spirv: Add support for SPV_EXT_physical_storage_buffer
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include <stdio.h>
36
37 void
38 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
39 size_t spirv_offset, const char *message)
40 {
41 if (b->options->debug.func) {
42 b->options->debug.func(b->options->debug.private_data,
43 level, spirv_offset, message);
44 }
45
46 #ifndef NDEBUG
47 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
48 fprintf(stderr, "%s\n", message);
49 #endif
50 }
51
52 void
53 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
54 size_t spirv_offset, const char *fmt, ...)
55 {
56 va_list args;
57 char *msg;
58
59 va_start(args, fmt);
60 msg = ralloc_vasprintf(NULL, fmt, args);
61 va_end(args);
62
63 vtn_log(b, level, spirv_offset, msg);
64
65 ralloc_free(msg);
66 }
67
68 static void
69 vtn_log_err(struct vtn_builder *b,
70 enum nir_spirv_debug_level level, const char *prefix,
71 const char *file, unsigned line,
72 const char *fmt, va_list args)
73 {
74 char *msg;
75
76 msg = ralloc_strdup(NULL, prefix);
77
78 #ifndef NDEBUG
79 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
80 #endif
81
82 ralloc_asprintf_append(&msg, " ");
83
84 ralloc_vasprintf_append(&msg, fmt, args);
85
86 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
87 b->spirv_offset);
88
89 if (b->file) {
90 ralloc_asprintf_append(&msg,
91 "\n in SPIR-V source file %s, line %d, col %d",
92 b->file, b->line, b->col);
93 }
94
95 vtn_log(b, level, b->spirv_offset, msg);
96
97 ralloc_free(msg);
98 }
99
100 static void
101 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
102 {
103 static int idx = 0;
104
105 char filename[1024];
106 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
107 path, prefix, idx++);
108 if (len < 0 || len >= sizeof(filename))
109 return;
110
111 FILE *f = fopen(filename, "w");
112 if (f == NULL)
113 return;
114
115 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
116 fclose(f);
117
118 vtn_info("SPIR-V shader dumped to %s", filename);
119 }
120
121 void
122 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
123 const char *fmt, ...)
124 {
125 va_list args;
126
127 va_start(args, fmt);
128 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
129 file, line, fmt, args);
130 va_end(args);
131 }
132
133 void
134 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
135 const char *fmt, ...)
136 {
137 va_list args;
138
139 va_start(args, fmt);
140 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
141 file, line, fmt, args);
142 va_end(args);
143 }
144
145 void
146 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
147 const char *fmt, ...)
148 {
149 va_list args;
150
151 va_start(args, fmt);
152 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
153 file, line, fmt, args);
154 va_end(args);
155
156 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
157 if (dump_path)
158 vtn_dump_shader(b, dump_path, "fail");
159
160 longjmp(b->fail_jump, 1);
161 }
162
163 struct spec_constant_value {
164 bool is_double;
165 union {
166 uint32_t data32;
167 uint64_t data64;
168 };
169 };
170
171 static struct vtn_ssa_value *
172 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
173 {
174 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
175 val->type = type;
176
177 if (glsl_type_is_vector_or_scalar(type)) {
178 unsigned num_components = glsl_get_vector_elements(val->type);
179 unsigned bit_size = glsl_get_bit_size(val->type);
180 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
181 } else {
182 unsigned elems = glsl_get_length(val->type);
183 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
184 if (glsl_type_is_matrix(type)) {
185 const struct glsl_type *elem_type =
186 glsl_vector_type(glsl_get_base_type(type),
187 glsl_get_vector_elements(type));
188
189 for (unsigned i = 0; i < elems; i++)
190 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
191 } else if (glsl_type_is_array(type)) {
192 const struct glsl_type *elem_type = glsl_get_array_element(type);
193 for (unsigned i = 0; i < elems; i++)
194 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
195 } else {
196 for (unsigned i = 0; i < elems; i++) {
197 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
198 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
199 }
200 }
201 }
202
203 return val;
204 }
205
206 static struct vtn_ssa_value *
207 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
208 const struct glsl_type *type)
209 {
210 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
211
212 if (entry)
213 return entry->data;
214
215 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
216 val->type = type;
217
218 switch (glsl_get_base_type(type)) {
219 case GLSL_TYPE_INT:
220 case GLSL_TYPE_UINT:
221 case GLSL_TYPE_INT16:
222 case GLSL_TYPE_UINT16:
223 case GLSL_TYPE_UINT8:
224 case GLSL_TYPE_INT8:
225 case GLSL_TYPE_INT64:
226 case GLSL_TYPE_UINT64:
227 case GLSL_TYPE_BOOL:
228 case GLSL_TYPE_FLOAT:
229 case GLSL_TYPE_FLOAT16:
230 case GLSL_TYPE_DOUBLE: {
231 int bit_size = glsl_get_bit_size(type);
232 if (glsl_type_is_vector_or_scalar(type)) {
233 unsigned num_components = glsl_get_vector_elements(val->type);
234 nir_load_const_instr *load =
235 nir_load_const_instr_create(b->shader, num_components, bit_size);
236
237 load->value = constant->values[0];
238
239 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
240 val->def = &load->def;
241 } else {
242 assert(glsl_type_is_matrix(type));
243 unsigned rows = glsl_get_vector_elements(val->type);
244 unsigned columns = glsl_get_matrix_columns(val->type);
245 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
246
247 for (unsigned i = 0; i < columns; i++) {
248 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
249 col_val->type = glsl_get_column_type(val->type);
250 nir_load_const_instr *load =
251 nir_load_const_instr_create(b->shader, rows, bit_size);
252
253 load->value = constant->values[i];
254
255 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
256 col_val->def = &load->def;
257
258 val->elems[i] = col_val;
259 }
260 }
261 break;
262 }
263
264 case GLSL_TYPE_ARRAY: {
265 unsigned elems = glsl_get_length(val->type);
266 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
267 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
268 for (unsigned i = 0; i < elems; i++)
269 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
270 elem_type);
271 break;
272 }
273
274 case GLSL_TYPE_STRUCT: {
275 unsigned elems = glsl_get_length(val->type);
276 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
277 for (unsigned i = 0; i < elems; i++) {
278 const struct glsl_type *elem_type =
279 glsl_get_struct_field(val->type, i);
280 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
281 elem_type);
282 }
283 break;
284 }
285
286 default:
287 vtn_fail("bad constant type");
288 }
289
290 return val;
291 }
292
293 struct vtn_ssa_value *
294 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
295 {
296 struct vtn_value *val = vtn_untyped_value(b, value_id);
297 switch (val->value_type) {
298 case vtn_value_type_undef:
299 return vtn_undef_ssa_value(b, val->type->type);
300
301 case vtn_value_type_constant:
302 return vtn_const_ssa_value(b, val->constant, val->type->type);
303
304 case vtn_value_type_ssa:
305 return val->ssa;
306
307 case vtn_value_type_pointer:
308 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
309 struct vtn_ssa_value *ssa =
310 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
311 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
312 return ssa;
313
314 default:
315 vtn_fail("Invalid type for an SSA value");
316 }
317 }
318
319 static char *
320 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
321 unsigned word_count, unsigned *words_used)
322 {
323 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
324 if (words_used) {
325 /* Ammount of space taken by the string (including the null) */
326 unsigned len = strlen(dup) + 1;
327 *words_used = DIV_ROUND_UP(len, sizeof(*words));
328 }
329 return dup;
330 }
331
332 const uint32_t *
333 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
334 const uint32_t *end, vtn_instruction_handler handler)
335 {
336 b->file = NULL;
337 b->line = -1;
338 b->col = -1;
339
340 const uint32_t *w = start;
341 while (w < end) {
342 SpvOp opcode = w[0] & SpvOpCodeMask;
343 unsigned count = w[0] >> SpvWordCountShift;
344 vtn_assert(count >= 1 && w + count <= end);
345
346 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
347
348 switch (opcode) {
349 case SpvOpNop:
350 break; /* Do nothing */
351
352 case SpvOpLine:
353 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
354 b->line = w[2];
355 b->col = w[3];
356 break;
357
358 case SpvOpNoLine:
359 b->file = NULL;
360 b->line = -1;
361 b->col = -1;
362 break;
363
364 default:
365 if (!handler(b, opcode, w, count))
366 return w;
367 break;
368 }
369
370 w += count;
371 }
372
373 b->spirv_offset = 0;
374 b->file = NULL;
375 b->line = -1;
376 b->col = -1;
377
378 assert(w == end);
379 return w;
380 }
381
382 static void
383 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
384 const uint32_t *w, unsigned count)
385 {
386 const char *ext = (const char *)&w[2];
387 switch (opcode) {
388 case SpvOpExtInstImport: {
389 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
390 if (strcmp(ext, "GLSL.std.450") == 0) {
391 val->ext_handler = vtn_handle_glsl450_instruction;
392 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
393 && (b->options && b->options->caps.gcn_shader)) {
394 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
395 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
396 && (b->options && b->options->caps.trinary_minmax)) {
397 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
398 } else {
399 vtn_fail("Unsupported extension: %s", ext);
400 }
401 break;
402 }
403
404 case SpvOpExtInst: {
405 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
406 bool handled = val->ext_handler(b, w[4], w, count);
407 vtn_assert(handled);
408 break;
409 }
410
411 default:
412 vtn_fail("Unhandled opcode");
413 }
414 }
415
416 static void
417 _foreach_decoration_helper(struct vtn_builder *b,
418 struct vtn_value *base_value,
419 int parent_member,
420 struct vtn_value *value,
421 vtn_decoration_foreach_cb cb, void *data)
422 {
423 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
424 int member;
425 if (dec->scope == VTN_DEC_DECORATION) {
426 member = parent_member;
427 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
428 vtn_fail_if(value->value_type != vtn_value_type_type ||
429 value->type->base_type != vtn_base_type_struct,
430 "OpMemberDecorate and OpGroupMemberDecorate are only "
431 "allowed on OpTypeStruct");
432 /* This means we haven't recursed yet */
433 assert(value == base_value);
434
435 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
436
437 vtn_fail_if(member >= base_value->type->length,
438 "OpMemberDecorate specifies member %d but the "
439 "OpTypeStruct has only %u members",
440 member, base_value->type->length);
441 } else {
442 /* Not a decoration */
443 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
444 continue;
445 }
446
447 if (dec->group) {
448 assert(dec->group->value_type == vtn_value_type_decoration_group);
449 _foreach_decoration_helper(b, base_value, member, dec->group,
450 cb, data);
451 } else {
452 cb(b, base_value, member, dec, data);
453 }
454 }
455 }
456
457 /** Iterates (recursively if needed) over all of the decorations on a value
458 *
459 * This function iterates over all of the decorations applied to a given
460 * value. If it encounters a decoration group, it recurses into the group
461 * and iterates over all of those decorations as well.
462 */
463 void
464 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
465 vtn_decoration_foreach_cb cb, void *data)
466 {
467 _foreach_decoration_helper(b, value, -1, value, cb, data);
468 }
469
470 void
471 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
472 vtn_execution_mode_foreach_cb cb, void *data)
473 {
474 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
475 if (dec->scope != VTN_DEC_EXECUTION_MODE)
476 continue;
477
478 assert(dec->group == NULL);
479 cb(b, value, dec, data);
480 }
481 }
482
483 void
484 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
485 const uint32_t *w, unsigned count)
486 {
487 const uint32_t *w_end = w + count;
488 const uint32_t target = w[1];
489 w += 2;
490
491 switch (opcode) {
492 case SpvOpDecorationGroup:
493 vtn_push_value(b, target, vtn_value_type_decoration_group);
494 break;
495
496 case SpvOpDecorate:
497 case SpvOpMemberDecorate:
498 case SpvOpDecorateStringGOOGLE:
499 case SpvOpMemberDecorateStringGOOGLE:
500 case SpvOpExecutionMode: {
501 struct vtn_value *val = vtn_untyped_value(b, target);
502
503 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
504 switch (opcode) {
505 case SpvOpDecorate:
506 case SpvOpDecorateStringGOOGLE:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateStringGOOGLE:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 dec->scope = VTN_DEC_EXECUTION_MODE;
517 break;
518 default:
519 unreachable("Invalid decoration opcode");
520 }
521 dec->decoration = *(w++);
522 dec->literals = w;
523
524 /* Link into the list */
525 dec->next = val->decoration;
526 val->decoration = dec;
527 break;
528 }
529
530 case SpvOpGroupMemberDecorate:
531 case SpvOpGroupDecorate: {
532 struct vtn_value *group =
533 vtn_value(b, target, vtn_value_type_decoration_group);
534
535 for (; w < w_end; w++) {
536 struct vtn_value *val = vtn_untyped_value(b, *w);
537 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
538
539 dec->group = group;
540 if (opcode == SpvOpGroupDecorate) {
541 dec->scope = VTN_DEC_DECORATION;
542 } else {
543 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
544 vtn_fail_if(dec->scope < 0, /* Check for overflow */
545 "Member argument of OpGroupMemberDecorate too large");
546 }
547
548 /* Link into the list */
549 dec->next = val->decoration;
550 val->decoration = dec;
551 }
552 break;
553 }
554
555 default:
556 unreachable("Unhandled opcode");
557 }
558 }
559
560 struct member_decoration_ctx {
561 unsigned num_fields;
562 struct glsl_struct_field *fields;
563 struct vtn_type *type;
564 };
565
566 /**
567 * Returns true if the given type contains a struct decorated Block or
568 * BufferBlock
569 */
570 bool
571 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
572 {
573 switch (type->base_type) {
574 case vtn_base_type_array:
575 return vtn_type_contains_block(b, type->array_element);
576 case vtn_base_type_struct:
577 if (type->block || type->buffer_block)
578 return true;
579 for (unsigned i = 0; i < type->length; i++) {
580 if (vtn_type_contains_block(b, type->members[i]))
581 return true;
582 }
583 return false;
584 default:
585 return false;
586 }
587 }
588
589 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
590 * OpStore, or OpCopyMemory between them without breaking anything.
591 * Technically, the SPIR-V rules require the exact same type ID but this lets
592 * us internally be a bit looser.
593 */
594 bool
595 vtn_types_compatible(struct vtn_builder *b,
596 struct vtn_type *t1, struct vtn_type *t2)
597 {
598 if (t1->id == t2->id)
599 return true;
600
601 if (t1->base_type != t2->base_type)
602 return false;
603
604 switch (t1->base_type) {
605 case vtn_base_type_void:
606 case vtn_base_type_scalar:
607 case vtn_base_type_vector:
608 case vtn_base_type_matrix:
609 case vtn_base_type_image:
610 case vtn_base_type_sampler:
611 case vtn_base_type_sampled_image:
612 return t1->type == t2->type;
613
614 case vtn_base_type_array:
615 return t1->length == t2->length &&
616 vtn_types_compatible(b, t1->array_element, t2->array_element);
617
618 case vtn_base_type_pointer:
619 return vtn_types_compatible(b, t1->deref, t2->deref);
620
621 case vtn_base_type_struct:
622 if (t1->length != t2->length)
623 return false;
624
625 for (unsigned i = 0; i < t1->length; i++) {
626 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
627 return false;
628 }
629 return true;
630
631 case vtn_base_type_function:
632 /* This case shouldn't get hit since you can't copy around function
633 * types. Just require them to be identical.
634 */
635 return false;
636 }
637
638 vtn_fail("Invalid base type");
639 }
640
641 /* does a shallow copy of a vtn_type */
642
643 static struct vtn_type *
644 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
645 {
646 struct vtn_type *dest = ralloc(b, struct vtn_type);
647 *dest = *src;
648
649 switch (src->base_type) {
650 case vtn_base_type_void:
651 case vtn_base_type_scalar:
652 case vtn_base_type_vector:
653 case vtn_base_type_matrix:
654 case vtn_base_type_array:
655 case vtn_base_type_pointer:
656 case vtn_base_type_image:
657 case vtn_base_type_sampler:
658 case vtn_base_type_sampled_image:
659 /* Nothing more to do */
660 break;
661
662 case vtn_base_type_struct:
663 dest->members = ralloc_array(b, struct vtn_type *, src->length);
664 memcpy(dest->members, src->members,
665 src->length * sizeof(src->members[0]));
666
667 dest->offsets = ralloc_array(b, unsigned, src->length);
668 memcpy(dest->offsets, src->offsets,
669 src->length * sizeof(src->offsets[0]));
670 break;
671
672 case vtn_base_type_function:
673 dest->params = ralloc_array(b, struct vtn_type *, src->length);
674 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
675 break;
676 }
677
678 return dest;
679 }
680
681 static struct vtn_type *
682 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
683 {
684 type->members[member] = vtn_type_copy(b, type->members[member]);
685 type = type->members[member];
686
687 /* We may have an array of matrices.... Oh, joy! */
688 while (glsl_type_is_array(type->type)) {
689 type->array_element = vtn_type_copy(b, type->array_element);
690 type = type->array_element;
691 }
692
693 vtn_assert(glsl_type_is_matrix(type->type));
694
695 return type;
696 }
697
698 static void
699 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
700 int member, enum gl_access_qualifier access)
701 {
702 type->members[member] = vtn_type_copy(b, type->members[member]);
703 type = type->members[member];
704
705 type->access |= access;
706 }
707
708 static void
709 array_stride_decoration_cb(struct vtn_builder *b,
710 struct vtn_value *val, int member,
711 const struct vtn_decoration *dec, void *void_ctx)
712 {
713 struct vtn_type *type = val->type;
714
715 if (dec->decoration == SpvDecorationArrayStride) {
716 vtn_fail_if(dec->literals[0] == 0, "ArrayStride must be non-zero");
717 type->stride = dec->literals[0];
718 }
719 }
720
721 static void
722 struct_member_decoration_cb(struct vtn_builder *b,
723 struct vtn_value *val, int member,
724 const struct vtn_decoration *dec, void *void_ctx)
725 {
726 struct member_decoration_ctx *ctx = void_ctx;
727
728 if (member < 0)
729 return;
730
731 assert(member < ctx->num_fields);
732
733 switch (dec->decoration) {
734 case SpvDecorationRelaxedPrecision:
735 case SpvDecorationUniform:
736 break; /* FIXME: Do nothing with this for now. */
737 case SpvDecorationNonWritable:
738 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
739 break;
740 case SpvDecorationNonReadable:
741 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
742 break;
743 case SpvDecorationVolatile:
744 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
745 break;
746 case SpvDecorationCoherent:
747 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
748 break;
749 case SpvDecorationNoPerspective:
750 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
751 break;
752 case SpvDecorationFlat:
753 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
754 break;
755 case SpvDecorationCentroid:
756 ctx->fields[member].centroid = true;
757 break;
758 case SpvDecorationSample:
759 ctx->fields[member].sample = true;
760 break;
761 case SpvDecorationStream:
762 /* Vulkan only allows one GS stream */
763 vtn_assert(dec->literals[0] == 0);
764 break;
765 case SpvDecorationLocation:
766 ctx->fields[member].location = dec->literals[0];
767 break;
768 case SpvDecorationComponent:
769 break; /* FIXME: What should we do with these? */
770 case SpvDecorationBuiltIn:
771 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
772 ctx->type->members[member]->is_builtin = true;
773 ctx->type->members[member]->builtin = dec->literals[0];
774 ctx->type->builtin_block = true;
775 break;
776 case SpvDecorationOffset:
777 ctx->type->offsets[member] = dec->literals[0];
778 ctx->fields[member].offset = dec->literals[0];
779 break;
780 case SpvDecorationMatrixStride:
781 /* Handled as a second pass */
782 break;
783 case SpvDecorationColMajor:
784 break; /* Nothing to do here. Column-major is the default. */
785 case SpvDecorationRowMajor:
786 mutable_matrix_member(b, ctx->type, member)->row_major = true;
787 break;
788
789 case SpvDecorationPatch:
790 break;
791
792 case SpvDecorationSpecId:
793 case SpvDecorationBlock:
794 case SpvDecorationBufferBlock:
795 case SpvDecorationArrayStride:
796 case SpvDecorationGLSLShared:
797 case SpvDecorationGLSLPacked:
798 case SpvDecorationInvariant:
799 case SpvDecorationRestrict:
800 case SpvDecorationAliased:
801 case SpvDecorationConstant:
802 case SpvDecorationIndex:
803 case SpvDecorationBinding:
804 case SpvDecorationDescriptorSet:
805 case SpvDecorationLinkageAttributes:
806 case SpvDecorationNoContraction:
807 case SpvDecorationInputAttachmentIndex:
808 vtn_warn("Decoration not allowed on struct members: %s",
809 spirv_decoration_to_string(dec->decoration));
810 break;
811
812 case SpvDecorationXfbBuffer:
813 case SpvDecorationXfbStride:
814 vtn_warn("Vulkan does not have transform feedback");
815 break;
816
817 case SpvDecorationCPacked:
818 case SpvDecorationSaturatedConversion:
819 case SpvDecorationFuncParamAttr:
820 case SpvDecorationFPRoundingMode:
821 case SpvDecorationFPFastMathMode:
822 case SpvDecorationAlignment:
823 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
824 vtn_warn("Decoration only allowed for CL-style kernels: %s",
825 spirv_decoration_to_string(dec->decoration));
826 }
827 break;
828
829 case SpvDecorationHlslSemanticGOOGLE:
830 /* HLSL semantic decorations can safely be ignored by the driver. */
831 break;
832
833 default:
834 vtn_fail("Unhandled decoration");
835 }
836 }
837
838 /** Chases the array type all the way down to the tail and rewrites the
839 * glsl_types to be based off the tail's glsl_type.
840 */
841 static void
842 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
843 {
844 if (type->base_type != vtn_base_type_array)
845 return;
846
847 vtn_array_type_rewrite_glsl_type(type->array_element);
848
849 type->type = glsl_array_type(type->array_element->type,
850 type->length, type->stride);
851 }
852
853 /* Matrix strides are handled as a separate pass because we need to know
854 * whether the matrix is row-major or not first.
855 */
856 static void
857 struct_member_matrix_stride_cb(struct vtn_builder *b,
858 struct vtn_value *val, int member,
859 const struct vtn_decoration *dec,
860 void *void_ctx)
861 {
862 if (dec->decoration != SpvDecorationMatrixStride)
863 return;
864
865 vtn_fail_if(member < 0,
866 "The MatrixStride decoration is only allowed on members "
867 "of OpTypeStruct");
868 vtn_fail_if(dec->literals[0] == 0, "MatrixStride must be non-zero");
869
870 struct member_decoration_ctx *ctx = void_ctx;
871
872 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
873 if (mat_type->row_major) {
874 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
875 mat_type->stride = mat_type->array_element->stride;
876 mat_type->array_element->stride = dec->literals[0];
877
878 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
879 dec->literals[0], true);
880 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
881 } else {
882 vtn_assert(mat_type->array_element->stride > 0);
883 mat_type->stride = dec->literals[0];
884
885 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
886 dec->literals[0], false);
887 }
888
889 /* Now that we've replaced the glsl_type with a properly strided matrix
890 * type, rewrite the member type so that it's an array of the proper kind
891 * of glsl_type.
892 */
893 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
894 ctx->fields[member].type = ctx->type->members[member]->type;
895 }
896
897 static void
898 type_decoration_cb(struct vtn_builder *b,
899 struct vtn_value *val, int member,
900 const struct vtn_decoration *dec, void *ctx)
901 {
902 struct vtn_type *type = val->type;
903
904 if (member != -1) {
905 /* This should have been handled by OpTypeStruct */
906 assert(val->type->base_type == vtn_base_type_struct);
907 assert(member >= 0 && member < val->type->length);
908 return;
909 }
910
911 switch (dec->decoration) {
912 case SpvDecorationArrayStride:
913 vtn_assert(type->base_type == vtn_base_type_array ||
914 type->base_type == vtn_base_type_pointer);
915 break;
916 case SpvDecorationBlock:
917 vtn_assert(type->base_type == vtn_base_type_struct);
918 type->block = true;
919 break;
920 case SpvDecorationBufferBlock:
921 vtn_assert(type->base_type == vtn_base_type_struct);
922 type->buffer_block = true;
923 break;
924 case SpvDecorationGLSLShared:
925 case SpvDecorationGLSLPacked:
926 /* Ignore these, since we get explicit offsets anyways */
927 break;
928
929 case SpvDecorationRowMajor:
930 case SpvDecorationColMajor:
931 case SpvDecorationMatrixStride:
932 case SpvDecorationBuiltIn:
933 case SpvDecorationNoPerspective:
934 case SpvDecorationFlat:
935 case SpvDecorationPatch:
936 case SpvDecorationCentroid:
937 case SpvDecorationSample:
938 case SpvDecorationVolatile:
939 case SpvDecorationCoherent:
940 case SpvDecorationNonWritable:
941 case SpvDecorationNonReadable:
942 case SpvDecorationUniform:
943 case SpvDecorationLocation:
944 case SpvDecorationComponent:
945 case SpvDecorationOffset:
946 case SpvDecorationXfbBuffer:
947 case SpvDecorationXfbStride:
948 case SpvDecorationHlslSemanticGOOGLE:
949 vtn_warn("Decoration only allowed for struct members: %s",
950 spirv_decoration_to_string(dec->decoration));
951 break;
952
953 case SpvDecorationStream:
954 /* We don't need to do anything here, as stream is filled up when
955 * aplying the decoration to a variable, just check that if it is not a
956 * struct member, it should be a struct.
957 */
958 vtn_assert(type->base_type == vtn_base_type_struct);
959 break;
960
961 case SpvDecorationRelaxedPrecision:
962 case SpvDecorationSpecId:
963 case SpvDecorationInvariant:
964 case SpvDecorationRestrict:
965 case SpvDecorationAliased:
966 case SpvDecorationConstant:
967 case SpvDecorationIndex:
968 case SpvDecorationBinding:
969 case SpvDecorationDescriptorSet:
970 case SpvDecorationLinkageAttributes:
971 case SpvDecorationNoContraction:
972 case SpvDecorationInputAttachmentIndex:
973 vtn_warn("Decoration not allowed on types: %s",
974 spirv_decoration_to_string(dec->decoration));
975 break;
976
977 case SpvDecorationCPacked:
978 case SpvDecorationSaturatedConversion:
979 case SpvDecorationFuncParamAttr:
980 case SpvDecorationFPRoundingMode:
981 case SpvDecorationFPFastMathMode:
982 case SpvDecorationAlignment:
983 vtn_warn("Decoration only allowed for CL-style kernels: %s",
984 spirv_decoration_to_string(dec->decoration));
985 break;
986
987 default:
988 vtn_fail("Unhandled decoration");
989 }
990 }
991
992 static unsigned
993 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
994 {
995 switch (format) {
996 case SpvImageFormatUnknown: return 0; /* GL_NONE */
997 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
998 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
999 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1000 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1001 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1002 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1003 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1004 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1005 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1006 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1007 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1008 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1009 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1010 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1011 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1012 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1013 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1014 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1015 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1016 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1017 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1018 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1019 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1020 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1021 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1022 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1023 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1024 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1025 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1026 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1027 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1028 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1029 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1030 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1031 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1032 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1033 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1034 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1035 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1036 default:
1037 vtn_fail("Invalid image format");
1038 }
1039 }
1040
1041 static struct vtn_type *
1042 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
1043 uint32_t *size_out, uint32_t *align_out)
1044 {
1045 switch (type->base_type) {
1046 case vtn_base_type_scalar: {
1047 uint32_t comp_size = glsl_type_is_boolean(type->type)
1048 ? 4 : glsl_get_bit_size(type->type) / 8;
1049 *size_out = comp_size;
1050 *align_out = comp_size;
1051 return type;
1052 }
1053
1054 case vtn_base_type_vector: {
1055 uint32_t comp_size = glsl_type_is_boolean(type->type)
1056 ? 4 : glsl_get_bit_size(type->type) / 8;
1057 unsigned align_comps = type->length == 3 ? 4 : type->length;
1058 *size_out = comp_size * type->length,
1059 *align_out = comp_size * align_comps;
1060 return type;
1061 }
1062
1063 case vtn_base_type_matrix:
1064 case vtn_base_type_array: {
1065 /* We're going to add an array stride */
1066 type = vtn_type_copy(b, type);
1067 uint32_t elem_size, elem_align;
1068 type->array_element = vtn_type_layout_std430(b, type->array_element,
1069 &elem_size, &elem_align);
1070 type->stride = vtn_align_u32(elem_size, elem_align);
1071 *size_out = type->stride * type->length;
1072 *align_out = elem_align;
1073 return type;
1074 }
1075
1076 case vtn_base_type_struct: {
1077 /* We're going to add member offsets */
1078 type = vtn_type_copy(b, type);
1079 uint32_t offset = 0;
1080 uint32_t align = 0;
1081 for (unsigned i = 0; i < type->length; i++) {
1082 uint32_t mem_size, mem_align;
1083 type->members[i] = vtn_type_layout_std430(b, type->members[i],
1084 &mem_size, &mem_align);
1085 offset = vtn_align_u32(offset, mem_align);
1086 type->offsets[i] = offset;
1087 offset += mem_size;
1088 align = MAX2(align, mem_align);
1089 }
1090 *size_out = offset;
1091 *align_out = align;
1092 return type;
1093 }
1094
1095 default:
1096 unreachable("Invalid SPIR-V type for std430");
1097 }
1098 }
1099
1100 static void
1101 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1102 const uint32_t *w, unsigned count)
1103 {
1104 struct vtn_value *val = NULL;
1105
1106 /* In order to properly handle forward declarations, we have to defer
1107 * allocation for pointer types.
1108 */
1109 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1110 val = vtn_push_value(b, w[1], vtn_value_type_type);
1111 vtn_fail_if(val->type != NULL,
1112 "Only pointers can have forward declarations");
1113 val->type = rzalloc(b, struct vtn_type);
1114 val->type->id = w[1];
1115 }
1116
1117 switch (opcode) {
1118 case SpvOpTypeVoid:
1119 val->type->base_type = vtn_base_type_void;
1120 val->type->type = glsl_void_type();
1121 break;
1122 case SpvOpTypeBool:
1123 val->type->base_type = vtn_base_type_scalar;
1124 val->type->type = glsl_bool_type();
1125 val->type->length = 1;
1126 break;
1127 case SpvOpTypeInt: {
1128 int bit_size = w[2];
1129 const bool signedness = w[3];
1130 val->type->base_type = vtn_base_type_scalar;
1131 switch (bit_size) {
1132 case 64:
1133 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1134 break;
1135 case 32:
1136 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1137 break;
1138 case 16:
1139 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1140 break;
1141 case 8:
1142 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1143 break;
1144 default:
1145 vtn_fail("Invalid int bit size");
1146 }
1147 val->type->length = 1;
1148 break;
1149 }
1150
1151 case SpvOpTypeFloat: {
1152 int bit_size = w[2];
1153 val->type->base_type = vtn_base_type_scalar;
1154 switch (bit_size) {
1155 case 16:
1156 val->type->type = glsl_float16_t_type();
1157 break;
1158 case 32:
1159 val->type->type = glsl_float_type();
1160 break;
1161 case 64:
1162 val->type->type = glsl_double_type();
1163 break;
1164 default:
1165 vtn_fail("Invalid float bit size");
1166 }
1167 val->type->length = 1;
1168 break;
1169 }
1170
1171 case SpvOpTypeVector: {
1172 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1173 unsigned elems = w[3];
1174
1175 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1176 "Base type for OpTypeVector must be a scalar");
1177 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1178 "Invalid component count for OpTypeVector");
1179
1180 val->type->base_type = vtn_base_type_vector;
1181 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1182 val->type->length = elems;
1183 val->type->stride = glsl_type_is_boolean(val->type->type)
1184 ? 4 : glsl_get_bit_size(base->type) / 8;
1185 val->type->array_element = base;
1186 break;
1187 }
1188
1189 case SpvOpTypeMatrix: {
1190 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1191 unsigned columns = w[3];
1192
1193 vtn_fail_if(base->base_type != vtn_base_type_vector,
1194 "Base type for OpTypeMatrix must be a vector");
1195 vtn_fail_if(columns < 2 || columns > 4,
1196 "Invalid column count for OpTypeMatrix");
1197
1198 val->type->base_type = vtn_base_type_matrix;
1199 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1200 glsl_get_vector_elements(base->type),
1201 columns);
1202 vtn_fail_if(glsl_type_is_error(val->type->type),
1203 "Unsupported base type for OpTypeMatrix");
1204 assert(!glsl_type_is_error(val->type->type));
1205 val->type->length = columns;
1206 val->type->array_element = base;
1207 val->type->row_major = false;
1208 val->type->stride = 0;
1209 break;
1210 }
1211
1212 case SpvOpTypeRuntimeArray:
1213 case SpvOpTypeArray: {
1214 struct vtn_type *array_element =
1215 vtn_value(b, w[2], vtn_value_type_type)->type;
1216
1217 if (opcode == SpvOpTypeRuntimeArray) {
1218 /* A length of 0 is used to denote unsized arrays */
1219 val->type->length = 0;
1220 } else {
1221 val->type->length =
1222 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
1223 }
1224
1225 val->type->base_type = vtn_base_type_array;
1226 val->type->array_element = array_element;
1227 val->type->stride = 0;
1228
1229 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1230 val->type->type = glsl_array_type(array_element->type, val->type->length,
1231 val->type->stride);
1232 break;
1233 }
1234
1235 case SpvOpTypeStruct: {
1236 unsigned num_fields = count - 2;
1237 val->type->base_type = vtn_base_type_struct;
1238 val->type->length = num_fields;
1239 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1240 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1241
1242 NIR_VLA(struct glsl_struct_field, fields, count);
1243 for (unsigned i = 0; i < num_fields; i++) {
1244 val->type->members[i] =
1245 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1246 fields[i] = (struct glsl_struct_field) {
1247 .type = val->type->members[i]->type,
1248 .name = ralloc_asprintf(b, "field%d", i),
1249 .location = -1,
1250 .offset = -1,
1251 };
1252 }
1253
1254 struct member_decoration_ctx ctx = {
1255 .num_fields = num_fields,
1256 .fields = fields,
1257 .type = val->type
1258 };
1259
1260 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1261 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1262
1263 const char *name = val->name ? val->name : "struct";
1264
1265 val->type->type = glsl_struct_type(fields, num_fields, name);
1266 break;
1267 }
1268
1269 case SpvOpTypeFunction: {
1270 val->type->base_type = vtn_base_type_function;
1271 val->type->type = NULL;
1272
1273 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1274
1275 const unsigned num_params = count - 3;
1276 val->type->length = num_params;
1277 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1278 for (unsigned i = 0; i < count - 3; i++) {
1279 val->type->params[i] =
1280 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1281 }
1282 break;
1283 }
1284
1285 case SpvOpTypePointer:
1286 case SpvOpTypeForwardPointer: {
1287 /* We can't blindly push the value because it might be a forward
1288 * declaration.
1289 */
1290 val = vtn_untyped_value(b, w[1]);
1291
1292 SpvStorageClass storage_class = w[2];
1293
1294 if (val->value_type == vtn_value_type_invalid) {
1295 val->value_type = vtn_value_type_type;
1296 val->type = rzalloc(b, struct vtn_type);
1297 val->type->id = w[1];
1298 val->type->base_type = vtn_base_type_pointer;
1299 val->type->storage_class = storage_class;
1300
1301 /* These can actually be stored to nir_variables and used as SSA
1302 * values so they need a real glsl_type.
1303 */
1304 switch (storage_class) {
1305 case SpvStorageClassUniform:
1306 val->type->type = b->options->ubo_ptr_type;
1307 break;
1308 case SpvStorageClassStorageBuffer:
1309 val->type->type = b->options->ssbo_ptr_type;
1310 break;
1311 case SpvStorageClassPhysicalStorageBufferEXT:
1312 val->type->type = b->options->phys_ssbo_ptr_type;
1313 break;
1314 case SpvStorageClassPushConstant:
1315 val->type->type = b->options->push_const_ptr_type;
1316 break;
1317 case SpvStorageClassWorkgroup:
1318 val->type->type = b->options->shared_ptr_type;
1319 break;
1320 default:
1321 /* In this case, no variable pointers are allowed so all deref
1322 * chains are complete back to the variable and it doesn't matter
1323 * what type gets used so we leave it NULL.
1324 */
1325 break;
1326 }
1327 } else {
1328 vtn_fail_if(val->type->storage_class != storage_class,
1329 "The storage classes of an OpTypePointer and any "
1330 "OpTypeForwardPointers that provide forward "
1331 "declarations of it must match.");
1332 }
1333
1334 if (opcode == SpvOpTypePointer) {
1335 vtn_fail_if(val->type->deref != NULL,
1336 "While OpTypeForwardPointer can be used to provide a "
1337 "forward declaration of a pointer, OpTypePointer can "
1338 "only be used once for a given id.");
1339
1340 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1341
1342 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1343
1344 if (storage_class == SpvStorageClassWorkgroup &&
1345 b->options->lower_workgroup_access_to_offsets) {
1346 uint32_t size, align;
1347 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1348 &size, &align);
1349 val->type->length = size;
1350 val->type->align = align;
1351 }
1352 }
1353 break;
1354 }
1355
1356 case SpvOpTypeImage: {
1357 val->type->base_type = vtn_base_type_image;
1358
1359 const struct vtn_type *sampled_type =
1360 vtn_value(b, w[2], vtn_value_type_type)->type;
1361
1362 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1363 glsl_get_bit_size(sampled_type->type) != 32,
1364 "Sampled type of OpTypeImage must be a 32-bit scalar");
1365
1366 enum glsl_sampler_dim dim;
1367 switch ((SpvDim)w[3]) {
1368 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1369 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1370 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1371 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1372 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1373 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1374 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1375 default:
1376 vtn_fail("Invalid SPIR-V image dimensionality");
1377 }
1378
1379 bool is_shadow = w[4];
1380 bool is_array = w[5];
1381 bool multisampled = w[6];
1382 unsigned sampled = w[7];
1383 SpvImageFormat format = w[8];
1384
1385 if (count > 9)
1386 val->type->access_qualifier = w[9];
1387 else
1388 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1389
1390 if (multisampled) {
1391 if (dim == GLSL_SAMPLER_DIM_2D)
1392 dim = GLSL_SAMPLER_DIM_MS;
1393 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1394 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1395 else
1396 vtn_fail("Unsupported multisampled image type");
1397 }
1398
1399 val->type->image_format = translate_image_format(b, format);
1400
1401 enum glsl_base_type sampled_base_type =
1402 glsl_get_base_type(sampled_type->type);
1403 if (sampled == 1) {
1404 val->type->sampled = true;
1405 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
1406 sampled_base_type);
1407 } else if (sampled == 2) {
1408 vtn_assert(!is_shadow);
1409 val->type->sampled = false;
1410 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1411 } else {
1412 vtn_fail("We need to know if the image will be sampled");
1413 }
1414 break;
1415 }
1416
1417 case SpvOpTypeSampledImage:
1418 val->type->base_type = vtn_base_type_sampled_image;
1419 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1420 val->type->type = val->type->image->type;
1421 break;
1422
1423 case SpvOpTypeSampler:
1424 /* The actual sampler type here doesn't really matter. It gets
1425 * thrown away the moment you combine it with an image. What really
1426 * matters is that it's a sampler type as opposed to an integer type
1427 * so the backend knows what to do.
1428 */
1429 val->type->base_type = vtn_base_type_sampler;
1430 val->type->type = glsl_bare_sampler_type();
1431 break;
1432
1433 case SpvOpTypeOpaque:
1434 case SpvOpTypeEvent:
1435 case SpvOpTypeDeviceEvent:
1436 case SpvOpTypeReserveId:
1437 case SpvOpTypeQueue:
1438 case SpvOpTypePipe:
1439 default:
1440 vtn_fail("Unhandled opcode");
1441 }
1442
1443 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1444
1445 if (val->type->base_type == vtn_base_type_struct &&
1446 (val->type->block || val->type->buffer_block)) {
1447 for (unsigned i = 0; i < val->type->length; i++) {
1448 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1449 "Block and BufferBlock decorations cannot decorate a "
1450 "structure type that is nested at any level inside "
1451 "another structure type decorated with Block or "
1452 "BufferBlock.");
1453 }
1454 }
1455 }
1456
1457 static nir_constant *
1458 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1459 {
1460 nir_constant *c = rzalloc(b, nir_constant);
1461
1462 /* For pointers and other typeless things, we have to return something but
1463 * it doesn't matter what.
1464 */
1465 if (!type)
1466 return c;
1467
1468 switch (glsl_get_base_type(type)) {
1469 case GLSL_TYPE_INT:
1470 case GLSL_TYPE_UINT:
1471 case GLSL_TYPE_INT16:
1472 case GLSL_TYPE_UINT16:
1473 case GLSL_TYPE_UINT8:
1474 case GLSL_TYPE_INT8:
1475 case GLSL_TYPE_INT64:
1476 case GLSL_TYPE_UINT64:
1477 case GLSL_TYPE_BOOL:
1478 case GLSL_TYPE_FLOAT:
1479 case GLSL_TYPE_FLOAT16:
1480 case GLSL_TYPE_DOUBLE:
1481 /* Nothing to do here. It's already initialized to zero */
1482 break;
1483
1484 case GLSL_TYPE_ARRAY:
1485 vtn_assert(glsl_get_length(type) > 0);
1486 c->num_elements = glsl_get_length(type);
1487 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1488
1489 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1490 for (unsigned i = 1; i < c->num_elements; i++)
1491 c->elements[i] = c->elements[0];
1492 break;
1493
1494 case GLSL_TYPE_STRUCT:
1495 c->num_elements = glsl_get_length(type);
1496 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1497
1498 for (unsigned i = 0; i < c->num_elements; i++) {
1499 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1500 }
1501 break;
1502
1503 default:
1504 vtn_fail("Invalid type for null constant");
1505 }
1506
1507 return c;
1508 }
1509
1510 static void
1511 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1512 int member, const struct vtn_decoration *dec,
1513 void *data)
1514 {
1515 vtn_assert(member == -1);
1516 if (dec->decoration != SpvDecorationSpecId)
1517 return;
1518
1519 struct spec_constant_value *const_value = data;
1520
1521 for (unsigned i = 0; i < b->num_specializations; i++) {
1522 if (b->specializations[i].id == dec->literals[0]) {
1523 if (const_value->is_double)
1524 const_value->data64 = b->specializations[i].data64;
1525 else
1526 const_value->data32 = b->specializations[i].data32;
1527 return;
1528 }
1529 }
1530 }
1531
1532 static uint32_t
1533 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1534 uint32_t const_value)
1535 {
1536 struct spec_constant_value data;
1537 data.is_double = false;
1538 data.data32 = const_value;
1539 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1540 return data.data32;
1541 }
1542
1543 static uint64_t
1544 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1545 uint64_t const_value)
1546 {
1547 struct spec_constant_value data;
1548 data.is_double = true;
1549 data.data64 = const_value;
1550 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1551 return data.data64;
1552 }
1553
1554 static void
1555 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1556 struct vtn_value *val,
1557 int member,
1558 const struct vtn_decoration *dec,
1559 void *data)
1560 {
1561 vtn_assert(member == -1);
1562 if (dec->decoration != SpvDecorationBuiltIn ||
1563 dec->literals[0] != SpvBuiltInWorkgroupSize)
1564 return;
1565
1566 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1567
1568 b->shader->info.cs.local_size[0] = val->constant->values[0].u32[0];
1569 b->shader->info.cs.local_size[1] = val->constant->values[0].u32[1];
1570 b->shader->info.cs.local_size[2] = val->constant->values[0].u32[2];
1571 }
1572
1573 static void
1574 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1575 const uint32_t *w, unsigned count)
1576 {
1577 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1578 val->constant = rzalloc(b, nir_constant);
1579 switch (opcode) {
1580 case SpvOpConstantTrue:
1581 case SpvOpConstantFalse:
1582 case SpvOpSpecConstantTrue:
1583 case SpvOpSpecConstantFalse: {
1584 vtn_fail_if(val->type->type != glsl_bool_type(),
1585 "Result type of %s must be OpTypeBool",
1586 spirv_op_to_string(opcode));
1587
1588 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1589 opcode == SpvOpSpecConstantTrue);
1590
1591 if (opcode == SpvOpSpecConstantTrue ||
1592 opcode == SpvOpSpecConstantFalse)
1593 int_val = get_specialization(b, val, int_val);
1594
1595 val->constant->values[0].b[0] = int_val != 0;
1596 break;
1597 }
1598
1599 case SpvOpConstant: {
1600 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1601 "Result type of %s must be a scalar",
1602 spirv_op_to_string(opcode));
1603 int bit_size = glsl_get_bit_size(val->type->type);
1604 switch (bit_size) {
1605 case 64:
1606 val->constant->values->u64[0] = vtn_u64_literal(&w[3]);
1607 break;
1608 case 32:
1609 val->constant->values->u32[0] = w[3];
1610 break;
1611 case 16:
1612 val->constant->values->u16[0] = w[3];
1613 break;
1614 case 8:
1615 val->constant->values->u8[0] = w[3];
1616 break;
1617 default:
1618 vtn_fail("Unsupported SpvOpConstant bit size");
1619 }
1620 break;
1621 }
1622
1623 case SpvOpSpecConstant: {
1624 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1625 "Result type of %s must be a scalar",
1626 spirv_op_to_string(opcode));
1627 int bit_size = glsl_get_bit_size(val->type->type);
1628 switch (bit_size) {
1629 case 64:
1630 val->constant->values[0].u64[0] =
1631 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1632 break;
1633 case 32:
1634 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1635 break;
1636 case 16:
1637 val->constant->values[0].u16[0] = get_specialization(b, val, w[3]);
1638 break;
1639 case 8:
1640 val->constant->values[0].u8[0] = get_specialization(b, val, w[3]);
1641 break;
1642 default:
1643 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1644 }
1645 break;
1646 }
1647
1648 case SpvOpSpecConstantComposite:
1649 case SpvOpConstantComposite: {
1650 unsigned elem_count = count - 3;
1651 vtn_fail_if(elem_count != val->type->length,
1652 "%s has %u constituents, expected %u",
1653 spirv_op_to_string(opcode), elem_count, val->type->length);
1654
1655 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1656 for (unsigned i = 0; i < elem_count; i++) {
1657 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1658
1659 if (val->value_type == vtn_value_type_constant) {
1660 elems[i] = val->constant;
1661 } else {
1662 vtn_fail_if(val->value_type != vtn_value_type_undef,
1663 "only constants or undefs allowed for "
1664 "SpvOpConstantComposite");
1665 /* to make it easier, just insert a NULL constant for now */
1666 elems[i] = vtn_null_constant(b, val->type->type);
1667 }
1668 }
1669
1670 switch (val->type->base_type) {
1671 case vtn_base_type_vector: {
1672 assert(glsl_type_is_vector(val->type->type));
1673 int bit_size = glsl_get_bit_size(val->type->type);
1674 for (unsigned i = 0; i < elem_count; i++) {
1675 switch (bit_size) {
1676 case 64:
1677 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1678 break;
1679 case 32:
1680 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1681 break;
1682 case 16:
1683 val->constant->values[0].u16[i] = elems[i]->values[0].u16[0];
1684 break;
1685 case 8:
1686 val->constant->values[0].u8[i] = elems[i]->values[0].u8[0];
1687 break;
1688 case 1:
1689 val->constant->values[0].b[i] = elems[i]->values[0].b[0];
1690 break;
1691 default:
1692 vtn_fail("Invalid SpvOpConstantComposite bit size");
1693 }
1694 }
1695 break;
1696 }
1697
1698 case vtn_base_type_matrix:
1699 assert(glsl_type_is_matrix(val->type->type));
1700 for (unsigned i = 0; i < elem_count; i++)
1701 val->constant->values[i] = elems[i]->values[0];
1702 break;
1703
1704 case vtn_base_type_struct:
1705 case vtn_base_type_array:
1706 ralloc_steal(val->constant, elems);
1707 val->constant->num_elements = elem_count;
1708 val->constant->elements = elems;
1709 break;
1710
1711 default:
1712 vtn_fail("Result type of %s must be a composite type",
1713 spirv_op_to_string(opcode));
1714 }
1715 break;
1716 }
1717
1718 case SpvOpSpecConstantOp: {
1719 SpvOp opcode = get_specialization(b, val, w[3]);
1720 switch (opcode) {
1721 case SpvOpVectorShuffle: {
1722 struct vtn_value *v0 = &b->values[w[4]];
1723 struct vtn_value *v1 = &b->values[w[5]];
1724
1725 vtn_assert(v0->value_type == vtn_value_type_constant ||
1726 v0->value_type == vtn_value_type_undef);
1727 vtn_assert(v1->value_type == vtn_value_type_constant ||
1728 v1->value_type == vtn_value_type_undef);
1729
1730 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1731 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1732
1733 vtn_assert(len0 + len1 < 16);
1734
1735 unsigned bit_size = glsl_get_bit_size(val->type->type);
1736 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1737 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1738
1739 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1740 (void)bit_size0; (void)bit_size1;
1741
1742 if (bit_size == 64) {
1743 uint64_t u64[8];
1744 if (v0->value_type == vtn_value_type_constant) {
1745 for (unsigned i = 0; i < len0; i++)
1746 u64[i] = v0->constant->values[0].u64[i];
1747 }
1748 if (v1->value_type == vtn_value_type_constant) {
1749 for (unsigned i = 0; i < len1; i++)
1750 u64[len0 + i] = v1->constant->values[0].u64[i];
1751 }
1752
1753 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1754 uint32_t comp = w[i + 6];
1755 /* If component is not used, set the value to a known constant
1756 * to detect if it is wrongly used.
1757 */
1758 if (comp == (uint32_t)-1)
1759 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1760 else
1761 val->constant->values[0].u64[j] = u64[comp];
1762 }
1763 } else {
1764 /* This is for both 32-bit and 16-bit values */
1765 uint32_t u32[8];
1766 if (v0->value_type == vtn_value_type_constant) {
1767 for (unsigned i = 0; i < len0; i++)
1768 u32[i] = v0->constant->values[0].u32[i];
1769 }
1770 if (v1->value_type == vtn_value_type_constant) {
1771 for (unsigned i = 0; i < len1; i++)
1772 u32[len0 + i] = v1->constant->values[0].u32[i];
1773 }
1774
1775 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1776 uint32_t comp = w[i + 6];
1777 /* If component is not used, set the value to a known constant
1778 * to detect if it is wrongly used.
1779 */
1780 if (comp == (uint32_t)-1)
1781 val->constant->values[0].u32[j] = 0xdeadbeef;
1782 else
1783 val->constant->values[0].u32[j] = u32[comp];
1784 }
1785 }
1786 break;
1787 }
1788
1789 case SpvOpCompositeExtract:
1790 case SpvOpCompositeInsert: {
1791 struct vtn_value *comp;
1792 unsigned deref_start;
1793 struct nir_constant **c;
1794 if (opcode == SpvOpCompositeExtract) {
1795 comp = vtn_value(b, w[4], vtn_value_type_constant);
1796 deref_start = 5;
1797 c = &comp->constant;
1798 } else {
1799 comp = vtn_value(b, w[5], vtn_value_type_constant);
1800 deref_start = 6;
1801 val->constant = nir_constant_clone(comp->constant,
1802 (nir_variable *)b);
1803 c = &val->constant;
1804 }
1805
1806 int elem = -1;
1807 int col = 0;
1808 const struct vtn_type *type = comp->type;
1809 for (unsigned i = deref_start; i < count; i++) {
1810 vtn_fail_if(w[i] > type->length,
1811 "%uth index of %s is %u but the type has only "
1812 "%u elements", i - deref_start,
1813 spirv_op_to_string(opcode), w[i], type->length);
1814
1815 switch (type->base_type) {
1816 case vtn_base_type_vector:
1817 elem = w[i];
1818 type = type->array_element;
1819 break;
1820
1821 case vtn_base_type_matrix:
1822 assert(col == 0 && elem == -1);
1823 col = w[i];
1824 elem = 0;
1825 type = type->array_element;
1826 break;
1827
1828 case vtn_base_type_array:
1829 c = &(*c)->elements[w[i]];
1830 type = type->array_element;
1831 break;
1832
1833 case vtn_base_type_struct:
1834 c = &(*c)->elements[w[i]];
1835 type = type->members[w[i]];
1836 break;
1837
1838 default:
1839 vtn_fail("%s must only index into composite types",
1840 spirv_op_to_string(opcode));
1841 }
1842 }
1843
1844 if (opcode == SpvOpCompositeExtract) {
1845 if (elem == -1) {
1846 val->constant = *c;
1847 } else {
1848 unsigned num_components = type->length;
1849 unsigned bit_size = glsl_get_bit_size(type->type);
1850 for (unsigned i = 0; i < num_components; i++)
1851 switch(bit_size) {
1852 case 64:
1853 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1854 break;
1855 case 32:
1856 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1857 break;
1858 case 16:
1859 val->constant->values[0].u16[i] = (*c)->values[col].u16[elem + i];
1860 break;
1861 case 8:
1862 val->constant->values[0].u8[i] = (*c)->values[col].u8[elem + i];
1863 break;
1864 case 1:
1865 val->constant->values[0].b[i] = (*c)->values[col].b[elem + i];
1866 break;
1867 default:
1868 vtn_fail("Invalid SpvOpCompositeExtract bit size");
1869 }
1870 }
1871 } else {
1872 struct vtn_value *insert =
1873 vtn_value(b, w[4], vtn_value_type_constant);
1874 vtn_assert(insert->type == type);
1875 if (elem == -1) {
1876 *c = insert->constant;
1877 } else {
1878 unsigned num_components = type->length;
1879 unsigned bit_size = glsl_get_bit_size(type->type);
1880 for (unsigned i = 0; i < num_components; i++)
1881 switch (bit_size) {
1882 case 64:
1883 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1884 break;
1885 case 32:
1886 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1887 break;
1888 case 16:
1889 (*c)->values[col].u16[elem + i] = insert->constant->values[0].u16[i];
1890 break;
1891 case 8:
1892 (*c)->values[col].u8[elem + i] = insert->constant->values[0].u8[i];
1893 break;
1894 case 1:
1895 (*c)->values[col].b[elem + i] = insert->constant->values[0].b[i];
1896 break;
1897 default:
1898 vtn_fail("Invalid SpvOpCompositeInsert bit size");
1899 }
1900 }
1901 }
1902 break;
1903 }
1904
1905 default: {
1906 bool swap;
1907 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1908 nir_alu_type src_alu_type = dst_alu_type;
1909 unsigned num_components = glsl_get_vector_elements(val->type->type);
1910 unsigned bit_size;
1911
1912 vtn_assert(count <= 7);
1913
1914 switch (opcode) {
1915 case SpvOpSConvert:
1916 case SpvOpFConvert:
1917 /* We have a source in a conversion */
1918 src_alu_type =
1919 nir_get_nir_type_for_glsl_type(
1920 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1921 /* We use the bitsize of the conversion source to evaluate the opcode later */
1922 bit_size = glsl_get_bit_size(
1923 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1924 break;
1925 default:
1926 bit_size = glsl_get_bit_size(val->type->type);
1927 };
1928
1929 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1930 nir_alu_type_get_type_size(src_alu_type),
1931 nir_alu_type_get_type_size(dst_alu_type));
1932 nir_const_value src[4];
1933
1934 for (unsigned i = 0; i < count - 4; i++) {
1935 struct vtn_value *src_val =
1936 vtn_value(b, w[4 + i], vtn_value_type_constant);
1937
1938 /* If this is an unsized source, pull the bit size from the
1939 * source; otherwise, we'll use the bit size from the destination.
1940 */
1941 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1942 bit_size = glsl_get_bit_size(src_val->type->type);
1943
1944 unsigned j = swap ? 1 - i : i;
1945 src[j] = src_val->constant->values[0];
1946 }
1947
1948 /* fix up fixed size sources */
1949 switch (op) {
1950 case nir_op_ishl:
1951 case nir_op_ishr:
1952 case nir_op_ushr: {
1953 if (bit_size == 32)
1954 break;
1955 for (unsigned i = 0; i < num_components; ++i) {
1956 switch (bit_size) {
1957 case 64: src[1].u32[i] = src[1].u64[i]; break;
1958 case 16: src[1].u32[i] = src[1].u16[i]; break;
1959 case 8: src[1].u32[i] = src[1].u8[i]; break;
1960 }
1961 }
1962 break;
1963 }
1964 default:
1965 break;
1966 }
1967
1968 val->constant->values[0] =
1969 nir_eval_const_opcode(op, num_components, bit_size, src);
1970 break;
1971 } /* default */
1972 }
1973 break;
1974 }
1975
1976 case SpvOpConstantNull:
1977 val->constant = vtn_null_constant(b, val->type->type);
1978 break;
1979
1980 case SpvOpConstantSampler:
1981 vtn_fail("OpConstantSampler requires Kernel Capability");
1982 break;
1983
1984 default:
1985 vtn_fail("Unhandled opcode");
1986 }
1987
1988 /* Now that we have the value, update the workgroup size if needed */
1989 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1990 }
1991
1992 struct vtn_ssa_value *
1993 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1994 {
1995 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1996 val->type = type;
1997
1998 if (!glsl_type_is_vector_or_scalar(type)) {
1999 unsigned elems = glsl_get_length(type);
2000 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2001 for (unsigned i = 0; i < elems; i++) {
2002 const struct glsl_type *child_type;
2003
2004 switch (glsl_get_base_type(type)) {
2005 case GLSL_TYPE_INT:
2006 case GLSL_TYPE_UINT:
2007 case GLSL_TYPE_INT16:
2008 case GLSL_TYPE_UINT16:
2009 case GLSL_TYPE_UINT8:
2010 case GLSL_TYPE_INT8:
2011 case GLSL_TYPE_INT64:
2012 case GLSL_TYPE_UINT64:
2013 case GLSL_TYPE_BOOL:
2014 case GLSL_TYPE_FLOAT:
2015 case GLSL_TYPE_FLOAT16:
2016 case GLSL_TYPE_DOUBLE:
2017 child_type = glsl_get_column_type(type);
2018 break;
2019 case GLSL_TYPE_ARRAY:
2020 child_type = glsl_get_array_element(type);
2021 break;
2022 case GLSL_TYPE_STRUCT:
2023 child_type = glsl_get_struct_field(type, i);
2024 break;
2025 default:
2026 vtn_fail("unkown base type");
2027 }
2028
2029 val->elems[i] = vtn_create_ssa_value(b, child_type);
2030 }
2031 }
2032
2033 return val;
2034 }
2035
2036 static nir_tex_src
2037 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2038 {
2039 nir_tex_src src;
2040 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2041 src.src_type = type;
2042 return src;
2043 }
2044
2045 static void
2046 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2047 const uint32_t *w, unsigned count)
2048 {
2049 if (opcode == SpvOpSampledImage) {
2050 struct vtn_value *val =
2051 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2052 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2053 val->sampled_image->type =
2054 vtn_value(b, w[1], vtn_value_type_type)->type;
2055 val->sampled_image->image =
2056 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2057 val->sampled_image->sampler =
2058 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2059 return;
2060 } else if (opcode == SpvOpImage) {
2061 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2062 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2063 if (src_val->value_type == vtn_value_type_sampled_image) {
2064 val->pointer = src_val->sampled_image->image;
2065 } else {
2066 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2067 val->pointer = src_val->pointer;
2068 }
2069 return;
2070 }
2071
2072 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2073 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2074
2075 struct vtn_sampled_image sampled;
2076 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2077 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2078 sampled = *sampled_val->sampled_image;
2079 } else {
2080 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2081 sampled.type = sampled_val->pointer->type;
2082 sampled.image = NULL;
2083 sampled.sampler = sampled_val->pointer;
2084 }
2085
2086 const struct glsl_type *image_type = sampled.type->type;
2087 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2088 const bool is_array = glsl_sampler_type_is_array(image_type);
2089
2090 /* Figure out the base texture operation */
2091 nir_texop texop;
2092 switch (opcode) {
2093 case SpvOpImageSampleImplicitLod:
2094 case SpvOpImageSampleDrefImplicitLod:
2095 case SpvOpImageSampleProjImplicitLod:
2096 case SpvOpImageSampleProjDrefImplicitLod:
2097 texop = nir_texop_tex;
2098 break;
2099
2100 case SpvOpImageSampleExplicitLod:
2101 case SpvOpImageSampleDrefExplicitLod:
2102 case SpvOpImageSampleProjExplicitLod:
2103 case SpvOpImageSampleProjDrefExplicitLod:
2104 texop = nir_texop_txl;
2105 break;
2106
2107 case SpvOpImageFetch:
2108 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2109 texop = nir_texop_txf_ms;
2110 } else {
2111 texop = nir_texop_txf;
2112 }
2113 break;
2114
2115 case SpvOpImageGather:
2116 case SpvOpImageDrefGather:
2117 texop = nir_texop_tg4;
2118 break;
2119
2120 case SpvOpImageQuerySizeLod:
2121 case SpvOpImageQuerySize:
2122 texop = nir_texop_txs;
2123 break;
2124
2125 case SpvOpImageQueryLod:
2126 texop = nir_texop_lod;
2127 break;
2128
2129 case SpvOpImageQueryLevels:
2130 texop = nir_texop_query_levels;
2131 break;
2132
2133 case SpvOpImageQuerySamples:
2134 texop = nir_texop_texture_samples;
2135 break;
2136
2137 default:
2138 vtn_fail("Unhandled opcode");
2139 }
2140
2141 nir_tex_src srcs[10]; /* 10 should be enough */
2142 nir_tex_src *p = srcs;
2143
2144 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2145 nir_deref_instr *texture =
2146 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2147
2148 p->src = nir_src_for_ssa(&texture->dest.ssa);
2149 p->src_type = nir_tex_src_texture_deref;
2150 p++;
2151
2152 switch (texop) {
2153 case nir_texop_tex:
2154 case nir_texop_txb:
2155 case nir_texop_txl:
2156 case nir_texop_txd:
2157 case nir_texop_tg4:
2158 /* These operations require a sampler */
2159 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2160 p->src_type = nir_tex_src_sampler_deref;
2161 p++;
2162 break;
2163 case nir_texop_txf:
2164 case nir_texop_txf_ms:
2165 case nir_texop_txs:
2166 case nir_texop_lod:
2167 case nir_texop_query_levels:
2168 case nir_texop_texture_samples:
2169 case nir_texop_samples_identical:
2170 /* These don't */
2171 break;
2172 case nir_texop_txf_ms_mcs:
2173 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2174 }
2175
2176 unsigned idx = 4;
2177
2178 struct nir_ssa_def *coord;
2179 unsigned coord_components;
2180 switch (opcode) {
2181 case SpvOpImageSampleImplicitLod:
2182 case SpvOpImageSampleExplicitLod:
2183 case SpvOpImageSampleDrefImplicitLod:
2184 case SpvOpImageSampleDrefExplicitLod:
2185 case SpvOpImageSampleProjImplicitLod:
2186 case SpvOpImageSampleProjExplicitLod:
2187 case SpvOpImageSampleProjDrefImplicitLod:
2188 case SpvOpImageSampleProjDrefExplicitLod:
2189 case SpvOpImageFetch:
2190 case SpvOpImageGather:
2191 case SpvOpImageDrefGather:
2192 case SpvOpImageQueryLod: {
2193 /* All these types have the coordinate as their first real argument */
2194 switch (sampler_dim) {
2195 case GLSL_SAMPLER_DIM_1D:
2196 case GLSL_SAMPLER_DIM_BUF:
2197 coord_components = 1;
2198 break;
2199 case GLSL_SAMPLER_DIM_2D:
2200 case GLSL_SAMPLER_DIM_RECT:
2201 case GLSL_SAMPLER_DIM_MS:
2202 coord_components = 2;
2203 break;
2204 case GLSL_SAMPLER_DIM_3D:
2205 case GLSL_SAMPLER_DIM_CUBE:
2206 coord_components = 3;
2207 break;
2208 default:
2209 vtn_fail("Invalid sampler type");
2210 }
2211
2212 if (is_array && texop != nir_texop_lod)
2213 coord_components++;
2214
2215 coord = vtn_ssa_value(b, w[idx++])->def;
2216 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2217 (1 << coord_components) - 1));
2218 p->src_type = nir_tex_src_coord;
2219 p++;
2220 break;
2221 }
2222
2223 default:
2224 coord = NULL;
2225 coord_components = 0;
2226 break;
2227 }
2228
2229 switch (opcode) {
2230 case SpvOpImageSampleProjImplicitLod:
2231 case SpvOpImageSampleProjExplicitLod:
2232 case SpvOpImageSampleProjDrefImplicitLod:
2233 case SpvOpImageSampleProjDrefExplicitLod:
2234 /* These have the projector as the last coordinate component */
2235 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2236 p->src_type = nir_tex_src_projector;
2237 p++;
2238 break;
2239
2240 default:
2241 break;
2242 }
2243
2244 bool is_shadow = false;
2245 unsigned gather_component = 0;
2246 switch (opcode) {
2247 case SpvOpImageSampleDrefImplicitLod:
2248 case SpvOpImageSampleDrefExplicitLod:
2249 case SpvOpImageSampleProjDrefImplicitLod:
2250 case SpvOpImageSampleProjDrefExplicitLod:
2251 case SpvOpImageDrefGather:
2252 /* These all have an explicit depth value as their next source */
2253 is_shadow = true;
2254 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2255 break;
2256
2257 case SpvOpImageGather:
2258 /* This has a component as its next source */
2259 gather_component =
2260 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
2261 break;
2262
2263 default:
2264 break;
2265 }
2266
2267 /* For OpImageQuerySizeLod, we always have an LOD */
2268 if (opcode == SpvOpImageQuerySizeLod)
2269 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2270
2271 /* Now we need to handle some number of optional arguments */
2272 const struct vtn_ssa_value *gather_offsets = NULL;
2273 if (idx < count) {
2274 uint32_t operands = w[idx++];
2275
2276 if (operands & SpvImageOperandsBiasMask) {
2277 vtn_assert(texop == nir_texop_tex);
2278 texop = nir_texop_txb;
2279 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2280 }
2281
2282 if (operands & SpvImageOperandsLodMask) {
2283 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2284 texop == nir_texop_txs);
2285 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2286 }
2287
2288 if (operands & SpvImageOperandsGradMask) {
2289 vtn_assert(texop == nir_texop_txl);
2290 texop = nir_texop_txd;
2291 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2292 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2293 }
2294
2295 if (operands & SpvImageOperandsOffsetMask ||
2296 operands & SpvImageOperandsConstOffsetMask)
2297 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2298
2299 if (operands & SpvImageOperandsConstOffsetsMask) {
2300 nir_tex_src none = {0};
2301 gather_offsets = vtn_ssa_value(b, w[idx++]);
2302 (*p++) = none;
2303 }
2304
2305 if (operands & SpvImageOperandsSampleMask) {
2306 vtn_assert(texop == nir_texop_txf_ms);
2307 texop = nir_texop_txf_ms;
2308 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2309 }
2310
2311 if (operands & SpvImageOperandsMinLodMask) {
2312 vtn_assert(texop == nir_texop_tex ||
2313 texop == nir_texop_txb ||
2314 texop == nir_texop_txd);
2315 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2316 }
2317 }
2318 /* We should have now consumed exactly all of the arguments */
2319 vtn_assert(idx == count);
2320
2321 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2322 instr->op = texop;
2323
2324 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2325
2326 instr->coord_components = coord_components;
2327 instr->sampler_dim = sampler_dim;
2328 instr->is_array = is_array;
2329 instr->is_shadow = is_shadow;
2330 instr->is_new_style_shadow =
2331 is_shadow && glsl_get_components(ret_type->type) == 1;
2332 instr->component = gather_component;
2333
2334 switch (glsl_get_sampler_result_type(image_type)) {
2335 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2336 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2337 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2338 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2339 default:
2340 vtn_fail("Invalid base type for sampler result");
2341 }
2342
2343 nir_ssa_dest_init(&instr->instr, &instr->dest,
2344 nir_tex_instr_dest_size(instr), 32, NULL);
2345
2346 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2347 nir_tex_instr_dest_size(instr));
2348
2349 nir_ssa_def *def;
2350 nir_instr *instruction;
2351 if (gather_offsets) {
2352 vtn_assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
2353 vtn_assert(glsl_get_length(gather_offsets->type) == 4);
2354 nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
2355
2356 /* Copy the current instruction 4x */
2357 for (uint32_t i = 1; i < 4; i++) {
2358 instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
2359 instrs[i]->op = instr->op;
2360 instrs[i]->coord_components = instr->coord_components;
2361 instrs[i]->sampler_dim = instr->sampler_dim;
2362 instrs[i]->is_array = instr->is_array;
2363 instrs[i]->is_shadow = instr->is_shadow;
2364 instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
2365 instrs[i]->component = instr->component;
2366 instrs[i]->dest_type = instr->dest_type;
2367
2368 memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
2369
2370 nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
2371 nir_tex_instr_dest_size(instr), 32, NULL);
2372 }
2373
2374 /* Fill in the last argument with the offset from the passed in offsets
2375 * and insert the instruction into the stream.
2376 */
2377 for (uint32_t i = 0; i < 4; i++) {
2378 nir_tex_src src;
2379 src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
2380 src.src_type = nir_tex_src_offset;
2381 instrs[i]->src[instrs[i]->num_srcs - 1] = src;
2382 nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
2383 }
2384
2385 /* Combine the results of the 4 instructions by taking their .w
2386 * components
2387 */
2388 nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
2389 nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
2390 vec4->dest.write_mask = 0xf;
2391 for (uint32_t i = 0; i < 4; i++) {
2392 vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
2393 vec4->src[i].swizzle[0] = 3;
2394 }
2395 def = &vec4->dest.dest.ssa;
2396 instruction = &vec4->instr;
2397 } else {
2398 def = &instr->dest.ssa;
2399 instruction = &instr->instr;
2400 }
2401
2402 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2403 val->ssa->def = def;
2404
2405 nir_builder_instr_insert(&b->nb, instruction);
2406 }
2407
2408 static void
2409 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2410 const uint32_t *w, nir_src *src)
2411 {
2412 switch (opcode) {
2413 case SpvOpAtomicIIncrement:
2414 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2415 break;
2416
2417 case SpvOpAtomicIDecrement:
2418 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2419 break;
2420
2421 case SpvOpAtomicISub:
2422 src[0] =
2423 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2424 break;
2425
2426 case SpvOpAtomicCompareExchange:
2427 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2428 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2429 break;
2430
2431 case SpvOpAtomicExchange:
2432 case SpvOpAtomicIAdd:
2433 case SpvOpAtomicSMin:
2434 case SpvOpAtomicUMin:
2435 case SpvOpAtomicSMax:
2436 case SpvOpAtomicUMax:
2437 case SpvOpAtomicAnd:
2438 case SpvOpAtomicOr:
2439 case SpvOpAtomicXor:
2440 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2441 break;
2442
2443 default:
2444 vtn_fail("Invalid SPIR-V atomic");
2445 }
2446 }
2447
2448 static nir_ssa_def *
2449 get_image_coord(struct vtn_builder *b, uint32_t value)
2450 {
2451 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2452
2453 /* The image_load_store intrinsics assume a 4-dim coordinate */
2454 unsigned dim = glsl_get_vector_elements(coord->type);
2455 unsigned swizzle[4];
2456 for (unsigned i = 0; i < 4; i++)
2457 swizzle[i] = MIN2(i, dim - 1);
2458
2459 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2460 }
2461
2462 static nir_ssa_def *
2463 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2464 {
2465 if (value->num_components == 4)
2466 return value;
2467
2468 unsigned swiz[4];
2469 for (unsigned i = 0; i < 4; i++)
2470 swiz[i] = i < value->num_components ? i : 0;
2471 return nir_swizzle(b, value, swiz, 4, false);
2472 }
2473
2474 static void
2475 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2476 const uint32_t *w, unsigned count)
2477 {
2478 /* Just get this one out of the way */
2479 if (opcode == SpvOpImageTexelPointer) {
2480 struct vtn_value *val =
2481 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2482 val->image = ralloc(b, struct vtn_image_pointer);
2483
2484 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2485 val->image->coord = get_image_coord(b, w[4]);
2486 val->image->sample = vtn_ssa_value(b, w[5])->def;
2487 return;
2488 }
2489
2490 struct vtn_image_pointer image;
2491
2492 switch (opcode) {
2493 case SpvOpAtomicExchange:
2494 case SpvOpAtomicCompareExchange:
2495 case SpvOpAtomicCompareExchangeWeak:
2496 case SpvOpAtomicIIncrement:
2497 case SpvOpAtomicIDecrement:
2498 case SpvOpAtomicIAdd:
2499 case SpvOpAtomicISub:
2500 case SpvOpAtomicLoad:
2501 case SpvOpAtomicSMin:
2502 case SpvOpAtomicUMin:
2503 case SpvOpAtomicSMax:
2504 case SpvOpAtomicUMax:
2505 case SpvOpAtomicAnd:
2506 case SpvOpAtomicOr:
2507 case SpvOpAtomicXor:
2508 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2509 break;
2510
2511 case SpvOpAtomicStore:
2512 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2513 break;
2514
2515 case SpvOpImageQuerySize:
2516 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2517 image.coord = NULL;
2518 image.sample = NULL;
2519 break;
2520
2521 case SpvOpImageRead:
2522 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2523 image.coord = get_image_coord(b, w[4]);
2524
2525 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2526 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2527 image.sample = vtn_ssa_value(b, w[6])->def;
2528 } else {
2529 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2530 }
2531 break;
2532
2533 case SpvOpImageWrite:
2534 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2535 image.coord = get_image_coord(b, w[2]);
2536
2537 /* texel = w[3] */
2538
2539 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2540 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2541 image.sample = vtn_ssa_value(b, w[5])->def;
2542 } else {
2543 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2544 }
2545 break;
2546
2547 default:
2548 vtn_fail("Invalid image opcode");
2549 }
2550
2551 nir_intrinsic_op op;
2552 switch (opcode) {
2553 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2554 OP(ImageQuerySize, size)
2555 OP(ImageRead, load)
2556 OP(ImageWrite, store)
2557 OP(AtomicLoad, load)
2558 OP(AtomicStore, store)
2559 OP(AtomicExchange, atomic_exchange)
2560 OP(AtomicCompareExchange, atomic_comp_swap)
2561 OP(AtomicIIncrement, atomic_add)
2562 OP(AtomicIDecrement, atomic_add)
2563 OP(AtomicIAdd, atomic_add)
2564 OP(AtomicISub, atomic_add)
2565 OP(AtomicSMin, atomic_min)
2566 OP(AtomicUMin, atomic_min)
2567 OP(AtomicSMax, atomic_max)
2568 OP(AtomicUMax, atomic_max)
2569 OP(AtomicAnd, atomic_and)
2570 OP(AtomicOr, atomic_or)
2571 OP(AtomicXor, atomic_xor)
2572 #undef OP
2573 default:
2574 vtn_fail("Invalid image opcode");
2575 }
2576
2577 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2578
2579 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2580 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2581
2582 /* ImageQuerySize doesn't take any extra parameters */
2583 if (opcode != SpvOpImageQuerySize) {
2584 /* The image coordinate is always 4 components but we may not have that
2585 * many. Swizzle to compensate.
2586 */
2587 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2588 intrin->src[2] = nir_src_for_ssa(image.sample);
2589 }
2590
2591 switch (opcode) {
2592 case SpvOpAtomicLoad:
2593 case SpvOpImageQuerySize:
2594 case SpvOpImageRead:
2595 break;
2596 case SpvOpAtomicStore:
2597 case SpvOpImageWrite: {
2598 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2599 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2600 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2601 assert(op == nir_intrinsic_image_deref_store);
2602 intrin->num_components = 4;
2603 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2604 break;
2605 }
2606
2607 case SpvOpAtomicCompareExchange:
2608 case SpvOpAtomicIIncrement:
2609 case SpvOpAtomicIDecrement:
2610 case SpvOpAtomicExchange:
2611 case SpvOpAtomicIAdd:
2612 case SpvOpAtomicISub:
2613 case SpvOpAtomicSMin:
2614 case SpvOpAtomicUMin:
2615 case SpvOpAtomicSMax:
2616 case SpvOpAtomicUMax:
2617 case SpvOpAtomicAnd:
2618 case SpvOpAtomicOr:
2619 case SpvOpAtomicXor:
2620 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2621 break;
2622
2623 default:
2624 vtn_fail("Invalid image opcode");
2625 }
2626
2627 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2628 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2629 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2630
2631 unsigned dest_components = glsl_get_vector_elements(type->type);
2632 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2633 if (intrin->num_components == 0)
2634 intrin->num_components = dest_components;
2635
2636 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2637 intrin->num_components, 32, NULL);
2638
2639 nir_builder_instr_insert(&b->nb, &intrin->instr);
2640
2641 nir_ssa_def *result = &intrin->dest.ssa;
2642 if (intrin->num_components != dest_components)
2643 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2644
2645 val->ssa = vtn_create_ssa_value(b, type->type);
2646 val->ssa->def = result;
2647 } else {
2648 nir_builder_instr_insert(&b->nb, &intrin->instr);
2649 }
2650 }
2651
2652 static nir_intrinsic_op
2653 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2654 {
2655 switch (opcode) {
2656 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2657 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2658 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2659 OP(AtomicExchange, atomic_exchange)
2660 OP(AtomicCompareExchange, atomic_comp_swap)
2661 OP(AtomicIIncrement, atomic_add)
2662 OP(AtomicIDecrement, atomic_add)
2663 OP(AtomicIAdd, atomic_add)
2664 OP(AtomicISub, atomic_add)
2665 OP(AtomicSMin, atomic_imin)
2666 OP(AtomicUMin, atomic_umin)
2667 OP(AtomicSMax, atomic_imax)
2668 OP(AtomicUMax, atomic_umax)
2669 OP(AtomicAnd, atomic_and)
2670 OP(AtomicOr, atomic_or)
2671 OP(AtomicXor, atomic_xor)
2672 #undef OP
2673 default:
2674 vtn_fail("Invalid SSBO atomic");
2675 }
2676 }
2677
2678 static nir_intrinsic_op
2679 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2680 {
2681 switch (opcode) {
2682 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2683 OP(AtomicLoad, read_deref)
2684 OP(AtomicExchange, exchange)
2685 OP(AtomicCompareExchange, comp_swap)
2686 OP(AtomicIIncrement, inc_deref)
2687 OP(AtomicIDecrement, post_dec_deref)
2688 OP(AtomicIAdd, add_deref)
2689 OP(AtomicISub, add_deref)
2690 OP(AtomicUMin, min_deref)
2691 OP(AtomicUMax, max_deref)
2692 OP(AtomicAnd, and_deref)
2693 OP(AtomicOr, or_deref)
2694 OP(AtomicXor, xor_deref)
2695 #undef OP
2696 default:
2697 /* We left the following out: AtomicStore, AtomicSMin and
2698 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2699 * moment Atomic Counter support is needed for ARB_spirv support, so is
2700 * only need to support GLSL Atomic Counters that are uints and don't
2701 * allow direct storage.
2702 */
2703 unreachable("Invalid uniform atomic");
2704 }
2705 }
2706
2707 static nir_intrinsic_op
2708 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2709 {
2710 switch (opcode) {
2711 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2712 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2713 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2714 OP(AtomicExchange, atomic_exchange)
2715 OP(AtomicCompareExchange, atomic_comp_swap)
2716 OP(AtomicIIncrement, atomic_add)
2717 OP(AtomicIDecrement, atomic_add)
2718 OP(AtomicIAdd, atomic_add)
2719 OP(AtomicISub, atomic_add)
2720 OP(AtomicSMin, atomic_imin)
2721 OP(AtomicUMin, atomic_umin)
2722 OP(AtomicSMax, atomic_imax)
2723 OP(AtomicUMax, atomic_umax)
2724 OP(AtomicAnd, atomic_and)
2725 OP(AtomicOr, atomic_or)
2726 OP(AtomicXor, atomic_xor)
2727 #undef OP
2728 default:
2729 vtn_fail("Invalid shared atomic");
2730 }
2731 }
2732
2733 static nir_intrinsic_op
2734 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2735 {
2736 switch (opcode) {
2737 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2738 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2739 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2740 OP(AtomicExchange, atomic_exchange)
2741 OP(AtomicCompareExchange, atomic_comp_swap)
2742 OP(AtomicIIncrement, atomic_add)
2743 OP(AtomicIDecrement, atomic_add)
2744 OP(AtomicIAdd, atomic_add)
2745 OP(AtomicISub, atomic_add)
2746 OP(AtomicSMin, atomic_imin)
2747 OP(AtomicUMin, atomic_umin)
2748 OP(AtomicSMax, atomic_imax)
2749 OP(AtomicUMax, atomic_umax)
2750 OP(AtomicAnd, atomic_and)
2751 OP(AtomicOr, atomic_or)
2752 OP(AtomicXor, atomic_xor)
2753 #undef OP
2754 default:
2755 vtn_fail("Invalid shared atomic");
2756 }
2757 }
2758
2759 /*
2760 * Handles shared atomics, ssbo atomics and atomic counters.
2761 */
2762 static void
2763 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2764 const uint32_t *w, unsigned count)
2765 {
2766 struct vtn_pointer *ptr;
2767 nir_intrinsic_instr *atomic;
2768
2769 switch (opcode) {
2770 case SpvOpAtomicLoad:
2771 case SpvOpAtomicExchange:
2772 case SpvOpAtomicCompareExchange:
2773 case SpvOpAtomicCompareExchangeWeak:
2774 case SpvOpAtomicIIncrement:
2775 case SpvOpAtomicIDecrement:
2776 case SpvOpAtomicIAdd:
2777 case SpvOpAtomicISub:
2778 case SpvOpAtomicSMin:
2779 case SpvOpAtomicUMin:
2780 case SpvOpAtomicSMax:
2781 case SpvOpAtomicUMax:
2782 case SpvOpAtomicAnd:
2783 case SpvOpAtomicOr:
2784 case SpvOpAtomicXor:
2785 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2786 break;
2787
2788 case SpvOpAtomicStore:
2789 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2790 break;
2791
2792 default:
2793 vtn_fail("Invalid SPIR-V atomic");
2794 }
2795
2796 /*
2797 SpvScope scope = w[4];
2798 SpvMemorySemanticsMask semantics = w[5];
2799 */
2800
2801 /* uniform as "atomic counter uniform" */
2802 if (ptr->mode == vtn_variable_mode_uniform) {
2803 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2804 const struct glsl_type *deref_type = deref->type;
2805 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2806 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2807 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2808
2809 /* SSBO needs to initialize index/offset. In this case we don't need to,
2810 * as that info is already stored on the ptr->var->var nir_variable (see
2811 * vtn_create_variable)
2812 */
2813
2814 switch (opcode) {
2815 case SpvOpAtomicLoad:
2816 atomic->num_components = glsl_get_vector_elements(deref_type);
2817 break;
2818
2819 case SpvOpAtomicStore:
2820 atomic->num_components = glsl_get_vector_elements(deref_type);
2821 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2822 break;
2823
2824 case SpvOpAtomicExchange:
2825 case SpvOpAtomicCompareExchange:
2826 case SpvOpAtomicCompareExchangeWeak:
2827 case SpvOpAtomicIIncrement:
2828 case SpvOpAtomicIDecrement:
2829 case SpvOpAtomicIAdd:
2830 case SpvOpAtomicISub:
2831 case SpvOpAtomicSMin:
2832 case SpvOpAtomicUMin:
2833 case SpvOpAtomicSMax:
2834 case SpvOpAtomicUMax:
2835 case SpvOpAtomicAnd:
2836 case SpvOpAtomicOr:
2837 case SpvOpAtomicXor:
2838 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2839 * atomic counter uniforms doesn't have sources
2840 */
2841 break;
2842
2843 default:
2844 unreachable("Invalid SPIR-V atomic");
2845
2846 }
2847 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2848 nir_ssa_def *offset, *index;
2849 offset = vtn_pointer_to_offset(b, ptr, &index);
2850
2851 nir_intrinsic_op op;
2852 if (ptr->mode == vtn_variable_mode_ssbo) {
2853 op = get_ssbo_nir_atomic_op(b, opcode);
2854 } else {
2855 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2856 b->options->lower_workgroup_access_to_offsets);
2857 op = get_shared_nir_atomic_op(b, opcode);
2858 }
2859
2860 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2861
2862 int src = 0;
2863 switch (opcode) {
2864 case SpvOpAtomicLoad:
2865 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2866 nir_intrinsic_set_align(atomic, 4, 0);
2867 if (ptr->mode == vtn_variable_mode_ssbo)
2868 atomic->src[src++] = nir_src_for_ssa(index);
2869 atomic->src[src++] = nir_src_for_ssa(offset);
2870 break;
2871
2872 case SpvOpAtomicStore:
2873 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2874 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2875 nir_intrinsic_set_align(atomic, 4, 0);
2876 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2877 if (ptr->mode == vtn_variable_mode_ssbo)
2878 atomic->src[src++] = nir_src_for_ssa(index);
2879 atomic->src[src++] = nir_src_for_ssa(offset);
2880 break;
2881
2882 case SpvOpAtomicExchange:
2883 case SpvOpAtomicCompareExchange:
2884 case SpvOpAtomicCompareExchangeWeak:
2885 case SpvOpAtomicIIncrement:
2886 case SpvOpAtomicIDecrement:
2887 case SpvOpAtomicIAdd:
2888 case SpvOpAtomicISub:
2889 case SpvOpAtomicSMin:
2890 case SpvOpAtomicUMin:
2891 case SpvOpAtomicSMax:
2892 case SpvOpAtomicUMax:
2893 case SpvOpAtomicAnd:
2894 case SpvOpAtomicOr:
2895 case SpvOpAtomicXor:
2896 if (ptr->mode == vtn_variable_mode_ssbo)
2897 atomic->src[src++] = nir_src_for_ssa(index);
2898 atomic->src[src++] = nir_src_for_ssa(offset);
2899 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2900 break;
2901
2902 default:
2903 vtn_fail("Invalid SPIR-V atomic");
2904 }
2905 } else {
2906 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2907 const struct glsl_type *deref_type = deref->type;
2908 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2909 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2910 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2911
2912 switch (opcode) {
2913 case SpvOpAtomicLoad:
2914 atomic->num_components = glsl_get_vector_elements(deref_type);
2915 break;
2916
2917 case SpvOpAtomicStore:
2918 atomic->num_components = glsl_get_vector_elements(deref_type);
2919 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2920 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2921 break;
2922
2923 case SpvOpAtomicExchange:
2924 case SpvOpAtomicCompareExchange:
2925 case SpvOpAtomicCompareExchangeWeak:
2926 case SpvOpAtomicIIncrement:
2927 case SpvOpAtomicIDecrement:
2928 case SpvOpAtomicIAdd:
2929 case SpvOpAtomicISub:
2930 case SpvOpAtomicSMin:
2931 case SpvOpAtomicUMin:
2932 case SpvOpAtomicSMax:
2933 case SpvOpAtomicUMax:
2934 case SpvOpAtomicAnd:
2935 case SpvOpAtomicOr:
2936 case SpvOpAtomicXor:
2937 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2938 break;
2939
2940 default:
2941 vtn_fail("Invalid SPIR-V atomic");
2942 }
2943 }
2944
2945 if (opcode != SpvOpAtomicStore) {
2946 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2947
2948 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2949 glsl_get_vector_elements(type->type),
2950 glsl_get_bit_size(type->type), NULL);
2951
2952 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2953 val->ssa = rzalloc(b, struct vtn_ssa_value);
2954 val->ssa->def = &atomic->dest.ssa;
2955 val->ssa->type = type->type;
2956 }
2957
2958 nir_builder_instr_insert(&b->nb, &atomic->instr);
2959 }
2960
2961 static nir_alu_instr *
2962 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2963 {
2964 nir_op op;
2965 switch (num_components) {
2966 case 1: op = nir_op_imov; break;
2967 case 2: op = nir_op_vec2; break;
2968 case 3: op = nir_op_vec3; break;
2969 case 4: op = nir_op_vec4; break;
2970 default: vtn_fail("bad vector size");
2971 }
2972
2973 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2974 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2975 bit_size, NULL);
2976 vec->dest.write_mask = (1 << num_components) - 1;
2977
2978 return vec;
2979 }
2980
2981 struct vtn_ssa_value *
2982 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2983 {
2984 if (src->transposed)
2985 return src->transposed;
2986
2987 struct vtn_ssa_value *dest =
2988 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2989
2990 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2991 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2992 glsl_get_bit_size(src->type));
2993 if (glsl_type_is_vector_or_scalar(src->type)) {
2994 vec->src[0].src = nir_src_for_ssa(src->def);
2995 vec->src[0].swizzle[0] = i;
2996 } else {
2997 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2998 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2999 vec->src[j].swizzle[0] = i;
3000 }
3001 }
3002 nir_builder_instr_insert(&b->nb, &vec->instr);
3003 dest->elems[i]->def = &vec->dest.dest.ssa;
3004 }
3005
3006 dest->transposed = src;
3007
3008 return dest;
3009 }
3010
3011 nir_ssa_def *
3012 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3013 {
3014 return nir_channel(&b->nb, src, index);
3015 }
3016
3017 nir_ssa_def *
3018 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3019 unsigned index)
3020 {
3021 nir_alu_instr *vec = create_vec(b, src->num_components,
3022 src->bit_size);
3023
3024 for (unsigned i = 0; i < src->num_components; i++) {
3025 if (i == index) {
3026 vec->src[i].src = nir_src_for_ssa(insert);
3027 } else {
3028 vec->src[i].src = nir_src_for_ssa(src);
3029 vec->src[i].swizzle[0] = i;
3030 }
3031 }
3032
3033 nir_builder_instr_insert(&b->nb, &vec->instr);
3034
3035 return &vec->dest.dest.ssa;
3036 }
3037
3038 static nir_ssa_def *
3039 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3040 {
3041 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3042 }
3043
3044 nir_ssa_def *
3045 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3046 nir_ssa_def *index)
3047 {
3048 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
3049 for (unsigned i = 1; i < src->num_components; i++)
3050 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3051 vtn_vector_extract(b, src, i), dest);
3052
3053 return dest;
3054 }
3055
3056 nir_ssa_def *
3057 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3058 nir_ssa_def *insert, nir_ssa_def *index)
3059 {
3060 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3061 for (unsigned i = 1; i < src->num_components; i++)
3062 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3063 vtn_vector_insert(b, src, insert, i), dest);
3064
3065 return dest;
3066 }
3067
3068 static nir_ssa_def *
3069 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3070 nir_ssa_def *src0, nir_ssa_def *src1,
3071 const uint32_t *indices)
3072 {
3073 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3074
3075 for (unsigned i = 0; i < num_components; i++) {
3076 uint32_t index = indices[i];
3077 if (index == 0xffffffff) {
3078 vec->src[i].src =
3079 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3080 } else if (index < src0->num_components) {
3081 vec->src[i].src = nir_src_for_ssa(src0);
3082 vec->src[i].swizzle[0] = index;
3083 } else {
3084 vec->src[i].src = nir_src_for_ssa(src1);
3085 vec->src[i].swizzle[0] = index - src0->num_components;
3086 }
3087 }
3088
3089 nir_builder_instr_insert(&b->nb, &vec->instr);
3090
3091 return &vec->dest.dest.ssa;
3092 }
3093
3094 /*
3095 * Concatentates a number of vectors/scalars together to produce a vector
3096 */
3097 static nir_ssa_def *
3098 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3099 unsigned num_srcs, nir_ssa_def **srcs)
3100 {
3101 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3102
3103 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3104 *
3105 * "When constructing a vector, there must be at least two Constituent
3106 * operands."
3107 */
3108 vtn_assert(num_srcs >= 2);
3109
3110 unsigned dest_idx = 0;
3111 for (unsigned i = 0; i < num_srcs; i++) {
3112 nir_ssa_def *src = srcs[i];
3113 vtn_assert(dest_idx + src->num_components <= num_components);
3114 for (unsigned j = 0; j < src->num_components; j++) {
3115 vec->src[dest_idx].src = nir_src_for_ssa(src);
3116 vec->src[dest_idx].swizzle[0] = j;
3117 dest_idx++;
3118 }
3119 }
3120
3121 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3122 *
3123 * "When constructing a vector, the total number of components in all
3124 * the operands must equal the number of components in Result Type."
3125 */
3126 vtn_assert(dest_idx == num_components);
3127
3128 nir_builder_instr_insert(&b->nb, &vec->instr);
3129
3130 return &vec->dest.dest.ssa;
3131 }
3132
3133 static struct vtn_ssa_value *
3134 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3135 {
3136 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3137 dest->type = src->type;
3138
3139 if (glsl_type_is_vector_or_scalar(src->type)) {
3140 dest->def = src->def;
3141 } else {
3142 unsigned elems = glsl_get_length(src->type);
3143
3144 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3145 for (unsigned i = 0; i < elems; i++)
3146 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3147 }
3148
3149 return dest;
3150 }
3151
3152 static struct vtn_ssa_value *
3153 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3154 struct vtn_ssa_value *insert, const uint32_t *indices,
3155 unsigned num_indices)
3156 {
3157 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3158
3159 struct vtn_ssa_value *cur = dest;
3160 unsigned i;
3161 for (i = 0; i < num_indices - 1; i++) {
3162 cur = cur->elems[indices[i]];
3163 }
3164
3165 if (glsl_type_is_vector_or_scalar(cur->type)) {
3166 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3167 * the component granularity. In that case, the last index will be
3168 * the index to insert the scalar into the vector.
3169 */
3170
3171 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3172 } else {
3173 cur->elems[indices[i]] = insert;
3174 }
3175
3176 return dest;
3177 }
3178
3179 static struct vtn_ssa_value *
3180 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3181 const uint32_t *indices, unsigned num_indices)
3182 {
3183 struct vtn_ssa_value *cur = src;
3184 for (unsigned i = 0; i < num_indices; i++) {
3185 if (glsl_type_is_vector_or_scalar(cur->type)) {
3186 vtn_assert(i == num_indices - 1);
3187 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3188 * the component granularity. The last index will be the index of the
3189 * vector to extract.
3190 */
3191
3192 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3193 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3194 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3195 return ret;
3196 } else {
3197 cur = cur->elems[indices[i]];
3198 }
3199 }
3200
3201 return cur;
3202 }
3203
3204 static void
3205 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3206 const uint32_t *w, unsigned count)
3207 {
3208 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
3209 const struct glsl_type *type =
3210 vtn_value(b, w[1], vtn_value_type_type)->type->type;
3211 val->ssa = vtn_create_ssa_value(b, type);
3212
3213 switch (opcode) {
3214 case SpvOpVectorExtractDynamic:
3215 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3216 vtn_ssa_value(b, w[4])->def);
3217 break;
3218
3219 case SpvOpVectorInsertDynamic:
3220 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3221 vtn_ssa_value(b, w[4])->def,
3222 vtn_ssa_value(b, w[5])->def);
3223 break;
3224
3225 case SpvOpVectorShuffle:
3226 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
3227 vtn_ssa_value(b, w[3])->def,
3228 vtn_ssa_value(b, w[4])->def,
3229 w + 5);
3230 break;
3231
3232 case SpvOpCompositeConstruct: {
3233 unsigned elems = count - 3;
3234 assume(elems >= 1);
3235 if (glsl_type_is_vector_or_scalar(type)) {
3236 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3237 for (unsigned i = 0; i < elems; i++)
3238 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3239 val->ssa->def =
3240 vtn_vector_construct(b, glsl_get_vector_elements(type),
3241 elems, srcs);
3242 } else {
3243 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3244 for (unsigned i = 0; i < elems; i++)
3245 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3246 }
3247 break;
3248 }
3249 case SpvOpCompositeExtract:
3250 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3251 w + 4, count - 4);
3252 break;
3253
3254 case SpvOpCompositeInsert:
3255 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3256 vtn_ssa_value(b, w[3]),
3257 w + 5, count - 5);
3258 break;
3259
3260 case SpvOpCopyObject:
3261 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3262 break;
3263
3264 default:
3265 vtn_fail("unknown composite operation");
3266 }
3267 }
3268
3269 static void
3270 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3271 {
3272 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3273 nir_builder_instr_insert(&b->nb, &intrin->instr);
3274 }
3275
3276 static void
3277 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3278 SpvMemorySemanticsMask semantics)
3279 {
3280 static const SpvMemorySemanticsMask all_memory_semantics =
3281 SpvMemorySemanticsUniformMemoryMask |
3282 SpvMemorySemanticsWorkgroupMemoryMask |
3283 SpvMemorySemanticsAtomicCounterMemoryMask |
3284 SpvMemorySemanticsImageMemoryMask;
3285
3286 /* If we're not actually doing a memory barrier, bail */
3287 if (!(semantics & all_memory_semantics))
3288 return;
3289
3290 /* GL and Vulkan don't have these */
3291 vtn_assert(scope != SpvScopeCrossDevice);
3292
3293 if (scope == SpvScopeSubgroup)
3294 return; /* Nothing to do here */
3295
3296 if (scope == SpvScopeWorkgroup) {
3297 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3298 return;
3299 }
3300
3301 /* There's only two scopes thing left */
3302 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3303
3304 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3305 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3306 return;
3307 }
3308
3309 /* Issue a bunch of more specific barriers */
3310 uint32_t bits = semantics;
3311 while (bits) {
3312 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3313 switch (semantic) {
3314 case SpvMemorySemanticsUniformMemoryMask:
3315 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3316 break;
3317 case SpvMemorySemanticsWorkgroupMemoryMask:
3318 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3319 break;
3320 case SpvMemorySemanticsAtomicCounterMemoryMask:
3321 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3322 break;
3323 case SpvMemorySemanticsImageMemoryMask:
3324 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3325 break;
3326 default:
3327 break;;
3328 }
3329 }
3330 }
3331
3332 static void
3333 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3334 const uint32_t *w, unsigned count)
3335 {
3336 switch (opcode) {
3337 case SpvOpEmitVertex:
3338 case SpvOpEmitStreamVertex:
3339 case SpvOpEndPrimitive:
3340 case SpvOpEndStreamPrimitive: {
3341 nir_intrinsic_op intrinsic_op;
3342 switch (opcode) {
3343 case SpvOpEmitVertex:
3344 case SpvOpEmitStreamVertex:
3345 intrinsic_op = nir_intrinsic_emit_vertex;
3346 break;
3347 case SpvOpEndPrimitive:
3348 case SpvOpEndStreamPrimitive:
3349 intrinsic_op = nir_intrinsic_end_primitive;
3350 break;
3351 default:
3352 unreachable("Invalid opcode");
3353 }
3354
3355 nir_intrinsic_instr *intrin =
3356 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3357
3358 switch (opcode) {
3359 case SpvOpEmitStreamVertex:
3360 case SpvOpEndStreamPrimitive: {
3361 unsigned stream = vtn_constant_value(b, w[1])->values[0].u32[0];
3362 nir_intrinsic_set_stream_id(intrin, stream);
3363 break;
3364 }
3365
3366 default:
3367 break;
3368 }
3369
3370 nir_builder_instr_insert(&b->nb, &intrin->instr);
3371 break;
3372 }
3373
3374 case SpvOpMemoryBarrier: {
3375 SpvScope scope = vtn_constant_value(b, w[1])->values[0].u32[0];
3376 SpvMemorySemanticsMask semantics =
3377 vtn_constant_value(b, w[2])->values[0].u32[0];
3378 vtn_emit_memory_barrier(b, scope, semantics);
3379 return;
3380 }
3381
3382 case SpvOpControlBarrier: {
3383 SpvScope execution_scope =
3384 vtn_constant_value(b, w[1])->values[0].u32[0];
3385 if (execution_scope == SpvScopeWorkgroup)
3386 vtn_emit_barrier(b, nir_intrinsic_barrier);
3387
3388 SpvScope memory_scope =
3389 vtn_constant_value(b, w[2])->values[0].u32[0];
3390 SpvMemorySemanticsMask memory_semantics =
3391 vtn_constant_value(b, w[3])->values[0].u32[0];
3392 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3393 break;
3394 }
3395
3396 default:
3397 unreachable("unknown barrier instruction");
3398 }
3399 }
3400
3401 static unsigned
3402 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3403 SpvExecutionMode mode)
3404 {
3405 switch (mode) {
3406 case SpvExecutionModeInputPoints:
3407 case SpvExecutionModeOutputPoints:
3408 return 0; /* GL_POINTS */
3409 case SpvExecutionModeInputLines:
3410 return 1; /* GL_LINES */
3411 case SpvExecutionModeInputLinesAdjacency:
3412 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3413 case SpvExecutionModeTriangles:
3414 return 4; /* GL_TRIANGLES */
3415 case SpvExecutionModeInputTrianglesAdjacency:
3416 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3417 case SpvExecutionModeQuads:
3418 return 7; /* GL_QUADS */
3419 case SpvExecutionModeIsolines:
3420 return 0x8E7A; /* GL_ISOLINES */
3421 case SpvExecutionModeOutputLineStrip:
3422 return 3; /* GL_LINE_STRIP */
3423 case SpvExecutionModeOutputTriangleStrip:
3424 return 5; /* GL_TRIANGLE_STRIP */
3425 default:
3426 vtn_fail("Invalid primitive type");
3427 }
3428 }
3429
3430 static unsigned
3431 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3432 SpvExecutionMode mode)
3433 {
3434 switch (mode) {
3435 case SpvExecutionModeInputPoints:
3436 return 1;
3437 case SpvExecutionModeInputLines:
3438 return 2;
3439 case SpvExecutionModeInputLinesAdjacency:
3440 return 4;
3441 case SpvExecutionModeTriangles:
3442 return 3;
3443 case SpvExecutionModeInputTrianglesAdjacency:
3444 return 6;
3445 default:
3446 vtn_fail("Invalid GS input mode");
3447 }
3448 }
3449
3450 static gl_shader_stage
3451 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3452 {
3453 switch (model) {
3454 case SpvExecutionModelVertex:
3455 return MESA_SHADER_VERTEX;
3456 case SpvExecutionModelTessellationControl:
3457 return MESA_SHADER_TESS_CTRL;
3458 case SpvExecutionModelTessellationEvaluation:
3459 return MESA_SHADER_TESS_EVAL;
3460 case SpvExecutionModelGeometry:
3461 return MESA_SHADER_GEOMETRY;
3462 case SpvExecutionModelFragment:
3463 return MESA_SHADER_FRAGMENT;
3464 case SpvExecutionModelGLCompute:
3465 return MESA_SHADER_COMPUTE;
3466 case SpvExecutionModelKernel:
3467 return MESA_SHADER_KERNEL;
3468 default:
3469 vtn_fail("Unsupported execution model");
3470 }
3471 }
3472
3473 #define spv_check_supported(name, cap) do { \
3474 if (!(b->options && b->options->caps.name)) \
3475 vtn_warn("Unsupported SPIR-V capability: %s", \
3476 spirv_capability_to_string(cap)); \
3477 } while(0)
3478
3479
3480 void
3481 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3482 unsigned count)
3483 {
3484 struct vtn_value *entry_point = &b->values[w[2]];
3485 /* Let this be a name label regardless */
3486 unsigned name_words;
3487 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3488
3489 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3490 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3491 return;
3492
3493 vtn_assert(b->entry_point == NULL);
3494 b->entry_point = entry_point;
3495 }
3496
3497 static bool
3498 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3499 const uint32_t *w, unsigned count)
3500 {
3501 switch (opcode) {
3502 case SpvOpSource: {
3503 const char *lang;
3504 switch (w[1]) {
3505 default:
3506 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3507 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3508 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3509 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3510 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3511 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3512 }
3513
3514 uint32_t version = w[2];
3515
3516 const char *file =
3517 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3518
3519 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3520 break;
3521 }
3522
3523 case SpvOpSourceExtension:
3524 case SpvOpSourceContinued:
3525 case SpvOpExtension:
3526 case SpvOpModuleProcessed:
3527 /* Unhandled, but these are for debug so that's ok. */
3528 break;
3529
3530 case SpvOpCapability: {
3531 SpvCapability cap = w[1];
3532 switch (cap) {
3533 case SpvCapabilityMatrix:
3534 case SpvCapabilityShader:
3535 case SpvCapabilityGeometry:
3536 case SpvCapabilityGeometryPointSize:
3537 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3538 case SpvCapabilitySampledImageArrayDynamicIndexing:
3539 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3540 case SpvCapabilityStorageImageArrayDynamicIndexing:
3541 case SpvCapabilityImageRect:
3542 case SpvCapabilitySampledRect:
3543 case SpvCapabilitySampled1D:
3544 case SpvCapabilityImage1D:
3545 case SpvCapabilitySampledCubeArray:
3546 case SpvCapabilityImageCubeArray:
3547 case SpvCapabilitySampledBuffer:
3548 case SpvCapabilityImageBuffer:
3549 case SpvCapabilityImageQuery:
3550 case SpvCapabilityDerivativeControl:
3551 case SpvCapabilityInterpolationFunction:
3552 case SpvCapabilityMultiViewport:
3553 case SpvCapabilitySampleRateShading:
3554 case SpvCapabilityClipDistance:
3555 case SpvCapabilityCullDistance:
3556 case SpvCapabilityInputAttachment:
3557 case SpvCapabilityImageGatherExtended:
3558 case SpvCapabilityStorageImageExtendedFormats:
3559 break;
3560
3561 case SpvCapabilityLinkage:
3562 case SpvCapabilityVector16:
3563 case SpvCapabilityFloat16Buffer:
3564 case SpvCapabilityFloat16:
3565 case SpvCapabilitySparseResidency:
3566 vtn_warn("Unsupported SPIR-V capability: %s",
3567 spirv_capability_to_string(cap));
3568 break;
3569
3570 case SpvCapabilityMinLod:
3571 spv_check_supported(min_lod, cap);
3572 break;
3573
3574 case SpvCapabilityAtomicStorage:
3575 spv_check_supported(atomic_storage, cap);
3576 break;
3577
3578 case SpvCapabilityFloat64:
3579 spv_check_supported(float64, cap);
3580 break;
3581 case SpvCapabilityInt64:
3582 spv_check_supported(int64, cap);
3583 break;
3584 case SpvCapabilityInt16:
3585 spv_check_supported(int16, cap);
3586 break;
3587
3588 case SpvCapabilityTransformFeedback:
3589 spv_check_supported(transform_feedback, cap);
3590 break;
3591
3592 case SpvCapabilityGeometryStreams:
3593 spv_check_supported(geometry_streams, cap);
3594 break;
3595
3596 case SpvCapabilityInt64Atomics:
3597 spv_check_supported(int64_atomics, cap);
3598
3599 case SpvCapabilityInt8:
3600 spv_check_supported(int8, cap);
3601 break;
3602
3603 case SpvCapabilityStorageImageMultisample:
3604 spv_check_supported(storage_image_ms, cap);
3605 break;
3606
3607 case SpvCapabilityAddresses:
3608 spv_check_supported(address, cap);
3609 break;
3610
3611 case SpvCapabilityKernel:
3612 spv_check_supported(kernel, cap);
3613 break;
3614
3615 case SpvCapabilityImageBasic:
3616 case SpvCapabilityImageReadWrite:
3617 case SpvCapabilityImageMipmap:
3618 case SpvCapabilityPipes:
3619 case SpvCapabilityGroups:
3620 case SpvCapabilityDeviceEnqueue:
3621 case SpvCapabilityLiteralSampler:
3622 case SpvCapabilityGenericPointer:
3623 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3624 spirv_capability_to_string(cap));
3625 break;
3626
3627 case SpvCapabilityImageMSArray:
3628 spv_check_supported(image_ms_array, cap);
3629 break;
3630
3631 case SpvCapabilityTessellation:
3632 case SpvCapabilityTessellationPointSize:
3633 spv_check_supported(tessellation, cap);
3634 break;
3635
3636 case SpvCapabilityDrawParameters:
3637 spv_check_supported(draw_parameters, cap);
3638 break;
3639
3640 case SpvCapabilityStorageImageReadWithoutFormat:
3641 spv_check_supported(image_read_without_format, cap);
3642 break;
3643
3644 case SpvCapabilityStorageImageWriteWithoutFormat:
3645 spv_check_supported(image_write_without_format, cap);
3646 break;
3647
3648 case SpvCapabilityDeviceGroup:
3649 spv_check_supported(device_group, cap);
3650 break;
3651
3652 case SpvCapabilityMultiView:
3653 spv_check_supported(multiview, cap);
3654 break;
3655
3656 case SpvCapabilityGroupNonUniform:
3657 spv_check_supported(subgroup_basic, cap);
3658 break;
3659
3660 case SpvCapabilityGroupNonUniformVote:
3661 spv_check_supported(subgroup_vote, cap);
3662 break;
3663
3664 case SpvCapabilitySubgroupBallotKHR:
3665 case SpvCapabilityGroupNonUniformBallot:
3666 spv_check_supported(subgroup_ballot, cap);
3667 break;
3668
3669 case SpvCapabilityGroupNonUniformShuffle:
3670 case SpvCapabilityGroupNonUniformShuffleRelative:
3671 spv_check_supported(subgroup_shuffle, cap);
3672 break;
3673
3674 case SpvCapabilityGroupNonUniformQuad:
3675 spv_check_supported(subgroup_quad, cap);
3676 break;
3677
3678 case SpvCapabilityGroupNonUniformArithmetic:
3679 case SpvCapabilityGroupNonUniformClustered:
3680 spv_check_supported(subgroup_arithmetic, cap);
3681 break;
3682
3683 case SpvCapabilityVariablePointersStorageBuffer:
3684 case SpvCapabilityVariablePointers:
3685 spv_check_supported(variable_pointers, cap);
3686 b->variable_pointers = true;
3687 break;
3688
3689 case SpvCapabilityStorageUniformBufferBlock16:
3690 case SpvCapabilityStorageUniform16:
3691 case SpvCapabilityStoragePushConstant16:
3692 case SpvCapabilityStorageInputOutput16:
3693 spv_check_supported(storage_16bit, cap);
3694 break;
3695
3696 case SpvCapabilityShaderViewportIndexLayerEXT:
3697 spv_check_supported(shader_viewport_index_layer, cap);
3698 break;
3699
3700 case SpvCapabilityStorageBuffer8BitAccess:
3701 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3702 case SpvCapabilityStoragePushConstant8:
3703 spv_check_supported(storage_8bit, cap);
3704 break;
3705
3706 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3707 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3708 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3709 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3710 break;
3711
3712 case SpvCapabilityRuntimeDescriptorArrayEXT:
3713 spv_check_supported(runtime_descriptor_array, cap);
3714 break;
3715
3716 case SpvCapabilityStencilExportEXT:
3717 spv_check_supported(stencil_export, cap);
3718 break;
3719
3720 case SpvCapabilitySampleMaskPostDepthCoverage:
3721 spv_check_supported(post_depth_coverage, cap);
3722 break;
3723
3724 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3725 spv_check_supported(physical_storage_buffer_address, cap);
3726 break;
3727
3728 default:
3729 vtn_fail("Unhandled capability");
3730 }
3731 break;
3732 }
3733
3734 case SpvOpExtInstImport:
3735 vtn_handle_extension(b, opcode, w, count);
3736 break;
3737
3738 case SpvOpMemoryModel:
3739 vtn_assert(w[1] == SpvAddressingModelLogical ||
3740 (b->options &&
3741 b->options->caps.physical_storage_buffer_address &&
3742 w[1] == SpvAddressingModelPhysicalStorageBuffer64EXT));
3743 vtn_assert(w[2] == SpvMemoryModelSimple ||
3744 w[2] == SpvMemoryModelGLSL450);
3745 break;
3746
3747 case SpvOpEntryPoint:
3748 vtn_handle_entry_point(b, w, count);
3749 break;
3750
3751 case SpvOpString:
3752 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3753 vtn_string_literal(b, &w[2], count - 2, NULL);
3754 break;
3755
3756 case SpvOpName:
3757 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3758 break;
3759
3760 case SpvOpMemberName:
3761 /* TODO */
3762 break;
3763
3764 case SpvOpExecutionMode:
3765 case SpvOpDecorationGroup:
3766 case SpvOpDecorate:
3767 case SpvOpMemberDecorate:
3768 case SpvOpGroupDecorate:
3769 case SpvOpGroupMemberDecorate:
3770 case SpvOpDecorateStringGOOGLE:
3771 case SpvOpMemberDecorateStringGOOGLE:
3772 vtn_handle_decoration(b, opcode, w, count);
3773 break;
3774
3775 default:
3776 return false; /* End of preamble */
3777 }
3778
3779 return true;
3780 }
3781
3782 static void
3783 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3784 const struct vtn_decoration *mode, void *data)
3785 {
3786 vtn_assert(b->entry_point == entry_point);
3787
3788 switch(mode->exec_mode) {
3789 case SpvExecutionModeOriginUpperLeft:
3790 case SpvExecutionModeOriginLowerLeft:
3791 b->origin_upper_left =
3792 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3793 break;
3794
3795 case SpvExecutionModeEarlyFragmentTests:
3796 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3797 b->shader->info.fs.early_fragment_tests = true;
3798 break;
3799
3800 case SpvExecutionModePostDepthCoverage:
3801 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3802 b->shader->info.fs.post_depth_coverage = true;
3803 break;
3804
3805 case SpvExecutionModeInvocations:
3806 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3807 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
3808 break;
3809
3810 case SpvExecutionModeDepthReplacing:
3811 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3812 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3813 break;
3814 case SpvExecutionModeDepthGreater:
3815 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3816 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3817 break;
3818 case SpvExecutionModeDepthLess:
3819 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3820 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3821 break;
3822 case SpvExecutionModeDepthUnchanged:
3823 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3824 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3825 break;
3826
3827 case SpvExecutionModeLocalSize:
3828 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3829 b->shader->info.cs.local_size[0] = mode->literals[0];
3830 b->shader->info.cs.local_size[1] = mode->literals[1];
3831 b->shader->info.cs.local_size[2] = mode->literals[2];
3832 break;
3833 case SpvExecutionModeLocalSizeHint:
3834 break; /* Nothing to do with this */
3835
3836 case SpvExecutionModeOutputVertices:
3837 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3838 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3839 b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3840 } else {
3841 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3842 b->shader->info.gs.vertices_out = mode->literals[0];
3843 }
3844 break;
3845
3846 case SpvExecutionModeInputPoints:
3847 case SpvExecutionModeInputLines:
3848 case SpvExecutionModeInputLinesAdjacency:
3849 case SpvExecutionModeTriangles:
3850 case SpvExecutionModeInputTrianglesAdjacency:
3851 case SpvExecutionModeQuads:
3852 case SpvExecutionModeIsolines:
3853 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3854 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3855 b->shader->info.tess.primitive_mode =
3856 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3857 } else {
3858 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3859 b->shader->info.gs.vertices_in =
3860 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3861 b->shader->info.gs.input_primitive =
3862 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3863 }
3864 break;
3865
3866 case SpvExecutionModeOutputPoints:
3867 case SpvExecutionModeOutputLineStrip:
3868 case SpvExecutionModeOutputTriangleStrip:
3869 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3870 b->shader->info.gs.output_primitive =
3871 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3872 break;
3873
3874 case SpvExecutionModeSpacingEqual:
3875 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3876 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3877 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3878 break;
3879 case SpvExecutionModeSpacingFractionalEven:
3880 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3881 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3882 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3883 break;
3884 case SpvExecutionModeSpacingFractionalOdd:
3885 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3886 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3887 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3888 break;
3889 case SpvExecutionModeVertexOrderCw:
3890 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3891 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3892 b->shader->info.tess.ccw = false;
3893 break;
3894 case SpvExecutionModeVertexOrderCcw:
3895 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3896 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3897 b->shader->info.tess.ccw = true;
3898 break;
3899 case SpvExecutionModePointMode:
3900 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3901 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3902 b->shader->info.tess.point_mode = true;
3903 break;
3904
3905 case SpvExecutionModePixelCenterInteger:
3906 b->pixel_center_integer = true;
3907 break;
3908
3909 case SpvExecutionModeXfb:
3910 b->shader->info.has_transform_feedback_varyings = true;
3911 break;
3912
3913 case SpvExecutionModeVecTypeHint:
3914 break; /* OpenCL */
3915
3916 case SpvExecutionModeContractionOff:
3917 if (b->shader->info.stage != MESA_SHADER_KERNEL)
3918 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
3919 spirv_executionmode_to_string(mode->exec_mode));
3920 else
3921 b->exact = true;
3922 break;
3923
3924 case SpvExecutionModeStencilRefReplacingEXT:
3925 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3926 break;
3927
3928 default:
3929 vtn_fail("Unhandled execution mode");
3930 }
3931 }
3932
3933 static bool
3934 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3935 const uint32_t *w, unsigned count)
3936 {
3937 vtn_set_instruction_result_type(b, opcode, w, count);
3938
3939 switch (opcode) {
3940 case SpvOpSource:
3941 case SpvOpSourceContinued:
3942 case SpvOpSourceExtension:
3943 case SpvOpExtension:
3944 case SpvOpCapability:
3945 case SpvOpExtInstImport:
3946 case SpvOpMemoryModel:
3947 case SpvOpEntryPoint:
3948 case SpvOpExecutionMode:
3949 case SpvOpString:
3950 case SpvOpName:
3951 case SpvOpMemberName:
3952 case SpvOpDecorationGroup:
3953 case SpvOpDecorate:
3954 case SpvOpMemberDecorate:
3955 case SpvOpGroupDecorate:
3956 case SpvOpGroupMemberDecorate:
3957 case SpvOpDecorateStringGOOGLE:
3958 case SpvOpMemberDecorateStringGOOGLE:
3959 vtn_fail("Invalid opcode types and variables section");
3960 break;
3961
3962 case SpvOpTypeVoid:
3963 case SpvOpTypeBool:
3964 case SpvOpTypeInt:
3965 case SpvOpTypeFloat:
3966 case SpvOpTypeVector:
3967 case SpvOpTypeMatrix:
3968 case SpvOpTypeImage:
3969 case SpvOpTypeSampler:
3970 case SpvOpTypeSampledImage:
3971 case SpvOpTypeArray:
3972 case SpvOpTypeRuntimeArray:
3973 case SpvOpTypeStruct:
3974 case SpvOpTypeOpaque:
3975 case SpvOpTypePointer:
3976 case SpvOpTypeForwardPointer:
3977 case SpvOpTypeFunction:
3978 case SpvOpTypeEvent:
3979 case SpvOpTypeDeviceEvent:
3980 case SpvOpTypeReserveId:
3981 case SpvOpTypeQueue:
3982 case SpvOpTypePipe:
3983 vtn_handle_type(b, opcode, w, count);
3984 break;
3985
3986 case SpvOpConstantTrue:
3987 case SpvOpConstantFalse:
3988 case SpvOpConstant:
3989 case SpvOpConstantComposite:
3990 case SpvOpConstantSampler:
3991 case SpvOpConstantNull:
3992 case SpvOpSpecConstantTrue:
3993 case SpvOpSpecConstantFalse:
3994 case SpvOpSpecConstant:
3995 case SpvOpSpecConstantComposite:
3996 case SpvOpSpecConstantOp:
3997 vtn_handle_constant(b, opcode, w, count);
3998 break;
3999
4000 case SpvOpUndef:
4001 case SpvOpVariable:
4002 vtn_handle_variables(b, opcode, w, count);
4003 break;
4004
4005 default:
4006 return false; /* End of preamble */
4007 }
4008
4009 return true;
4010 }
4011
4012 static bool
4013 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4014 const uint32_t *w, unsigned count)
4015 {
4016 switch (opcode) {
4017 case SpvOpLabel:
4018 break;
4019
4020 case SpvOpLoopMerge:
4021 case SpvOpSelectionMerge:
4022 /* This is handled by cfg pre-pass and walk_blocks */
4023 break;
4024
4025 case SpvOpUndef: {
4026 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4027 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4028 break;
4029 }
4030
4031 case SpvOpExtInst:
4032 vtn_handle_extension(b, opcode, w, count);
4033 break;
4034
4035 case SpvOpVariable:
4036 case SpvOpLoad:
4037 case SpvOpStore:
4038 case SpvOpCopyMemory:
4039 case SpvOpCopyMemorySized:
4040 case SpvOpAccessChain:
4041 case SpvOpPtrAccessChain:
4042 case SpvOpInBoundsAccessChain:
4043 case SpvOpArrayLength:
4044 case SpvOpConvertPtrToU:
4045 case SpvOpConvertUToPtr:
4046 vtn_handle_variables(b, opcode, w, count);
4047 break;
4048
4049 case SpvOpFunctionCall:
4050 vtn_handle_function_call(b, opcode, w, count);
4051 break;
4052
4053 case SpvOpSampledImage:
4054 case SpvOpImage:
4055 case SpvOpImageSampleImplicitLod:
4056 case SpvOpImageSampleExplicitLod:
4057 case SpvOpImageSampleDrefImplicitLod:
4058 case SpvOpImageSampleDrefExplicitLod:
4059 case SpvOpImageSampleProjImplicitLod:
4060 case SpvOpImageSampleProjExplicitLod:
4061 case SpvOpImageSampleProjDrefImplicitLod:
4062 case SpvOpImageSampleProjDrefExplicitLod:
4063 case SpvOpImageFetch:
4064 case SpvOpImageGather:
4065 case SpvOpImageDrefGather:
4066 case SpvOpImageQuerySizeLod:
4067 case SpvOpImageQueryLod:
4068 case SpvOpImageQueryLevels:
4069 case SpvOpImageQuerySamples:
4070 vtn_handle_texture(b, opcode, w, count);
4071 break;
4072
4073 case SpvOpImageRead:
4074 case SpvOpImageWrite:
4075 case SpvOpImageTexelPointer:
4076 vtn_handle_image(b, opcode, w, count);
4077 break;
4078
4079 case SpvOpImageQuerySize: {
4080 struct vtn_pointer *image =
4081 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4082 if (glsl_type_is_image(image->type->type)) {
4083 vtn_handle_image(b, opcode, w, count);
4084 } else {
4085 vtn_assert(glsl_type_is_sampler(image->type->type));
4086 vtn_handle_texture(b, opcode, w, count);
4087 }
4088 break;
4089 }
4090
4091 case SpvOpAtomicLoad:
4092 case SpvOpAtomicExchange:
4093 case SpvOpAtomicCompareExchange:
4094 case SpvOpAtomicCompareExchangeWeak:
4095 case SpvOpAtomicIIncrement:
4096 case SpvOpAtomicIDecrement:
4097 case SpvOpAtomicIAdd:
4098 case SpvOpAtomicISub:
4099 case SpvOpAtomicSMin:
4100 case SpvOpAtomicUMin:
4101 case SpvOpAtomicSMax:
4102 case SpvOpAtomicUMax:
4103 case SpvOpAtomicAnd:
4104 case SpvOpAtomicOr:
4105 case SpvOpAtomicXor: {
4106 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4107 if (pointer->value_type == vtn_value_type_image_pointer) {
4108 vtn_handle_image(b, opcode, w, count);
4109 } else {
4110 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4111 vtn_handle_atomics(b, opcode, w, count);
4112 }
4113 break;
4114 }
4115
4116 case SpvOpAtomicStore: {
4117 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4118 if (pointer->value_type == vtn_value_type_image_pointer) {
4119 vtn_handle_image(b, opcode, w, count);
4120 } else {
4121 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4122 vtn_handle_atomics(b, opcode, w, count);
4123 }
4124 break;
4125 }
4126
4127 case SpvOpSelect: {
4128 /* Handle OpSelect up-front here because it needs to be able to handle
4129 * pointers and not just regular vectors and scalars.
4130 */
4131 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4132 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
4133 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4134 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4135
4136 const struct glsl_type *sel_type;
4137 switch (res_val->type->base_type) {
4138 case vtn_base_type_scalar:
4139 sel_type = glsl_bool_type();
4140 break;
4141 case vtn_base_type_vector:
4142 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
4143 break;
4144 case vtn_base_type_pointer:
4145 /* We need to have actual storage for pointer types */
4146 vtn_fail_if(res_val->type->type == NULL,
4147 "Invalid pointer result type for OpSelect");
4148 sel_type = glsl_bool_type();
4149 break;
4150 default:
4151 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
4152 }
4153
4154 if (unlikely(sel_val->type->type != sel_type)) {
4155 if (sel_val->type->type == glsl_bool_type()) {
4156 /* This case is illegal but some older versions of GLSLang produce
4157 * it. The GLSLang issue was fixed on March 30, 2017:
4158 *
4159 * https://github.com/KhronosGroup/glslang/issues/809
4160 *
4161 * Unfortunately, there are applications in the wild which are
4162 * shipping with this bug so it isn't nice to fail on them so we
4163 * throw a warning instead. It's not actually a problem for us as
4164 * nir_builder will just splat the condition out which is most
4165 * likely what the client wanted anyway.
4166 */
4167 vtn_warn("Condition type of OpSelect must have the same number "
4168 "of components as Result Type");
4169 } else {
4170 vtn_fail("Condition type of OpSelect must be a scalar or vector "
4171 "of Boolean type. It must have the same number of "
4172 "components as Result Type");
4173 }
4174 }
4175
4176 vtn_fail_if(obj1_val->type != res_val->type ||
4177 obj2_val->type != res_val->type,
4178 "Object types must match the result type in OpSelect");
4179
4180 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4181 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
4182 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
4183 vtn_ssa_value(b, w[4])->def,
4184 vtn_ssa_value(b, w[5])->def);
4185 vtn_push_ssa(b, w[2], res_type, ssa);
4186 break;
4187 }
4188
4189 case SpvOpSNegate:
4190 case SpvOpFNegate:
4191 case SpvOpNot:
4192 case SpvOpAny:
4193 case SpvOpAll:
4194 case SpvOpConvertFToU:
4195 case SpvOpConvertFToS:
4196 case SpvOpConvertSToF:
4197 case SpvOpConvertUToF:
4198 case SpvOpUConvert:
4199 case SpvOpSConvert:
4200 case SpvOpFConvert:
4201 case SpvOpQuantizeToF16:
4202 case SpvOpPtrCastToGeneric:
4203 case SpvOpGenericCastToPtr:
4204 case SpvOpBitcast:
4205 case SpvOpIsNan:
4206 case SpvOpIsInf:
4207 case SpvOpIsFinite:
4208 case SpvOpIsNormal:
4209 case SpvOpSignBitSet:
4210 case SpvOpLessOrGreater:
4211 case SpvOpOrdered:
4212 case SpvOpUnordered:
4213 case SpvOpIAdd:
4214 case SpvOpFAdd:
4215 case SpvOpISub:
4216 case SpvOpFSub:
4217 case SpvOpIMul:
4218 case SpvOpFMul:
4219 case SpvOpUDiv:
4220 case SpvOpSDiv:
4221 case SpvOpFDiv:
4222 case SpvOpUMod:
4223 case SpvOpSRem:
4224 case SpvOpSMod:
4225 case SpvOpFRem:
4226 case SpvOpFMod:
4227 case SpvOpVectorTimesScalar:
4228 case SpvOpDot:
4229 case SpvOpIAddCarry:
4230 case SpvOpISubBorrow:
4231 case SpvOpUMulExtended:
4232 case SpvOpSMulExtended:
4233 case SpvOpShiftRightLogical:
4234 case SpvOpShiftRightArithmetic:
4235 case SpvOpShiftLeftLogical:
4236 case SpvOpLogicalEqual:
4237 case SpvOpLogicalNotEqual:
4238 case SpvOpLogicalOr:
4239 case SpvOpLogicalAnd:
4240 case SpvOpLogicalNot:
4241 case SpvOpBitwiseOr:
4242 case SpvOpBitwiseXor:
4243 case SpvOpBitwiseAnd:
4244 case SpvOpIEqual:
4245 case SpvOpFOrdEqual:
4246 case SpvOpFUnordEqual:
4247 case SpvOpINotEqual:
4248 case SpvOpFOrdNotEqual:
4249 case SpvOpFUnordNotEqual:
4250 case SpvOpULessThan:
4251 case SpvOpSLessThan:
4252 case SpvOpFOrdLessThan:
4253 case SpvOpFUnordLessThan:
4254 case SpvOpUGreaterThan:
4255 case SpvOpSGreaterThan:
4256 case SpvOpFOrdGreaterThan:
4257 case SpvOpFUnordGreaterThan:
4258 case SpvOpULessThanEqual:
4259 case SpvOpSLessThanEqual:
4260 case SpvOpFOrdLessThanEqual:
4261 case SpvOpFUnordLessThanEqual:
4262 case SpvOpUGreaterThanEqual:
4263 case SpvOpSGreaterThanEqual:
4264 case SpvOpFOrdGreaterThanEqual:
4265 case SpvOpFUnordGreaterThanEqual:
4266 case SpvOpDPdx:
4267 case SpvOpDPdy:
4268 case SpvOpFwidth:
4269 case SpvOpDPdxFine:
4270 case SpvOpDPdyFine:
4271 case SpvOpFwidthFine:
4272 case SpvOpDPdxCoarse:
4273 case SpvOpDPdyCoarse:
4274 case SpvOpFwidthCoarse:
4275 case SpvOpBitFieldInsert:
4276 case SpvOpBitFieldSExtract:
4277 case SpvOpBitFieldUExtract:
4278 case SpvOpBitReverse:
4279 case SpvOpBitCount:
4280 case SpvOpTranspose:
4281 case SpvOpOuterProduct:
4282 case SpvOpMatrixTimesScalar:
4283 case SpvOpVectorTimesMatrix:
4284 case SpvOpMatrixTimesVector:
4285 case SpvOpMatrixTimesMatrix:
4286 vtn_handle_alu(b, opcode, w, count);
4287 break;
4288
4289 case SpvOpVectorExtractDynamic:
4290 case SpvOpVectorInsertDynamic:
4291 case SpvOpVectorShuffle:
4292 case SpvOpCompositeConstruct:
4293 case SpvOpCompositeExtract:
4294 case SpvOpCompositeInsert:
4295 case SpvOpCopyObject:
4296 vtn_handle_composite(b, opcode, w, count);
4297 break;
4298
4299 case SpvOpEmitVertex:
4300 case SpvOpEndPrimitive:
4301 case SpvOpEmitStreamVertex:
4302 case SpvOpEndStreamPrimitive:
4303 case SpvOpControlBarrier:
4304 case SpvOpMemoryBarrier:
4305 vtn_handle_barrier(b, opcode, w, count);
4306 break;
4307
4308 case SpvOpGroupNonUniformElect:
4309 case SpvOpGroupNonUniformAll:
4310 case SpvOpGroupNonUniformAny:
4311 case SpvOpGroupNonUniformAllEqual:
4312 case SpvOpGroupNonUniformBroadcast:
4313 case SpvOpGroupNonUniformBroadcastFirst:
4314 case SpvOpGroupNonUniformBallot:
4315 case SpvOpGroupNonUniformInverseBallot:
4316 case SpvOpGroupNonUniformBallotBitExtract:
4317 case SpvOpGroupNonUniformBallotBitCount:
4318 case SpvOpGroupNonUniformBallotFindLSB:
4319 case SpvOpGroupNonUniformBallotFindMSB:
4320 case SpvOpGroupNonUniformShuffle:
4321 case SpvOpGroupNonUniformShuffleXor:
4322 case SpvOpGroupNonUniformShuffleUp:
4323 case SpvOpGroupNonUniformShuffleDown:
4324 case SpvOpGroupNonUniformIAdd:
4325 case SpvOpGroupNonUniformFAdd:
4326 case SpvOpGroupNonUniformIMul:
4327 case SpvOpGroupNonUniformFMul:
4328 case SpvOpGroupNonUniformSMin:
4329 case SpvOpGroupNonUniformUMin:
4330 case SpvOpGroupNonUniformFMin:
4331 case SpvOpGroupNonUniformSMax:
4332 case SpvOpGroupNonUniformUMax:
4333 case SpvOpGroupNonUniformFMax:
4334 case SpvOpGroupNonUniformBitwiseAnd:
4335 case SpvOpGroupNonUniformBitwiseOr:
4336 case SpvOpGroupNonUniformBitwiseXor:
4337 case SpvOpGroupNonUniformLogicalAnd:
4338 case SpvOpGroupNonUniformLogicalOr:
4339 case SpvOpGroupNonUniformLogicalXor:
4340 case SpvOpGroupNonUniformQuadBroadcast:
4341 case SpvOpGroupNonUniformQuadSwap:
4342 vtn_handle_subgroup(b, opcode, w, count);
4343 break;
4344
4345 default:
4346 vtn_fail("Unhandled opcode");
4347 }
4348
4349 return true;
4350 }
4351
4352 struct vtn_builder*
4353 vtn_create_builder(const uint32_t *words, size_t word_count,
4354 gl_shader_stage stage, const char *entry_point_name,
4355 const struct spirv_to_nir_options *options)
4356 {
4357 /* Initialize the vtn_builder object */
4358 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4359 b->spirv = words;
4360 b->spirv_word_count = word_count;
4361 b->file = NULL;
4362 b->line = -1;
4363 b->col = -1;
4364 exec_list_make_empty(&b->functions);
4365 b->entry_point_stage = stage;
4366 b->entry_point_name = entry_point_name;
4367 b->options = options;
4368
4369 /*
4370 * Handle the SPIR-V header (first 5 dwords).
4371 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4372 */
4373 if (word_count <= 5)
4374 goto fail;
4375
4376 if (words[0] != SpvMagicNumber) {
4377 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4378 goto fail;
4379 }
4380 if (words[1] < 0x10000) {
4381 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4382 goto fail;
4383 }
4384
4385 uint16_t generator_id = words[2] >> 16;
4386 uint16_t generator_version = words[2];
4387
4388 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4389 * but this should at least let us shut the workaround off for modern
4390 * versions of GLSLang.
4391 */
4392 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4393
4394 /* words[2] == generator magic */
4395 unsigned value_id_bound = words[3];
4396 if (words[4] != 0) {
4397 vtn_err("words[4] was %u, want 0", words[4]);
4398 goto fail;
4399 }
4400
4401 b->value_id_bound = value_id_bound;
4402 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4403
4404 return b;
4405 fail:
4406 ralloc_free(b);
4407 return NULL;
4408 }
4409
4410 nir_function *
4411 spirv_to_nir(const uint32_t *words, size_t word_count,
4412 struct nir_spirv_specialization *spec, unsigned num_spec,
4413 gl_shader_stage stage, const char *entry_point_name,
4414 const struct spirv_to_nir_options *options,
4415 const nir_shader_compiler_options *nir_options)
4416
4417 {
4418 const uint32_t *word_end = words + word_count;
4419
4420 struct vtn_builder *b = vtn_create_builder(words, word_count,
4421 stage, entry_point_name,
4422 options);
4423
4424 if (b == NULL)
4425 return NULL;
4426
4427 /* See also _vtn_fail() */
4428 if (setjmp(b->fail_jump)) {
4429 ralloc_free(b);
4430 return NULL;
4431 }
4432
4433 /* Skip the SPIR-V header, handled at vtn_create_builder */
4434 words+= 5;
4435
4436 /* Handle all the preamble instructions */
4437 words = vtn_foreach_instruction(b, words, word_end,
4438 vtn_handle_preamble_instruction);
4439
4440 if (b->entry_point == NULL) {
4441 vtn_fail("Entry point not found");
4442 ralloc_free(b);
4443 return NULL;
4444 }
4445
4446 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4447
4448 /* Set shader info defaults */
4449 b->shader->info.gs.invocations = 1;
4450
4451 /* Parse execution modes */
4452 vtn_foreach_execution_mode(b, b->entry_point,
4453 vtn_handle_execution_mode, NULL);
4454
4455 b->specializations = spec;
4456 b->num_specializations = num_spec;
4457
4458 /* Handle all variable, type, and constant instructions */
4459 words = vtn_foreach_instruction(b, words, word_end,
4460 vtn_handle_variable_or_type_instruction);
4461
4462 /* Set types on all vtn_values */
4463 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4464
4465 vtn_build_cfg(b, words, word_end);
4466
4467 assert(b->entry_point->value_type == vtn_value_type_function);
4468 b->entry_point->func->referenced = true;
4469
4470 bool progress;
4471 do {
4472 progress = false;
4473 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4474 if (func->referenced && !func->emitted) {
4475 b->const_table = _mesa_pointer_hash_table_create(b);
4476
4477 vtn_function_emit(b, func, vtn_handle_body_instruction);
4478 progress = true;
4479 }
4480 }
4481 } while (progress);
4482
4483 /* We sometimes generate bogus derefs that, while never used, give the
4484 * validator a bit of heartburn. Run dead code to get rid of them.
4485 */
4486 nir_opt_dce(b->shader);
4487
4488 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4489 nir_function *entry_point = b->entry_point->func->impl->function;
4490 vtn_assert(entry_point);
4491
4492 /* Unparent the shader from the vtn_builder before we delete the builder */
4493 ralloc_steal(NULL, b->shader);
4494
4495 ralloc_free(b);
4496
4497 entry_point->is_entrypoint = true;
4498 return entry_point;
4499 }