct has only %u members",
438 member, base_value->type->length);
439 } else {
440 /* Not a decoration */
441 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
442 continue;
443 }
444
445 if (dec->group) {
446 assert(dec->group->value_type == vtn_value_type_decoration_group);
447 _foreach_decoration_helper(b, base_value, member, dec->group,
448 cb, data);
449 } else {
450 cb(b, base_value, member, dec, data);
451 }
452 }
453 }
454
455 /** Iterates (recursively if needed) over all of the decorations on a value
456 *
457 * This function iterates over all of the decorations applied to a given
458 * value. If it encounters a decoration group, it recurses into the group
459 * and iterates over all of those decorations as well.
460 */
461 void
462 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
463 vtn_decoration_foreach_cb cb, void *data)
464 {
465 _foreach_decoration_helper(b, value, -1, value, cb, data);
466 }
467
468 void
469 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
470 vtn_execution_mode_foreach_cb cb, void *data)
471 {
472 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
473 if (dec->scope != VTN_DEC_EXECUTION_MODE)
474 continue;
475
476 assert(dec->group == NULL);
477 cb(b, value, dec, data);
478 }
479 }
480
481 void
482 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
483 const uint32_t *w, unsigned count)
484 {
485 const uint32_t *w_end = w + count;
486 const uint32_t target = w[1];
487 w += 2;
488
489 switch (opcode) {
490 case SpvOpDecorationGroup:
491 vtn_push_value(b, target, vtn_value_type_decoration_group);
492 break;
493
494 case SpvOpDecorate:
495 case SpvOpMemberDecorate:
496 case SpvOpExecutionMode: {
497 struct vtn_value *val = vtn_untyped_value(b, target);
498
499 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
500 switch (opcode) {
501 case SpvOpDecorate:
502 dec->scope = VTN_DEC_DECORATION;
503 break;
504 case SpvOpMemberDecorate:
505 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
506 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
507 "Member argument of OpMemberDecorate too large");
508 break;
509 case SpvOpExecutionMode:
510 dec->scope = VTN_DEC_EXECUTION_MODE;
511 break;
512 default:
513 unreachable("Invalid decoration opcode");
514 }
515 dec->decoration = *(w++);
516 dec->literals = w;
517
518 /* Link into the list */
519 dec->next = val->decoration;
520 val->decoration = dec;
521 break;
522 }
523
524 case SpvOpGroupMemberDecorate:
525 case SpvOpGroupDecorate: {
526 struct vtn_value *group =
527 vtn_value(b, target, vtn_value_type_decoration_group);
528
529 for (; w < w_end; w++) {
530 struct vtn_value *val = vtn_untyped_value(b, *w);
531 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
532
533 dec->group = group;
534 if (opcode == SpvOpGroupDecorate) {
535 dec->scope = VTN_DEC_DECORATION;
536 } else {
537 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
538 vtn_fail_if(dec->scope < 0, /* Check for overflow */
539 "Member argument of OpGroupMemberDecorate too large");
540 }
541
542 /* Link into the list */
543 dec->next = val->decoration;
544 val->decoration = dec;
545 }
546 break;
547 }
548
549 default:
550 unreachable("Unhandled opcode");
551 }
552 }
553
554 struct member_decoration_ctx {
555 unsigned num_fields;
556 struct glsl_struct_field *fields;
557 struct vtn_type *type;
558 };
559
560 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
561 * OpStore, or OpCopyMemory between them without breaking anything.
562 * Technically, the SPIR-V rules require the exact same type ID but this lets
563 * us internally be a bit looser.
564 */
565 bool
566 vtn_types_compatible(struct vtn_builder *b,
567 struct vtn_type *t1, struct vtn_type *t2)
568 {
569 if (t1->id == t2->id)
570 return true;
571
572 if (t1->base_type != t2->base_type)
573 return false;
574
575 switch (t1->base_type) {
576 case vtn_base_type_void:
577 case vtn_base_type_scalar:
578 case vtn_base_type_vector:
579 case vtn_base_type_matrix:
580 case vtn_base_type_image:
581 case vtn_base_type_sampler:
582 case vtn_base_type_sampled_image:
583 return t1->type == t2->type;
584
585 case vtn_base_type_array:
586 return t1->length == t2->length &&
587 vtn_types_compatible(b, t1->array_element, t2->array_element);
588
589 case vtn_base_type_pointer:
590 return vtn_types_compatible(b, t1->deref, t2->deref);
591
592 case vtn_base_type_struct:
593 if (t1->length != t2->length)
594 return false;
595
596 for (unsigned i = 0; i < t1->length; i++) {
597 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
598 return false;
599 }
600 return true;
601
602 case vtn_base_type_function:
603 /* This case shouldn't get hit since you can't copy around function
604 * types. Just require them to be identical.
605 */
606 return false;
607 }
608
609 vtn_fail("Invalid base type");
610 }
611
612 /* does a shallow copy of a vtn_type */
613
614 static struct vtn_type *
615 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
616 {
617 struct vtn_type *dest = ralloc(b, struct vtn_type);
618 *dest = *src;
619
620 switch (src->base_type) {
621 case vtn_base_type_void:
622 case vtn_base_type_scalar:
623 case vtn_base_type_vector:
624 case vtn_base_type_matrix:
625 case vtn_base_type_array:
626 case vtn_base_type_pointer:
627 case vtn_base_type_image:
628 case vtn_base_type_sampler:
629 case vtn_base_type_sampled_image:
630 /* Nothing more to do */
631 break;
632
633 case vtn_base_type_struct:
634 dest->members = ralloc_array(b, struct vtn_type *, src->length);
635 memcpy(dest->members, src->members,
636 src->length * sizeof(src->members[0]));
637
638 dest->offsets = ralloc_array(b, unsigned, src->length);
639 memcpy(dest->offsets, src->offsets,
640 src->length * sizeof(src->offsets[0]));
641 break;
642
643 case vtn_base_type_function:
644 dest->params = ralloc_array(b, struct vtn_type *, src->length);
645 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
646 break;
647 }
648
649 return dest;
650 }
651
652 static struct vtn_type *
653 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
654 {
655 type->members[member] = vtn_type_copy(b, type->members[member]);
656 type = type->members[member];
657
658 /* We may have an array of matrices.... Oh, joy! */
659 while (glsl_type_is_array(type->type)) {
660 type->array_element = vtn_type_copy(b, type->array_element);
661 type = type->array_element;
662 }
663
664 vtn_assert(glsl_type_is_matrix(type->type));
665
666 return type;
667 }
668
669 static void
670 struct_member_decoration_cb(struct vtn_builder *b,
671 struct vtn_value *val, int member,
672 const struct vtn_decoration *dec, void *void_ctx)
673 {
674 struct member_decoration_ctx *ctx = void_ctx;
675
676 if (member < 0)
677 return;
678
679 assert(member < ctx->num_fields);
680
681 switch (dec->decoration) {
682 case SpvDecorationNonWritable:
683 case SpvDecorationNonReadable:
684 case SpvDecorationRelaxedPrecision:
685 case SpvDecorationVolatile:
686 case SpvDecorationCoherent:
687 case SpvDecorationUniform:
688 break; /* FIXME: Do nothing with this for now. */
689 case SpvDecorationNoPerspective:
690 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
691 break;
692 case SpvDecorationFlat:
693 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
694 break;
695 case SpvDecorationCentroid:
696 ctx->fields[member].centroid = true;
697 break;
698 case SpvDecorationSample:
699 ctx->fields[member].sample = true;
700 break;
701 case SpvDecorationStream:
702 /* Vulkan only allows one GS stream */
703 vtn_assert(dec->literals[0] == 0);
704 break;
705 case SpvDecorationLocation:
706 ctx->fields[member].location = dec->literals[0];
707 break;
708 case SpvDecorationComponent:
709 break; /* FIXME: What should we do with these? */
710 case SpvDecorationBuiltIn:
711 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
712 ctx->type->members[member]->is_builtin = true;
713 ctx->type->members[member]->builtin = dec->literals[0];
714 ctx->type->builtin_block = true;
715 break;
716 case SpvDecorationOffset:
717 ctx->type->offsets[member] = dec->literals[0];
718 break;
719 case SpvDecorationMatrixStride:
720 /* Handled as a second pass */
721 break;
722 case SpvDecorationColMajor:
723 break; /* Nothing to do here. Column-major is the default. */
724 case SpvDecorationRowMajor:
725 mutable_matrix_member(b, ctx->type, member)->row_major = true;
726 break;
727
728 case SpvDecorationPatch:
729 break;
730
731 case SpvDecorationSpecId:
732 case SpvDecorationBlock:
733 case SpvDecorationBufferBlock:
734 case SpvDecorationArrayStride:
735 case SpvDecorationGLSLShared:
736 case SpvDecorationGLSLPacked:
737 case SpvDecorationInvariant:
738 case SpvDecorationRestrict:
739 case SpvDecorationAliased:
740 case SpvDecorationConstant:
741 case SpvDecorationIndex:
742 case SpvDecorationBinding:
743 case SpvDecorationDescriptorSet:
744 case SpvDecorationLinkageAttributes:
745 case SpvDecorationNoContraction:
746 case SpvDecorationInputAttachmentIndex:
747 vtn_warn("Decoration not allowed on struct members: %s",
748 spirv_decoration_to_string(dec->decoration));
749 break;
750
751 case SpvDecorationXfbBuffer:
752 case SpvDecorationXfbStride:
753 vtn_warn("Vulkan does not have transform feedback");
754 break;
755
756 case SpvDecorationCPacked:
757 case SpvDecorationSaturatedConversion:
758 case SpvDecorationFuncParamAttr:
759 case SpvDecorationFPRoundingMode:
760 case SpvDecorationFPFastMathMode:
761 case SpvDecorationAlignment:
762 vtn_warn("Decoration only allowed for CL-style kernels: %s",
763 spirv_decoration_to_string(dec->decoration));
764 break;
765
766 default:
767 vtn_fail("Unhandled decoration");
768 }
769 }
770
771 /* Matrix strides are handled as a separate pass because we need to know
772 * whether the matrix is row-major or not first.
773 */
774 static void
775 struct_member_matrix_stride_cb(struct vtn_builder *b,
776 struct vtn_value *val, int member,
777 const struct vtn_decoration *dec,
778 void *void_ctx)
779 {
780 if (dec->decoration != SpvDecorationMatrixStride)
781 return;
782
783 vtn_fail_if(member < 0,
784 "The MatrixStride decoration is only allowed on members "
785 "of OpTypeStruct");
786
787 struct member_decoration_ctx *ctx = void_ctx;
788
789 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
790 if (mat_type->row_major) {
791 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
792 mat_type->stride = mat_type->array_element->stride;
793 mat_type->array_element->stride = dec->literals[0];
794 } else {
795 vtn_assert(mat_type->array_element->stride > 0);
796 mat_type->stride = dec->literals[0];
797 }
798 }
799
800 static void
801 type_decoration_cb(struct vtn_builder *b,
802 struct vtn_value *val, int member,
803 const struct vtn_decoration *dec, void *ctx)
804 {
805 struct vtn_type *type = val->type;
806
807 if (member != -1) {
808 /* This should have been handled by OpTypeStruct */
809 assert(val->type->base_type == vtn_base_type_struct);
810 assert(member >= 0 && member < val->type->length);
811 return;
812 }
813
814 switch (dec->decoration) {
815 case SpvDecorationArrayStride:
816 vtn_assert(type->base_type == vtn_base_type_matrix ||
817 type->base_type == vtn_base_type_array ||
818 type->base_type == vtn_base_type_pointer);
819 type->stride = dec->literals[0];
820 break;
821 case SpvDecorationBlock:
822 vtn_assert(type->base_type == vtn_base_type_struct);
823 type->block = true;
824 break;
825 case SpvDecorationBufferBlock:
826 vtn_assert(type->base_type == vtn_base_type_struct);
827 type->buffer_block = true;
828 break;
829 case SpvDecorationGLSLShared:
830 case SpvDecorationGLSLPacked:
831 /* Ignore these, since we get explicit offsets anyways */
832 break;
833
834 case SpvDecorationRowMajor:
835 case SpvDecorationColMajor:
836 case SpvDecorationMatrixStride:
837 case SpvDecorationBuiltIn:
838 case SpvDecorationNoPerspective:
839 case SpvDecorationFlat:
840 case SpvDecorationPatch:
841 case SpvDecorationCentroid:
842 case SpvDecorationSample:
843 case SpvDecorationVolatile:
844 case SpvDecorationCoherent:
845 case SpvDecorationNonWritable:
846 case SpvDecorationNonReadable:
847 case SpvDecorationUniform:
848 case SpvDecorationStream:
849 case SpvDecorationLocation:
850 case SpvDecorationComponent:
851 case SpvDecorationOffset:
852 case SpvDecorationXfbBuffer:
853 case SpvDecorationXfbStride:
854 vtn_warn("Decoration only allowed for struct members: %s",
855 spirv_decoration_to_string(dec->decoration));
856 break;
857
858 case SpvDecorationRelaxedPrecision:
859 case SpvDecorationSpecId:
860 case SpvDecorationInvariant:
861 case SpvDecorationRestrict:
862 case SpvDecorationAliased:
863 case SpvDecorationConstant:
864 case SpvDecorationIndex:
865 case SpvDecorationBinding:
866 case SpvDecorationDescriptorSet:
867 case SpvDecorationLinkageAttributes:
868 case SpvDecorationNoContraction:
869 case SpvDecorationInputAttachmentIndex:
870 vtn_warn("Decoration not allowed on types: %s",
871 spirv_decoration_to_string(dec->decoration));
872 break;
873
874 case SpvDecorationCPacked:
875 case SpvDecorationSaturatedConversion:
876 case SpvDecorationFuncParamAttr:
877 case SpvDecorationFPRoundingMode:
878 case SpvDecorationFPFastMathMode:
879 case SpvDecorationAlignment:
880 vtn_warn("Decoration only allowed for CL-style kernels: %s",
881 spirv_decoration_to_string(dec->decoration));
882 break;
883
884 default:
885 vtn_fail("Unhandled decoration");
886 }
887 }
888
889 static unsigned
890 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
891 {
892 switch (format) {
893 case SpvImageFormatUnknown: return 0; /* GL_NONE */
894 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
895 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
896 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
897 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
898 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
899 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
900 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
901 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
902 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
903 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
904 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
905 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
906 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
907 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
908 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
909 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
910 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
911 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
912 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
913 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
914 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
915 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
916 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
917 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
918 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
919 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
920 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
921 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
922 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
923 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
924 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
925 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
926 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
927 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
928 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
929 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
930 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
931 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
932 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
933 default:
934 vtn_fail("Invalid image format");
935 }
936 }
937
938 static struct vtn_type *
939 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
940 uint32_t *size_out, uint32_t *align_out)
941 {
942 switch (type->base_type) {
943 case vtn_base_type_scalar: {
944 uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
945 *size_out = comp_size;
946 *align_out = comp_size;
947 return type;
948 }
949
950 case vtn_base_type_vector: {
951 uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
952 unsigned align_comps = type->length == 3 ? 4 : type->length;
953 *size_out = comp_size * type->length,
954 *align_out = comp_size * align_comps;
955 return type;
956 }
957
958 case vtn_base_type_matrix:
959 case vtn_base_type_array: {
960 /* We're going to add an array stride */
961 type = vtn_type_copy(b, type);
962 uint32_t elem_size, elem_align;
963 type->array_element = vtn_type_layout_std430(b, type->array_element,
964 &elem_size, &elem_align);
965 type->stride = vtn_align_u32(elem_size, elem_align);
966 *size_out = type->stride * type->length;
967 *align_out = elem_align;
968 return type;
969 }
970
971 case vtn_base_type_struct: {
972 /* We're going to add member offsets */
973 type = vtn_type_copy(b, type);
974 uint32_t offset = 0;
975 uint32_t align = 0;
976 for (unsigned i = 0; i < type->length; i++) {
977 uint32_t mem_size, mem_align;
978 type->members[i] = vtn_type_layout_std430(b, type->members[i],
979 &mem_size, &mem_align);
980 offset = vtn_align_u32(offset, mem_align);
981 type->offsets[i] = offset;
982 offset += mem_size;
983 align = MAX2(align, mem_align);
984 }
985 *size_out = offset;
986 *align_out = align;
987 return type;
988 }
989
990 default:
991 unreachable("Invalid SPIR-V type for std430");
992 }
993 }
994
995 static void
996 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
997 const uint32_t *w, unsigned count)
998 {
999 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
1000
1001 val->type = rzalloc(b, struct vtn_type);
1002 val->type->id = w[1];
1003
1004 switch (opcode) {
1005 case SpvOpTypeVoid:
1006 val->type->base_type = vtn_base_type_void;
1007 val->type->type = glsl_void_type();
1008 break;
1009 case SpvOpTypeBool:
1010 val->type->base_type = vtn_base_type_scalar;
1011 val->type->type = glsl_bool_type();
1012 val->type->length = 1;
1013 break;
1014 case SpvOpTypeInt: {
1015 int bit_size = w[2];
1016 const bool signedness = w[3];
1017 val->type->base_type = vtn_base_type_scalar;
1018 switch (bit_size) {
1019 case 64:
1020 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1021 break;
1022 case 32:
1023 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1024 break;
1025 case 16:
1026 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1027 break;
1028 case 8:
1029 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1030 break;
1031 default:
1032 vtn_fail("Invalid int bit size");
1033 }
1034 val->type->length = 1;
1035 break;
1036 }
1037
1038 case SpvOpTypeFloat: {
1039 int bit_size = w[2];
1040 val->type->base_type = vtn_base_type_scalar;
1041 switch (bit_size) {
1042 case 16:
1043 val->type->type = glsl_float16_t_type();
1044 break;
1045 case 32:
1046 val->type->type = glsl_float_type();
1047 break;
1048 case 64:
1049 val->type->type = glsl_double_type();
1050 break;
1051 default:
1052 vtn_fail("Invalid float bit size");
1053 }
1054 val->type->length = 1;
1055 break;
1056 }
1057
1058 case SpvOpTypeVector: {
1059 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1060 unsigned elems = w[3];
1061
1062 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1063 "Base type for OpTypeVector must be a scalar");
1064 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1065 "Invalid component count for OpTypeVector");
1066
1067 val->type->base_type = vtn_base_type_vector;
1068 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1069 val->type->length = elems;
1070 val->type->stride = glsl_get_bit_size(base->type) / 8;
1071 val->type->array_element = base;
1072 break;
1073 }
1074
1075 case SpvOpTypeMatrix: {
1076 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1077 unsigned columns = w[3];
1078
1079 vtn_fail_if(base->base_type != vtn_base_type_vector,
1080 "Base type for OpTypeMatrix must be a vector");
1081 vtn_fail_if(columns < 2 || columns > 4,
1082 "Invalid column count for OpTypeMatrix");
1083
1084 val->type->base_type = vtn_base_type_matrix;
1085 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1086 glsl_get_vector_elements(base->type),
1087 columns);
1088 vtn_fail_if(glsl_type_is_error(val->type->type),
1089 "Unsupported base type for OpTypeMatrix");
1090 assert(!glsl_type_is_error(val->type->type));
1091 val->type->length = columns;
1092 val->type->array_element = base;
1093 val->type->row_major = false;
1094 val->type->stride = 0;
1095 break;
1096 }
1097
1098 case SpvOpTypeRuntimeArray:
1099 case SpvOpTypeArray: {
1100 struct vtn_type *array_element =
1101 vtn_value(b, w[2], vtn_value_type_type)->type;
1102
1103 if (opcode == SpvOpTypeRuntimeArray) {
1104 /* A length of 0 is used to denote unsized arrays */
1105 val->type->length = 0;
1106 } else {
1107 val->type->length =
1108 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
1109 }
1110
1111 val->type->base_type = vtn_base_type_array;
1112 val->type->type = glsl_array_type(array_element->type, val->type->length);
1113 val->type->array_element = array_element;
1114 val->type->stride = 0;
1115 break;
1116 }
1117
1118 case SpvOpTypeStruct: {
1119 unsigned num_fields = count - 2;
1120 val->type->base_type = vtn_base_type_struct;
1121 val->type->length = num_fields;
1122 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1123 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1124
1125 NIR_VLA(struct glsl_struct_field, fields, count);
1126 for (unsigned i = 0; i < num_fields; i++) {
1127 val->type->members[i] =
1128 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1129 fields[i] = (struct glsl_struct_field) {
1130 .type = val->type->members[i]->type,
1131 .name = ralloc_asprintf(b, "field%d", i),
1132 .location = -1,
1133 };
1134 }
1135
1136 struct member_decoration_ctx ctx = {
1137 .num_fields = num_fields,
1138 .fields = fields,
1139 .type = val->type
1140 };
1141
1142 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1143 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1144
1145 const char *name = val->name ? val->name : "struct";
1146
1147 val->type->type = glsl_struct_type(fields, num_fields, name);
1148 break;
1149 }
1150
1151 case SpvOpTypeFunction: {
1152 val->type->base_type = vtn_base_type_function;
1153 val->type->type = NULL;
1154
1155 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1156
1157 const unsigned num_params = count - 3;
1158 val->type->length = num_params;
1159 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1160 for (unsigned i = 0; i < count - 3; i++) {
1161 val->type->params[i] =
1162 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1163 }
1164 break;
1165 }
1166
1167 case SpvOpTypePointer: {
1168 SpvStorageClass storage_class = w[2];
1169 struct vtn_type *deref_type =
1170 vtn_value(b, w[3], vtn_value_type_type)->type;
1171
1172 val->type->base_type = vtn_base_type_pointer;
1173 val->type->storage_class = storage_class;
1174 val->type->deref = deref_type;
1175
1176 if (storage_class == SpvStorageClassUniform ||
1177 storage_class == SpvStorageClassStorageBuffer) {
1178 /* These can actually be stored to nir_variables and used as SSA
1179 * values so they need a real glsl_type.
1180 */
1181 val->type->type = glsl_vector_type(GLSL_TYPE_UINT, 2);
1182 }
1183
1184 if (storage_class == SpvStorageClassWorkgroup &&
1185 b->options->lower_workgroup_access_to_offsets) {
1186 uint32_t size, align;
1187 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1188 &size, &align);
1189 val->type->length = size;
1190 val->type->align = align;
1191 /* These can actually be stored to nir_variables and used as SSA
1192 * values so they need a real glsl_type.
1193 */
1194 val->type->type = glsl_uint_type();
1195 }
1196 break;
1197 }
1198
1199 case SpvOpTypeImage: {
1200 val->type->base_type = vtn_base_type_image;
1201
1202 const struct vtn_type *sampled_type =
1203 vtn_value(b, w[2], vtn_value_type_type)->type;
1204
1205 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1206 glsl_get_bit_size(sampled_type->type) != 32,
1207 "Sampled type of OpTypeImage must be a 32-bit scalar");
1208
1209 enum glsl_sampler_dim dim;
1210 switch ((SpvDim)w[3]) {
1211 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1212 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1213 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1214 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1215 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1216 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1217 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1218 default:
1219 vtn_fail("Invalid SPIR-V image dimensionality");
1220 }
1221
1222 bool is_shadow = w[4];
1223 bool is_array = w[5];
1224 bool multisampled = w[6];
1225 unsigned sampled = w[7];
1226 SpvImageFormat format = w[8];
1227
1228 if (count > 9)
1229 val->type->access_qualifier = w[9];
1230 else
1231 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1232
1233 if (multisampled) {
1234 if (dim == GLSL_SAMPLER_DIM_2D)
1235 dim = GLSL_SAMPLER_DIM_MS;
1236 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1237 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1238 else
1239 vtn_fail("Unsupported multisampled image type");
1240 }
1241
1242 val->type->image_format = translate_image_format(b, format);
1243
1244 enum glsl_base_type sampled_base_type =
1245 glsl_get_base_type(sampled_type->type);
1246 if (sampled == 1) {
1247 val->type->sampled = true;
1248 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
1249 sampled_base_type);
1250 } else if (sampled == 2) {
1251 vtn_assert(!is_shadow);
1252 val->type->sampled = false;
1253 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1254 } else {
1255 vtn_fail("We need to know if the image will be sampled");
1256 }
1257 break;
1258 }
1259
1260 case SpvOpTypeSampledImage:
1261 val->type->base_type = vtn_base_type_sampled_image;
1262 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1263 val->type->type = val->type->image->type;
1264 break;
1265
1266 case SpvOpTypeSampler:
1267 /* The actual sampler type here doesn't really matter. It gets
1268 * thrown away the moment you combine it with an image. What really
1269 * matters is that it's a sampler type as opposed to an integer type
1270 * so the backend knows what to do.
1271 */
1272 val->type->base_type = vtn_base_type_sampler;
1273 val->type->type = glsl_bare_sampler_type();
1274 break;
1275
1276 case SpvOpTypeOpaque:
1277 case SpvOpTypeEvent:
1278 case SpvOpTypeDeviceEvent:
1279 case SpvOpTypeReserveId:
1280 case SpvOpTypeQueue:
1281 case SpvOpTypePipe:
1282 default:
1283 vtn_fail("Unhandled opcode");
1284 }
1285
1286 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1287 }
1288
1289 static nir_constant *
1290 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1291 {
1292 nir_constant *c = rzalloc(b, nir_constant);
1293
1294 /* For pointers and other typeless things, we have to return something but
1295 * it doesn't matter what.
1296 */
1297 if (!type)
1298 return c;
1299
1300 switch (glsl_get_base_type(type)) {
1301 case GLSL_TYPE_INT:
1302 case GLSL_TYPE_UINT:
1303 case GLSL_TYPE_INT16:
1304 case GLSL_TYPE_UINT16:
1305 case GLSL_TYPE_UINT8:
1306 case GLSL_TYPE_INT8:
1307 case GLSL_TYPE_INT64:
1308 case GLSL_TYPE_UINT64:
1309 case GLSL_TYPE_BOOL:
1310 case GLSL_TYPE_FLOAT:
1311 case GLSL_TYPE_FLOAT16:
1312 case GLSL_TYPE_DOUBLE:
1313 /* Nothing to do here. It's already initialized to zero */
1314 break;
1315
1316 case GLSL_TYPE_ARRAY:
1317 vtn_assert(glsl_get_length(type) > 0);
1318 c->num_elements = glsl_get_length(type);
1319 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1320
1321 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1322 for (unsigned i = 1; i < c->num_elements; i++)
1323 c->elements[i] = c->elements[0];
1324 break;
1325
1326 case GLSL_TYPE_STRUCT:
1327 c->num_elements = glsl_get_length(type);
1328 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1329
1330 for (unsigned i = 0; i < c->num_elements; i++) {
1331 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1332 }
1333 break;
1334
1335 default:
1336 vtn_fail("Invalid type for null constant");
1337 }
1338
1339 return c;
1340 }
1341
1342 static void
1343 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1344 int member, const struct vtn_decoration *dec,
1345 void *data)
1346 {
1347 vtn_assert(member == -1);
1348 if (dec->decoration != SpvDecorationSpecId)
1349 return;
1350
1351 struct spec_constant_value *const_value = data;
1352
1353 for (unsigned i = 0; i < b->num_specializations; i++) {
1354 if (b->specializations[i].id == dec->literals[0]) {
1355 if (const_value->is_double)
1356 const_value->data64 = b->specializations[i].data64;
1357 else
1358 const_value->data32 = b->specializations[i].data32;
1359 return;
1360 }
1361 }
1362 }
1363
1364 static uint32_t
1365 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1366 uint32_t const_value)
1367 {
1368 struct spec_constant_value data;
1369 data.is_double = false;
1370 data.data32 = const_value;
1371 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1372 return data.data32;
1373 }
1374
1375 static uint64_t
1376 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1377 uint64_t const_value)
1378 {
1379 struct spec_constant_value data;
1380 data.is_double = true;
1381 data.data64 = const_value;
1382 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1383 return data.data64;
1384 }
1385
1386 static void
1387 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1388 struct vtn_value *val,
1389 int member,
1390 const struct vtn_decoration *dec,
1391 void *data)
1392 {
1393 vtn_assert(member == -1);
1394 if (dec->decoration != SpvDecorationBuiltIn ||
1395 dec->literals[0] != SpvBuiltInWorkgroupSize)
1396 return;
1397
1398 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1399
1400 b->shader->info.cs.local_size[0] = val->constant->values[0].u32[0];
1401 b->shader->info.cs.local_size[1] = val->constant->values[0].u32[1];
1402 b->shader->info.cs.local_size[2] = val->constant->values[0].u32[2];
1403 }
1404
1405 static void
1406 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1407 const uint32_t *w, unsigned count)
1408 {
1409 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1410 val->constant = rzalloc(b, nir_constant);
1411 switch (opcode) {
1412 case SpvOpConstantTrue:
1413 case SpvOpConstantFalse:
1414 case SpvOpSpecConstantTrue:
1415 case SpvOpSpecConstantFalse: {
1416 vtn_fail_if(val->type->type != glsl_bool_type(),
1417 "Result type of %s must be OpTypeBool",
1418 spirv_op_to_string(opcode));
1419
1420 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1421 opcode == SpvOpSpecConstantTrue);
1422
1423 if (opcode == SpvOpSpecConstantTrue ||
1424 opcode == SpvOpSpecConstantFalse)
1425 int_val = get_specialization(b, val, int_val);
1426
1427 val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE;
1428 break;
1429 }
1430
1431 case SpvOpConstant: {
1432 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1433 "Result type of %s must be a scalar",
1434 spirv_op_to_string(opcode));
1435 int bit_size = glsl_get_bit_size(val->type->type);
1436 switch (bit_size) {
1437 case 64:
1438 val->constant->values->u64[0] = vtn_u64_literal(&w[3]);
1439 break;
1440 case 32:
1441 val->constant->values->u32[0] = w[3];
1442 break;
1443 case 16:
1444 val->constant->values->u16[0] = w[3];
1445 break;
1446 case 8:
1447 val->constant->values->u8[0] = w[3];
1448 break;
1449 default:
1450 vtn_fail("Unsupported SpvOpConstant bit size");
1451 }
1452 break;
1453 }
1454
1455 case SpvOpSpecConstant: {
1456 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1457 "Result type of %s must be a scalar",
1458 spirv_op_to_string(opcode));
1459 int bit_size = glsl_get_bit_size(val->type->type);
1460 switch (bit_size) {
1461 case 64:
1462 val->constant->values[0].u64[0] =
1463 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1464 break;
1465 case 32:
1466 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1467 break;
1468 case 16:
1469 val->constant->values[0].u16[0] = get_specialization(b, val, w[3]);
1470 break;
1471 case 8:
1472 val->constant->values[0].u8[0] = get_specialization(b, val, w[3]);
1473 break;
1474 default:
1475 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1476 }
1477 break;
1478 }
1479
1480 case SpvOpSpecConstantComposite:
1481 case SpvOpConstantComposite: {
1482 unsigned elem_count = count - 3;
1483 vtn_fail_if(elem_count != val->type->length,
1484 "%s has %u constituents, expected %u",
1485 spirv_op_to_string(opcode), elem_count, val->type->length);
1486
1487 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1488 for (unsigned i = 0; i < elem_count; i++)
1489 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1490
1491 switch (val->type->base_type) {
1492 case vtn_base_type_vector: {
1493 assert(glsl_type_is_vector(val->type->type));
1494 int bit_size = glsl_get_bit_size(val->type->type);
1495 for (unsigned i = 0; i < elem_count; i++) {
1496 switch (bit_size) {
1497 case 64:
1498 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1499 break;
1500 case 32:
1501 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1502 break;
1503 case 16:
1504 val->constant->values[0].u16[i] = elems[i]->values[0].u16[0];
1505 break;
1506 case 8:
1507 val->constant->values[0].u8[i] = elems[i]->values[0].u8[0];
1508 break;
1509 default:
1510 vtn_fail("Invalid SpvOpConstantComposite bit size");
1511 }
1512 }
1513 break;
1514 }
1515
1516 case vtn_base_type_matrix:
1517 assert(glsl_type_is_matrix(val->type->type));
1518 for (unsigned i = 0; i < elem_count; i++)
1519 val->constant->values[i] = elems[i]->values[0];
1520 break;
1521
1522 case vtn_base_type_struct:
1523 case vtn_base_type_array:
1524 ralloc_steal(val->constant, elems);
1525 val->constant->num_elements = elem_count;
1526 val->constant->elements = elems;
1527 break;
1528
1529 default:
1530 vtn_fail("Result type of %s must be a composite type",
1531 spirv_op_to_string(opcode));
1532 }
1533 break;
1534 }
1535
1536 case SpvOpSpecConstantOp: {
1537 SpvOp opcode = get_specialization(b, val, w[3]);
1538 switch (opcode) {
1539 case SpvOpVectorShuffle: {
1540 struct vtn_value *v0 = &b->values[w[4]];
1541 struct vtn_value *v1 = &b->values[w[5]];
1542
1543 vtn_assert(v0->value_type == vtn_value_type_constant ||
1544 v0->value_type == vtn_value_type_undef);
1545 vtn_assert(v1->value_type == vtn_value_type_constant ||
1546 v1->value_type == vtn_value_type_undef);
1547
1548 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1549 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1550
1551 vtn_assert(len0 + len1 < 16);
1552
1553 unsigned bit_size = glsl_get_bit_size(val->type->type);
1554 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1555 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1556
1557 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1558 (void)bit_size0; (void)bit_size1;
1559
1560 if (bit_size == 64) {
1561 uint64_t u64[8];
1562 if (v0->value_type == vtn_value_type_constant) {
1563 for (unsigned i = 0; i < len0; i++)
1564 u64[i] = v0->constant->values[0].u64[i];
1565 }
1566 if (v1->value_type == vtn_value_type_constant) {
1567 for (unsigned i = 0; i < len1; i++)
1568 u64[len0 + i] = v1->constant->values[0].u64[i];
1569 }
1570
1571 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1572 uint32_t comp = w[i + 6];
1573 /* If component is not used, set the value to a known constant
1574 * to detect if it is wrongly used.
1575 */
1576 if (comp == (uint32_t)-1)
1577 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1578 else
1579 val->constant->values[0].u64[j] = u64[comp];
1580 }
1581 } else {
1582 /* This is for both 32-bit and 16-bit values */
1583 uint32_t u32[8];
1584 if (v0->value_type == vtn_value_type_constant) {
1585 for (unsigned i = 0; i < len0; i++)
1586 u32[i] = v0->constant->values[0].u32[i];
1587 }
1588 if (v1->value_type == vtn_value_type_constant) {
1589 for (unsigned i = 0; i < len1; i++)
1590 u32[len0 + i] = v1->constant->values[0].u32[i];
1591 }
1592
1593 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1594 uint32_t comp = w[i + 6];
1595 /* If component is not used, set the value to a known constant
1596 * to detect if it is wrongly used.
1597 */
1598 if (comp == (uint32_t)-1)
1599 val->constant->values[0].u32[j] = 0xdeadbeef;
1600 else
1601 val->constant->values[0].u32[j] = u32[comp];
1602 }
1603 }
1604 break;
1605 }
1606
1607 case SpvOpCompositeExtract:
1608 case SpvOpCompositeInsert: {
1609 struct vtn_value *comp;
1610 unsigned deref_start;
1611 struct nir_constant **c;
1612 if (opcode == SpvOpCompositeExtract) {
1613 comp = vtn_value(b, w[4], vtn_value_type_constant);
1614 deref_start = 5;
1615 c = &comp->constant;
1616 } else {
1617 comp = vtn_value(b, w[5], vtn_value_type_constant);
1618 deref_start = 6;
1619 val->constant = nir_constant_clone(comp->constant,
1620 (nir_variable *)b);
1621 c = &val->constant;
1622 }
1623
1624 int elem = -1;
1625 int col = 0;
1626 const struct vtn_type *type = comp->type;
1627 for (unsigned i = deref_start; i < count; i++) {
1628 vtn_fail_if(w[i] > type->length,
1629 "%uth index of %s is %u but the type has only "
1630 "%u elements", i - deref_start,
1631 spirv_op_to_string(opcode), w[i], type->length);
1632
1633 switch (type->base_type) {
1634 case vtn_base_type_vector:
1635 elem = w[i];
1636 type = type->array_element;
1637 break;
1638
1639 case vtn_base_type_matrix:
1640 assert(col == 0 && elem == -1);
1641 col = w[i];
1642 elem = 0;
1643 type = type->array_element;
1644 break;
1645
1646 case vtn_base_type_array:
1647 c = &(*c)->elements[w[i]];
1648 type = type->array_element;
1649 break;
1650
1651 case vtn_base_type_struct:
1652 c = &(*c)->elements[w[i]];
1653 type = type->members[w[i]];
1654 break;
1655
1656 default:
1657 vtn_fail("%s must only index into composite types",
1658 spirv_op_to_string(opcode));
1659 }
1660 }
1661
1662 if (opcode == SpvOpCompositeExtract) {
1663 if (elem == -1) {
1664 val->constant = *c;
1665 } else {
1666 unsigned num_components = type->length;
1667 unsigned bit_size = glsl_get_bit_size(type->type);
1668 for (unsigned i = 0; i < num_components; i++)
1669 switch(bit_size) {
1670 case 64:
1671 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1672 break;
1673 case 32:
1674 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1675 break;
1676 case 16:
1677 val->constant->values[0].u16[i] = (*c)->values[col].u16[elem + i];
1678 break;
1679 case 8:
1680 val->constant->values[0].u8[i] = (*c)->values[col].u8[elem + i];
1681 break;
1682 default:
1683 vtn_fail("Invalid SpvOpCompositeExtract bit size");
1684 }
1685 }
1686 } else {
1687 struct vtn_value *insert =
1688 vtn_value(b, w[4], vtn_value_type_constant);
1689 vtn_assert(insert->type == type);
1690 if (elem == -1) {
1691 *c = insert->constant;
1692 } else {
1693 unsigned num_components = type->length;
1694 unsigned bit_size = glsl_get_bit_size(type->type);
1695 for (unsigned i = 0; i < num_components; i++)
1696 switch (bit_size) {
1697 case 64:
1698 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1699 break;
1700 case 32:
1701 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1702 break;
1703 case 16:
1704 (*c)->values[col].u16[elem + i] = insert->constant->values[0].u16[i];
1705 break;
1706 case 8:
1707 (*c)->values[col].u8[elem + i] = insert->constant->values[0].u8[i];
1708 break;
1709 default:
1710 vtn_fail("Invalid SpvOpCompositeInsert bit size");
1711 }
1712 }
1713 }
1714 break;
1715 }
1716
1717 default: {
1718 bool swap;
1719 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1720 nir_alu_type src_alu_type = dst_alu_type;
1721 unsigned num_components = glsl_get_vector_elements(val->type->type);
1722 unsigned bit_size;
1723
1724 vtn_assert(count <= 7);
1725
1726 switch (opcode) {
1727 case SpvOpSConvert:
1728 case SpvOpFConvert:
1729 /* We have a source in a conversion */
1730 src_alu_type =
1731 nir_get_nir_type_for_glsl_type(
1732 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1733 /* We use the bitsize of the conversion source to evaluate the opcode later */
1734 bit_size = glsl_get_bit_size(
1735 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1736 break;
1737 default:
1738 bit_size = glsl_get_bit_size(val->type->type);
1739 };
1740
1741 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1742 nir_alu_type_get_type_size(src_alu_type),
1743 nir_alu_type_get_type_size(dst_alu_type));
1744 nir_const_value src[4];
1745
1746 for (unsigned i = 0; i < count - 4; i++) {
1747 nir_constant *c =
1748 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1749
1750 unsigned j = swap ? 1 - i : i;
1751 src[j] = c->values[0];
1752 }
1753
1754 val->constant->values[0] =
1755 nir_eval_const_opcode(op, num_components, bit_size, src);
1756 break;
1757 } /* default */
1758 }
1759 break;
1760 }
1761
1762 case SpvOpConstantNull:
1763 val->constant = vtn_null_constant(b, val->type->type);
1764 break;
1765
1766 case SpvOpConstantSampler:
1767 vtn_fail("OpConstantSampler requires Kernel Capability");
1768 break;
1769
1770 default:
1771 vtn_fail("Unhandled opcode");
1772 }
1773
1774 /* Now that we have the value, update the workgroup size if needed */
1775 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1776 }
1777
1778 static void
1779 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1780 const uint32_t *w, unsigned count)
1781 {
1782 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1783 struct vtn_function *vtn_callee =
1784 vtn_value(b, w[3], vtn_value_type_function)->func;
1785 struct nir_function *callee = vtn_callee->impl->function;
1786
1787 vtn_callee->referenced = true;
1788
1789 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1790 for (unsigned i = 0; i < call->num_params; i++) {
1791 unsigned arg_id = w[4 + i];
1792 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1793 if (arg->value_type == vtn_value_type_pointer &&
1794 arg->pointer->ptr_type->type == NULL) {
1795 nir_deref_var *d = vtn_pointer_to_deref(b, arg->pointer);
1796 call->params[i] = nir_deref_var_clone(d, call);
1797 } else {
1798 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1799
1800 /* Make a temporary to store the argument in */
1801 nir_variable *tmp =
1802 nir_local_variable_create(b->nb.impl, arg_ssa->type, "arg_tmp");
1803 call->params[i] = nir_deref_var_create(call, tmp);
1804
1805 vtn_local_store(b, arg_ssa, call->params[i]);
1806 }
1807 }
1808
1809 nir_variable *out_tmp = NULL;
1810 vtn_assert(res_type->type == callee->return_type);
1811 if (!glsl_type_is_void(callee->return_type)) {
1812 out_tmp = nir_local_variable_create(b->nb.impl, callee->return_type,
1813 "out_tmp");
1814 call->return_deref = nir_deref_var_create(call, out_tmp);
1815 }
1816
1817 nir_builder_instr_insert(&b->nb, &call->instr);
1818
1819 if (glsl_type_is_void(callee->return_type)) {
1820 vtn_push_value(b, w[2], vtn_value_type_undef);
1821 } else {
1822 vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, call->return_deref));
1823 }
1824 }
1825
1826 struct vtn_ssa_value *
1827 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1828 {
1829 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1830 val->type = type;
1831
1832 if (!glsl_type_is_vector_or_scalar(type)) {
1833 unsigned elems = glsl_get_length(type);
1834 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1835 for (unsigned i = 0; i < elems; i++) {
1836 const struct glsl_type *child_type;
1837
1838 switch (glsl_get_base_type(type)) {
1839 case GLSL_TYPE_INT:
1840 case GLSL_TYPE_UINT:
1841 case GLSL_TYPE_INT16:
1842 case GLSL_TYPE_UINT16:
1843 case GLSL_TYPE_UINT8:
1844 case GLSL_TYPE_INT8:
1845 case GLSL_TYPE_INT64:
1846 case GLSL_TYPE_UINT64:
1847 case GLSL_TYPE_BOOL:
1848 case GLSL_TYPE_FLOAT:
1849 case GLSL_TYPE_FLOAT16:
1850 case GLSL_TYPE_DOUBLE:
1851 child_type = glsl_get_column_type(type);
1852 break;
1853 case GLSL_TYPE_ARRAY:
1854 child_type = glsl_get_array_element(type);
1855 break;
1856 case GLSL_TYPE_STRUCT:
1857 child_type = glsl_get_struct_field(type, i);
1858 break;
1859 default:
1860 vtn_fail("unkown base type");
1861 }
1862
1863 val->elems[i] = vtn_create_ssa_value(b, child_type);
1864 }
1865 }
1866
1867 return val;
1868 }
1869
1870 static nir_tex_src
1871 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1872 {
1873 nir_tex_src src;
1874 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1875 src.src_type = type;
1876 return src;
1877 }
1878
1879 static void
1880 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1881 const uint32_t *w, unsigned count)
1882 {
1883 if (opcode == SpvOpSampledImage) {
1884 struct vtn_value *val =
1885 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1886 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1887 val->sampled_image->type =
1888 vtn_value(b, w[1], vtn_value_type_type)->type;
1889 val->sampled_image->image =
1890 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1891 val->sampled_image->sampler =
1892 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1893 return;
1894 } else if (opcode == SpvOpImage) {
1895 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
1896 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1897 if (src_val->value_type == vtn_value_type_sampled_image) {
1898 val->pointer = src_val->sampled_image->image;
1899 } else {
1900 vtn_assert(src_val->value_type == vtn_value_type_pointer);
1901 val->pointer = src_val->pointer;
1902 }
1903 return;
1904 }
1905
1906 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1907 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1908
1909 struct vtn_sampled_image sampled;
1910 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1911 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1912 sampled = *sampled_val->sampled_image;
1913 } else {
1914 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
1915 sampled.type = sampled_val->pointer->type;
1916 sampled.image = NULL;
1917 sampled.sampler = sampled_val->pointer;
1918 }
1919
1920 const struct glsl_type *image_type = sampled.type->type;
1921 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
1922 const bool is_array = glsl_sampler_type_is_array(image_type);
1923
1924 /* Figure out the base texture operation */
1925 nir_texop texop;
1926 switch (opcode) {
1927 case SpvOpImageSampleImplicitLod:
1928 case SpvOpImageSampleDrefImplicitLod:
1929 case SpvOpImageSampleProjImplicitLod:
1930 case SpvOpImageSampleProjDrefImplicitLod:
1931 texop = nir_texop_tex;
1932 break;
1933
1934 case SpvOpImageSampleExplicitLod:
1935 case SpvOpImageSampleDrefExplicitLod:
1936 case SpvOpImageSampleProjExplicitLod:
1937 case SpvOpImageSampleProjDrefExplicitLod:
1938 texop = nir_texop_txl;
1939 break;
1940
1941 case SpvOpImageFetch:
1942 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1943 texop = nir_texop_txf_ms;
1944 } else {
1945 texop = nir_texop_txf;
1946 }
1947 break;
1948
1949 case SpvOpImageGather:
1950 case SpvOpImageDrefGather:
1951 texop = nir_texop_tg4;
1952 break;
1953
1954 case SpvOpImageQuerySizeLod:
1955 case SpvOpImageQuerySize:
1956 texop = nir_texop_txs;
1957 break;
1958
1959 case SpvOpImageQueryLod:
1960 texop = nir_texop_lod;
1961 break;
1962
1963 case SpvOpImageQueryLevels:
1964 texop = nir_texop_query_levels;
1965 break;
1966
1967 case SpvOpImageQuerySamples:
1968 texop = nir_texop_texture_samples;
1969 break;
1970
1971 default:
1972 vtn_fail("Unhandled opcode");
1973 }
1974
1975 nir_tex_src srcs[8]; /* 8 should be enough */
1976 nir_tex_src *p = srcs;
1977
1978 unsigned idx = 4;
1979
1980 struct nir_ssa_def *coord;
1981 unsigned coord_components;
1982 switch (opcode) {
1983 case SpvOpImageSampleImplicitLod:
1984 case SpvOpImageSampleExplicitLod:
1985 case SpvOpImageSampleDrefImplicitLod:
1986 case SpvOpImageSampleDrefExplicitLod:
1987 case SpvOpImageSampleProjImplicitLod:
1988 case SpvOpImageSampleProjExplicitLod:
1989 case SpvOpImageSampleProjDrefImplicitLod:
1990 case SpvOpImageSampleProjDrefExplicitLod:
1991 case SpvOpImageFetch:
1992 case SpvOpImageGather:
1993 case SpvOpImageDrefGather:
1994 case SpvOpImageQueryLod: {
1995 /* All these types have the coordinate as their first real argument */
1996 switch (sampler_dim) {
1997 case GLSL_SAMPLER_DIM_1D:
1998 case GLSL_SAMPLER_DIM_BUF:
1999 coord_components = 1;
2000 break;
2001 case GLSL_SAMPLER_DIM_2D:
2002 case GLSL_SAMPLER_DIM_RECT:
2003 case GLSL_SAMPLER_DIM_MS:
2004 coord_components = 2;
2005 break;
2006 case GLSL_SAMPLER_DIM_3D:
2007 case GLSL_SAMPLER_DIM_CUBE:
2008 coord_components = 3;
2009 break;
2010 default:
2011 vtn_fail("Invalid sampler type");
2012 }
2013
2014 if (is_array && texop != nir_texop_lod)
2015 coord_components++;
2016
2017 coord = vtn_ssa_value(b, w[idx++])->def;
2018 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2019 (1 << coord_components) - 1));
2020 p->src_type = nir_tex_src_coord;
2021 p++;
2022 break;
2023 }
2024
2025 default:
2026 coord = NULL;
2027 coord_components = 0;
2028 break;
2029 }
2030
2031 switch (opcode) {
2032 case SpvOpImageSampleProjImplicitLod:
2033 case SpvOpImageSampleProjExplicitLod:
2034 case SpvOpImageSampleProjDrefImplicitLod:
2035 case SpvOpImageSampleProjDrefExplicitLod:
2036 /* These have the projector as the last coordinate component */
2037 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2038 p->src_type = nir_tex_src_projector;
2039 p++;
2040 break;
2041
2042 default:
2043 break;
2044 }
2045
2046 bool is_shadow = false;
2047 unsigned gather_component = 0;
2048 switch (opcode) {
2049 case SpvOpImageSampleDrefImplicitLod:
2050 case SpvOpImageSampleDrefExplicitLod:
2051 case SpvOpImageSampleProjDrefImplicitLod:
2052 case SpvOpImageSampleProjDrefExplicitLod:
2053 case SpvOpImageDrefGather:
2054 /* These all have an explicit depth value as their next source */
2055 is_shadow = true;
2056 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2057 break;
2058
2059 case SpvOpImageGather:
2060 /* This has a component as its next source */
2061 gather_component =
2062 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
2063 break;
2064
2065 default:
2066 break;
2067 }
2068
2069 /* For OpImageQuerySizeLod, we always have an LOD */
2070 if (opcode == SpvOpImageQuerySizeLod)
2071 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2072
2073 /* Now we need to handle some number of optional arguments */
2074 const struct vtn_ssa_value *gather_offsets = NULL;
2075 if (idx < count) {
2076 uint32_t operands = w[idx++];
2077
2078 if (operands & SpvImageOperandsBiasMask) {
2079 vtn_assert(texop == nir_texop_tex);
2080 texop = nir_texop_txb;
2081 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2082 }
2083
2084 if (operands & SpvImageOperandsLodMask) {
2085 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2086 texop == nir_texop_txs);
2087 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2088 }
2089
2090 if (operands & SpvImageOperandsGradMask) {
2091 vtn_assert(texop == nir_texop_txl);
2092 texop = nir_texop_txd;
2093 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2094 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2095 }
2096
2097 if (operands & SpvImageOperandsOffsetMask ||
2098 operands & SpvImageOperandsConstOffsetMask)
2099 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2100
2101 if (operands & SpvImageOperandsConstOffsetsMask) {
2102 nir_tex_src none = {0};
2103 gather_offsets = vtn_ssa_value(b, w[idx++]);
2104 (*p++) = none;
2105 }
2106
2107 if (operands & SpvImageOperandsSampleMask) {
2108 vtn_assert(texop == nir_texop_txf_ms);
2109 texop = nir_texop_txf_ms;
2110 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2111 }
2112 }
2113 /* We should have now consumed exactly all of the arguments */
2114 vtn_assert(idx == count);
2115
2116 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2117 instr->op = texop;
2118
2119 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2120
2121 instr->coord_components = coord_components;
2122 instr->sampler_dim = sampler_dim;
2123 instr->is_array = is_array;
2124 instr->is_shadow = is_shadow;
2125 instr->is_new_style_shadow =
2126 is_shadow && glsl_get_components(ret_type->type) == 1;
2127 instr->component = gather_component;
2128
2129 switch (glsl_get_sampler_result_type(image_type)) {
2130 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2131 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2132 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2133 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2134 default:
2135 vtn_fail("Invalid base type for sampler result");
2136 }
2137
2138 nir_deref_var *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2139 nir_deref_var *texture;
2140 if (sampled.image) {
2141 nir_deref_var *image = vtn_pointer_to_deref(b, sampled.image);
2142 texture = image;
2143 } else {
2144 texture = sampler;
2145 }
2146
2147 instr->texture = nir_deref_var_clone(texture, instr);
2148
2149 switch (instr->op) {
2150 case nir_texop_tex:
2151 case nir_texop_txb:
2152 case nir_texop_txl:
2153 case nir_texop_txd:
2154 case nir_texop_tg4:
2155 /* These operations require a sampler */
2156 instr->sampler = nir_deref_var_clone(sampler, instr);
2157 break;
2158 case nir_texop_txf:
2159 case nir_texop_txf_ms:
2160 case nir_texop_txs:
2161 case nir_texop_lod:
2162 case nir_texop_query_levels:
2163 case nir_texop_texture_samples:
2164 case nir_texop_samples_identical:
2165 /* These don't */
2166 instr->sampler = NULL;
2167 break;
2168 case nir_texop_txf_ms_mcs:
2169 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2170 }
2171
2172 nir_ssa_dest_init(&instr->instr, &instr->dest,
2173 nir_tex_instr_dest_size(instr), 32, NULL);
2174
2175 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2176 nir_tex_instr_dest_size(instr));
2177
2178 nir_ssa_def *def;
2179 nir_instr *instruction;
2180 if (gather_offsets) {
2181 vtn_assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
2182 vtn_assert(glsl_get_length(gather_offsets->type) == 4);
2183 nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
2184
2185 /* Copy the current instruction 4x */
2186 for (uint32_t i = 1; i < 4; i++) {
2187 instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
2188 instrs[i]->op = instr->op;
2189 instrs[i]->coord_components = instr->coord_components;
2190 instrs[i]->sampler_dim = instr->sampler_dim;
2191 instrs[i]->is_array = instr->is_array;
2192 instrs[i]->is_shadow = instr->is_shadow;
2193 instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
2194 instrs[i]->component = instr->component;
2195 instrs[i]->dest_type = instr->dest_type;
2196 instrs[i]->texture = nir_deref_var_clone(texture, instrs[i]);
2197 instrs[i]->sampler = NULL;
2198
2199 memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
2200
2201 nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
2202 nir_tex_instr_dest_size(instr), 32, NULL);
2203 }
2204
2205 /* Fill in the last argument with the offset from the passed in offsets
2206 * and insert the instruction into the stream.
2207 */
2208 for (uint32_t i = 0; i < 4; i++) {
2209 nir_tex_src src;
2210 src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
2211 src.src_type = nir_tex_src_offset;
2212 instrs[i]->src[instrs[i]->num_srcs - 1] = src;
2213 nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
2214 }
2215
2216 /* Combine the results of the 4 instructions by taking their .w
2217 * components
2218 */
2219 nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
2220 nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
2221 vec4->dest.write_mask = 0xf;
2222 for (uint32_t i = 0; i < 4; i++) {
2223 vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
2224 vec4->src[i].swizzle[0] = 3;
2225 }
2226 def = &vec4->dest.dest.ssa;
2227 instruction = &vec4->instr;
2228 } else {
2229 def = &instr->dest.ssa;
2230 instruction = &instr->instr;
2231 }
2232
2233 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2234 val->ssa->def = def;
2235
2236 nir_builder_instr_insert(&b->nb, instruction);
2237 }
2238
2239 static void
2240 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2241 const uint32_t *w, nir_src *src)
2242 {
2243 switch (opcode) {
2244 case SpvOpAtomicIIncrement:
2245 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2246 break;
2247
2248 case SpvOpAtomicIDecrement:
2249 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2250 break;
2251
2252 case SpvOpAtomicISub:
2253 src[0] =
2254 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2255 break;
2256
2257 case SpvOpAtomicCompareExchange:
2258 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2259 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2260 break;
2261
2262 case SpvOpAtomicExchange:
2263 case SpvOpAtomicIAdd:
2264 case SpvOpAtomicSMin:
2265 case SpvOpAtomicUMin:
2266 case SpvOpAtomicSMax:
2267 case SpvOpAtomicUMax:
2268 case SpvOpAtomicAnd:
2269 case SpvOpAtomicOr:
2270 case SpvOpAtomicXor:
2271 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2272 break;
2273
2274 default:
2275 vtn_fail("Invalid SPIR-V atomic");
2276 }
2277 }
2278
2279 static nir_ssa_def *
2280 get_image_coord(struct vtn_builder *b, uint32_t value)
2281 {
2282 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2283
2284 /* The image_load_store intrinsics assume a 4-dim coordinate */
2285 unsigned dim = glsl_get_vector_elements(coord->type);
2286 unsigned swizzle[4];
2287 for (unsigned i = 0; i < 4; i++)
2288 swizzle[i] = MIN2(i, dim - 1);
2289
2290 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2291 }
2292
2293 static void
2294 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2295 const uint32_t *w, unsigned count)
2296 {
2297 /* Just get this one out of the way */
2298 if (opcode == SpvOpImageTexelPointer) {
2299 struct vtn_value *val =
2300 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2301 val->image = ralloc(b, struct vtn_image_pointer);
2302
2303 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2304 val->image->coord = get_image_coord(b, w[4]);
2305 val->image->sample = vtn_ssa_value(b, w[5])->def;
2306 return;
2307 }
2308
2309 struct vtn_image_pointer image;
2310
2311 switch (opcode) {
2312 case SpvOpAtomicExchange:
2313 case SpvOpAtomicCompareExchange:
2314 case SpvOpAtomicCompareExchangeWeak:
2315 case SpvOpAtomicIIncrement:
2316 case SpvOpAtomicIDecrement:
2317 case SpvOpAtomicIAdd:
2318 case SpvOpAtomicISub:
2319 case SpvOpAtomicLoad:
2320 case SpvOpAtomicSMin:
2321 case SpvOpAtomicUMin:
2322 case SpvOpAtomicSMax:
2323 case SpvOpAtomicUMax:
2324 case SpvOpAtomicAnd:
2325 case SpvOpAtomicOr:
2326 case SpvOpAtomicXor:
2327 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2328 break;
2329
2330 case SpvOpAtomicStore:
2331 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2332 break;
2333
2334 case SpvOpImageQuerySize:
2335 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2336 image.coord = NULL;
2337 image.sample = NULL;
2338 break;
2339
2340 case SpvOpImageRead:
2341 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2342 image.coord = get_image_coord(b, w[4]);
2343
2344 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2345 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2346 image.sample = vtn_ssa_value(b, w[6])->def;
2347 } else {
2348 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2349 }
2350 break;
2351
2352 case SpvOpImageWrite:
2353 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2354 image.coord = get_image_coord(b, w[2]);
2355
2356 /* texel = w[3] */
2357
2358 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2359 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2360 image.sample = vtn_ssa_value(b, w[5])->def;
2361 } else {
2362 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2363 }
2364 break;
2365
2366 default:
2367 vtn_fail("Invalid image opcode");
2368 }
2369
2370 nir_intrinsic_op op;
2371 switch (opcode) {
2372 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_var_##N; break;
2373 OP(ImageQuerySize, size)
2374 OP(ImageRead, load)
2375 OP(ImageWrite, store)
2376 OP(AtomicLoad, load)
2377 OP(AtomicStore, store)
2378 OP(AtomicExchange, atomic_exchange)
2379 OP(AtomicCompareExchange, atomic_comp_swap)
2380 OP(AtomicIIncrement, atomic_add)
2381 OP(AtomicIDecrement, atomic_add)
2382 OP(AtomicIAdd, atomic_add)
2383 OP(AtomicISub, atomic_add)
2384 OP(AtomicSMin, atomic_min)
2385 OP(AtomicUMin, atomic_min)
2386 OP(AtomicSMax, atomic_max)
2387 OP(AtomicUMax, atomic_max)
2388 OP(AtomicAnd, atomic_and)
2389 OP(AtomicOr, atomic_or)
2390 OP(AtomicXor, atomic_xor)
2391 #undef OP
2392 default:
2393 vtn_fail("Invalid image opcode");
2394 }
2395
2396 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2397
2398 nir_deref_var *image_deref = vtn_pointer_to_deref(b, image.image);
2399 intrin->variables[0] = nir_deref_var_clone(image_deref, intrin);
2400
2401 /* ImageQuerySize doesn't take any extra parameters */
2402 if (opcode != SpvOpImageQuerySize) {
2403 /* The image coordinate is always 4 components but we may not have that
2404 * many. Swizzle to compensate.
2405 */
2406 unsigned swiz[4];
2407 for (unsigned i = 0; i < 4; i++)
2408 swiz[i] = i < image.coord->num_components ? i : 0;
2409 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
2410 swiz, 4, false));
2411 intrin->src[1] = nir_src_for_ssa(image.sample);
2412 }
2413
2414 switch (opcode) {
2415 case SpvOpAtomicLoad:
2416 case SpvOpImageQuerySize:
2417 case SpvOpImageRead:
2418 break;
2419 case SpvOpAtomicStore:
2420 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2421 break;
2422 case SpvOpImageWrite:
2423 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
2424 break;
2425
2426 case SpvOpAtomicCompareExchange:
2427 case SpvOpAtomicIIncrement:
2428 case SpvOpAtomicIDecrement:
2429 case SpvOpAtomicExchange:
2430 case SpvOpAtomicIAdd:
2431 case SpvOpAtomicISub:
2432 case SpvOpAtomicSMin:
2433 case SpvOpAtomicUMin:
2434 case SpvOpAtomicSMax:
2435 case SpvOpAtomicUMax:
2436 case SpvOpAtomicAnd:
2437 case SpvOpAtomicOr:
2438 case SpvOpAtomicXor:
2439 fill_common_atomic_sources(b, opcode, w, &intrin->src[2]);
2440 break;
2441
2442 default:
2443 vtn_fail("Invalid image opcode");
2444 }
2445
2446 if (opcode != SpvOpImageWrite) {
2447 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2448 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2449
2450 unsigned dest_components = nir_intrinsic_dest_components(intrin);
2451 if (intrin->intrinsic == nir_intrinsic_image_var_size) {
2452 dest_components = intrin->num_components =
2453 glsl_get_vector_elements(type->type);
2454 }
2455
2456 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2457 dest_components, 32, NULL);
2458
2459 nir_builder_instr_insert(&b->nb, &intrin->instr);
2460
2461 val->ssa = vtn_create_ssa_value(b, type->type);
2462 val->ssa->def = &intrin->dest.ssa;
2463 } else {
2464 nir_builder_instr_insert(&b->nb, &intrin->instr);
2465 }
2466 }
2467
2468 static nir_intrinsic_op
2469 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2470 {
2471 switch (opcode) {
2472 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2473 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2474 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2475 OP(AtomicExchange, atomic_exchange)
2476 OP(AtomicCompareExchange, atomic_comp_swap)
2477 OP(AtomicIIncrement, atomic_add)
2478 OP(AtomicIDecrement, atomic_add)
2479 OP(AtomicIAdd, atomic_add)
2480 OP(AtomicISub, atomic_add)
2481 OP(AtomicSMin, atomic_imin)
2482 OP(AtomicUMin, atomic_umin)
2483 OP(AtomicSMax, atomic_imax)
2484 OP(AtomicUMax, atomic_umax)
2485 OP(AtomicAnd, atomic_and)
2486 OP(AtomicOr, atomic_or)
2487 OP(AtomicXor, atomic_xor)
2488 #undef OP
2489 default:
2490 vtn_fail("Invalid SSBO atomic");
2491 }
2492 }
2493
2494 static nir_intrinsic_op
2495 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2496 {
2497 switch (opcode) {
2498 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2499 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2500 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2501 OP(AtomicExchange, atomic_exchange)
2502 OP(AtomicCompareExchange, atomic_comp_swap)
2503 OP(AtomicIIncrement, atomic_add)
2504 OP(AtomicIDecrement, atomic_add)
2505 OP(AtomicIAdd, atomic_add)
2506 OP(AtomicISub, atomic_add)
2507 OP(AtomicSMin, atomic_imin)
2508 OP(AtomicUMin, atomic_umin)
2509 OP(AtomicSMax, atomic_imax)
2510 OP(AtomicUMax, atomic_umax)
2511 OP(AtomicAnd, atomic_and)
2512 OP(AtomicOr, atomic_or)
2513 OP(AtomicXor, atomic_xor)
2514 #undef OP
2515 default:
2516 vtn_fail("Invalid shared atomic");
2517 }
2518 }
2519
2520 static nir_intrinsic_op
2521 get_var_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2522 {
2523 switch (opcode) {
2524 case SpvOpAtomicLoad: return nir_intrinsic_load_var;
2525 case SpvOpAtomicStore: return nir_intrinsic_store_var;
2526 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
2527 OP(AtomicExchange, atomic_exchange)
2528 OP(AtomicCompareExchange, atomic_comp_swap)
2529 OP(AtomicIIncrement, atomic_add)
2530 OP(AtomicIDecrement, atomic_add)
2531 OP(AtomicIAdd, atomic_add)
2532 OP(AtomicISub, atomic_add)
2533 OP(AtomicSMin, atomic_imin)
2534 OP(AtomicUMin, atomic_umin)
2535 OP(AtomicSMax, atomic_imax)
2536 OP(AtomicUMax, atomic_umax)
2537 OP(AtomicAnd, atomic_and)
2538 OP(AtomicOr, atomic_or)
2539 OP(AtomicXor, atomic_xor)
2540 #undef OP
2541 default:
2542 vtn_fail("Invalid shared atomic");
2543 }
2544 }
2545
2546 static void
2547 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
2548 const uint32_t *w, unsigned count)
2549 {
2550 struct vtn_pointer *ptr;
2551 nir_intrinsic_instr *atomic;
2552
2553 switch (opcode) {
2554 case SpvOpAtomicLoad:
2555 case SpvOpAtomicExchange:
2556 case SpvOpAtomicCompareExchange:
2557 case SpvOpAtomicCompareExchangeWeak:
2558 case SpvOpAtomicIIncrement:
2559 case SpvOpAtomicIDecrement:
2560 case SpvOpAtomicIAdd:
2561 case SpvOpAtomicISub:
2562 case SpvOpAtomicSMin:
2563 case SpvOpAtomicUMin:
2564 case SpvOpAtomicSMax:
2565 case SpvOpAtomicUMax:
2566 case SpvOpAtomicAnd:
2567 case SpvOpAtomicOr:
2568 case SpvOpAtomicXor:
2569 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2570 break;
2571
2572 case SpvOpAtomicStore:
2573 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2574 break;
2575
2576 default:
2577 vtn_fail("Invalid SPIR-V atomic");
2578 }
2579
2580 /*
2581 SpvScope scope = w[4];
2582 SpvMemorySemanticsMask semantics = w[5];
2583 */
2584
2585 if (ptr->mode == vtn_variable_mode_workgroup &&
2586 !b->options->lower_workgroup_access_to_offsets) {
2587 nir_deref_var *deref = vtn_pointer_to_deref(b, ptr);
2588 const struct glsl_type *deref_type = nir_deref_tail(&deref->deref)->type;
2589 nir_intrinsic_op op = get_var_nir_atomic_op(b, opcode);
2590 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2591 atomic->variables[0] = nir_deref_var_clone(deref, atomic);
2592
2593 switch (opcode) {
2594 case SpvOpAtomicLoad:
2595 atomic->num_components = glsl_get_vector_elements(deref_type);
2596 break;
2597
2598 case SpvOpAtomicStore:
2599 atomic->num_components = glsl_get_vector_elements(deref_type);
2600 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2601 atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2602 break;
2603
2604 case SpvOpAtomicExchange:
2605 case SpvOpAtomicCompareExchange:
2606 case SpvOpAtomicCompareExchangeWeak:
2607 case SpvOpAtomicIIncrement:
2608 case SpvOpAtomicIDecrement:
2609 case SpvOpAtomicIAdd:
2610 case SpvOpAtomicISub:
2611 case SpvOpAtomicSMin:
2612 case SpvOpAtomicUMin:
2613 case SpvOpAtomicSMax:
2614 case SpvOpAtomicUMax:
2615 case SpvOpAtomicAnd:
2616 case SpvOpAtomicOr:
2617 case SpvOpAtomicXor:
2618 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
2619 break;
2620
2621 default:
2622 vtn_fail("Invalid SPIR-V atomic");
2623
2624 }
2625 } else {
2626 nir_ssa_def *offset, *index;
2627 offset = vtn_pointer_to_offset(b, ptr, &index, NULL);
2628
2629 nir_intrinsic_op op;
2630 if (ptr->mode == vtn_variable_mode_ssbo) {
2631 op = get_ssbo_nir_atomic_op(b, opcode);
2632 } else {
2633 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2634 b->options->lower_workgroup_access_to_offsets);
2635 op = get_shared_nir_atomic_op(b, opcode);
2636 }
2637
2638 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2639
2640 int src = 0;
2641 switch (opcode) {
2642 case SpvOpAtomicLoad:
2643 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2644 if (ptr->mode == vtn_variable_mode_ssbo)
2645 atomic->src[src++] = nir_src_for_ssa(index);
2646 atomic->src[src++] = nir_src_for_ssa(offset);
2647 break;
2648
2649 case SpvOpAtomicStore:
2650 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2651 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2652 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2653 if (ptr->mode == vtn_variable_mode_ssbo)
2654 atomic->src[src++] = nir_src_for_ssa(index);
2655 atomic->src[src++] = nir_src_for_ssa(offset);
2656 break;
2657
2658 case SpvOpAtomicExchange:
2659 case SpvOpAtomicCompareExchange:
2660 case SpvOpAtomicCompareExchangeWeak:
2661 case SpvOpAtomicIIncrement:
2662 case SpvOpAtomicIDecrement:
2663 case SpvOpAtomicIAdd:
2664 case SpvOpAtomicISub:
2665 case SpvOpAtomicSMin:
2666 case SpvOpAtomicUMin:
2667 case SpvOpAtomicSMax:
2668 case SpvOpAtomicUMax:
2669 case SpvOpAtomicAnd:
2670 case SpvOpAtomicOr:
2671 case SpvOpAtomicXor:
2672 if (ptr->mode == vtn_variable_mode_ssbo)
2673 atomic->src[src++] = nir_src_for_ssa(index);
2674 atomic->src[src++] = nir_src_for_ssa(offset);
2675 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2676 break;
2677
2678 default:
2679 vtn_fail("Invalid SPIR-V atomic");
2680 }
2681 }
2682
2683 if (opcode != SpvOpAtomicStore) {
2684 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2685
2686 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2687 glsl_get_vector_elements(type->type),
2688 glsl_get_bit_size(type->type), NULL);
2689
2690 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2691 val->ssa = rzalloc(b, struct vtn_ssa_value);
2692 val->ssa->def = &atomic->dest.ssa;
2693 val->ssa->type = type->type;
2694 }
2695
2696 nir_builder_instr_insert(&b->nb, &atomic->instr);
2697 }
2698
2699 static nir_alu_instr *
2700 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2701 {
2702 nir_op op;
2703 switch (num_components) {
2704 case 1: op = nir_op_fmov; break;
2705 case 2: op = nir_op_vec2; break;
2706 case 3: op = nir_op_vec3; break;
2707 case 4: op = nir_op_vec4; break;
2708 default: vtn_fail("bad vector size");
2709 }
2710
2711 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2712 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2713 bit_size, NULL);
2714 vec->dest.write_mask = (1 << num_components) - 1;
2715
2716 return vec;
2717 }
2718
2719 struct vtn_ssa_value *
2720 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2721 {
2722 if (src->transposed)
2723 return src->transposed;
2724
2725 struct vtn_ssa_value *dest =
2726 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2727
2728 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2729 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2730 glsl_get_bit_size(src->type));
2731 if (glsl_type_is_vector_or_scalar(src->type)) {
2732 vec->src[0].src = nir_src_for_ssa(src->def);
2733 vec->src[0].swizzle[0] = i;
2734 } else {
2735 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2736 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2737 vec->src[j].swizzle[0] = i;
2738 }
2739 }
2740 nir_builder_instr_insert(&b->nb, &vec->instr);
2741 dest->elems[i]->def = &vec->dest.dest.ssa;
2742 }
2743
2744 dest->transposed = src;
2745
2746 return dest;
2747 }
2748
2749 nir_ssa_def *
2750 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2751 {
2752 unsigned swiz[4] = { index };
2753 return nir_swizzle(&b->nb, src, swiz, 1, true);
2754 }
2755
2756 nir_ssa_def *
2757 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2758 unsigned index)
2759 {
2760 nir_alu_instr *vec = create_vec(b, src->num_components,
2761 src->bit_size);
2762
2763 for (unsigned i = 0; i < src->num_components; i++) {
2764 if (i == index) {
2765 vec->src[i].src = nir_src_for_ssa(insert);
2766 } else {
2767 vec->src[i].src = nir_src_for_ssa(src);
2768 vec->src[i].swizzle[0] = i;
2769 }
2770 }
2771
2772 nir_builder_instr_insert(&b->nb, &vec->instr);
2773
2774 return &vec->dest.dest.ssa;
2775 }
2776
2777 nir_ssa_def *
2778 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2779 nir_ssa_def *index)
2780 {
2781 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
2782 for (unsigned i = 1; i < src->num_components; i++)
2783 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2784 vtn_vector_extract(b, src, i), dest);
2785
2786 return dest;
2787 }
2788
2789 nir_ssa_def *
2790 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2791 nir_ssa_def *insert, nir_ssa_def *index)
2792 {
2793 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2794 for (unsigned i = 1; i < src->num_components; i++)
2795 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2796 vtn_vector_insert(b, src, insert, i), dest);
2797
2798 return dest;
2799 }
2800
2801 static nir_ssa_def *
2802 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2803 nir_ssa_def *src0, nir_ssa_def *src1,
2804 const uint32_t *indices)
2805 {
2806 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
2807
2808 for (unsigned i = 0; i < num_components; i++) {
2809 uint32_t index = indices[i];
2810 if (index == 0xffffffff) {
2811 vec->src[i].src =
2812 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2813 } else if (index < src0->num_components) {
2814 vec->src[i].src = nir_src_for_ssa(src0);
2815 vec->src[i].swizzle[0] = index;
2816 } else {
2817 vec->src[i].src = nir_src_for_ssa(src1);
2818 vec->src[i].swizzle[0] = index - src0->num_components;
2819 }
2820 }
2821
2822 nir_builder_instr_insert(&b->nb, &vec->instr);
2823
2824 return &vec->dest.dest.ssa;
2825 }
2826
2827 /*
2828 * Concatentates a number of vectors/scalars together to produce a vector
2829 */
2830 static nir_ssa_def *
2831 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2832 unsigned num_srcs, nir_ssa_def **srcs)
2833 {
2834 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
2835
2836 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2837 *
2838 * "When constructing a vector, there must be at least two Constituent
2839 * operands."
2840 */
2841 vtn_assert(num_srcs >= 2);
2842
2843 unsigned dest_idx = 0;
2844 for (unsigned i = 0; i < num_srcs; i++) {
2845 nir_ssa_def *src = srcs[i];
2846 vtn_assert(dest_idx + src->num_components <= num_components);
2847 for (unsigned j = 0; j < src->num_components; j++) {
2848 vec->src[dest_idx].src = nir_src_for_ssa(src);
2849 vec->src[dest_idx].swizzle[0] = j;
2850 dest_idx++;
2851 }
2852 }
2853
2854 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2855 *
2856 * "When constructing a vector, the total number of components in all
2857 * the operands must equal the number of components in Result Type."
2858 */
2859 vtn_assert(dest_idx == num_components);
2860
2861 nir_builder_instr_insert(&b->nb, &vec->instr);
2862
2863 return &vec->dest.dest.ssa;
2864 }
2865
2866 static struct vtn_ssa_value *
2867 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2868 {
2869 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2870 dest->type = src->type;
2871
2872 if (glsl_type_is_vector_or_scalar(src->type)) {
2873 dest->def = src->def;
2874 } else {
2875 unsigned elems = glsl_get_length(src->type);
2876
2877 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2878 for (unsigned i = 0; i < elems; i++)
2879 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2880 }
2881
2882 return dest;
2883 }
2884
2885 static struct vtn_ssa_value *
2886 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2887 struct vtn_ssa_value *insert, const uint32_t *indices,
2888 unsigned num_indices)
2889 {
2890 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2891
2892 struct vtn_ssa_value *cur = dest;
2893 unsigned i;
2894 for (i = 0; i < num_indices - 1; i++) {
2895 cur = cur->elems[indices[i]];
2896 }
2897
2898 if (glsl_type_is_vector_or_scalar(cur->type)) {
2899 /* According to the SPIR-V spec, OpCompositeInsert may work down to
2900 * the component granularity. In that case, the last index will be
2901 * the index to insert the scalar into the vector.
2902 */
2903
2904 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2905 } else {
2906 cur->elems[indices[i]] = insert;
2907 }
2908
2909 return dest;
2910 }
2911
2912 static struct vtn_ssa_value *
2913 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2914 const uint32_t *indices, unsigned num_indices)
2915 {
2916 struct vtn_ssa_value *cur = src;
2917 for (unsigned i = 0; i < num_indices; i++) {
2918 if (glsl_type_is_vector_or_scalar(cur->type)) {
2919 vtn_assert(i == num_indices - 1);
2920 /* According to the SPIR-V spec, OpCompositeExtract may work down to
2921 * the component granularity. The last index will be the index of the
2922 * vector to extract.
2923 */
2924
2925 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2926 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2927 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2928 return ret;
2929 } else {
2930 cur = cur->elems[indices[i]];
2931 }
2932 }
2933
2934 return cur;
2935 }
2936
2937 static void
2938 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2939 const uint32_t *w, unsigned count)
2940 {
2941 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2942 const struct glsl_type *type =
2943 vtn_value(b, w[1], vtn_value_type_type)->type->type;
2944 val->ssa = vtn_create_ssa_value(b, type);
2945
2946 switch (opcode) {
2947 case SpvOpVectorExtractDynamic:
2948 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2949 vtn_ssa_value(b, w[4])->def);
2950 break;
2951
2952 case SpvOpVectorInsertDynamic:
2953 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2954 vtn_ssa_value(b, w[4])->def,
2955 vtn_ssa_value(b, w[5])->def);
2956 break;
2957
2958 case SpvOpVectorShuffle:
2959 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2960 vtn_ssa_value(b, w[3])->def,
2961 vtn_ssa_value(b, w[4])->def,
2962 w + 5);
2963 break;
2964
2965 case SpvOpCompositeConstruct: {
2966 unsigned elems = count - 3;
2967 assume(elems >= 1);
2968 if (glsl_type_is_vector_or_scalar(type)) {
2969 nir_ssa_def *srcs[4];
2970 for (unsigned i = 0; i < elems; i++)
2971 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2972 val->ssa->def =
2973 vtn_vector_construct(b, glsl_get_vector_elements(type),
2974 elems, srcs);
2975 } else {
2976 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2977 for (unsigned i = 0; i < elems; i++)
2978 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2979 }
2980 break;
2981 }
2982 case SpvOpCompositeExtract:
2983 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2984 w + 4, count - 4);
2985 break;
2986
2987 case SpvOpCompositeInsert:
2988 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2989 vtn_ssa_value(b, w[3]),
2990 w + 5, count - 5);
2991 break;
2992
2993 case SpvOpCopyObject:
2994 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2995 break;
2996
2997 default:
2998 vtn_fail("unknown composite operation");
2999 }
3000 }
3001
3002 static void
3003 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3004 {
3005 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3006 nir_builder_instr_insert(&b->nb, &intrin->instr);
3007 }
3008
3009 static void
3010 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3011 SpvMemorySemanticsMask semantics)
3012 {
3013 static const SpvMemorySemanticsMask all_memory_semantics =
3014 SpvMemorySemanticsUniformMemoryMask |
3015 SpvMemorySemanticsWorkgroupMemoryMask |
3016 SpvMemorySemanticsAtomicCounterMemoryMask |
3017 SpvMemorySemanticsImageMemoryMask;
3018
3019 /* If we're not actually doing a memory barrier, bail */
3020 if (!(semantics & all_memory_semantics))
3021 return;
3022
3023 /* GL and Vulkan don't have these */
3024 vtn_assert(scope != SpvScopeCrossDevice);
3025
3026 if (scope == SpvScopeSubgroup)
3027 return; /* Nothing to do here */
3028
3029 if (scope == SpvScopeWorkgroup) {
3030 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3031 return;
3032 }
3033
3034 /* There's only two scopes thing left */
3035 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3036
3037 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3038 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3039 return;
3040 }
3041
3042 /* Issue a bunch of more specific barriers */
3043 uint32_t bits = semantics;
3044 while (bits) {
3045 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3046 switch (semantic) {
3047 case SpvMemorySemanticsUniformMemoryMask:
3048 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3049 break;
3050 case SpvMemorySemanticsWorkgroupMemoryMask:
3051 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3052 break;
3053 case SpvMemorySemanticsAtomicCounterMemoryMask:
3054 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3055 break;
3056 case SpvMemorySemanticsImageMemoryMask:
3057 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3058 break;
3059 default:
3060 break;;
3061 }
3062 }
3063 }
3064
3065 static void
3066 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3067 const uint32_t *w, unsigned count)
3068 {
3069 switch (opcode) {
3070 case SpvOpEmitVertex:
3071 case SpvOpEmitStreamVertex:
3072 case SpvOpEndPrimitive:
3073 case SpvOpEndStreamPrimitive: {
3074 nir_intrinsic_op intrinsic_op;
3075 switch (opcode) {
3076 case SpvOpEmitVertex:
3077 case SpvOpEmitStreamVertex:
3078 intrinsic_op = nir_intrinsic_emit_vertex;
3079 break;
3080 case SpvOpEndPrimitive:
3081 case SpvOpEndStreamPrimitive:
3082 intrinsic_op = nir_intrinsic_end_primitive;
3083 break;
3084 default:
3085 unreachable("Invalid opcode");
3086 }
3087
3088 nir_intrinsic_instr *intrin =
3089 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3090
3091 switch (opcode) {
3092 case SpvOpEmitStreamVertex:
3093 case SpvOpEndStreamPrimitive:
3094 nir_intrinsic_set_stream_id(intrin, w[1]);
3095 break;
3096 default:
3097 break;
3098 }
3099
3100 nir_builder_instr_insert(&b->nb, &intrin->instr);
3101 break;
3102 }
3103
3104 case SpvOpMemoryBarrier: {
3105 SpvScope scope = vtn_constant_value(b, w[1])->values[0].u32[0];
3106 SpvMemorySemanticsMask semantics =
3107 vtn_constant_value(b, w[2])->values[0].u32[0];
3108 vtn_emit_memory_barrier(b, scope, semantics);
3109 return;
3110 }
3111
3112 case SpvOpControlBarrier: {
3113 SpvScope execution_scope =
3114 vtn_constant_value(b, w[1])->values[0].u32[0];
3115 if (execution_scope == SpvScopeWorkgroup)
3116 vtn_emit_barrier(b, nir_intrinsic_barrier);
3117
3118 SpvScope memory_scope =
3119 vtn_constant_value(b, w[2])->values[0].u32[0];
3120 SpvMemorySemanticsMask memory_semantics =
3121 vtn_constant_value(b, w[3])->values[0].u32[0];
3122 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3123 break;
3124 }
3125
3126 default:
3127 unreachable("unknown barrier instruction");
3128 }
3129 }
3130
3131 static unsigned
3132 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3133 SpvExecutionMode mode)
3134 {
3135 switch (mode) {
3136 case SpvExecutionModeInputPoints:
3137 case SpvExecutionModeOutputPoints:
3138 return 0; /* GL_POINTS */
3139 case SpvExecutionModeInputLines:
3140 return 1; /* GL_LINES */
3141 case SpvExecutionModeInputLinesAdjacency:
3142 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3143 case SpvExecutionModeTriangles:
3144 return 4; /* GL_TRIANGLES */
3145 case SpvExecutionModeInputTrianglesAdjacency:
3146 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3147 case SpvExecutionModeQuads:
3148 return 7; /* GL_QUADS */
3149 case SpvExecutionModeIsolines:
3150 return 0x8E7A; /* GL_ISOLINES */
3151 case SpvExecutionModeOutputLineStrip:
3152 return 3; /* GL_LINE_STRIP */
3153 case SpvExecutionModeOutputTriangleStrip:
3154 return 5; /* GL_TRIANGLE_STRIP */
3155 default:
3156 vtn_fail("Invalid primitive type");
3157 }
3158 }
3159
3160 static unsigned
3161 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3162 SpvExecutionMode mode)
3163 {
3164 switch (mode) {
3165 case SpvExecutionModeInputPoints:
3166 return 1;
3167 case SpvExecutionModeInputLines:
3168 return 2;
3169 case SpvExecutionModeInputLinesAdjacency:
3170 return 4;
3171 case SpvExecutionModeTriangles:
3172 return 3;
3173 case SpvExecutionModeInputTrianglesAdjacency:
3174 return 6;
3175 default:
3176 vtn_fail("Invalid GS input mode");
3177 }
3178 }
3179
3180 static gl_shader_stage
3181 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3182 {
3183 switch (model) {
3184 case SpvExecutionModelVertex:
3185 return MESA_SHADER_VERTEX;
3186 case SpvExecutionModelTessellationControl:
3187 return MESA_SHADER_TESS_CTRL;
3188 case SpvExecutionModelTessellationEvaluation:
3189 return MESA_SHADER_TESS_EVAL;
3190 case SpvExecutionModelGeometry:
3191 return MESA_SHADER_GEOMETRY;
3192 case SpvExecutionModelFragment:
3193 return MESA_SHADER_FRAGMENT;
3194 case SpvExecutionModelGLCompute:
3195 return MESA_SHADER_COMPUTE;
3196 default:
3197 vtn_fail("Unsupported execution model");
3198 }
3199 }
3200
3201 #define spv_check_supported(name, cap) do { \
3202 if (!(b->options && b->options->caps.name)) \
3203 vtn_warn("Unsupported SPIR-V capability: %s", \
3204 spirv_capability_to_string(cap)); \
3205 } while(0)
3206
3207
3208 void
3209 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3210 unsigned count)
3211 {
3212 struct vtn_value *entry_point = &b->values[w[2]];
3213 /* Let this be a name label regardless */
3214 unsigned name_words;
3215 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3216
3217 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3218 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3219 return;
3220
3221 vtn_assert(b->entry_point == NULL);
3222 b->entry_point = entry_point;
3223 }
3224
3225 static bool
3226 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3227 const uint32_t *w, unsigned count)
3228 {
3229 switch (opcode) {
3230 case SpvOpSource: {
3231 const char *lang;
3232 switch (w[1]) {
3233 default:
3234 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3235 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3236 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3237 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3238 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3239 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3240 }
3241
3242 uint32_t version = w[2];
3243
3244 const char *file =
3245 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3246
3247 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3248 break;
3249 }
3250
3251 case SpvOpSourceExtension:
3252 case SpvOpSourceContinued:
3253 case SpvOpExtension:
3254 case SpvOpModuleProcessed:
3255 /* Unhandled, but these are for debug so that's ok. */
3256 break;
3257
3258 case SpvOpCapability: {
3259 SpvCapability cap = w[1];
3260 switch (cap) {
3261 case SpvCapabilityMatrix:
3262 case SpvCapabilityShader:
3263 case SpvCapabilityGeometry:
3264 case SpvCapabilityGeometryPointSize:
3265 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3266 case SpvCapabilitySampledImageArrayDynamicIndexing:
3267 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3268 case SpvCapabilityStorageImageArrayDynamicIndexing:
3269 case SpvCapabilityImageRect:
3270 case SpvCapabilitySampledRect:
3271 case SpvCapabilitySampled1D:
3272 case SpvCapabilityImage1D:
3273 case SpvCapabilitySampledCubeArray:
3274 case SpvCapabilityImageCubeArray:
3275 case SpvCapabilitySampledBuffer:
3276 case SpvCapabilityImageBuffer:
3277 case SpvCapabilityImageQuery:
3278 case SpvCapabilityDerivativeControl:
3279 case SpvCapabilityInterpolationFunction:
3280 case SpvCapabilityMultiViewport:
3281 case SpvCapabilitySampleRateShading:
3282 case SpvCapabilityClipDistance:
3283 case SpvCapabilityCullDistance:
3284 case SpvCapabilityInputAttachment:
3285 case SpvCapabilityImageGatherExtended:
3286 case SpvCapabilityStorageImageExtendedFormats:
3287 break;
3288
3289 case SpvCapabilityGeometryStreams:
3290 case SpvCapabilityLinkage:
3291 case SpvCapabilityVector16:
3292 case SpvCapabilityFloat16Buffer:
3293 case SpvCapabilityFloat16:
3294 case SpvCapabilityInt64Atomics:
3295 case SpvCapabilityAtomicStorage:
3296 case SpvCapabilityStorageImageMultisample:
3297 case SpvCapabilityInt8:
3298 case SpvCapabilitySparseResidency:
3299 case SpvCapabilityMinLod:
3300 case SpvCapabilityTransformFeedback:
3301 vtn_warn("Unsupported SPIR-V capability: %s",
3302 spirv_capability_to_string(cap));
3303 break;
3304
3305 case SpvCapabilityFloat64:
3306 spv_check_supported(float64, cap);
3307 break;
3308 case SpvCapabilityInt64:
3309 spv_check_supported(int64, cap);
3310 break;
3311 case SpvCapabilityInt16:
3312 spv_check_supported(int16, cap);
3313 break;
3314
3315 case SpvCapabilityAddresses:
3316 case SpvCapabilityKernel:
3317 case SpvCapabilityImageBasic:
3318 case SpvCapabilityImageReadWrite:
3319 case SpvCapabilityImageMipmap:
3320 case SpvCapabilityPipes:
3321 case SpvCapabilityGroups:
3322 case SpvCapabilityDeviceEnqueue:
3323 case SpvCapabilityLiteralSampler:
3324 case SpvCapabilityGenericPointer:
3325 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3326 spirv_capability_to_string(cap));
3327 break;
3328
3329 case SpvCapabilityImageMSArray:
3330 spv_check_supported(image_ms_array, cap);
3331 break;
3332
3333 case SpvCapabilityTessellation:
3334 case SpvCapabilityTessellationPointSize:
3335 spv_check_supported(tessellation, cap);
3336 break;
3337
3338 case SpvCapabilityDrawParameters:
3339 spv_check_supported(draw_parameters, cap);
3340 break;
3341
3342 case SpvCapabilityStorageImageReadWithoutFormat:
3343 spv_check_supported(image_read_without_format, cap);
3344 break;
3345
3346 case SpvCapabilityStorageImageWriteWithoutFormat:
3347 spv_check_supported(image_write_without_format, cap);
3348 break;
3349
3350 case SpvCapabilityDeviceGroup:
3351 spv_check_supported(device_group, cap);
3352 break;
3353
3354 case SpvCapabilityMultiView:
3355 spv_check_supported(multiview, cap);
3356 break;
3357
3358 case SpvCapabilityGroupNonUniform:
3359 spv_check_supported(subgroup_basic, cap);
3360 break;
3361
3362 case SpvCapabilityGroupNonUniformVote:
3363 spv_check_supported(subgroup_vote, cap);
3364 break;
3365
3366 case SpvCapabilitySubgroupBallotKHR:
3367 case SpvCapabilityGroupNonUniformBallot:
3368 spv_check_supported(subgroup_ballot, cap);
3369 break;
3370
3371 case SpvCapabilityGroupNonUniformShuffle:
3372 case SpvCapabilityGroupNonUniformShuffleRelative:
3373 spv_check_supported(subgroup_shuffle, cap);
3374 break;
3375
3376 case SpvCapabilityGroupNonUniformQuad:
3377 spv_check_supported(subgroup_quad, cap);
3378 break;
3379
3380 case SpvCapabilityGroupNonUniformArithmetic:
3381 case SpvCapabilityGroupNonUniformClustered:
3382 spv_check_supported(subgroup_arithmetic, cap);
3383 break;
3384
3385 case SpvCapabilityVariablePointersStorageBuffer:
3386 case SpvCapabilityVariablePointers:
3387 spv_check_supported(variable_pointers, cap);
3388 break;
3389
3390 case SpvCapabilityStorageUniformBufferBlock16:
3391 case SpvCapabilityStorageUniform16:
3392 case SpvCapabilityStoragePushConstant16:
3393 case SpvCapabilityStorageInputOutput16:
3394 spv_check_supported(storage_16bit, cap);
3395 break;
3396
3397 case SpvCapabilityShaderViewportIndexLayerEXT:
3398 spv_check_supported(shader_viewport_index_layer, cap);
3399 break;
3400
3401 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3402 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3403 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3404 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3405 break;
3406
3407 case SpvCapabilityRuntimeDescriptorArrayEXT:
3408 spv_check_supported(runtime_descriptor_array, cap);
3409 break;
3410
3411 case SpvCapabilityStencilExportEXT:
3412 spv_check_supported(stencil_export, cap);
3413 break;
3414
3415 default:
3416 vtn_fail("Unhandled capability");
3417 }
3418 break;
3419 }
3420
3421 case SpvOpExtInstImport:
3422 vtn_handle_extension(b, opcode, w, count);
3423 break;
3424
3425 case SpvOpMemoryModel:
3426 vtn_assert(w[1] == SpvAddressingModelLogical);
3427 vtn_assert(w[2] == SpvMemoryModelSimple ||
3428 w[2] == SpvMemoryModelGLSL450);
3429 break;
3430
3431 case SpvOpEntryPoint:
3432 vtn_handle_entry_point(b, w, count);
3433 break;
3434
3435 case SpvOpString:
3436 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3437 vtn_string_literal(b, &w[2], count - 2, NULL);
3438 break;
3439
3440 case SpvOpName:
3441 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3442 break;
3443
3444 case SpvOpMemberName:
3445 /* TODO */
3446 break;
3447
3448 case SpvOpExecutionMode:
3449 case SpvOpDecorationGroup:
3450 case SpvOpDecorate:
3451 case SpvOpMemberDecorate:
3452 case SpvOpGroupDecorate:
3453 case SpvOpGroupMemberDecorate:
3454 vtn_handle_decoration(b, opcode, w, count);
3455 break;
3456
3457 default:
3458 return false; /* End of preamble */
3459 }
3460
3461 return true;
3462 }
3463
3464 static void
3465 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3466 const struct vtn_decoration *mode, void *data)
3467 {
3468 vtn_assert(b->entry_point == entry_point);
3469
3470 switch(mode->exec_mode) {
3471 case SpvExecutionModeOriginUpperLeft:
3472 case SpvExecutionModeOriginLowerLeft:
3473 b->origin_upper_left =
3474 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3475 break;
3476
3477 case SpvExecutionModeEarlyFragmentTests:
3478 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3479 b->shader->info.fs.early_fragment_tests = true;
3480 break;
3481
3482 case SpvExecutionModeInvocations:
3483 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3484 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
3485 break;
3486
3487 case SpvExecutionModeDepthReplacing:
3488 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3489 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3490 break;
3491 case SpvExecutionModeDepthGreater:
3492 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3493 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3494 break;
3495 case SpvExecutionModeDepthLess:
3496 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3497 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3498 break;
3499 case SpvExecutionModeDepthUnchanged:
3500 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3501 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3502 break;
3503
3504 case SpvExecutionModeLocalSize:
3505 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3506 b->shader->info.cs.local_size[0] = mode->literals[0];
3507 b->shader->info.cs.local_size[1] = mode->literals[1];
3508 b->shader->info.cs.local_size[2] = mode->literals[2];
3509 break;
3510 case SpvExecutionModeLocalSizeHint:
3511 break; /* Nothing to do with this */
3512
3513 case SpvExecutionModeOutputVertices:
3514 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3515 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3516 b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3517 } else {
3518 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3519 b->shader->info.gs.vertices_out = mode->literals[0];
3520 }
3521 break;
3522
3523 case SpvExecutionModeInputPoints:
3524 case SpvExecutionModeInputLines:
3525 case SpvExecutionModeInputLinesAdjacency:
3526 case SpvExecutionModeTriangles:
3527 case SpvExecutionModeInputTrianglesAdjacency:
3528 case SpvExecutionModeQuads:
3529 case SpvExecutionModeIsolines:
3530 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3531 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3532 b->shader->info.tess.primitive_mode =
3533 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3534 } else {
3535 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3536 b->shader->info.gs.vertices_in =
3537 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3538 }
3539 break;
3540
3541 case SpvExecutionModeOutputPoints:
3542 case SpvExecutionModeOutputLineStrip:
3543 case SpvExecutionModeOutputTriangleStrip:
3544 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3545 b->shader->info.gs.output_primitive =
3546 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3547 break;
3548
3549 case SpvExecutionModeSpacingEqual:
3550 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3551 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3552 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3553 break;
3554 case SpvExecutionModeSpacingFractionalEven:
3555 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3556 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3557 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3558 break;
3559 case SpvExecutionModeSpacingFractionalOdd:
3560 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3561 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3562 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3563 break;
3564 case SpvExecutionModeVertexOrderCw:
3565 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3566 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3567 b->shader->info.tess.ccw = false;
3568 break;
3569 case SpvExecutionModeVertexOrderCcw:
3570 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3571 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3572 b->shader->info.tess.ccw = true;
3573 break;
3574 case SpvExecutionModePointMode:
3575 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3576 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3577 b->shader->info.tess.point_mode = true;
3578 break;
3579
3580 case SpvExecutionModePixelCenterInteger:
3581 b->pixel_center_integer = true;
3582 break;
3583
3584 case SpvExecutionModeXfb:
3585 vtn_fail("Unhandled execution mode");
3586 break;
3587
3588 case SpvExecutionModeVecTypeHint:
3589 case SpvExecutionModeContractionOff:
3590 break; /* OpenCL */
3591
3592 case SpvExecutionModeStencilRefReplacingEXT:
3593 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3594 break;
3595
3596 default:
3597 vtn_fail("Unhandled execution mode");
3598 }
3599 }
3600
3601 static bool
3602 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3603 const uint32_t *w, unsigned count)
3604 {
3605 vtn_set_instruction_result_type(b, opcode, w, count);
3606
3607 switch (opcode) {
3608 case SpvOpSource:
3609 case SpvOpSourceContinued:
3610 case SpvOpSourceExtension:
3611 case SpvOpExtension:
3612 case SpvOpCapability:
3613 case SpvOpExtInstImport:
3614 case SpvOpMemoryModel:
3615 case SpvOpEntryPoint:
3616 case SpvOpExecutionMode:
3617 case SpvOpString:
3618 case SpvOpName:
3619 case SpvOpMemberName:
3620 case SpvOpDecorationGroup:
3621 case SpvOpDecorate:
3622 case SpvOpMemberDecorate:
3623 case SpvOpGroupDecorate:
3624 case SpvOpGroupMemberDecorate:
3625 vtn_fail("Invalid opcode types and variables section");
3626 break;
3627
3628 case SpvOpTypeVoid:
3629 case SpvOpTypeBool:
3630 case SpvOpTypeInt:
3631 case SpvOpTypeFloat:
3632 case SpvOpTypeVector:
3633 case SpvOpTypeMatrix:
3634 case SpvOpTypeImage:
3635 case SpvOpTypeSampler:
3636 case SpvOpTypeSampledImage:
3637 case SpvOpTypeArray:
3638 case SpvOpTypeRuntimeArray:
3639 case SpvOpTypeStruct:
3640 case SpvOpTypeOpaque:
3641 case SpvOpTypePointer:
3642 case SpvOpTypeFunction:
3643 case SpvOpTypeEvent:
3644 case SpvOpTypeDeviceEvent:
3645 case SpvOpTypeReserveId:
3646 case SpvOpTypeQueue:
3647 case SpvOpTypePipe:
3648 vtn_handle_type(b, opcode, w, count);
3649 break;
3650
3651 case SpvOpConstantTrue:
3652 case SpvOpConstantFalse:
3653 case SpvOpConstant:
3654 case SpvOpConstantComposite:
3655 case SpvOpConstantSampler:
3656 case SpvOpConstantNull:
3657 case SpvOpSpecConstantTrue:
3658 case SpvOpSpecConstantFalse:
3659 case SpvOpSpecConstant:
3660 case SpvOpSpecConstantComposite:
3661 case SpvOpSpecConstantOp:
3662 vtn_handle_constant(b, opcode, w, count);
3663 break;
3664
3665 case SpvOpUndef:
3666 case SpvOpVariable:
3667 vtn_handle_variables(b, opcode, w, count);
3668 break;
3669
3670 default:
3671 return false; /* End of preamble */
3672 }
3673
3674 return true;
3675 }
3676
3677 static bool
3678 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
3679 const uint32_t *w, unsigned count)
3680 {
3681 switch (opcode) {
3682 case SpvOpLabel:
3683 break;
3684
3685 case SpvOpLoopMerge:
3686 case SpvOpSelectionMerge:
3687 /* This is handled by cfg pre-pass and walk_blocks */
3688 break;
3689
3690 case SpvOpUndef: {
3691 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
3692 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
3693 break;
3694 }
3695
3696 case SpvOpExtInst:
3697 vtn_handle_extension(b, opcode, w, count);
3698 break;
3699
3700 case SpvOpVariable:
3701 case SpvOpLoad:
3702 case SpvOpStore:
3703 case SpvOpCopyMemory:
3704 case SpvOpCopyMemorySized:
3705 case SpvOpAccessChain:
3706 case SpvOpPtrAccessChain:
3707 case SpvOpInBoundsAccessChain:
3708 case SpvOpArrayLength:
3709 vtn_handle_variables(b, opcode, w, count);
3710 break;
3711
3712 case SpvOpFunctionCall:
3713 vtn_handle_function_call(b, opcode, w, count);
3714 break;
3715
3716 case SpvOpSampledImage:
3717 case SpvOpImage:
3718 case SpvOpImageSampleImplicitLod:
3719 case SpvOpImageSampleExplicitLod:
3720 case SpvOpImageSampleDrefImplicitLod:
3721 case SpvOpImageSampleDrefExplicitLod:
3722 case SpvOpImageSampleProjImplicitLod:
3723 case SpvOpImageSampleProjExplicitLod:
3724 case SpvOpImageSampleProjDrefImplicitLod:
3725 case SpvOpImageSampleProjDrefExplicitLod:
3726 case SpvOpImageFetch:
3727 case SpvOpImageGather:
3728 case SpvOpImageDrefGather:
3729 case SpvOpImageQuerySizeLod:
3730 case SpvOpImageQueryLod:
3731 case SpvOpImageQueryLevels:
3732 case SpvOpImageQuerySamples:
3733 vtn_handle_texture(b, opcode, w, count);
3734 break;
3735
3736 case SpvOpImageRead:
3737 case SpvOpImageWrite:
3738 case SpvOpImageTexelPointer:
3739 vtn_handle_image(b, opcode, w, count);
3740 break;
3741
3742 case SpvOpImageQuerySize: {
3743 struct vtn_pointer *image =
3744 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3745 if (glsl_type_is_image(image->type->type)) {
3746 vtn_handle_image(b, opcode, w, count);
3747 } else {
3748 vtn_assert(glsl_type_is_sampler(image->type->type));
3749 vtn_handle_texture(b, opcode, w, count);
3750 }
3751 break;
3752 }
3753
3754 case SpvOpAtomicLoad:
3755 case SpvOpAtomicExchange:
3756 case SpvOpAtomicCompareExchange:
3757 case SpvOpAtomicCompareExchangeWeak:
3758 case SpvOpAtomicIIncrement:
3759 case SpvOpAtomicIDecrement:
3760 case SpvOpAtomicIAdd:
3761 case SpvOpAtomicISub:
3762 case SpvOpAtomicSMin:
3763 case SpvOpAtomicUMin:
3764 case SpvOpAtomicSMax:
3765 case SpvOpAtomicUMax:
3766 case SpvOpAtomicAnd:
3767 case SpvOpAtomicOr:
3768 case SpvOpAtomicXor: {
3769 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
3770 if (pointer->value_type == vtn_value_type_image_pointer) {
3771 vtn_handle_image(b, opcode, w, count);
3772 } else {
3773 vtn_assert(pointer->value_type == vtn_value_type_pointer);
3774 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3775 }
3776 break;
3777 }
3778
3779 case SpvOpAtomicStore: {
3780 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
3781 if (pointer->value_type == vtn_value_type_image_pointer) {
3782 vtn_handle_image(b, opcode, w, count);
3783 } else {
3784 vtn_assert(pointer->value_type == vtn_value_type_pointer);
3785 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3786 }
3787 break;
3788 }
3789
3790 case SpvOpSelect: {
3791 /* Handle OpSelect up-front here because it needs to be able to handle
3792 * pointers and not just regular vectors and scalars.
3793 */
3794 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
3795 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
3796 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
3797 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
3798
3799 const struct glsl_type *sel_type;
3800 switch (res_val->type->base_type) {
3801 case vtn_base_type_scalar:
3802 sel_type = glsl_bool_type();
3803 break;
3804 case vtn_base_type_vector:
3805 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
3806 break;
3807 case vtn_base_type_pointer:
3808 /* We need to have actual storage for pointer types */
3809 vtn_fail_if(res_val->type->type == NULL,
3810 "Invalid pointer result type for OpSelect");
3811 sel_type = glsl_bool_type();
3812 break;
3813 default:
3814 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
3815 }
3816
3817 if (unlikely(sel_val->type->type != sel_type)) {
3818 if (sel_val->type->type == glsl_bool_type()) {
3819 /* This case is illegal but some older versions of GLSLang produce
3820 * it. The GLSLang issue was fixed on March 30, 2017:
3821 *
3822 * https://github.com/KhronosGroup/glslang/issues/809
3823 *
3824 * Unfortunately, there are applications in the wild which are
3825 * shipping with this bug so it isn't nice to fail on them so we
3826 * throw a warning instead. It's not actually a problem for us as
3827 * nir_builder will just splat the condition out which is most
3828 * likely what the client wanted anyway.
3829 */
3830 vtn_warn("Condition type of OpSelect must have the same number "
3831 "of components as Result Type");
3832 } else {
3833 vtn_fail("Condition type of OpSelect must be a scalar or vector "
3834 "of Boolean type. It must have the same number of "
3835 "components as Result Type");
3836 }
3837 }
3838
3839 vtn_fail_if(obj1_val->type != res_val->type ||
3840 obj2_val->type != res_val->type,
3841 "Object types must match the result type in OpSelect");
3842
3843 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
3844 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
3845 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
3846 vtn_ssa_value(b, w[4])->def,
3847 vtn_ssa_value(b, w[5])->def);
3848 vtn_push_ssa(b, w[2], res_type, ssa);
3849 break;
3850 }
3851
3852 case SpvOpSNegate:
3853 case SpvOpFNegate:
3854 case SpvOpNot:
3855 case SpvOpAny:
3856 case SpvOpAll:
3857 case SpvOpConvertFToU:
3858 case SpvOpConvertFToS:
3859 case SpvOpConvertSToF:
3860 case SpvOpConvertUToF:
3861 case SpvOpUConvert:
3862 case SpvOpSConvert:
3863 case SpvOpFConvert:
3864 case SpvOpQuantizeToF16:
3865 case SpvOpConvertPtrToU:
3866 case SpvOpConvertUToPtr:
3867 case SpvOpPtrCastToGeneric:
3868 case SpvOpGenericCastToPtr:
3869 case SpvOpBitcast:
3870 case SpvOpIsNan:
3871 case SpvOpIsInf:
3872 case SpvOpIsFinite:
3873 case SpvOpIsNormal:
3874 case SpvOpSignBitSet:
3875 case SpvOpLessOrGreater:
3876 case SpvOpOrdered:
3877 case SpvOpUnordered:
3878 case SpvOpIAdd:
3879 case SpvOpFAdd:
3880 case SpvOpISub:
3881 case SpvOpFSub:
3882 case SpvOpIMul:
3883 case SpvOpFMul:
3884 case SpvOpUDiv:
3885 case SpvOpSDiv:
3886 case SpvOpFDiv:
3887 case SpvOpUMod:
3888 case SpvOpSRem:
3889 case SpvOpSMod:
3890 case SpvOpFRem:
3891 case SpvOpFMod:
3892 case SpvOpVectorTimesScalar:
3893 case SpvOpDot:
3894 case SpvOpIAddCarry:
3895 case SpvOpISubBorrow:
3896 case SpvOpUMulExtended:
3897 case SpvOpSMulExtended:
3898 case SpvOpShiftRightLogical:
3899 case SpvOpShiftRightArithmetic:
3900 case SpvOpShiftLeftLogical:
3901 case SpvOpLogicalEqual:
3902 case SpvOpLogicalNotEqual:
3903 case SpvOpLogicalOr:
3904 case SpvOpLogicalAnd:
3905 case SpvOpLogicalNot:
3906 case SpvOpBitwiseOr:
3907 case SpvOpBitwiseXor:
3908 case SpvOpBitwiseAnd:
3909 case SpvOpIEqual:
3910 case SpvOpFOrdEqual:
3911 case SpvOpFUnordEqual:
3912 case SpvOpINotEqual:
3913 case SpvOpFOrdNotEqual:
3914 case SpvOpFUnordNotEqual:
3915 case SpvOpULessThan:
3916 case SpvOpSLessThan:
3917 case SpvOpFOrdLessThan:
3918 case SpvOpFUnordLessThan:
3919 case SpvOpUGreaterThan:
3920 case SpvOpSGreaterThan:
3921 case SpvOpFOrdGreaterThan:
3922 case SpvOpFUnordGreaterThan:
3923 case SpvOpULessThanEqual:
3924 case SpvOpSLessThanEqual:
3925 case SpvOpFOrdLessThanEqual:
3926 case SpvOpFUnordLessThanEqual:
3927 case SpvOpUGreaterThanEqual:
3928 case SpvOpSGreaterThanEqual:
3929 case SpvOpFOrdGreaterThanEqual:
3930 case SpvOpFUnordGreaterThanEqual:
3931 case SpvOpDPdx:
3932 case SpvOpDPdy:
3933 case SpvOpFwidth:
3934 case SpvOpDPdxFine:
3935 case SpvOpDPdyFine:
3936 case SpvOpFwidthFine:
3937 case SpvOpDPdxCoarse:
3938 case SpvOpDPdyCoarse:
3939 case SpvOpFwidthCoarse:
3940 case SpvOpBitFieldInsert:
3941 case SpvOpBitFieldSExtract:
3942 case SpvOpBitFieldUExtract:
3943 case SpvOpBitReverse:
3944 case SpvOpBitCount:
3945 case SpvOpTranspose:
3946 case SpvOpOuterProduct:
3947 case SpvOpMatrixTimesScalar:
3948 case SpvOpVectorTimesMatrix:
3949 case SpvOpMatrixTimesVector:
3950 case SpvOpMatrixTimesMatrix:
3951 vtn_handle_alu(b, opcode, w, count);
3952 break;
3953
3954 case SpvOpVectorExtractDynamic:
3955 case SpvOpVectorInsertDynamic:
3956 case SpvOpVectorShuffle:
3957 case SpvOpCompositeConstruct:
3958 case SpvOpCompositeExtract:
3959 case SpvOpCompositeInsert:
3960 case SpvOpCopyObject:
3961 vtn_handle_composite(b, opcode, w, count);
3962 break;
3963
3964 case SpvOpEmitVertex:
3965 case SpvOpEndPrimitive:
3966 case SpvOpEmitStreamVertex:
3967 case SpvOpEndStreamPrimitive:
3968 case SpvOpControlBarrier:
3969 case SpvOpMemoryBarrier:
3970 vtn_handle_barrier(b, opcode, w, count);
3971 break;
3972
3973 case SpvOpGroupNonUniformElect:
3974 case SpvOpGroupNonUniformAll:
3975 case SpvOpGroupNonUniformAny:
3976 case SpvOpGroupNonUniformAllEqual:
3977 case SpvOpGroupNonUniformBroadcast:
3978 case SpvOpGroupNonUniformBroadcastFirst:
3979 case SpvOpGroupNonUniformBallot:
3980 case SpvOpGroupNonUniformInverseBallot:
3981 case SpvOpGroupNonUniformBallotBitExtract:
3982 case SpvOpGroupNonUniformBallotBitCount:
3983 case SpvOpGroupNonUniformBallotFindLSB:
3984 case SpvOpGroupNonUniformBallotFindMSB:
3985 case SpvOpGroupNonUniformShuffle:
3986 case SpvOpGroupNonUniformShuffleXor:
3987 case SpvOpGroupNonUniformShuffleUp:
3988 case SpvOpGroupNonUniformShuffleDown:
3989 case SpvOpGroupNonUniformIAdd:
3990 case SpvOpGroupNonUniformFAdd:
3991 case SpvOpGroupNonUniformIMul:
3992 case SpvOpGroupNonUniformFMul:
3993 case SpvOpGroupNonUniformSMin:
3994 case SpvOpGroupNonUniformUMin:
3995 case SpvOpGroupNonUniformFMin:
3996 case SpvOpGroupNonUniformSMax:
3997 case SpvOpGroupNonUniformUMax:
3998 case SpvOpGroupNonUniformFMax:
3999 case SpvOpGroupNonUniformBitwiseAnd:
4000 case SpvOpGroupNonUniformBitwiseOr:
4001 case SpvOpGroupNonUniformBitwiseXor:
4002 case SpvOpGroupNonUniformLogicalAnd:
4003 case SpvOpGroupNonUniformLogicalOr:
4004 case SpvOpGroupNonUniformLogicalXor:
4005 case SpvOpGroupNonUniformQuadBroadcast:
4006 case SpvOpGroupNonUniformQuadSwap:
4007 vtn_handle_subgroup(b, opcode, w, count);
4008 break;
4009
4010 default:
4011 vtn_fail("Unhandled opcode");
4012 }
4013
4014 return true;
4015 }
4016
4017 struct vtn_builder*
4018 vtn_create_builder(const uint32_t *words, size_t word_count,
4019 gl_shader_stage stage, const char *entry_point_name,
4020 const struct spirv_to_nir_options *options)
4021 {
4022 /* Initialize the vtn_builder object */
4023 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4024 b->spirv = words;
4025 b->spirv_word_count = word_count;
4026 b->file = NULL;
4027 b->line = -1;
4028 b->col = -1;
4029 exec_list_make_empty(&b->functions);
4030 b->entry_point_stage = stage;
4031 b->entry_point_name = entry_point_name;
4032 b->options = options;
4033
4034 /*
4035 * Handle the SPIR-V header (first 5 dwords).
4036 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4037 */
4038 if (word_count <= 5)
4039 goto fail;
4040
4041 if (words[0] != SpvMagicNumber) {
4042 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4043 goto fail;
4044 }
4045 if (words[1] < 0x10000) {
4046 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4047 goto fail;
4048 }
4049
4050 /* words[2] == generator magic */
4051 unsigned value_id_bound = words[3];
4052 if (words[4] != 0) {
4053 vtn_err("words[4] was %u, want 0", words[4]);
4054 goto fail;
4055 }
4056
4057 b->value_id_bound = value_id_bound;
4058 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4059
4060 return b;
4061 fail:
4062 ralloc_free(b);
4063 return NULL;
4064 }
4065
4066 nir_function *
4067 spirv_to_nir(const uint32_t *words, size_t word_count,
4068 struct nir_spirv_specialization *spec, unsigned num_spec,
4069 gl_shader_stage stage, const char *entry_point_name,
4070 const struct spirv_to_nir_options *options,
4071 const nir_shader_compiler_options *nir_options)
4072
4073 {
4074 const uint32_t *word_end = words + word_count;
4075
4076 struct vtn_builder *b = vtn_create_builder(words, word_count,
4077 stage, entry_point_name,
4078 options);
4079
4080 if (b == NULL)
4081 return NULL;
4082
4083 /* See also _vtn_fail() */
4084 if (setjmp(b->fail_jump)) {
4085 ralloc_free(b);
4086 return NULL;
4087 }
4088
4089 /* Skip the SPIR-V header, handled at vtn_create_builder */
4090 words+= 5;
4091
4092 /* Handle all the preamble instructions */
4093 words = vtn_foreach_instruction(b, words, word_end,
4094 vtn_handle_preamble_instruction);
4095
4096 if (b->entry_point == NULL) {
4097 vtn_fail("Entry point not found");
4098 ralloc_free(b);
4099 return NULL;
4100 }
4101
4102 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4103
4104 /* Set shader info defaults */
4105 b->shader->info.gs.invocations = 1;
4106
4107 /* Parse execution modes */
4108 vtn_foreach_execution_mode(b, b->entry_point,
4109 vtn_handle_execution_mode, NULL);
4110
4111 b->specializations = spec;
4112 b->num_specializations = num_spec;
4113
4114 /* Handle all variable, type, and constant instructions */
4115 words = vtn_foreach_instruction(b, words, word_end,
4116 vtn_handle_variable_or_type_instruction);
4117
4118 /* Set types on all vtn_values */
4119 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4120
4121 vtn_build_cfg(b, words, word_end);
4122
4123 assert(b->entry_point->value_type == vtn_value_type_function);
4124 b->entry_point->func->referenced = true;
4125
4126 bool progress;
4127 do {
4128 progress = false;
4129 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4130 if (func->referenced && !func->emitted) {
4131 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
4132 _mesa_key_pointer_equal);
4133
4134 vtn_function_emit(b, func, vtn_handle_body_instruction);
4135 progress = true;
4136 }
4137 }
4138 } while (progress);
4139
4140 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4141 nir_function *entry_point = b->entry_point->func->impl->function;
4142 vtn_assert(entry_point);
4143
4144 /* Unparent the shader from the vtn_builder before we delete the builder */
4145 ralloc_steal(NULL, b->shader);
4146
4147 ralloc_free(b);
4148
4149 return entry_point;
4150 }