spirv: add double support to SpvOpCompositeExtract
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33
34 void
35 _vtn_warn(const char *file, int line, const char *msg, ...)
36 {
37 char *formatted;
38 va_list args;
39
40 va_start(args, msg);
41 formatted = ralloc_vasprintf(NULL, msg, args);
42 va_end(args);
43
44 fprintf(stderr, "%s:%d WARNING: %s\n", file, line, formatted);
45
46 ralloc_free(formatted);
47 }
48
49 static struct vtn_ssa_value *
50 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
51 {
52 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
53 val->type = type;
54
55 if (glsl_type_is_vector_or_scalar(type)) {
56 unsigned num_components = glsl_get_vector_elements(val->type);
57 unsigned bit_size = glsl_get_bit_size(val->type);
58 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
59 } else {
60 unsigned elems = glsl_get_length(val->type);
61 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
62 if (glsl_type_is_matrix(type)) {
63 const struct glsl_type *elem_type =
64 glsl_vector_type(glsl_get_base_type(type),
65 glsl_get_vector_elements(type));
66
67 for (unsigned i = 0; i < elems; i++)
68 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
69 } else if (glsl_type_is_array(type)) {
70 const struct glsl_type *elem_type = glsl_get_array_element(type);
71 for (unsigned i = 0; i < elems; i++)
72 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
73 } else {
74 for (unsigned i = 0; i < elems; i++) {
75 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
76 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
77 }
78 }
79 }
80
81 return val;
82 }
83
84 static struct vtn_ssa_value *
85 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
86 const struct glsl_type *type)
87 {
88 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
89
90 if (entry)
91 return entry->data;
92
93 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
94 val->type = type;
95
96 switch (glsl_get_base_type(type)) {
97 case GLSL_TYPE_INT:
98 case GLSL_TYPE_UINT:
99 case GLSL_TYPE_BOOL:
100 case GLSL_TYPE_FLOAT:
101 case GLSL_TYPE_DOUBLE: {
102 int bit_size = glsl_get_bit_size(type);
103 if (glsl_type_is_vector_or_scalar(type)) {
104 unsigned num_components = glsl_get_vector_elements(val->type);
105 nir_load_const_instr *load =
106 nir_load_const_instr_create(b->shader, num_components, bit_size);
107
108 load->value = constant->values[0];
109
110 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
111 val->def = &load->def;
112 } else {
113 assert(glsl_type_is_matrix(type));
114 unsigned rows = glsl_get_vector_elements(val->type);
115 unsigned columns = glsl_get_matrix_columns(val->type);
116 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
117
118 for (unsigned i = 0; i < columns; i++) {
119 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
120 col_val->type = glsl_get_column_type(val->type);
121 nir_load_const_instr *load =
122 nir_load_const_instr_create(b->shader, rows, bit_size);
123
124 load->value = constant->values[i];
125
126 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
127 col_val->def = &load->def;
128
129 val->elems[i] = col_val;
130 }
131 }
132 break;
133 }
134
135 case GLSL_TYPE_ARRAY: {
136 unsigned elems = glsl_get_length(val->type);
137 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
138 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
139 for (unsigned i = 0; i < elems; i++)
140 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
141 elem_type);
142 break;
143 }
144
145 case GLSL_TYPE_STRUCT: {
146 unsigned elems = glsl_get_length(val->type);
147 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
148 for (unsigned i = 0; i < elems; i++) {
149 const struct glsl_type *elem_type =
150 glsl_get_struct_field(val->type, i);
151 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
152 elem_type);
153 }
154 break;
155 }
156
157 default:
158 unreachable("bad constant type");
159 }
160
161 return val;
162 }
163
164 struct vtn_ssa_value *
165 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
166 {
167 struct vtn_value *val = vtn_untyped_value(b, value_id);
168 switch (val->value_type) {
169 case vtn_value_type_undef:
170 return vtn_undef_ssa_value(b, val->type->type);
171
172 case vtn_value_type_constant:
173 return vtn_const_ssa_value(b, val->constant, val->const_type);
174
175 case vtn_value_type_ssa:
176 return val->ssa;
177
178 case vtn_value_type_access_chain:
179 /* This is needed for function parameters */
180 return vtn_variable_load(b, val->access_chain);
181
182 default:
183 unreachable("Invalid type for an SSA value");
184 }
185 }
186
187 static char *
188 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
189 unsigned word_count, unsigned *words_used)
190 {
191 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
192 if (words_used) {
193 /* Ammount of space taken by the string (including the null) */
194 unsigned len = strlen(dup) + 1;
195 *words_used = DIV_ROUND_UP(len, sizeof(*words));
196 }
197 return dup;
198 }
199
200 const uint32_t *
201 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
202 const uint32_t *end, vtn_instruction_handler handler)
203 {
204 b->file = NULL;
205 b->line = -1;
206 b->col = -1;
207
208 const uint32_t *w = start;
209 while (w < end) {
210 SpvOp opcode = w[0] & SpvOpCodeMask;
211 unsigned count = w[0] >> SpvWordCountShift;
212 assert(count >= 1 && w + count <= end);
213
214 switch (opcode) {
215 case SpvOpNop:
216 break; /* Do nothing */
217
218 case SpvOpLine:
219 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
220 b->line = w[2];
221 b->col = w[3];
222 break;
223
224 case SpvOpNoLine:
225 b->file = NULL;
226 b->line = -1;
227 b->col = -1;
228 break;
229
230 default:
231 if (!handler(b, opcode, w, count))
232 return w;
233 break;
234 }
235
236 w += count;
237 }
238 assert(w == end);
239 return w;
240 }
241
242 static void
243 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
244 const uint32_t *w, unsigned count)
245 {
246 switch (opcode) {
247 case SpvOpExtInstImport: {
248 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
249 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
250 val->ext_handler = vtn_handle_glsl450_instruction;
251 } else {
252 assert(!"Unsupported extension");
253 }
254 break;
255 }
256
257 case SpvOpExtInst: {
258 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
259 bool handled = val->ext_handler(b, w[4], w, count);
260 (void)handled;
261 assert(handled);
262 break;
263 }
264
265 default:
266 unreachable("Unhandled opcode");
267 }
268 }
269
270 static void
271 _foreach_decoration_helper(struct vtn_builder *b,
272 struct vtn_value *base_value,
273 int parent_member,
274 struct vtn_value *value,
275 vtn_decoration_foreach_cb cb, void *data)
276 {
277 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
278 int member;
279 if (dec->scope == VTN_DEC_DECORATION) {
280 member = parent_member;
281 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
282 assert(parent_member == -1);
283 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
284 } else {
285 /* Not a decoration */
286 continue;
287 }
288
289 if (dec->group) {
290 assert(dec->group->value_type == vtn_value_type_decoration_group);
291 _foreach_decoration_helper(b, base_value, member, dec->group,
292 cb, data);
293 } else {
294 cb(b, base_value, member, dec, data);
295 }
296 }
297 }
298
299 /** Iterates (recursively if needed) over all of the decorations on a value
300 *
301 * This function iterates over all of the decorations applied to a given
302 * value. If it encounters a decoration group, it recurses into the group
303 * and iterates over all of those decorations as well.
304 */
305 void
306 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
307 vtn_decoration_foreach_cb cb, void *data)
308 {
309 _foreach_decoration_helper(b, value, -1, value, cb, data);
310 }
311
312 void
313 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
314 vtn_execution_mode_foreach_cb cb, void *data)
315 {
316 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
317 if (dec->scope != VTN_DEC_EXECUTION_MODE)
318 continue;
319
320 assert(dec->group == NULL);
321 cb(b, value, dec, data);
322 }
323 }
324
325 static void
326 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
327 const uint32_t *w, unsigned count)
328 {
329 const uint32_t *w_end = w + count;
330 const uint32_t target = w[1];
331 w += 2;
332
333 switch (opcode) {
334 case SpvOpDecorationGroup:
335 vtn_push_value(b, target, vtn_value_type_decoration_group);
336 break;
337
338 case SpvOpDecorate:
339 case SpvOpMemberDecorate:
340 case SpvOpExecutionMode: {
341 struct vtn_value *val = &b->values[target];
342
343 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
344 switch (opcode) {
345 case SpvOpDecorate:
346 dec->scope = VTN_DEC_DECORATION;
347 break;
348 case SpvOpMemberDecorate:
349 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
350 break;
351 case SpvOpExecutionMode:
352 dec->scope = VTN_DEC_EXECUTION_MODE;
353 break;
354 default:
355 unreachable("Invalid decoration opcode");
356 }
357 dec->decoration = *(w++);
358 dec->literals = w;
359
360 /* Link into the list */
361 dec->next = val->decoration;
362 val->decoration = dec;
363 break;
364 }
365
366 case SpvOpGroupMemberDecorate:
367 case SpvOpGroupDecorate: {
368 struct vtn_value *group =
369 vtn_value(b, target, vtn_value_type_decoration_group);
370
371 for (; w < w_end; w++) {
372 struct vtn_value *val = vtn_untyped_value(b, *w);
373 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
374
375 dec->group = group;
376 if (opcode == SpvOpGroupDecorate) {
377 dec->scope = VTN_DEC_DECORATION;
378 } else {
379 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
380 }
381
382 /* Link into the list */
383 dec->next = val->decoration;
384 val->decoration = dec;
385 }
386 break;
387 }
388
389 default:
390 unreachable("Unhandled opcode");
391 }
392 }
393
394 struct member_decoration_ctx {
395 unsigned num_fields;
396 struct glsl_struct_field *fields;
397 struct vtn_type *type;
398 };
399
400 /* does a shallow copy of a vtn_type */
401
402 static struct vtn_type *
403 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
404 {
405 struct vtn_type *dest = ralloc(b, struct vtn_type);
406 dest->type = src->type;
407 dest->is_builtin = src->is_builtin;
408 if (src->is_builtin)
409 dest->builtin = src->builtin;
410
411 if (!glsl_type_is_scalar(src->type)) {
412 switch (glsl_get_base_type(src->type)) {
413 case GLSL_TYPE_INT:
414 case GLSL_TYPE_UINT:
415 case GLSL_TYPE_BOOL:
416 case GLSL_TYPE_FLOAT:
417 case GLSL_TYPE_DOUBLE:
418 case GLSL_TYPE_ARRAY:
419 dest->row_major = src->row_major;
420 dest->stride = src->stride;
421 dest->array_element = src->array_element;
422 break;
423
424 case GLSL_TYPE_STRUCT: {
425 unsigned elems = glsl_get_length(src->type);
426
427 dest->members = ralloc_array(b, struct vtn_type *, elems);
428 memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *));
429
430 dest->offsets = ralloc_array(b, unsigned, elems);
431 memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned));
432 break;
433 }
434
435 default:
436 unreachable("unhandled type");
437 }
438 }
439
440 return dest;
441 }
442
443 static struct vtn_type *
444 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
445 {
446 type->members[member] = vtn_type_copy(b, type->members[member]);
447 type = type->members[member];
448
449 /* We may have an array of matrices.... Oh, joy! */
450 while (glsl_type_is_array(type->type)) {
451 type->array_element = vtn_type_copy(b, type->array_element);
452 type = type->array_element;
453 }
454
455 assert(glsl_type_is_matrix(type->type));
456
457 return type;
458 }
459
460 static void
461 struct_member_decoration_cb(struct vtn_builder *b,
462 struct vtn_value *val, int member,
463 const struct vtn_decoration *dec, void *void_ctx)
464 {
465 struct member_decoration_ctx *ctx = void_ctx;
466
467 if (member < 0)
468 return;
469
470 assert(member < ctx->num_fields);
471
472 switch (dec->decoration) {
473 case SpvDecorationNonWritable:
474 case SpvDecorationNonReadable:
475 case SpvDecorationRelaxedPrecision:
476 case SpvDecorationVolatile:
477 case SpvDecorationCoherent:
478 case SpvDecorationUniform:
479 break; /* FIXME: Do nothing with this for now. */
480 case SpvDecorationNoPerspective:
481 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
482 break;
483 case SpvDecorationFlat:
484 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
485 break;
486 case SpvDecorationCentroid:
487 ctx->fields[member].centroid = true;
488 break;
489 case SpvDecorationSample:
490 ctx->fields[member].sample = true;
491 break;
492 case SpvDecorationStream:
493 /* Vulkan only allows one GS stream */
494 assert(dec->literals[0] == 0);
495 break;
496 case SpvDecorationLocation:
497 ctx->fields[member].location = dec->literals[0];
498 break;
499 case SpvDecorationComponent:
500 break; /* FIXME: What should we do with these? */
501 case SpvDecorationBuiltIn:
502 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
503 ctx->type->members[member]->is_builtin = true;
504 ctx->type->members[member]->builtin = dec->literals[0];
505 ctx->type->builtin_block = true;
506 break;
507 case SpvDecorationOffset:
508 ctx->type->offsets[member] = dec->literals[0];
509 break;
510 case SpvDecorationMatrixStride:
511 mutable_matrix_member(b, ctx->type, member)->stride = dec->literals[0];
512 break;
513 case SpvDecorationColMajor:
514 break; /* Nothing to do here. Column-major is the default. */
515 case SpvDecorationRowMajor:
516 mutable_matrix_member(b, ctx->type, member)->row_major = true;
517 break;
518
519 case SpvDecorationPatch:
520 vtn_warn("Tessellation not yet supported");
521 break;
522
523 case SpvDecorationSpecId:
524 case SpvDecorationBlock:
525 case SpvDecorationBufferBlock:
526 case SpvDecorationArrayStride:
527 case SpvDecorationGLSLShared:
528 case SpvDecorationGLSLPacked:
529 case SpvDecorationInvariant:
530 case SpvDecorationRestrict:
531 case SpvDecorationAliased:
532 case SpvDecorationConstant:
533 case SpvDecorationIndex:
534 case SpvDecorationBinding:
535 case SpvDecorationDescriptorSet:
536 case SpvDecorationLinkageAttributes:
537 case SpvDecorationNoContraction:
538 case SpvDecorationInputAttachmentIndex:
539 vtn_warn("Decoration not allowed on struct members: %s",
540 spirv_decoration_to_string(dec->decoration));
541 break;
542
543 case SpvDecorationXfbBuffer:
544 case SpvDecorationXfbStride:
545 vtn_warn("Vulkan does not have transform feedback");
546 break;
547
548 case SpvDecorationCPacked:
549 case SpvDecorationSaturatedConversion:
550 case SpvDecorationFuncParamAttr:
551 case SpvDecorationFPRoundingMode:
552 case SpvDecorationFPFastMathMode:
553 case SpvDecorationAlignment:
554 vtn_warn("Decoraiton only allowed for CL-style kernels: %s",
555 spirv_decoration_to_string(dec->decoration));
556 break;
557 }
558 }
559
560 static void
561 type_decoration_cb(struct vtn_builder *b,
562 struct vtn_value *val, int member,
563 const struct vtn_decoration *dec, void *ctx)
564 {
565 struct vtn_type *type = val->type;
566
567 if (member != -1)
568 return;
569
570 switch (dec->decoration) {
571 case SpvDecorationArrayStride:
572 type->stride = dec->literals[0];
573 break;
574 case SpvDecorationBlock:
575 type->block = true;
576 break;
577 case SpvDecorationBufferBlock:
578 type->buffer_block = true;
579 break;
580 case SpvDecorationGLSLShared:
581 case SpvDecorationGLSLPacked:
582 /* Ignore these, since we get explicit offsets anyways */
583 break;
584
585 case SpvDecorationRowMajor:
586 case SpvDecorationColMajor:
587 case SpvDecorationMatrixStride:
588 case SpvDecorationBuiltIn:
589 case SpvDecorationNoPerspective:
590 case SpvDecorationFlat:
591 case SpvDecorationPatch:
592 case SpvDecorationCentroid:
593 case SpvDecorationSample:
594 case SpvDecorationVolatile:
595 case SpvDecorationCoherent:
596 case SpvDecorationNonWritable:
597 case SpvDecorationNonReadable:
598 case SpvDecorationUniform:
599 case SpvDecorationStream:
600 case SpvDecorationLocation:
601 case SpvDecorationComponent:
602 case SpvDecorationOffset:
603 case SpvDecorationXfbBuffer:
604 case SpvDecorationXfbStride:
605 vtn_warn("Decoraiton only allowed for struct members: %s",
606 spirv_decoration_to_string(dec->decoration));
607 break;
608
609 case SpvDecorationRelaxedPrecision:
610 case SpvDecorationSpecId:
611 case SpvDecorationInvariant:
612 case SpvDecorationRestrict:
613 case SpvDecorationAliased:
614 case SpvDecorationConstant:
615 case SpvDecorationIndex:
616 case SpvDecorationBinding:
617 case SpvDecorationDescriptorSet:
618 case SpvDecorationLinkageAttributes:
619 case SpvDecorationNoContraction:
620 case SpvDecorationInputAttachmentIndex:
621 vtn_warn("Decoraiton not allowed on types: %s",
622 spirv_decoration_to_string(dec->decoration));
623 break;
624
625 case SpvDecorationCPacked:
626 case SpvDecorationSaturatedConversion:
627 case SpvDecorationFuncParamAttr:
628 case SpvDecorationFPRoundingMode:
629 case SpvDecorationFPFastMathMode:
630 case SpvDecorationAlignment:
631 vtn_warn("Decoraiton only allowed for CL-style kernels: %s",
632 spirv_decoration_to_string(dec->decoration));
633 break;
634 }
635 }
636
637 static unsigned
638 translate_image_format(SpvImageFormat format)
639 {
640 switch (format) {
641 case SpvImageFormatUnknown: return 0; /* GL_NONE */
642 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
643 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
644 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
645 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
646 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
647 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
648 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
649 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
650 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
651 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
652 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
653 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
654 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
655 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
656 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
657 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
658 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
659 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
660 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
661 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
662 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
663 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
664 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
665 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
666 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
667 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
668 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
669 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
670 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
671 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
672 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
673 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
674 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
675 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
676 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
677 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
678 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
679 case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */
680 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
681 default:
682 assert(!"Invalid image format");
683 return 0;
684 }
685 }
686
687 static void
688 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
689 const uint32_t *w, unsigned count)
690 {
691 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
692
693 val->type = rzalloc(b, struct vtn_type);
694 val->type->is_builtin = false;
695 val->type->val = val;
696
697 switch (opcode) {
698 case SpvOpTypeVoid:
699 val->type->type = glsl_void_type();
700 break;
701 case SpvOpTypeBool:
702 val->type->type = glsl_bool_type();
703 break;
704 case SpvOpTypeInt: {
705 const bool signedness = w[3];
706 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
707 break;
708 }
709 case SpvOpTypeFloat: {
710 int bit_size = w[2];
711 val->type->type = bit_size == 64 ? glsl_double_type() : glsl_float_type();
712 break;
713 }
714
715 case SpvOpTypeVector: {
716 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
717 unsigned elems = w[3];
718
719 assert(glsl_type_is_scalar(base->type));
720 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
721
722 /* Vectors implicitly have sizeof(base_type) stride. For now, this
723 * is always 4 bytes. This will have to change if we want to start
724 * supporting doubles or half-floats.
725 */
726 val->type->stride = 4;
727 val->type->array_element = base;
728 break;
729 }
730
731 case SpvOpTypeMatrix: {
732 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
733 unsigned columns = w[3];
734
735 assert(glsl_type_is_vector(base->type));
736 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
737 glsl_get_vector_elements(base->type),
738 columns);
739 assert(!glsl_type_is_error(val->type->type));
740 val->type->array_element = base;
741 val->type->row_major = false;
742 val->type->stride = 0;
743 break;
744 }
745
746 case SpvOpTypeRuntimeArray:
747 case SpvOpTypeArray: {
748 struct vtn_type *array_element =
749 vtn_value(b, w[2], vtn_value_type_type)->type;
750
751 unsigned length;
752 if (opcode == SpvOpTypeRuntimeArray) {
753 /* A length of 0 is used to denote unsized arrays */
754 length = 0;
755 } else {
756 length =
757 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
758 }
759
760 val->type->type = glsl_array_type(array_element->type, length);
761 val->type->array_element = array_element;
762 val->type->stride = 0;
763 break;
764 }
765
766 case SpvOpTypeStruct: {
767 unsigned num_fields = count - 2;
768 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
769 val->type->offsets = ralloc_array(b, unsigned, num_fields);
770
771 NIR_VLA(struct glsl_struct_field, fields, count);
772 for (unsigned i = 0; i < num_fields; i++) {
773 val->type->members[i] =
774 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
775 fields[i] = (struct glsl_struct_field) {
776 .type = val->type->members[i]->type,
777 .name = ralloc_asprintf(b, "field%d", i),
778 .location = -1,
779 };
780 }
781
782 struct member_decoration_ctx ctx = {
783 .num_fields = num_fields,
784 .fields = fields,
785 .type = val->type
786 };
787
788 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
789
790 const char *name = val->name ? val->name : "struct";
791
792 val->type->type = glsl_struct_type(fields, num_fields, name);
793 break;
794 }
795
796 case SpvOpTypeFunction: {
797 const struct glsl_type *return_type =
798 vtn_value(b, w[2], vtn_value_type_type)->type->type;
799 NIR_VLA(struct glsl_function_param, params, count - 3);
800 for (unsigned i = 0; i < count - 3; i++) {
801 params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type;
802
803 /* FIXME: */
804 params[i].in = true;
805 params[i].out = true;
806 }
807 val->type->type = glsl_function_type(return_type, params, count - 3);
808 break;
809 }
810
811 case SpvOpTypePointer:
812 /* FIXME: For now, we'll just do the really lame thing and return
813 * the same type. The validator should ensure that the proper number
814 * of dereferences happen
815 */
816 val->type = vtn_value(b, w[3], vtn_value_type_type)->type;
817 break;
818
819 case SpvOpTypeImage: {
820 const struct glsl_type *sampled_type =
821 vtn_value(b, w[2], vtn_value_type_type)->type->type;
822
823 assert(glsl_type_is_vector_or_scalar(sampled_type));
824
825 enum glsl_sampler_dim dim;
826 switch ((SpvDim)w[3]) {
827 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
828 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
829 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
830 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
831 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
832 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
833 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
834 default:
835 unreachable("Invalid SPIR-V Sampler dimension");
836 }
837
838 bool is_shadow = w[4];
839 bool is_array = w[5];
840 bool multisampled = w[6];
841 unsigned sampled = w[7];
842 SpvImageFormat format = w[8];
843
844 if (count > 9)
845 val->type->access_qualifier = w[9];
846 else
847 val->type->access_qualifier = SpvAccessQualifierReadWrite;
848
849 if (multisampled) {
850 assert(dim == GLSL_SAMPLER_DIM_2D);
851 dim = GLSL_SAMPLER_DIM_MS;
852 }
853
854 val->type->image_format = translate_image_format(format);
855
856 if (sampled == 1) {
857 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
858 glsl_get_base_type(sampled_type));
859 } else if (sampled == 2) {
860 assert((dim == GLSL_SAMPLER_DIM_SUBPASS) || format);
861 assert(!is_shadow);
862 val->type->type = glsl_image_type(dim, is_array,
863 glsl_get_base_type(sampled_type));
864 } else {
865 assert(!"We need to know if the image will be sampled");
866 }
867 break;
868 }
869
870 case SpvOpTypeSampledImage:
871 val->type = vtn_value(b, w[2], vtn_value_type_type)->type;
872 break;
873
874 case SpvOpTypeSampler:
875 /* The actual sampler type here doesn't really matter. It gets
876 * thrown away the moment you combine it with an image. What really
877 * matters is that it's a sampler type as opposed to an integer type
878 * so the backend knows what to do.
879 */
880 val->type->type = glsl_bare_sampler_type();
881 break;
882
883 case SpvOpTypeOpaque:
884 case SpvOpTypeEvent:
885 case SpvOpTypeDeviceEvent:
886 case SpvOpTypeReserveId:
887 case SpvOpTypeQueue:
888 case SpvOpTypePipe:
889 default:
890 unreachable("Unhandled opcode");
891 }
892
893 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
894 }
895
896 static nir_constant *
897 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
898 {
899 nir_constant *c = rzalloc(b, nir_constant);
900
901 switch (glsl_get_base_type(type)) {
902 case GLSL_TYPE_INT:
903 case GLSL_TYPE_UINT:
904 case GLSL_TYPE_BOOL:
905 case GLSL_TYPE_FLOAT:
906 case GLSL_TYPE_DOUBLE:
907 /* Nothing to do here. It's already initialized to zero */
908 break;
909
910 case GLSL_TYPE_ARRAY:
911 assert(glsl_get_length(type) > 0);
912 c->num_elements = glsl_get_length(type);
913 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
914
915 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
916 for (unsigned i = 1; i < c->num_elements; i++)
917 c->elements[i] = c->elements[0];
918 break;
919
920 case GLSL_TYPE_STRUCT:
921 c->num_elements = glsl_get_length(type);
922 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
923
924 for (unsigned i = 0; i < c->num_elements; i++) {
925 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
926 }
927 break;
928
929 default:
930 unreachable("Invalid type for null constant");
931 }
932
933 return c;
934 }
935
936 static void
937 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
938 int member, const struct vtn_decoration *dec,
939 void *data)
940 {
941 assert(member == -1);
942 if (dec->decoration != SpvDecorationSpecId)
943 return;
944
945 uint32_t *const_value = data;
946
947 for (unsigned i = 0; i < b->num_specializations; i++) {
948 if (b->specializations[i].id == dec->literals[0]) {
949 *const_value = b->specializations[i].data;
950 return;
951 }
952 }
953 }
954
955 static uint32_t
956 get_specialization(struct vtn_builder *b, struct vtn_value *val,
957 uint32_t const_value)
958 {
959 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &const_value);
960 return const_value;
961 }
962
963 static void
964 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
965 struct vtn_value *val,
966 int member,
967 const struct vtn_decoration *dec,
968 void *data)
969 {
970 assert(member == -1);
971 if (dec->decoration != SpvDecorationBuiltIn ||
972 dec->literals[0] != SpvBuiltInWorkgroupSize)
973 return;
974
975 assert(val->const_type == glsl_vector_type(GLSL_TYPE_UINT, 3));
976
977 b->shader->info->cs.local_size[0] = val->constant->values[0].u32[0];
978 b->shader->info->cs.local_size[1] = val->constant->values[0].u32[1];
979 b->shader->info->cs.local_size[2] = val->constant->values[0].u32[2];
980 }
981
982 static void
983 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
984 const uint32_t *w, unsigned count)
985 {
986 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
987 val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
988 val->constant = rzalloc(b, nir_constant);
989 switch (opcode) {
990 case SpvOpConstantTrue:
991 assert(val->const_type == glsl_bool_type());
992 val->constant->values[0].u32[0] = NIR_TRUE;
993 break;
994 case SpvOpConstantFalse:
995 assert(val->const_type == glsl_bool_type());
996 val->constant->values[0].u32[0] = NIR_FALSE;
997 break;
998
999 case SpvOpSpecConstantTrue:
1000 case SpvOpSpecConstantFalse: {
1001 assert(val->const_type == glsl_bool_type());
1002 uint32_t int_val =
1003 get_specialization(b, val, (opcode == SpvOpSpecConstantTrue));
1004 val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE;
1005 break;
1006 }
1007
1008 case SpvOpConstant: {
1009 assert(glsl_type_is_scalar(val->const_type));
1010 int bit_size = glsl_get_bit_size(val->const_type);
1011 if (bit_size == 64) {
1012 val->constant->values->u32[0] = w[3];
1013 val->constant->values->u32[1] = w[4];
1014 } else {
1015 assert(bit_size == 32);
1016 val->constant->values->u32[0] = w[3];
1017 }
1018 break;
1019 }
1020 case SpvOpSpecConstant:
1021 assert(glsl_type_is_scalar(val->const_type));
1022 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1023 break;
1024 case SpvOpSpecConstantComposite:
1025 case SpvOpConstantComposite: {
1026 unsigned elem_count = count - 3;
1027 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1028 for (unsigned i = 0; i < elem_count; i++)
1029 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1030
1031 switch (glsl_get_base_type(val->const_type)) {
1032 case GLSL_TYPE_UINT:
1033 case GLSL_TYPE_INT:
1034 case GLSL_TYPE_FLOAT:
1035 case GLSL_TYPE_BOOL:
1036 case GLSL_TYPE_DOUBLE: {
1037 int bit_size = glsl_get_bit_size(val->const_type);
1038 if (glsl_type_is_matrix(val->const_type)) {
1039 assert(glsl_get_matrix_columns(val->const_type) == elem_count);
1040 for (unsigned i = 0; i < elem_count; i++)
1041 val->constant->values[i] = elems[i]->values[0];
1042 } else {
1043 assert(glsl_type_is_vector(val->const_type));
1044 assert(glsl_get_vector_elements(val->const_type) == elem_count);
1045 for (unsigned i = 0; i < elem_count; i++) {
1046 if (bit_size == 64) {
1047 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1048 } else {
1049 assert(bit_size == 32);
1050 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1051 }
1052 }
1053 }
1054 ralloc_free(elems);
1055 break;
1056 }
1057 case GLSL_TYPE_STRUCT:
1058 case GLSL_TYPE_ARRAY:
1059 ralloc_steal(val->constant, elems);
1060 val->constant->num_elements = elem_count;
1061 val->constant->elements = elems;
1062 break;
1063
1064 default:
1065 unreachable("Unsupported type for constants");
1066 }
1067 break;
1068 }
1069
1070 case SpvOpSpecConstantOp: {
1071 SpvOp opcode = get_specialization(b, val, w[3]);
1072 switch (opcode) {
1073 case SpvOpVectorShuffle: {
1074 struct vtn_value *v0 = vtn_value(b, w[4], vtn_value_type_constant);
1075 struct vtn_value *v1 = vtn_value(b, w[5], vtn_value_type_constant);
1076 unsigned len0 = glsl_get_vector_elements(v0->const_type);
1077 unsigned len1 = glsl_get_vector_elements(v1->const_type);
1078
1079 assert(len0 + len1 < 16);
1080
1081 unsigned bit_size = glsl_get_bit_size(val->const_type);
1082 assert(bit_size == glsl_get_bit_size(v0->const_type) &&
1083 bit_size == glsl_get_bit_size(v1->const_type));
1084
1085 if (bit_size == 64) {
1086 uint64_t u64[8];
1087 for (unsigned i = 0; i < len0; i++)
1088 u64[i] = v0->constant->values[0].u64[i];
1089 for (unsigned i = 0; i < len1; i++)
1090 u64[len0 + i] = v1->constant->values[0].u64[i];
1091
1092 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1093 uint32_t comp = w[i + 6];
1094 /* If component is not used, set the value to a known constant
1095 * to detect if it is wrongly used.
1096 */
1097 if (comp == (uint32_t)-1)
1098 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1099 else
1100 val->constant->values[0].u64[j] = u64[comp];
1101 }
1102 } else {
1103 uint32_t u32[8];
1104 for (unsigned i = 0; i < len0; i++)
1105 u32[i] = v0->constant->values[0].u32[i];
1106
1107 for (unsigned i = 0; i < len1; i++)
1108 u32[len0 + i] = v1->constant->values[0].u32[i];
1109
1110 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1111 uint32_t comp = w[i + 6];
1112 /* If component is not used, set the value to a known constant
1113 * to detect if it is wrongly used.
1114 */
1115 if (comp == (uint32_t)-1)
1116 val->constant->values[0].u32[j] = 0xdeadbeef;
1117 else
1118 val->constant->values[0].u32[j] = u32[comp];
1119 }
1120 }
1121 break;
1122 }
1123
1124 case SpvOpCompositeExtract:
1125 case SpvOpCompositeInsert: {
1126 struct vtn_value *comp;
1127 unsigned deref_start;
1128 struct nir_constant **c;
1129 if (opcode == SpvOpCompositeExtract) {
1130 comp = vtn_value(b, w[4], vtn_value_type_constant);
1131 deref_start = 5;
1132 c = &comp->constant;
1133 } else {
1134 comp = vtn_value(b, w[5], vtn_value_type_constant);
1135 deref_start = 6;
1136 val->constant = nir_constant_clone(comp->constant,
1137 (nir_variable *)b);
1138 c = &val->constant;
1139 }
1140
1141 int elem = -1;
1142 int col = 0;
1143 const struct glsl_type *type = comp->const_type;
1144 for (unsigned i = deref_start; i < count; i++) {
1145 switch (glsl_get_base_type(type)) {
1146 case GLSL_TYPE_UINT:
1147 case GLSL_TYPE_INT:
1148 case GLSL_TYPE_FLOAT:
1149 case GLSL_TYPE_BOOL:
1150 /* If we hit this granularity, we're picking off an element */
1151 if (glsl_type_is_matrix(type)) {
1152 assert(col == 0 && elem == -1);
1153 col = w[i];
1154 elem = 0;
1155 type = glsl_get_column_type(type);
1156 } else {
1157 assert(elem <= 0 && glsl_type_is_vector(type));
1158 elem = w[i];
1159 type = glsl_scalar_type(glsl_get_base_type(type));
1160 }
1161 continue;
1162
1163 case GLSL_TYPE_ARRAY:
1164 c = &(*c)->elements[w[i]];
1165 type = glsl_get_array_element(type);
1166 continue;
1167
1168 case GLSL_TYPE_STRUCT:
1169 c = &(*c)->elements[w[i]];
1170 type = glsl_get_struct_field(type, w[i]);
1171 continue;
1172
1173 default:
1174 unreachable("Invalid constant type");
1175 }
1176 }
1177
1178 if (opcode == SpvOpCompositeExtract) {
1179 if (elem == -1) {
1180 val->constant = *c;
1181 } else {
1182 unsigned num_components = glsl_get_vector_elements(type);
1183 unsigned bit_size = glsl_get_bit_size(type);
1184 for (unsigned i = 0; i < num_components; i++)
1185 if (bit_size == 64) {
1186 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1187 } else {
1188 assert(bit_size == 32);
1189 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1190 }
1191 }
1192 } else {
1193 struct vtn_value *insert =
1194 vtn_value(b, w[4], vtn_value_type_constant);
1195 assert(insert->const_type == type);
1196 if (elem == -1) {
1197 *c = insert->constant;
1198 } else {
1199 unsigned num_components = glsl_get_vector_elements(type);
1200 unsigned bit_size = glsl_get_bit_size(type);
1201 for (unsigned i = 0; i < num_components; i++)
1202 if (bit_size == 64) {
1203 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1204 } else {
1205 assert(bit_size == 32);
1206 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1207 }
1208 }
1209 }
1210 break;
1211 }
1212
1213 default: {
1214 bool swap;
1215 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap);
1216
1217 unsigned num_components = glsl_get_vector_elements(val->const_type);
1218 unsigned bit_size =
1219 glsl_get_bit_size(val->const_type);
1220
1221 nir_const_value src[4];
1222 assert(count <= 7);
1223 for (unsigned i = 0; i < count - 4; i++) {
1224 nir_constant *c =
1225 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1226
1227 unsigned j = swap ? 1 - i : i;
1228 assert(bit_size == 32);
1229 src[j] = c->values[0];
1230 }
1231
1232 val->constant->values[0] =
1233 nir_eval_const_opcode(op, num_components, bit_size, src);
1234 break;
1235 } /* default */
1236 }
1237 break;
1238 }
1239
1240 case SpvOpConstantNull:
1241 val->constant = vtn_null_constant(b, val->const_type);
1242 break;
1243
1244 case SpvOpConstantSampler:
1245 assert(!"OpConstantSampler requires Kernel Capability");
1246 break;
1247
1248 default:
1249 unreachable("Unhandled opcode");
1250 }
1251
1252 /* Now that we have the value, update the workgroup size if needed */
1253 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1254 }
1255
1256 static void
1257 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1258 const uint32_t *w, unsigned count)
1259 {
1260 struct nir_function *callee =
1261 vtn_value(b, w[3], vtn_value_type_function)->func->impl->function;
1262
1263 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1264 for (unsigned i = 0; i < call->num_params; i++) {
1265 unsigned arg_id = w[4 + i];
1266 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1267 if (arg->value_type == vtn_value_type_access_chain) {
1268 nir_deref_var *d = vtn_access_chain_to_deref(b, arg->access_chain);
1269 call->params[i] = nir_deref_var_clone(d, call);
1270 } else {
1271 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1272
1273 /* Make a temporary to store the argument in */
1274 nir_variable *tmp =
1275 nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp");
1276 call->params[i] = nir_deref_var_create(call, tmp);
1277
1278 vtn_local_store(b, arg_ssa, call->params[i]);
1279 }
1280 }
1281
1282 nir_variable *out_tmp = NULL;
1283 if (!glsl_type_is_void(callee->return_type)) {
1284 out_tmp = nir_local_variable_create(b->impl, callee->return_type,
1285 "out_tmp");
1286 call->return_deref = nir_deref_var_create(call, out_tmp);
1287 }
1288
1289 nir_builder_instr_insert(&b->nb, &call->instr);
1290
1291 if (glsl_type_is_void(callee->return_type)) {
1292 vtn_push_value(b, w[2], vtn_value_type_undef);
1293 } else {
1294 struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa);
1295 retval->ssa = vtn_local_load(b, call->return_deref);
1296 }
1297 }
1298
1299 struct vtn_ssa_value *
1300 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1301 {
1302 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1303 val->type = type;
1304
1305 if (!glsl_type_is_vector_or_scalar(type)) {
1306 unsigned elems = glsl_get_length(type);
1307 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1308 for (unsigned i = 0; i < elems; i++) {
1309 const struct glsl_type *child_type;
1310
1311 switch (glsl_get_base_type(type)) {
1312 case GLSL_TYPE_INT:
1313 case GLSL_TYPE_UINT:
1314 case GLSL_TYPE_BOOL:
1315 case GLSL_TYPE_FLOAT:
1316 case GLSL_TYPE_DOUBLE:
1317 child_type = glsl_get_column_type(type);
1318 break;
1319 case GLSL_TYPE_ARRAY:
1320 child_type = glsl_get_array_element(type);
1321 break;
1322 case GLSL_TYPE_STRUCT:
1323 child_type = glsl_get_struct_field(type, i);
1324 break;
1325 default:
1326 unreachable("unkown base type");
1327 }
1328
1329 val->elems[i] = vtn_create_ssa_value(b, child_type);
1330 }
1331 }
1332
1333 return val;
1334 }
1335
1336 static nir_tex_src
1337 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1338 {
1339 nir_tex_src src;
1340 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1341 src.src_type = type;
1342 return src;
1343 }
1344
1345 static void
1346 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1347 const uint32_t *w, unsigned count)
1348 {
1349 if (opcode == SpvOpSampledImage) {
1350 struct vtn_value *val =
1351 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1352 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1353 val->sampled_image->image =
1354 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1355 val->sampled_image->sampler =
1356 vtn_value(b, w[4], vtn_value_type_access_chain)->access_chain;
1357 return;
1358 } else if (opcode == SpvOpImage) {
1359 struct vtn_value *val =
1360 vtn_push_value(b, w[2], vtn_value_type_access_chain);
1361 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1362 if (src_val->value_type == vtn_value_type_sampled_image) {
1363 val->access_chain = src_val->sampled_image->image;
1364 } else {
1365 assert(src_val->value_type == vtn_value_type_access_chain);
1366 val->access_chain = src_val->access_chain;
1367 }
1368 return;
1369 }
1370
1371 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1372 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1373
1374 struct vtn_sampled_image sampled;
1375 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1376 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1377 sampled = *sampled_val->sampled_image;
1378 } else {
1379 assert(sampled_val->value_type == vtn_value_type_access_chain);
1380 sampled.image = NULL;
1381 sampled.sampler = sampled_val->access_chain;
1382 }
1383
1384 const struct glsl_type *image_type;
1385 if (sampled.image) {
1386 image_type = sampled.image->var->var->interface_type;
1387 } else {
1388 image_type = sampled.sampler->var->var->interface_type;
1389 }
1390 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
1391 const bool is_array = glsl_sampler_type_is_array(image_type);
1392 const bool is_shadow = glsl_sampler_type_is_shadow(image_type);
1393
1394 /* Figure out the base texture operation */
1395 nir_texop texop;
1396 switch (opcode) {
1397 case SpvOpImageSampleImplicitLod:
1398 case SpvOpImageSampleDrefImplicitLod:
1399 case SpvOpImageSampleProjImplicitLod:
1400 case SpvOpImageSampleProjDrefImplicitLod:
1401 texop = nir_texop_tex;
1402 break;
1403
1404 case SpvOpImageSampleExplicitLod:
1405 case SpvOpImageSampleDrefExplicitLod:
1406 case SpvOpImageSampleProjExplicitLod:
1407 case SpvOpImageSampleProjDrefExplicitLod:
1408 texop = nir_texop_txl;
1409 break;
1410
1411 case SpvOpImageFetch:
1412 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1413 texop = nir_texop_txf_ms;
1414 } else {
1415 texop = nir_texop_txf;
1416 }
1417 break;
1418
1419 case SpvOpImageGather:
1420 case SpvOpImageDrefGather:
1421 texop = nir_texop_tg4;
1422 break;
1423
1424 case SpvOpImageQuerySizeLod:
1425 case SpvOpImageQuerySize:
1426 texop = nir_texop_txs;
1427 break;
1428
1429 case SpvOpImageQueryLod:
1430 texop = nir_texop_lod;
1431 break;
1432
1433 case SpvOpImageQueryLevels:
1434 texop = nir_texop_query_levels;
1435 break;
1436
1437 case SpvOpImageQuerySamples:
1438 texop = nir_texop_texture_samples;
1439 break;
1440
1441 default:
1442 unreachable("Unhandled opcode");
1443 }
1444
1445 nir_tex_src srcs[8]; /* 8 should be enough */
1446 nir_tex_src *p = srcs;
1447
1448 unsigned idx = 4;
1449
1450 struct nir_ssa_def *coord;
1451 unsigned coord_components;
1452 switch (opcode) {
1453 case SpvOpImageSampleImplicitLod:
1454 case SpvOpImageSampleExplicitLod:
1455 case SpvOpImageSampleDrefImplicitLod:
1456 case SpvOpImageSampleDrefExplicitLod:
1457 case SpvOpImageSampleProjImplicitLod:
1458 case SpvOpImageSampleProjExplicitLod:
1459 case SpvOpImageSampleProjDrefImplicitLod:
1460 case SpvOpImageSampleProjDrefExplicitLod:
1461 case SpvOpImageFetch:
1462 case SpvOpImageGather:
1463 case SpvOpImageDrefGather:
1464 case SpvOpImageQueryLod: {
1465 /* All these types have the coordinate as their first real argument */
1466 switch (sampler_dim) {
1467 case GLSL_SAMPLER_DIM_1D:
1468 case GLSL_SAMPLER_DIM_BUF:
1469 coord_components = 1;
1470 break;
1471 case GLSL_SAMPLER_DIM_2D:
1472 case GLSL_SAMPLER_DIM_RECT:
1473 case GLSL_SAMPLER_DIM_MS:
1474 coord_components = 2;
1475 break;
1476 case GLSL_SAMPLER_DIM_3D:
1477 case GLSL_SAMPLER_DIM_CUBE:
1478 coord_components = 3;
1479 break;
1480 default:
1481 unreachable("Invalid sampler type");
1482 }
1483
1484 if (is_array && texop != nir_texop_lod)
1485 coord_components++;
1486
1487 coord = vtn_ssa_value(b, w[idx++])->def;
1488 p->src = nir_src_for_ssa(coord);
1489 p->src_type = nir_tex_src_coord;
1490 p++;
1491 break;
1492 }
1493
1494 default:
1495 coord = NULL;
1496 coord_components = 0;
1497 break;
1498 }
1499
1500 switch (opcode) {
1501 case SpvOpImageSampleProjImplicitLod:
1502 case SpvOpImageSampleProjExplicitLod:
1503 case SpvOpImageSampleProjDrefImplicitLod:
1504 case SpvOpImageSampleProjDrefExplicitLod:
1505 /* These have the projector as the last coordinate component */
1506 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
1507 p->src_type = nir_tex_src_projector;
1508 p++;
1509 break;
1510
1511 default:
1512 break;
1513 }
1514
1515 unsigned gather_component = 0;
1516 switch (opcode) {
1517 case SpvOpImageSampleDrefImplicitLod:
1518 case SpvOpImageSampleDrefExplicitLod:
1519 case SpvOpImageSampleProjDrefImplicitLod:
1520 case SpvOpImageSampleProjDrefExplicitLod:
1521 case SpvOpImageDrefGather:
1522 /* These all have an explicit depth value as their next source */
1523 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
1524 break;
1525
1526 case SpvOpImageGather:
1527 /* This has a component as its next source */
1528 gather_component =
1529 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
1530 break;
1531
1532 default:
1533 break;
1534 }
1535
1536 /* For OpImageQuerySizeLod, we always have an LOD */
1537 if (opcode == SpvOpImageQuerySizeLod)
1538 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1539
1540 /* Now we need to handle some number of optional arguments */
1541 const struct vtn_ssa_value *gather_offsets = NULL;
1542 if (idx < count) {
1543 uint32_t operands = w[idx++];
1544
1545 if (operands & SpvImageOperandsBiasMask) {
1546 assert(texop == nir_texop_tex);
1547 texop = nir_texop_txb;
1548 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
1549 }
1550
1551 if (operands & SpvImageOperandsLodMask) {
1552 assert(texop == nir_texop_txl || texop == nir_texop_txf ||
1553 texop == nir_texop_txs);
1554 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1555 }
1556
1557 if (operands & SpvImageOperandsGradMask) {
1558 assert(texop == nir_texop_txl);
1559 texop = nir_texop_txd;
1560 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
1561 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
1562 }
1563
1564 if (operands & SpvImageOperandsOffsetMask ||
1565 operands & SpvImageOperandsConstOffsetMask)
1566 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
1567
1568 if (operands & SpvImageOperandsConstOffsetsMask) {
1569 gather_offsets = vtn_ssa_value(b, w[idx++]);
1570 (*p++) = (nir_tex_src){};
1571 }
1572
1573 if (operands & SpvImageOperandsSampleMask) {
1574 assert(texop == nir_texop_txf_ms);
1575 texop = nir_texop_txf_ms;
1576 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
1577 }
1578 }
1579 /* We should have now consumed exactly all of the arguments */
1580 assert(idx == count);
1581
1582 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
1583 instr->op = texop;
1584
1585 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
1586
1587 instr->coord_components = coord_components;
1588 instr->sampler_dim = sampler_dim;
1589 instr->is_array = is_array;
1590 instr->is_shadow = is_shadow;
1591 instr->is_new_style_shadow =
1592 is_shadow && glsl_get_components(ret_type->type) == 1;
1593 instr->component = gather_component;
1594
1595 switch (glsl_get_sampler_result_type(image_type)) {
1596 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
1597 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
1598 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
1599 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
1600 default:
1601 unreachable("Invalid base type for sampler result");
1602 }
1603
1604 nir_deref_var *sampler = vtn_access_chain_to_deref(b, sampled.sampler);
1605 nir_deref_var *texture;
1606 if (sampled.image) {
1607 nir_deref_var *image = vtn_access_chain_to_deref(b, sampled.image);
1608 texture = image;
1609 } else {
1610 texture = sampler;
1611 }
1612
1613 instr->texture = nir_deref_var_clone(texture, instr);
1614
1615 switch (instr->op) {
1616 case nir_texop_tex:
1617 case nir_texop_txb:
1618 case nir_texop_txl:
1619 case nir_texop_txd:
1620 /* These operations require a sampler */
1621 instr->sampler = nir_deref_var_clone(sampler, instr);
1622 break;
1623 case nir_texop_txf:
1624 case nir_texop_txf_ms:
1625 case nir_texop_txs:
1626 case nir_texop_lod:
1627 case nir_texop_tg4:
1628 case nir_texop_query_levels:
1629 case nir_texop_texture_samples:
1630 case nir_texop_samples_identical:
1631 /* These don't */
1632 instr->sampler = NULL;
1633 break;
1634 case nir_texop_txf_ms_mcs:
1635 unreachable("unexpected nir_texop_txf_ms_mcs");
1636 }
1637
1638 nir_ssa_dest_init(&instr->instr, &instr->dest,
1639 nir_tex_instr_dest_size(instr), 32, NULL);
1640
1641 assert(glsl_get_vector_elements(ret_type->type) ==
1642 nir_tex_instr_dest_size(instr));
1643
1644 nir_ssa_def *def;
1645 nir_instr *instruction;
1646 if (gather_offsets) {
1647 assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
1648 assert(glsl_get_length(gather_offsets->type) == 4);
1649 nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
1650
1651 /* Copy the current instruction 4x */
1652 for (uint32_t i = 1; i < 4; i++) {
1653 instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
1654 instrs[i]->op = instr->op;
1655 instrs[i]->coord_components = instr->coord_components;
1656 instrs[i]->sampler_dim = instr->sampler_dim;
1657 instrs[i]->is_array = instr->is_array;
1658 instrs[i]->is_shadow = instr->is_shadow;
1659 instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
1660 instrs[i]->component = instr->component;
1661 instrs[i]->dest_type = instr->dest_type;
1662 instrs[i]->texture = nir_deref_var_clone(texture, instrs[i]);
1663 instrs[i]->sampler = NULL;
1664
1665 memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
1666
1667 nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
1668 nir_tex_instr_dest_size(instr), 32, NULL);
1669 }
1670
1671 /* Fill in the last argument with the offset from the passed in offsets
1672 * and insert the instruction into the stream.
1673 */
1674 for (uint32_t i = 0; i < 4; i++) {
1675 nir_tex_src src;
1676 src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
1677 src.src_type = nir_tex_src_offset;
1678 instrs[i]->src[instrs[i]->num_srcs - 1] = src;
1679 nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
1680 }
1681
1682 /* Combine the results of the 4 instructions by taking their .w
1683 * components
1684 */
1685 nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
1686 nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
1687 vec4->dest.write_mask = 0xf;
1688 for (uint32_t i = 0; i < 4; i++) {
1689 vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
1690 vec4->src[i].swizzle[0] = 3;
1691 }
1692 def = &vec4->dest.dest.ssa;
1693 instruction = &vec4->instr;
1694 } else {
1695 def = &instr->dest.ssa;
1696 instruction = &instr->instr;
1697 }
1698
1699 val->ssa = vtn_create_ssa_value(b, ret_type->type);
1700 val->ssa->def = def;
1701
1702 nir_builder_instr_insert(&b->nb, instruction);
1703 }
1704
1705 static void
1706 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
1707 const uint32_t *w, nir_src *src)
1708 {
1709 switch (opcode) {
1710 case SpvOpAtomicIIncrement:
1711 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1712 break;
1713
1714 case SpvOpAtomicIDecrement:
1715 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1716 break;
1717
1718 case SpvOpAtomicISub:
1719 src[0] =
1720 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1721 break;
1722
1723 case SpvOpAtomicCompareExchange:
1724 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
1725 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1726 break;
1727
1728 case SpvOpAtomicExchange:
1729 case SpvOpAtomicIAdd:
1730 case SpvOpAtomicSMin:
1731 case SpvOpAtomicUMin:
1732 case SpvOpAtomicSMax:
1733 case SpvOpAtomicUMax:
1734 case SpvOpAtomicAnd:
1735 case SpvOpAtomicOr:
1736 case SpvOpAtomicXor:
1737 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1738 break;
1739
1740 default:
1741 unreachable("Invalid SPIR-V atomic");
1742 }
1743 }
1744
1745 static nir_ssa_def *
1746 get_image_coord(struct vtn_builder *b, uint32_t value)
1747 {
1748 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
1749
1750 /* The image_load_store intrinsics assume a 4-dim coordinate */
1751 unsigned dim = glsl_get_vector_elements(coord->type);
1752 unsigned swizzle[4];
1753 for (unsigned i = 0; i < 4; i++)
1754 swizzle[i] = MIN2(i, dim - 1);
1755
1756 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
1757 }
1758
1759 static void
1760 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
1761 const uint32_t *w, unsigned count)
1762 {
1763 /* Just get this one out of the way */
1764 if (opcode == SpvOpImageTexelPointer) {
1765 struct vtn_value *val =
1766 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
1767 val->image = ralloc(b, struct vtn_image_pointer);
1768
1769 val->image->image =
1770 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1771 val->image->coord = get_image_coord(b, w[4]);
1772 val->image->sample = vtn_ssa_value(b, w[5])->def;
1773 return;
1774 }
1775
1776 struct vtn_image_pointer image;
1777
1778 switch (opcode) {
1779 case SpvOpAtomicExchange:
1780 case SpvOpAtomicCompareExchange:
1781 case SpvOpAtomicCompareExchangeWeak:
1782 case SpvOpAtomicIIncrement:
1783 case SpvOpAtomicIDecrement:
1784 case SpvOpAtomicIAdd:
1785 case SpvOpAtomicISub:
1786 case SpvOpAtomicLoad:
1787 case SpvOpAtomicSMin:
1788 case SpvOpAtomicUMin:
1789 case SpvOpAtomicSMax:
1790 case SpvOpAtomicUMax:
1791 case SpvOpAtomicAnd:
1792 case SpvOpAtomicOr:
1793 case SpvOpAtomicXor:
1794 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
1795 break;
1796
1797 case SpvOpAtomicStore:
1798 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
1799 break;
1800
1801 case SpvOpImageQuerySize:
1802 image.image =
1803 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1804 image.coord = NULL;
1805 image.sample = NULL;
1806 break;
1807
1808 case SpvOpImageRead:
1809 image.image =
1810 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1811 image.coord = get_image_coord(b, w[4]);
1812
1813 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
1814 assert(w[5] == SpvImageOperandsSampleMask);
1815 image.sample = vtn_ssa_value(b, w[6])->def;
1816 } else {
1817 image.sample = nir_ssa_undef(&b->nb, 1, 32);
1818 }
1819 break;
1820
1821 case SpvOpImageWrite:
1822 image.image =
1823 vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain;
1824 image.coord = get_image_coord(b, w[2]);
1825
1826 /* texel = w[3] */
1827
1828 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
1829 assert(w[4] == SpvImageOperandsSampleMask);
1830 image.sample = vtn_ssa_value(b, w[5])->def;
1831 } else {
1832 image.sample = nir_ssa_undef(&b->nb, 1, 32);
1833 }
1834 break;
1835
1836 default:
1837 unreachable("Invalid image opcode");
1838 }
1839
1840 nir_intrinsic_op op;
1841 switch (opcode) {
1842 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
1843 OP(ImageQuerySize, size)
1844 OP(ImageRead, load)
1845 OP(ImageWrite, store)
1846 OP(AtomicLoad, load)
1847 OP(AtomicStore, store)
1848 OP(AtomicExchange, atomic_exchange)
1849 OP(AtomicCompareExchange, atomic_comp_swap)
1850 OP(AtomicIIncrement, atomic_add)
1851 OP(AtomicIDecrement, atomic_add)
1852 OP(AtomicIAdd, atomic_add)
1853 OP(AtomicISub, atomic_add)
1854 OP(AtomicSMin, atomic_min)
1855 OP(AtomicUMin, atomic_min)
1856 OP(AtomicSMax, atomic_max)
1857 OP(AtomicUMax, atomic_max)
1858 OP(AtomicAnd, atomic_and)
1859 OP(AtomicOr, atomic_or)
1860 OP(AtomicXor, atomic_xor)
1861 #undef OP
1862 default:
1863 unreachable("Invalid image opcode");
1864 }
1865
1866 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
1867
1868 nir_deref_var *image_deref = vtn_access_chain_to_deref(b, image.image);
1869 intrin->variables[0] = nir_deref_var_clone(image_deref, intrin);
1870
1871 /* ImageQuerySize doesn't take any extra parameters */
1872 if (opcode != SpvOpImageQuerySize) {
1873 /* The image coordinate is always 4 components but we may not have that
1874 * many. Swizzle to compensate.
1875 */
1876 unsigned swiz[4];
1877 for (unsigned i = 0; i < 4; i++)
1878 swiz[i] = i < image.coord->num_components ? i : 0;
1879 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
1880 swiz, 4, false));
1881 intrin->src[1] = nir_src_for_ssa(image.sample);
1882 }
1883
1884 switch (opcode) {
1885 case SpvOpAtomicLoad:
1886 case SpvOpImageQuerySize:
1887 case SpvOpImageRead:
1888 break;
1889 case SpvOpAtomicStore:
1890 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
1891 break;
1892 case SpvOpImageWrite:
1893 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
1894 break;
1895
1896 case SpvOpAtomicIIncrement:
1897 case SpvOpAtomicIDecrement:
1898 case SpvOpAtomicExchange:
1899 case SpvOpAtomicIAdd:
1900 case SpvOpAtomicSMin:
1901 case SpvOpAtomicUMin:
1902 case SpvOpAtomicSMax:
1903 case SpvOpAtomicUMax:
1904 case SpvOpAtomicAnd:
1905 case SpvOpAtomicOr:
1906 case SpvOpAtomicXor:
1907 fill_common_atomic_sources(b, opcode, w, &intrin->src[2]);
1908 break;
1909
1910 default:
1911 unreachable("Invalid image opcode");
1912 }
1913
1914 if (opcode != SpvOpImageWrite) {
1915 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1916 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1917 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 4, 32, NULL);
1918
1919 nir_builder_instr_insert(&b->nb, &intrin->instr);
1920
1921 /* The image intrinsics always return 4 channels but we may not want
1922 * that many. Emit a mov to trim it down.
1923 */
1924 unsigned swiz[4] = {0, 1, 2, 3};
1925 val->ssa = vtn_create_ssa_value(b, type->type);
1926 val->ssa->def = nir_swizzle(&b->nb, &intrin->dest.ssa, swiz,
1927 glsl_get_vector_elements(type->type), false);
1928 } else {
1929 nir_builder_instr_insert(&b->nb, &intrin->instr);
1930 }
1931 }
1932
1933 static nir_intrinsic_op
1934 get_ssbo_nir_atomic_op(SpvOp opcode)
1935 {
1936 switch (opcode) {
1937 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
1938 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
1939 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
1940 OP(AtomicExchange, atomic_exchange)
1941 OP(AtomicCompareExchange, atomic_comp_swap)
1942 OP(AtomicIIncrement, atomic_add)
1943 OP(AtomicIDecrement, atomic_add)
1944 OP(AtomicIAdd, atomic_add)
1945 OP(AtomicISub, atomic_add)
1946 OP(AtomicSMin, atomic_imin)
1947 OP(AtomicUMin, atomic_umin)
1948 OP(AtomicSMax, atomic_imax)
1949 OP(AtomicUMax, atomic_umax)
1950 OP(AtomicAnd, atomic_and)
1951 OP(AtomicOr, atomic_or)
1952 OP(AtomicXor, atomic_xor)
1953 #undef OP
1954 default:
1955 unreachable("Invalid SSBO atomic");
1956 }
1957 }
1958
1959 static nir_intrinsic_op
1960 get_shared_nir_atomic_op(SpvOp opcode)
1961 {
1962 switch (opcode) {
1963 case SpvOpAtomicLoad: return nir_intrinsic_load_var;
1964 case SpvOpAtomicStore: return nir_intrinsic_store_var;
1965 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
1966 OP(AtomicExchange, atomic_exchange)
1967 OP(AtomicCompareExchange, atomic_comp_swap)
1968 OP(AtomicIIncrement, atomic_add)
1969 OP(AtomicIDecrement, atomic_add)
1970 OP(AtomicIAdd, atomic_add)
1971 OP(AtomicISub, atomic_add)
1972 OP(AtomicSMin, atomic_imin)
1973 OP(AtomicUMin, atomic_umin)
1974 OP(AtomicSMax, atomic_imax)
1975 OP(AtomicUMax, atomic_umax)
1976 OP(AtomicAnd, atomic_and)
1977 OP(AtomicOr, atomic_or)
1978 OP(AtomicXor, atomic_xor)
1979 #undef OP
1980 default:
1981 unreachable("Invalid shared atomic");
1982 }
1983 }
1984
1985 static void
1986 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
1987 const uint32_t *w, unsigned count)
1988 {
1989 struct vtn_access_chain *chain;
1990 nir_intrinsic_instr *atomic;
1991
1992 switch (opcode) {
1993 case SpvOpAtomicLoad:
1994 case SpvOpAtomicExchange:
1995 case SpvOpAtomicCompareExchange:
1996 case SpvOpAtomicCompareExchangeWeak:
1997 case SpvOpAtomicIIncrement:
1998 case SpvOpAtomicIDecrement:
1999 case SpvOpAtomicIAdd:
2000 case SpvOpAtomicISub:
2001 case SpvOpAtomicSMin:
2002 case SpvOpAtomicUMin:
2003 case SpvOpAtomicSMax:
2004 case SpvOpAtomicUMax:
2005 case SpvOpAtomicAnd:
2006 case SpvOpAtomicOr:
2007 case SpvOpAtomicXor:
2008 chain =
2009 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
2010 break;
2011
2012 case SpvOpAtomicStore:
2013 chain =
2014 vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain;
2015 break;
2016
2017 default:
2018 unreachable("Invalid SPIR-V atomic");
2019 }
2020
2021 /*
2022 SpvScope scope = w[4];
2023 SpvMemorySemanticsMask semantics = w[5];
2024 */
2025
2026 if (chain->var->mode == vtn_variable_mode_workgroup) {
2027 struct vtn_type *type = chain->var->type;
2028 nir_deref_var *deref = vtn_access_chain_to_deref(b, chain);
2029 nir_intrinsic_op op = get_shared_nir_atomic_op(opcode);
2030 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2031 atomic->variables[0] = nir_deref_var_clone(deref, atomic);
2032
2033 switch (opcode) {
2034 case SpvOpAtomicLoad:
2035 atomic->num_components = glsl_get_vector_elements(type->type);
2036 break;
2037
2038 case SpvOpAtomicStore:
2039 atomic->num_components = glsl_get_vector_elements(type->type);
2040 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2041 atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2042 break;
2043
2044 case SpvOpAtomicExchange:
2045 case SpvOpAtomicCompareExchange:
2046 case SpvOpAtomicCompareExchangeWeak:
2047 case SpvOpAtomicIIncrement:
2048 case SpvOpAtomicIDecrement:
2049 case SpvOpAtomicIAdd:
2050 case SpvOpAtomicISub:
2051 case SpvOpAtomicSMin:
2052 case SpvOpAtomicUMin:
2053 case SpvOpAtomicSMax:
2054 case SpvOpAtomicUMax:
2055 case SpvOpAtomicAnd:
2056 case SpvOpAtomicOr:
2057 case SpvOpAtomicXor:
2058 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
2059 break;
2060
2061 default:
2062 unreachable("Invalid SPIR-V atomic");
2063
2064 }
2065 } else {
2066 assert(chain->var->mode == vtn_variable_mode_ssbo);
2067 struct vtn_type *type;
2068 nir_ssa_def *offset, *index;
2069 offset = vtn_access_chain_to_offset(b, chain, &index, &type, NULL, false);
2070
2071 nir_intrinsic_op op = get_ssbo_nir_atomic_op(opcode);
2072
2073 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2074
2075 switch (opcode) {
2076 case SpvOpAtomicLoad:
2077 atomic->num_components = glsl_get_vector_elements(type->type);
2078 atomic->src[0] = nir_src_for_ssa(index);
2079 atomic->src[1] = nir_src_for_ssa(offset);
2080 break;
2081
2082 case SpvOpAtomicStore:
2083 atomic->num_components = glsl_get_vector_elements(type->type);
2084 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2085 atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2086 atomic->src[1] = nir_src_for_ssa(index);
2087 atomic->src[2] = nir_src_for_ssa(offset);
2088 break;
2089
2090 case SpvOpAtomicExchange:
2091 case SpvOpAtomicCompareExchange:
2092 case SpvOpAtomicCompareExchangeWeak:
2093 case SpvOpAtomicIIncrement:
2094 case SpvOpAtomicIDecrement:
2095 case SpvOpAtomicIAdd:
2096 case SpvOpAtomicISub:
2097 case SpvOpAtomicSMin:
2098 case SpvOpAtomicUMin:
2099 case SpvOpAtomicSMax:
2100 case SpvOpAtomicUMax:
2101 case SpvOpAtomicAnd:
2102 case SpvOpAtomicOr:
2103 case SpvOpAtomicXor:
2104 atomic->src[0] = nir_src_for_ssa(index);
2105 atomic->src[1] = nir_src_for_ssa(offset);
2106 fill_common_atomic_sources(b, opcode, w, &atomic->src[2]);
2107 break;
2108
2109 default:
2110 unreachable("Invalid SPIR-V atomic");
2111 }
2112 }
2113
2114 if (opcode != SpvOpAtomicStore) {
2115 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2116
2117 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2118 glsl_get_vector_elements(type->type),
2119 glsl_get_bit_size(type->type), NULL);
2120
2121 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2122 val->ssa = rzalloc(b, struct vtn_ssa_value);
2123 val->ssa->def = &atomic->dest.ssa;
2124 val->ssa->type = type->type;
2125 }
2126
2127 nir_builder_instr_insert(&b->nb, &atomic->instr);
2128 }
2129
2130 static nir_alu_instr *
2131 create_vec(nir_shader *shader, unsigned num_components, unsigned bit_size)
2132 {
2133 nir_op op;
2134 switch (num_components) {
2135 case 1: op = nir_op_fmov; break;
2136 case 2: op = nir_op_vec2; break;
2137 case 3: op = nir_op_vec3; break;
2138 case 4: op = nir_op_vec4; break;
2139 default: unreachable("bad vector size");
2140 }
2141
2142 nir_alu_instr *vec = nir_alu_instr_create(shader, op);
2143 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2144 bit_size, NULL);
2145 vec->dest.write_mask = (1 << num_components) - 1;
2146
2147 return vec;
2148 }
2149
2150 struct vtn_ssa_value *
2151 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2152 {
2153 if (src->transposed)
2154 return src->transposed;
2155
2156 struct vtn_ssa_value *dest =
2157 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2158
2159 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2160 nir_alu_instr *vec = create_vec(b->shader,
2161 glsl_get_matrix_columns(src->type),
2162 glsl_get_bit_size(src->type));
2163 if (glsl_type_is_vector_or_scalar(src->type)) {
2164 vec->src[0].src = nir_src_for_ssa(src->def);
2165 vec->src[0].swizzle[0] = i;
2166 } else {
2167 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2168 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2169 vec->src[j].swizzle[0] = i;
2170 }
2171 }
2172 nir_builder_instr_insert(&b->nb, &vec->instr);
2173 dest->elems[i]->def = &vec->dest.dest.ssa;
2174 }
2175
2176 dest->transposed = src;
2177
2178 return dest;
2179 }
2180
2181 nir_ssa_def *
2182 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2183 {
2184 unsigned swiz[4] = { index };
2185 return nir_swizzle(&b->nb, src, swiz, 1, true);
2186 }
2187
2188 nir_ssa_def *
2189 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2190 unsigned index)
2191 {
2192 nir_alu_instr *vec = create_vec(b->shader, src->num_components,
2193 src->bit_size);
2194
2195 for (unsigned i = 0; i < src->num_components; i++) {
2196 if (i == index) {
2197 vec->src[i].src = nir_src_for_ssa(insert);
2198 } else {
2199 vec->src[i].src = nir_src_for_ssa(src);
2200 vec->src[i].swizzle[0] = i;
2201 }
2202 }
2203
2204 nir_builder_instr_insert(&b->nb, &vec->instr);
2205
2206 return &vec->dest.dest.ssa;
2207 }
2208
2209 nir_ssa_def *
2210 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2211 nir_ssa_def *index)
2212 {
2213 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
2214 for (unsigned i = 1; i < src->num_components; i++)
2215 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2216 vtn_vector_extract(b, src, i), dest);
2217
2218 return dest;
2219 }
2220
2221 nir_ssa_def *
2222 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2223 nir_ssa_def *insert, nir_ssa_def *index)
2224 {
2225 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2226 for (unsigned i = 1; i < src->num_components; i++)
2227 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2228 vtn_vector_insert(b, src, insert, i), dest);
2229
2230 return dest;
2231 }
2232
2233 static nir_ssa_def *
2234 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2235 nir_ssa_def *src0, nir_ssa_def *src1,
2236 const uint32_t *indices)
2237 {
2238 nir_alu_instr *vec = create_vec(b->shader, num_components, src0->bit_size);
2239
2240 for (unsigned i = 0; i < num_components; i++) {
2241 uint32_t index = indices[i];
2242 if (index == 0xffffffff) {
2243 vec->src[i].src =
2244 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2245 } else if (index < src0->num_components) {
2246 vec->src[i].src = nir_src_for_ssa(src0);
2247 vec->src[i].swizzle[0] = index;
2248 } else {
2249 vec->src[i].src = nir_src_for_ssa(src1);
2250 vec->src[i].swizzle[0] = index - src0->num_components;
2251 }
2252 }
2253
2254 nir_builder_instr_insert(&b->nb, &vec->instr);
2255
2256 return &vec->dest.dest.ssa;
2257 }
2258
2259 /*
2260 * Concatentates a number of vectors/scalars together to produce a vector
2261 */
2262 static nir_ssa_def *
2263 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2264 unsigned num_srcs, nir_ssa_def **srcs)
2265 {
2266 nir_alu_instr *vec = create_vec(b->shader, num_components,
2267 srcs[0]->bit_size);
2268
2269 unsigned dest_idx = 0;
2270 for (unsigned i = 0; i < num_srcs; i++) {
2271 nir_ssa_def *src = srcs[i];
2272 for (unsigned j = 0; j < src->num_components; j++) {
2273 vec->src[dest_idx].src = nir_src_for_ssa(src);
2274 vec->src[dest_idx].swizzle[0] = j;
2275 dest_idx++;
2276 }
2277 }
2278
2279 nir_builder_instr_insert(&b->nb, &vec->instr);
2280
2281 return &vec->dest.dest.ssa;
2282 }
2283
2284 static struct vtn_ssa_value *
2285 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2286 {
2287 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2288 dest->type = src->type;
2289
2290 if (glsl_type_is_vector_or_scalar(src->type)) {
2291 dest->def = src->def;
2292 } else {
2293 unsigned elems = glsl_get_length(src->type);
2294
2295 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2296 for (unsigned i = 0; i < elems; i++)
2297 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2298 }
2299
2300 return dest;
2301 }
2302
2303 static struct vtn_ssa_value *
2304 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2305 struct vtn_ssa_value *insert, const uint32_t *indices,
2306 unsigned num_indices)
2307 {
2308 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2309
2310 struct vtn_ssa_value *cur = dest;
2311 unsigned i;
2312 for (i = 0; i < num_indices - 1; i++) {
2313 cur = cur->elems[indices[i]];
2314 }
2315
2316 if (glsl_type_is_vector_or_scalar(cur->type)) {
2317 /* According to the SPIR-V spec, OpCompositeInsert may work down to
2318 * the component granularity. In that case, the last index will be
2319 * the index to insert the scalar into the vector.
2320 */
2321
2322 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2323 } else {
2324 cur->elems[indices[i]] = insert;
2325 }
2326
2327 return dest;
2328 }
2329
2330 static struct vtn_ssa_value *
2331 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2332 const uint32_t *indices, unsigned num_indices)
2333 {
2334 struct vtn_ssa_value *cur = src;
2335 for (unsigned i = 0; i < num_indices; i++) {
2336 if (glsl_type_is_vector_or_scalar(cur->type)) {
2337 assert(i == num_indices - 1);
2338 /* According to the SPIR-V spec, OpCompositeExtract may work down to
2339 * the component granularity. The last index will be the index of the
2340 * vector to extract.
2341 */
2342
2343 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2344 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2345 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2346 return ret;
2347 } else {
2348 cur = cur->elems[indices[i]];
2349 }
2350 }
2351
2352 return cur;
2353 }
2354
2355 static void
2356 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2357 const uint32_t *w, unsigned count)
2358 {
2359 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2360 const struct glsl_type *type =
2361 vtn_value(b, w[1], vtn_value_type_type)->type->type;
2362 val->ssa = vtn_create_ssa_value(b, type);
2363
2364 switch (opcode) {
2365 case SpvOpVectorExtractDynamic:
2366 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2367 vtn_ssa_value(b, w[4])->def);
2368 break;
2369
2370 case SpvOpVectorInsertDynamic:
2371 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2372 vtn_ssa_value(b, w[4])->def,
2373 vtn_ssa_value(b, w[5])->def);
2374 break;
2375
2376 case SpvOpVectorShuffle:
2377 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2378 vtn_ssa_value(b, w[3])->def,
2379 vtn_ssa_value(b, w[4])->def,
2380 w + 5);
2381 break;
2382
2383 case SpvOpCompositeConstruct: {
2384 unsigned elems = count - 3;
2385 if (glsl_type_is_vector_or_scalar(type)) {
2386 nir_ssa_def *srcs[4];
2387 for (unsigned i = 0; i < elems; i++)
2388 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2389 val->ssa->def =
2390 vtn_vector_construct(b, glsl_get_vector_elements(type),
2391 elems, srcs);
2392 } else {
2393 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2394 for (unsigned i = 0; i < elems; i++)
2395 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2396 }
2397 break;
2398 }
2399 case SpvOpCompositeExtract:
2400 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2401 w + 4, count - 4);
2402 break;
2403
2404 case SpvOpCompositeInsert:
2405 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2406 vtn_ssa_value(b, w[3]),
2407 w + 5, count - 5);
2408 break;
2409
2410 case SpvOpCopyObject:
2411 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2412 break;
2413
2414 default:
2415 unreachable("unknown composite operation");
2416 }
2417 }
2418
2419 static void
2420 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
2421 const uint32_t *w, unsigned count)
2422 {
2423 nir_intrinsic_op intrinsic_op;
2424 switch (opcode) {
2425 case SpvOpEmitVertex:
2426 case SpvOpEmitStreamVertex:
2427 intrinsic_op = nir_intrinsic_emit_vertex;
2428 break;
2429 case SpvOpEndPrimitive:
2430 case SpvOpEndStreamPrimitive:
2431 intrinsic_op = nir_intrinsic_end_primitive;
2432 break;
2433 case SpvOpMemoryBarrier:
2434 intrinsic_op = nir_intrinsic_memory_barrier;
2435 break;
2436 case SpvOpControlBarrier:
2437 intrinsic_op = nir_intrinsic_barrier;
2438 break;
2439 default:
2440 unreachable("unknown barrier instruction");
2441 }
2442
2443 nir_intrinsic_instr *intrin =
2444 nir_intrinsic_instr_create(b->shader, intrinsic_op);
2445
2446 if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
2447 nir_intrinsic_set_stream_id(intrin, w[1]);
2448
2449 nir_builder_instr_insert(&b->nb, &intrin->instr);
2450 }
2451
2452 static unsigned
2453 gl_primitive_from_spv_execution_mode(SpvExecutionMode mode)
2454 {
2455 switch (mode) {
2456 case SpvExecutionModeInputPoints:
2457 case SpvExecutionModeOutputPoints:
2458 return 0; /* GL_POINTS */
2459 case SpvExecutionModeInputLines:
2460 return 1; /* GL_LINES */
2461 case SpvExecutionModeInputLinesAdjacency:
2462 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
2463 case SpvExecutionModeTriangles:
2464 return 4; /* GL_TRIANGLES */
2465 case SpvExecutionModeInputTrianglesAdjacency:
2466 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
2467 case SpvExecutionModeQuads:
2468 return 7; /* GL_QUADS */
2469 case SpvExecutionModeIsolines:
2470 return 0x8E7A; /* GL_ISOLINES */
2471 case SpvExecutionModeOutputLineStrip:
2472 return 3; /* GL_LINE_STRIP */
2473 case SpvExecutionModeOutputTriangleStrip:
2474 return 5; /* GL_TRIANGLE_STRIP */
2475 default:
2476 assert(!"Invalid primitive type");
2477 return 4;
2478 }
2479 }
2480
2481 static unsigned
2482 vertices_in_from_spv_execution_mode(SpvExecutionMode mode)
2483 {
2484 switch (mode) {
2485 case SpvExecutionModeInputPoints:
2486 return 1;
2487 case SpvExecutionModeInputLines:
2488 return 2;
2489 case SpvExecutionModeInputLinesAdjacency:
2490 return 4;
2491 case SpvExecutionModeTriangles:
2492 return 3;
2493 case SpvExecutionModeInputTrianglesAdjacency:
2494 return 6;
2495 default:
2496 assert(!"Invalid GS input mode");
2497 return 0;
2498 }
2499 }
2500
2501 static gl_shader_stage
2502 stage_for_execution_model(SpvExecutionModel model)
2503 {
2504 switch (model) {
2505 case SpvExecutionModelVertex:
2506 return MESA_SHADER_VERTEX;
2507 case SpvExecutionModelTessellationControl:
2508 return MESA_SHADER_TESS_CTRL;
2509 case SpvExecutionModelTessellationEvaluation:
2510 return MESA_SHADER_TESS_EVAL;
2511 case SpvExecutionModelGeometry:
2512 return MESA_SHADER_GEOMETRY;
2513 case SpvExecutionModelFragment:
2514 return MESA_SHADER_FRAGMENT;
2515 case SpvExecutionModelGLCompute:
2516 return MESA_SHADER_COMPUTE;
2517 default:
2518 unreachable("Unsupported execution model");
2519 }
2520 }
2521
2522 #define spv_check_supported(name, cap) do { \
2523 if (!(b->ext && b->ext->name)) \
2524 vtn_warn("Unsupported SPIR-V capability: %s", \
2525 spirv_capability_to_string(cap)); \
2526 } while(0)
2527
2528 static bool
2529 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
2530 const uint32_t *w, unsigned count)
2531 {
2532 switch (opcode) {
2533 case SpvOpSource:
2534 case SpvOpSourceExtension:
2535 case SpvOpSourceContinued:
2536 case SpvOpExtension:
2537 /* Unhandled, but these are for debug so that's ok. */
2538 break;
2539
2540 case SpvOpCapability: {
2541 SpvCapability cap = w[1];
2542 switch (cap) {
2543 case SpvCapabilityMatrix:
2544 case SpvCapabilityShader:
2545 case SpvCapabilityGeometry:
2546 case SpvCapabilityGeometryPointSize:
2547 case SpvCapabilityUniformBufferArrayDynamicIndexing:
2548 case SpvCapabilitySampledImageArrayDynamicIndexing:
2549 case SpvCapabilityStorageBufferArrayDynamicIndexing:
2550 case SpvCapabilityStorageImageArrayDynamicIndexing:
2551 case SpvCapabilityImageRect:
2552 case SpvCapabilitySampledRect:
2553 case SpvCapabilitySampled1D:
2554 case SpvCapabilityImage1D:
2555 case SpvCapabilitySampledCubeArray:
2556 case SpvCapabilitySampledBuffer:
2557 case SpvCapabilityImageBuffer:
2558 case SpvCapabilityImageQuery:
2559 case SpvCapabilityDerivativeControl:
2560 case SpvCapabilityInterpolationFunction:
2561 case SpvCapabilityMultiViewport:
2562 case SpvCapabilitySampleRateShading:
2563 case SpvCapabilityClipDistance:
2564 case SpvCapabilityCullDistance:
2565 case SpvCapabilityInputAttachment:
2566 case SpvCapabilityImageGatherExtended:
2567 case SpvCapabilityStorageImageExtendedFormats:
2568 break;
2569
2570 case SpvCapabilityGeometryStreams:
2571 case SpvCapabilityTessellation:
2572 case SpvCapabilityTessellationPointSize:
2573 case SpvCapabilityLinkage:
2574 case SpvCapabilityVector16:
2575 case SpvCapabilityFloat16Buffer:
2576 case SpvCapabilityFloat16:
2577 case SpvCapabilityFloat64:
2578 case SpvCapabilityInt64:
2579 case SpvCapabilityInt64Atomics:
2580 case SpvCapabilityAtomicStorage:
2581 case SpvCapabilityInt16:
2582 case SpvCapabilityStorageImageMultisample:
2583 case SpvCapabilityImageCubeArray:
2584 case SpvCapabilityInt8:
2585 case SpvCapabilitySparseResidency:
2586 case SpvCapabilityMinLod:
2587 case SpvCapabilityTransformFeedback:
2588 case SpvCapabilityStorageImageReadWithoutFormat:
2589 case SpvCapabilityStorageImageWriteWithoutFormat:
2590 vtn_warn("Unsupported SPIR-V capability: %s",
2591 spirv_capability_to_string(cap));
2592 break;
2593
2594 case SpvCapabilityAddresses:
2595 case SpvCapabilityKernel:
2596 case SpvCapabilityImageBasic:
2597 case SpvCapabilityImageReadWrite:
2598 case SpvCapabilityImageMipmap:
2599 case SpvCapabilityPipes:
2600 case SpvCapabilityGroups:
2601 case SpvCapabilityDeviceEnqueue:
2602 case SpvCapabilityLiteralSampler:
2603 case SpvCapabilityGenericPointer:
2604 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
2605 spirv_capability_to_string(cap));
2606 break;
2607
2608 case SpvCapabilityImageMSArray:
2609 spv_check_supported(image_ms_array, cap);
2610 break;
2611 }
2612 break;
2613 }
2614
2615 case SpvOpExtInstImport:
2616 vtn_handle_extension(b, opcode, w, count);
2617 break;
2618
2619 case SpvOpMemoryModel:
2620 assert(w[1] == SpvAddressingModelLogical);
2621 assert(w[2] == SpvMemoryModelGLSL450);
2622 break;
2623
2624 case SpvOpEntryPoint: {
2625 struct vtn_value *entry_point = &b->values[w[2]];
2626 /* Let this be a name label regardless */
2627 unsigned name_words;
2628 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
2629
2630 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
2631 stage_for_execution_model(w[1]) != b->entry_point_stage)
2632 break;
2633
2634 assert(b->entry_point == NULL);
2635 b->entry_point = entry_point;
2636 break;
2637 }
2638
2639 case SpvOpString:
2640 vtn_push_value(b, w[1], vtn_value_type_string)->str =
2641 vtn_string_literal(b, &w[2], count - 2, NULL);
2642 break;
2643
2644 case SpvOpName:
2645 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
2646 break;
2647
2648 case SpvOpMemberName:
2649 /* TODO */
2650 break;
2651
2652 case SpvOpExecutionMode:
2653 case SpvOpDecorationGroup:
2654 case SpvOpDecorate:
2655 case SpvOpMemberDecorate:
2656 case SpvOpGroupDecorate:
2657 case SpvOpGroupMemberDecorate:
2658 vtn_handle_decoration(b, opcode, w, count);
2659 break;
2660
2661 default:
2662 return false; /* End of preamble */
2663 }
2664
2665 return true;
2666 }
2667
2668 static void
2669 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
2670 const struct vtn_decoration *mode, void *data)
2671 {
2672 assert(b->entry_point == entry_point);
2673
2674 switch(mode->exec_mode) {
2675 case SpvExecutionModeOriginUpperLeft:
2676 case SpvExecutionModeOriginLowerLeft:
2677 b->origin_upper_left =
2678 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
2679 break;
2680
2681 case SpvExecutionModeEarlyFragmentTests:
2682 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2683 b->shader->info->fs.early_fragment_tests = true;
2684 break;
2685
2686 case SpvExecutionModeInvocations:
2687 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2688 b->shader->info->gs.invocations = MAX2(1, mode->literals[0]);
2689 break;
2690
2691 case SpvExecutionModeDepthReplacing:
2692 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2693 b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
2694 break;
2695 case SpvExecutionModeDepthGreater:
2696 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2697 b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
2698 break;
2699 case SpvExecutionModeDepthLess:
2700 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2701 b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
2702 break;
2703 case SpvExecutionModeDepthUnchanged:
2704 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2705 b->shader->info->fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2706 break;
2707
2708 case SpvExecutionModeLocalSize:
2709 assert(b->shader->stage == MESA_SHADER_COMPUTE);
2710 b->shader->info->cs.local_size[0] = mode->literals[0];
2711 b->shader->info->cs.local_size[1] = mode->literals[1];
2712 b->shader->info->cs.local_size[2] = mode->literals[2];
2713 break;
2714 case SpvExecutionModeLocalSizeHint:
2715 break; /* Nothing to do with this */
2716
2717 case SpvExecutionModeOutputVertices:
2718 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2719 b->shader->info->gs.vertices_out = mode->literals[0];
2720 break;
2721
2722 case SpvExecutionModeInputPoints:
2723 case SpvExecutionModeInputLines:
2724 case SpvExecutionModeInputLinesAdjacency:
2725 case SpvExecutionModeTriangles:
2726 case SpvExecutionModeInputTrianglesAdjacency:
2727 case SpvExecutionModeQuads:
2728 case SpvExecutionModeIsolines:
2729 if (b->shader->stage == MESA_SHADER_GEOMETRY) {
2730 b->shader->info->gs.vertices_in =
2731 vertices_in_from_spv_execution_mode(mode->exec_mode);
2732 } else {
2733 assert(!"Tesselation shaders not yet supported");
2734 }
2735 break;
2736
2737 case SpvExecutionModeOutputPoints:
2738 case SpvExecutionModeOutputLineStrip:
2739 case SpvExecutionModeOutputTriangleStrip:
2740 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2741 b->shader->info->gs.output_primitive =
2742 gl_primitive_from_spv_execution_mode(mode->exec_mode);
2743 break;
2744
2745 case SpvExecutionModeSpacingEqual:
2746 case SpvExecutionModeSpacingFractionalEven:
2747 case SpvExecutionModeSpacingFractionalOdd:
2748 case SpvExecutionModeVertexOrderCw:
2749 case SpvExecutionModeVertexOrderCcw:
2750 case SpvExecutionModePointMode:
2751 assert(!"TODO: Add tessellation metadata");
2752 break;
2753
2754 case SpvExecutionModePixelCenterInteger:
2755 b->pixel_center_integer = true;
2756 break;
2757
2758 case SpvExecutionModeXfb:
2759 assert(!"Unhandled execution mode");
2760 break;
2761
2762 case SpvExecutionModeVecTypeHint:
2763 case SpvExecutionModeContractionOff:
2764 break; /* OpenCL */
2765 }
2766 }
2767
2768 static bool
2769 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
2770 const uint32_t *w, unsigned count)
2771 {
2772 switch (opcode) {
2773 case SpvOpSource:
2774 case SpvOpSourceContinued:
2775 case SpvOpSourceExtension:
2776 case SpvOpExtension:
2777 case SpvOpCapability:
2778 case SpvOpExtInstImport:
2779 case SpvOpMemoryModel:
2780 case SpvOpEntryPoint:
2781 case SpvOpExecutionMode:
2782 case SpvOpString:
2783 case SpvOpName:
2784 case SpvOpMemberName:
2785 case SpvOpDecorationGroup:
2786 case SpvOpDecorate:
2787 case SpvOpMemberDecorate:
2788 case SpvOpGroupDecorate:
2789 case SpvOpGroupMemberDecorate:
2790 assert(!"Invalid opcode types and variables section");
2791 break;
2792
2793 case SpvOpTypeVoid:
2794 case SpvOpTypeBool:
2795 case SpvOpTypeInt:
2796 case SpvOpTypeFloat:
2797 case SpvOpTypeVector:
2798 case SpvOpTypeMatrix:
2799 case SpvOpTypeImage:
2800 case SpvOpTypeSampler:
2801 case SpvOpTypeSampledImage:
2802 case SpvOpTypeArray:
2803 case SpvOpTypeRuntimeArray:
2804 case SpvOpTypeStruct:
2805 case SpvOpTypeOpaque:
2806 case SpvOpTypePointer:
2807 case SpvOpTypeFunction:
2808 case SpvOpTypeEvent:
2809 case SpvOpTypeDeviceEvent:
2810 case SpvOpTypeReserveId:
2811 case SpvOpTypeQueue:
2812 case SpvOpTypePipe:
2813 vtn_handle_type(b, opcode, w, count);
2814 break;
2815
2816 case SpvOpConstantTrue:
2817 case SpvOpConstantFalse:
2818 case SpvOpConstant:
2819 case SpvOpConstantComposite:
2820 case SpvOpConstantSampler:
2821 case SpvOpConstantNull:
2822 case SpvOpSpecConstantTrue:
2823 case SpvOpSpecConstantFalse:
2824 case SpvOpSpecConstant:
2825 case SpvOpSpecConstantComposite:
2826 case SpvOpSpecConstantOp:
2827 vtn_handle_constant(b, opcode, w, count);
2828 break;
2829
2830 case SpvOpVariable:
2831 vtn_handle_variables(b, opcode, w, count);
2832 break;
2833
2834 default:
2835 return false; /* End of preamble */
2836 }
2837
2838 return true;
2839 }
2840
2841 static bool
2842 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
2843 const uint32_t *w, unsigned count)
2844 {
2845 switch (opcode) {
2846 case SpvOpLabel:
2847 break;
2848
2849 case SpvOpLoopMerge:
2850 case SpvOpSelectionMerge:
2851 /* This is handled by cfg pre-pass and walk_blocks */
2852 break;
2853
2854 case SpvOpUndef: {
2855 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2856 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
2857 break;
2858 }
2859
2860 case SpvOpExtInst:
2861 vtn_handle_extension(b, opcode, w, count);
2862 break;
2863
2864 case SpvOpVariable:
2865 case SpvOpLoad:
2866 case SpvOpStore:
2867 case SpvOpCopyMemory:
2868 case SpvOpCopyMemorySized:
2869 case SpvOpAccessChain:
2870 case SpvOpInBoundsAccessChain:
2871 case SpvOpArrayLength:
2872 vtn_handle_variables(b, opcode, w, count);
2873 break;
2874
2875 case SpvOpFunctionCall:
2876 vtn_handle_function_call(b, opcode, w, count);
2877 break;
2878
2879 case SpvOpSampledImage:
2880 case SpvOpImage:
2881 case SpvOpImageSampleImplicitLod:
2882 case SpvOpImageSampleExplicitLod:
2883 case SpvOpImageSampleDrefImplicitLod:
2884 case SpvOpImageSampleDrefExplicitLod:
2885 case SpvOpImageSampleProjImplicitLod:
2886 case SpvOpImageSampleProjExplicitLod:
2887 case SpvOpImageSampleProjDrefImplicitLod:
2888 case SpvOpImageSampleProjDrefExplicitLod:
2889 case SpvOpImageFetch:
2890 case SpvOpImageGather:
2891 case SpvOpImageDrefGather:
2892 case SpvOpImageQuerySizeLod:
2893 case SpvOpImageQueryLod:
2894 case SpvOpImageQueryLevels:
2895 case SpvOpImageQuerySamples:
2896 vtn_handle_texture(b, opcode, w, count);
2897 break;
2898
2899 case SpvOpImageRead:
2900 case SpvOpImageWrite:
2901 case SpvOpImageTexelPointer:
2902 vtn_handle_image(b, opcode, w, count);
2903 break;
2904
2905 case SpvOpImageQuerySize: {
2906 struct vtn_access_chain *image =
2907 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
2908 if (glsl_type_is_image(image->var->var->interface_type)) {
2909 vtn_handle_image(b, opcode, w, count);
2910 } else {
2911 vtn_handle_texture(b, opcode, w, count);
2912 }
2913 break;
2914 }
2915
2916 case SpvOpAtomicLoad:
2917 case SpvOpAtomicExchange:
2918 case SpvOpAtomicCompareExchange:
2919 case SpvOpAtomicCompareExchangeWeak:
2920 case SpvOpAtomicIIncrement:
2921 case SpvOpAtomicIDecrement:
2922 case SpvOpAtomicIAdd:
2923 case SpvOpAtomicISub:
2924 case SpvOpAtomicSMin:
2925 case SpvOpAtomicUMin:
2926 case SpvOpAtomicSMax:
2927 case SpvOpAtomicUMax:
2928 case SpvOpAtomicAnd:
2929 case SpvOpAtomicOr:
2930 case SpvOpAtomicXor: {
2931 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
2932 if (pointer->value_type == vtn_value_type_image_pointer) {
2933 vtn_handle_image(b, opcode, w, count);
2934 } else {
2935 assert(pointer->value_type == vtn_value_type_access_chain);
2936 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
2937 }
2938 break;
2939 }
2940
2941 case SpvOpAtomicStore: {
2942 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
2943 if (pointer->value_type == vtn_value_type_image_pointer) {
2944 vtn_handle_image(b, opcode, w, count);
2945 } else {
2946 assert(pointer->value_type == vtn_value_type_access_chain);
2947 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
2948 }
2949 break;
2950 }
2951
2952 case SpvOpSNegate:
2953 case SpvOpFNegate:
2954 case SpvOpNot:
2955 case SpvOpAny:
2956 case SpvOpAll:
2957 case SpvOpConvertFToU:
2958 case SpvOpConvertFToS:
2959 case SpvOpConvertSToF:
2960 case SpvOpConvertUToF:
2961 case SpvOpUConvert:
2962 case SpvOpSConvert:
2963 case SpvOpFConvert:
2964 case SpvOpQuantizeToF16:
2965 case SpvOpConvertPtrToU:
2966 case SpvOpConvertUToPtr:
2967 case SpvOpPtrCastToGeneric:
2968 case SpvOpGenericCastToPtr:
2969 case SpvOpBitcast:
2970 case SpvOpIsNan:
2971 case SpvOpIsInf:
2972 case SpvOpIsFinite:
2973 case SpvOpIsNormal:
2974 case SpvOpSignBitSet:
2975 case SpvOpLessOrGreater:
2976 case SpvOpOrdered:
2977 case SpvOpUnordered:
2978 case SpvOpIAdd:
2979 case SpvOpFAdd:
2980 case SpvOpISub:
2981 case SpvOpFSub:
2982 case SpvOpIMul:
2983 case SpvOpFMul:
2984 case SpvOpUDiv:
2985 case SpvOpSDiv:
2986 case SpvOpFDiv:
2987 case SpvOpUMod:
2988 case SpvOpSRem:
2989 case SpvOpSMod:
2990 case SpvOpFRem:
2991 case SpvOpFMod:
2992 case SpvOpVectorTimesScalar:
2993 case SpvOpDot:
2994 case SpvOpIAddCarry:
2995 case SpvOpISubBorrow:
2996 case SpvOpUMulExtended:
2997 case SpvOpSMulExtended:
2998 case SpvOpShiftRightLogical:
2999 case SpvOpShiftRightArithmetic:
3000 case SpvOpShiftLeftLogical:
3001 case SpvOpLogicalEqual:
3002 case SpvOpLogicalNotEqual:
3003 case SpvOpLogicalOr:
3004 case SpvOpLogicalAnd:
3005 case SpvOpLogicalNot:
3006 case SpvOpBitwiseOr:
3007 case SpvOpBitwiseXor:
3008 case SpvOpBitwiseAnd:
3009 case SpvOpSelect:
3010 case SpvOpIEqual:
3011 case SpvOpFOrdEqual:
3012 case SpvOpFUnordEqual:
3013 case SpvOpINotEqual:
3014 case SpvOpFOrdNotEqual:
3015 case SpvOpFUnordNotEqual:
3016 case SpvOpULessThan:
3017 case SpvOpSLessThan:
3018 case SpvOpFOrdLessThan:
3019 case SpvOpFUnordLessThan:
3020 case SpvOpUGreaterThan:
3021 case SpvOpSGreaterThan:
3022 case SpvOpFOrdGreaterThan:
3023 case SpvOpFUnordGreaterThan:
3024 case SpvOpULessThanEqual:
3025 case SpvOpSLessThanEqual:
3026 case SpvOpFOrdLessThanEqual:
3027 case SpvOpFUnordLessThanEqual:
3028 case SpvOpUGreaterThanEqual:
3029 case SpvOpSGreaterThanEqual:
3030 case SpvOpFOrdGreaterThanEqual:
3031 case SpvOpFUnordGreaterThanEqual:
3032 case SpvOpDPdx:
3033 case SpvOpDPdy:
3034 case SpvOpFwidth:
3035 case SpvOpDPdxFine:
3036 case SpvOpDPdyFine:
3037 case SpvOpFwidthFine:
3038 case SpvOpDPdxCoarse:
3039 case SpvOpDPdyCoarse:
3040 case SpvOpFwidthCoarse:
3041 case SpvOpBitFieldInsert:
3042 case SpvOpBitFieldSExtract:
3043 case SpvOpBitFieldUExtract:
3044 case SpvOpBitReverse:
3045 case SpvOpBitCount:
3046 case SpvOpTranspose:
3047 case SpvOpOuterProduct:
3048 case SpvOpMatrixTimesScalar:
3049 case SpvOpVectorTimesMatrix:
3050 case SpvOpMatrixTimesVector:
3051 case SpvOpMatrixTimesMatrix:
3052 vtn_handle_alu(b, opcode, w, count);
3053 break;
3054
3055 case SpvOpVectorExtractDynamic:
3056 case SpvOpVectorInsertDynamic:
3057 case SpvOpVectorShuffle:
3058 case SpvOpCompositeConstruct:
3059 case SpvOpCompositeExtract:
3060 case SpvOpCompositeInsert:
3061 case SpvOpCopyObject:
3062 vtn_handle_composite(b, opcode, w, count);
3063 break;
3064
3065 case SpvOpEmitVertex:
3066 case SpvOpEndPrimitive:
3067 case SpvOpEmitStreamVertex:
3068 case SpvOpEndStreamPrimitive:
3069 case SpvOpControlBarrier:
3070 case SpvOpMemoryBarrier:
3071 vtn_handle_barrier(b, opcode, w, count);
3072 break;
3073
3074 default:
3075 unreachable("Unhandled opcode");
3076 }
3077
3078 return true;
3079 }
3080
3081 nir_function *
3082 spirv_to_nir(const uint32_t *words, size_t word_count,
3083 struct nir_spirv_specialization *spec, unsigned num_spec,
3084 gl_shader_stage stage, const char *entry_point_name,
3085 const struct nir_spirv_supported_extensions *ext,
3086 const nir_shader_compiler_options *options)
3087 {
3088 const uint32_t *word_end = words + word_count;
3089
3090 /* Handle the SPIR-V header (first 4 dwords) */
3091 assert(word_count > 5);
3092
3093 assert(words[0] == SpvMagicNumber);
3094 assert(words[1] >= 0x10000);
3095 /* words[2] == generator magic */
3096 unsigned value_id_bound = words[3];
3097 assert(words[4] == 0);
3098
3099 words+= 5;
3100
3101 /* Initialize the stn_builder object */
3102 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
3103 b->value_id_bound = value_id_bound;
3104 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
3105 exec_list_make_empty(&b->functions);
3106 b->entry_point_stage = stage;
3107 b->entry_point_name = entry_point_name;
3108 b->ext = ext;
3109
3110 /* Handle all the preamble instructions */
3111 words = vtn_foreach_instruction(b, words, word_end,
3112 vtn_handle_preamble_instruction);
3113
3114 if (b->entry_point == NULL) {
3115 assert(!"Entry point not found");
3116 ralloc_free(b);
3117 return NULL;
3118 }
3119
3120 b->shader = nir_shader_create(NULL, stage, options, NULL);
3121
3122 /* Set shader info defaults */
3123 b->shader->info->gs.invocations = 1;
3124
3125 /* Parse execution modes */
3126 vtn_foreach_execution_mode(b, b->entry_point,
3127 vtn_handle_execution_mode, NULL);
3128
3129 b->specializations = spec;
3130 b->num_specializations = num_spec;
3131
3132 /* Handle all variable, type, and constant instructions */
3133 words = vtn_foreach_instruction(b, words, word_end,
3134 vtn_handle_variable_or_type_instruction);
3135
3136 vtn_build_cfg(b, words, word_end);
3137
3138 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
3139 b->impl = func->impl;
3140 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
3141 _mesa_key_pointer_equal);
3142
3143 vtn_function_emit(b, func, vtn_handle_body_instruction);
3144 }
3145
3146 assert(b->entry_point->value_type == vtn_value_type_function);
3147 nir_function *entry_point = b->entry_point->func->impl->function;
3148 assert(entry_point);
3149
3150 ralloc_free(b);
3151
3152 return entry_point;
3153 }