spirv/nir: Properly handle gather components
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33
34 void
35 _vtn_warn(const char *file, int line, const char *msg, ...)
36 {
37 char *formatted;
38 va_list args;
39
40 va_start(args, msg);
41 formatted = ralloc_vasprintf(NULL, msg, args);
42 va_end(args);
43
44 fprintf(stderr, "%s:%d WARNING: %s\n", file, line, formatted);
45
46 ralloc_free(formatted);
47 }
48
49 static struct vtn_ssa_value *
50 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
51 {
52 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
53 val->type = type;
54
55 if (glsl_type_is_vector_or_scalar(type)) {
56 unsigned num_components = glsl_get_vector_elements(val->type);
57 unsigned bit_size = glsl_get_bit_size(val->type);
58 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
59 } else {
60 unsigned elems = glsl_get_length(val->type);
61 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
62 if (glsl_type_is_matrix(type)) {
63 const struct glsl_type *elem_type =
64 glsl_vector_type(glsl_get_base_type(type),
65 glsl_get_vector_elements(type));
66
67 for (unsigned i = 0; i < elems; i++)
68 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
69 } else if (glsl_type_is_array(type)) {
70 const struct glsl_type *elem_type = glsl_get_array_element(type);
71 for (unsigned i = 0; i < elems; i++)
72 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
73 } else {
74 for (unsigned i = 0; i < elems; i++) {
75 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
76 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
77 }
78 }
79 }
80
81 return val;
82 }
83
84 static struct vtn_ssa_value *
85 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
86 const struct glsl_type *type)
87 {
88 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
89
90 if (entry)
91 return entry->data;
92
93 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
94 val->type = type;
95
96 switch (glsl_get_base_type(type)) {
97 case GLSL_TYPE_INT:
98 case GLSL_TYPE_UINT:
99 case GLSL_TYPE_BOOL:
100 case GLSL_TYPE_FLOAT:
101 case GLSL_TYPE_DOUBLE:
102 if (glsl_type_is_vector_or_scalar(type)) {
103 unsigned num_components = glsl_get_vector_elements(val->type);
104 nir_load_const_instr *load =
105 nir_load_const_instr_create(b->shader, num_components, 32);
106
107 for (unsigned i = 0; i < num_components; i++)
108 load->value.u32[i] = constant->value.u[i];
109
110 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
111 val->def = &load->def;
112 } else {
113 assert(glsl_type_is_matrix(type));
114 unsigned rows = glsl_get_vector_elements(val->type);
115 unsigned columns = glsl_get_matrix_columns(val->type);
116 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
117
118 for (unsigned i = 0; i < columns; i++) {
119 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
120 col_val->type = glsl_get_column_type(val->type);
121 nir_load_const_instr *load =
122 nir_load_const_instr_create(b->shader, rows, 32);
123
124 for (unsigned j = 0; j < rows; j++)
125 load->value.u32[j] = constant->value.u[rows * i + j];
126
127 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
128 col_val->def = &load->def;
129
130 val->elems[i] = col_val;
131 }
132 }
133 break;
134
135 case GLSL_TYPE_ARRAY: {
136 unsigned elems = glsl_get_length(val->type);
137 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
138 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
139 for (unsigned i = 0; i < elems; i++)
140 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
141 elem_type);
142 break;
143 }
144
145 case GLSL_TYPE_STRUCT: {
146 unsigned elems = glsl_get_length(val->type);
147 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
148 for (unsigned i = 0; i < elems; i++) {
149 const struct glsl_type *elem_type =
150 glsl_get_struct_field(val->type, i);
151 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
152 elem_type);
153 }
154 break;
155 }
156
157 default:
158 unreachable("bad constant type");
159 }
160
161 return val;
162 }
163
164 struct vtn_ssa_value *
165 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
166 {
167 struct vtn_value *val = vtn_untyped_value(b, value_id);
168 switch (val->value_type) {
169 case vtn_value_type_undef:
170 return vtn_undef_ssa_value(b, val->type->type);
171
172 case vtn_value_type_constant:
173 return vtn_const_ssa_value(b, val->constant, val->const_type);
174
175 case vtn_value_type_ssa:
176 return val->ssa;
177
178 case vtn_value_type_access_chain:
179 /* This is needed for function parameters */
180 return vtn_variable_load(b, val->access_chain);
181
182 default:
183 unreachable("Invalid type for an SSA value");
184 }
185 }
186
187 static char *
188 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
189 unsigned word_count, unsigned *words_used)
190 {
191 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
192 if (words_used) {
193 /* Ammount of space taken by the string (including the null) */
194 unsigned len = strlen(dup) + 1;
195 *words_used = DIV_ROUND_UP(len, sizeof(*words));
196 }
197 return dup;
198 }
199
200 const uint32_t *
201 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
202 const uint32_t *end, vtn_instruction_handler handler)
203 {
204 b->file = NULL;
205 b->line = -1;
206 b->col = -1;
207
208 const uint32_t *w = start;
209 while (w < end) {
210 SpvOp opcode = w[0] & SpvOpCodeMask;
211 unsigned count = w[0] >> SpvWordCountShift;
212 assert(count >= 1 && w + count <= end);
213
214 switch (opcode) {
215 case SpvOpNop:
216 break; /* Do nothing */
217
218 case SpvOpLine:
219 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
220 b->line = w[2];
221 b->col = w[3];
222 break;
223
224 case SpvOpNoLine:
225 b->file = NULL;
226 b->line = -1;
227 b->col = -1;
228 break;
229
230 default:
231 if (!handler(b, opcode, w, count))
232 return w;
233 break;
234 }
235
236 w += count;
237 }
238 assert(w == end);
239 return w;
240 }
241
242 static void
243 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
244 const uint32_t *w, unsigned count)
245 {
246 switch (opcode) {
247 case SpvOpExtInstImport: {
248 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
249 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
250 val->ext_handler = vtn_handle_glsl450_instruction;
251 } else {
252 assert(!"Unsupported extension");
253 }
254 break;
255 }
256
257 case SpvOpExtInst: {
258 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
259 bool handled = val->ext_handler(b, w[4], w, count);
260 (void)handled;
261 assert(handled);
262 break;
263 }
264
265 default:
266 unreachable("Unhandled opcode");
267 }
268 }
269
270 static void
271 _foreach_decoration_helper(struct vtn_builder *b,
272 struct vtn_value *base_value,
273 int parent_member,
274 struct vtn_value *value,
275 vtn_decoration_foreach_cb cb, void *data)
276 {
277 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
278 int member;
279 if (dec->scope == VTN_DEC_DECORATION) {
280 member = parent_member;
281 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
282 assert(parent_member == -1);
283 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
284 } else {
285 /* Not a decoration */
286 continue;
287 }
288
289 if (dec->group) {
290 assert(dec->group->value_type == vtn_value_type_decoration_group);
291 _foreach_decoration_helper(b, base_value, member, dec->group,
292 cb, data);
293 } else {
294 cb(b, base_value, member, dec, data);
295 }
296 }
297 }
298
299 /** Iterates (recursively if needed) over all of the decorations on a value
300 *
301 * This function iterates over all of the decorations applied to a given
302 * value. If it encounters a decoration group, it recurses into the group
303 * and iterates over all of those decorations as well.
304 */
305 void
306 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
307 vtn_decoration_foreach_cb cb, void *data)
308 {
309 _foreach_decoration_helper(b, value, -1, value, cb, data);
310 }
311
312 void
313 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
314 vtn_execution_mode_foreach_cb cb, void *data)
315 {
316 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
317 if (dec->scope != VTN_DEC_EXECUTION_MODE)
318 continue;
319
320 assert(dec->group == NULL);
321 cb(b, value, dec, data);
322 }
323 }
324
325 static void
326 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
327 const uint32_t *w, unsigned count)
328 {
329 const uint32_t *w_end = w + count;
330 const uint32_t target = w[1];
331 w += 2;
332
333 switch (opcode) {
334 case SpvOpDecorationGroup:
335 vtn_push_value(b, target, vtn_value_type_decoration_group);
336 break;
337
338 case SpvOpDecorate:
339 case SpvOpMemberDecorate:
340 case SpvOpExecutionMode: {
341 struct vtn_value *val = &b->values[target];
342
343 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
344 switch (opcode) {
345 case SpvOpDecorate:
346 dec->scope = VTN_DEC_DECORATION;
347 break;
348 case SpvOpMemberDecorate:
349 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
350 break;
351 case SpvOpExecutionMode:
352 dec->scope = VTN_DEC_EXECUTION_MODE;
353 break;
354 default:
355 unreachable("Invalid decoration opcode");
356 }
357 dec->decoration = *(w++);
358 dec->literals = w;
359
360 /* Link into the list */
361 dec->next = val->decoration;
362 val->decoration = dec;
363 break;
364 }
365
366 case SpvOpGroupMemberDecorate:
367 case SpvOpGroupDecorate: {
368 struct vtn_value *group =
369 vtn_value(b, target, vtn_value_type_decoration_group);
370
371 for (; w < w_end; w++) {
372 struct vtn_value *val = vtn_untyped_value(b, *w);
373 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
374
375 dec->group = group;
376 if (opcode == SpvOpGroupDecorate) {
377 dec->scope = VTN_DEC_DECORATION;
378 } else {
379 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
380 }
381
382 /* Link into the list */
383 dec->next = val->decoration;
384 val->decoration = dec;
385 }
386 break;
387 }
388
389 default:
390 unreachable("Unhandled opcode");
391 }
392 }
393
394 struct member_decoration_ctx {
395 unsigned num_fields;
396 struct glsl_struct_field *fields;
397 struct vtn_type *type;
398 };
399
400 /* does a shallow copy of a vtn_type */
401
402 static struct vtn_type *
403 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
404 {
405 struct vtn_type *dest = ralloc(b, struct vtn_type);
406 dest->type = src->type;
407 dest->is_builtin = src->is_builtin;
408 if (src->is_builtin)
409 dest->builtin = src->builtin;
410
411 if (!glsl_type_is_scalar(src->type)) {
412 switch (glsl_get_base_type(src->type)) {
413 case GLSL_TYPE_INT:
414 case GLSL_TYPE_UINT:
415 case GLSL_TYPE_BOOL:
416 case GLSL_TYPE_FLOAT:
417 case GLSL_TYPE_DOUBLE:
418 case GLSL_TYPE_ARRAY:
419 dest->row_major = src->row_major;
420 dest->stride = src->stride;
421 dest->array_element = src->array_element;
422 break;
423
424 case GLSL_TYPE_STRUCT: {
425 unsigned elems = glsl_get_length(src->type);
426
427 dest->members = ralloc_array(b, struct vtn_type *, elems);
428 memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *));
429
430 dest->offsets = ralloc_array(b, unsigned, elems);
431 memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned));
432 break;
433 }
434
435 default:
436 unreachable("unhandled type");
437 }
438 }
439
440 return dest;
441 }
442
443 static struct vtn_type *
444 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
445 {
446 type->members[member] = vtn_type_copy(b, type->members[member]);
447 type = type->members[member];
448
449 /* We may have an array of matrices.... Oh, joy! */
450 while (glsl_type_is_array(type->type)) {
451 type->array_element = vtn_type_copy(b, type->array_element);
452 type = type->array_element;
453 }
454
455 assert(glsl_type_is_matrix(type->type));
456
457 return type;
458 }
459
460 static void
461 struct_member_decoration_cb(struct vtn_builder *b,
462 struct vtn_value *val, int member,
463 const struct vtn_decoration *dec, void *void_ctx)
464 {
465 struct member_decoration_ctx *ctx = void_ctx;
466
467 if (member < 0)
468 return;
469
470 assert(member < ctx->num_fields);
471
472 switch (dec->decoration) {
473 case SpvDecorationNonWritable:
474 case SpvDecorationNonReadable:
475 case SpvDecorationRelaxedPrecision:
476 case SpvDecorationVolatile:
477 case SpvDecorationCoherent:
478 case SpvDecorationUniform:
479 break; /* FIXME: Do nothing with this for now. */
480 case SpvDecorationNoPerspective:
481 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
482 break;
483 case SpvDecorationFlat:
484 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
485 break;
486 case SpvDecorationCentroid:
487 ctx->fields[member].centroid = true;
488 break;
489 case SpvDecorationSample:
490 ctx->fields[member].sample = true;
491 break;
492 case SpvDecorationStream:
493 /* Vulkan only allows one GS stream */
494 assert(dec->literals[0] == 0);
495 break;
496 case SpvDecorationLocation:
497 ctx->fields[member].location = dec->literals[0];
498 break;
499 case SpvDecorationComponent:
500 break; /* FIXME: What should we do with these? */
501 case SpvDecorationBuiltIn:
502 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
503 ctx->type->members[member]->is_builtin = true;
504 ctx->type->members[member]->builtin = dec->literals[0];
505 ctx->type->builtin_block = true;
506 break;
507 case SpvDecorationOffset:
508 ctx->type->offsets[member] = dec->literals[0];
509 break;
510 case SpvDecorationMatrixStride:
511 mutable_matrix_member(b, ctx->type, member)->stride = dec->literals[0];
512 break;
513 case SpvDecorationColMajor:
514 break; /* Nothing to do here. Column-major is the default. */
515 case SpvDecorationRowMajor:
516 mutable_matrix_member(b, ctx->type, member)->row_major = true;
517 break;
518
519 case SpvDecorationPatch:
520 vtn_warn("Tessellation not yet supported");
521 break;
522
523 case SpvDecorationSpecId:
524 case SpvDecorationBlock:
525 case SpvDecorationBufferBlock:
526 case SpvDecorationArrayStride:
527 case SpvDecorationGLSLShared:
528 case SpvDecorationGLSLPacked:
529 case SpvDecorationInvariant:
530 case SpvDecorationRestrict:
531 case SpvDecorationAliased:
532 case SpvDecorationConstant:
533 case SpvDecorationIndex:
534 case SpvDecorationBinding:
535 case SpvDecorationDescriptorSet:
536 case SpvDecorationLinkageAttributes:
537 case SpvDecorationNoContraction:
538 case SpvDecorationInputAttachmentIndex:
539 vtn_warn("Decoration not allowed on struct members: %s",
540 spirv_decoration_to_string(dec->decoration));
541 break;
542
543 case SpvDecorationXfbBuffer:
544 case SpvDecorationXfbStride:
545 vtn_warn("Vulkan does not have transform feedback");
546 break;
547
548 case SpvDecorationCPacked:
549 case SpvDecorationSaturatedConversion:
550 case SpvDecorationFuncParamAttr:
551 case SpvDecorationFPRoundingMode:
552 case SpvDecorationFPFastMathMode:
553 case SpvDecorationAlignment:
554 vtn_warn("Decoraiton only allowed for CL-style kernels: %s",
555 spirv_decoration_to_string(dec->decoration));
556 break;
557 }
558 }
559
560 static void
561 type_decoration_cb(struct vtn_builder *b,
562 struct vtn_value *val, int member,
563 const struct vtn_decoration *dec, void *ctx)
564 {
565 struct vtn_type *type = val->type;
566
567 if (member != -1)
568 return;
569
570 switch (dec->decoration) {
571 case SpvDecorationArrayStride:
572 type->stride = dec->literals[0];
573 break;
574 case SpvDecorationBlock:
575 type->block = true;
576 break;
577 case SpvDecorationBufferBlock:
578 type->buffer_block = true;
579 break;
580 case SpvDecorationGLSLShared:
581 case SpvDecorationGLSLPacked:
582 /* Ignore these, since we get explicit offsets anyways */
583 break;
584
585 case SpvDecorationRowMajor:
586 case SpvDecorationColMajor:
587 case SpvDecorationMatrixStride:
588 case SpvDecorationBuiltIn:
589 case SpvDecorationNoPerspective:
590 case SpvDecorationFlat:
591 case SpvDecorationPatch:
592 case SpvDecorationCentroid:
593 case SpvDecorationSample:
594 case SpvDecorationVolatile:
595 case SpvDecorationCoherent:
596 case SpvDecorationNonWritable:
597 case SpvDecorationNonReadable:
598 case SpvDecorationUniform:
599 case SpvDecorationStream:
600 case SpvDecorationLocation:
601 case SpvDecorationComponent:
602 case SpvDecorationOffset:
603 case SpvDecorationXfbBuffer:
604 case SpvDecorationXfbStride:
605 vtn_warn("Decoraiton only allowed for struct members: %s",
606 spirv_decoration_to_string(dec->decoration));
607 break;
608
609 case SpvDecorationRelaxedPrecision:
610 case SpvDecorationSpecId:
611 case SpvDecorationInvariant:
612 case SpvDecorationRestrict:
613 case SpvDecorationAliased:
614 case SpvDecorationConstant:
615 case SpvDecorationIndex:
616 case SpvDecorationBinding:
617 case SpvDecorationDescriptorSet:
618 case SpvDecorationLinkageAttributes:
619 case SpvDecorationNoContraction:
620 case SpvDecorationInputAttachmentIndex:
621 vtn_warn("Decoraiton not allowed on types: %s",
622 spirv_decoration_to_string(dec->decoration));
623 break;
624
625 case SpvDecorationCPacked:
626 case SpvDecorationSaturatedConversion:
627 case SpvDecorationFuncParamAttr:
628 case SpvDecorationFPRoundingMode:
629 case SpvDecorationFPFastMathMode:
630 case SpvDecorationAlignment:
631 vtn_warn("Decoraiton only allowed for CL-style kernels: %s",
632 spirv_decoration_to_string(dec->decoration));
633 break;
634 }
635 }
636
637 static unsigned
638 translate_image_format(SpvImageFormat format)
639 {
640 switch (format) {
641 case SpvImageFormatUnknown: return 0; /* GL_NONE */
642 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
643 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
644 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
645 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
646 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
647 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
648 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
649 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
650 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
651 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
652 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
653 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
654 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
655 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
656 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
657 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
658 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
659 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
660 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
661 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
662 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
663 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
664 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
665 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
666 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
667 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
668 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
669 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
670 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
671 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
672 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
673 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
674 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
675 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
676 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
677 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
678 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
679 case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */
680 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
681 default:
682 assert(!"Invalid image format");
683 return 0;
684 }
685 }
686
687 static void
688 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
689 const uint32_t *w, unsigned count)
690 {
691 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
692
693 val->type = rzalloc(b, struct vtn_type);
694 val->type->is_builtin = false;
695 val->type->val = val;
696
697 switch (opcode) {
698 case SpvOpTypeVoid:
699 val->type->type = glsl_void_type();
700 break;
701 case SpvOpTypeBool:
702 val->type->type = glsl_bool_type();
703 break;
704 case SpvOpTypeInt: {
705 const bool signedness = w[3];
706 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
707 break;
708 }
709 case SpvOpTypeFloat:
710 val->type->type = glsl_float_type();
711 break;
712
713 case SpvOpTypeVector: {
714 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
715 unsigned elems = w[3];
716
717 assert(glsl_type_is_scalar(base->type));
718 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
719
720 /* Vectors implicitly have sizeof(base_type) stride. For now, this
721 * is always 4 bytes. This will have to change if we want to start
722 * supporting doubles or half-floats.
723 */
724 val->type->stride = 4;
725 val->type->array_element = base;
726 break;
727 }
728
729 case SpvOpTypeMatrix: {
730 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
731 unsigned columns = w[3];
732
733 assert(glsl_type_is_vector(base->type));
734 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
735 glsl_get_vector_elements(base->type),
736 columns);
737 assert(!glsl_type_is_error(val->type->type));
738 val->type->array_element = base;
739 val->type->row_major = false;
740 val->type->stride = 0;
741 break;
742 }
743
744 case SpvOpTypeRuntimeArray:
745 case SpvOpTypeArray: {
746 struct vtn_type *array_element =
747 vtn_value(b, w[2], vtn_value_type_type)->type;
748
749 unsigned length;
750 if (opcode == SpvOpTypeRuntimeArray) {
751 /* A length of 0 is used to denote unsized arrays */
752 length = 0;
753 } else {
754 length =
755 vtn_value(b, w[3], vtn_value_type_constant)->constant->value.u[0];
756 }
757
758 val->type->type = glsl_array_type(array_element->type, length);
759 val->type->array_element = array_element;
760 val->type->stride = 0;
761 break;
762 }
763
764 case SpvOpTypeStruct: {
765 unsigned num_fields = count - 2;
766 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
767 val->type->offsets = ralloc_array(b, unsigned, num_fields);
768
769 NIR_VLA(struct glsl_struct_field, fields, count);
770 for (unsigned i = 0; i < num_fields; i++) {
771 val->type->members[i] =
772 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
773 fields[i] = (struct glsl_struct_field) {
774 .type = val->type->members[i]->type,
775 .name = ralloc_asprintf(b, "field%d", i),
776 .location = -1,
777 };
778 }
779
780 struct member_decoration_ctx ctx = {
781 .num_fields = num_fields,
782 .fields = fields,
783 .type = val->type
784 };
785
786 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
787
788 const char *name = val->name ? val->name : "struct";
789
790 val->type->type = glsl_struct_type(fields, num_fields, name);
791 break;
792 }
793
794 case SpvOpTypeFunction: {
795 const struct glsl_type *return_type =
796 vtn_value(b, w[2], vtn_value_type_type)->type->type;
797 NIR_VLA(struct glsl_function_param, params, count - 3);
798 for (unsigned i = 0; i < count - 3; i++) {
799 params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type;
800
801 /* FIXME: */
802 params[i].in = true;
803 params[i].out = true;
804 }
805 val->type->type = glsl_function_type(return_type, params, count - 3);
806 break;
807 }
808
809 case SpvOpTypePointer:
810 /* FIXME: For now, we'll just do the really lame thing and return
811 * the same type. The validator should ensure that the proper number
812 * of dereferences happen
813 */
814 val->type = vtn_value(b, w[3], vtn_value_type_type)->type;
815 break;
816
817 case SpvOpTypeImage: {
818 const struct glsl_type *sampled_type =
819 vtn_value(b, w[2], vtn_value_type_type)->type->type;
820
821 assert(glsl_type_is_vector_or_scalar(sampled_type));
822
823 enum glsl_sampler_dim dim;
824 switch ((SpvDim)w[3]) {
825 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
826 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
827 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
828 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
829 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
830 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
831 default:
832 unreachable("Invalid SPIR-V Sampler dimension");
833 }
834
835 bool is_shadow = w[4];
836 bool is_array = w[5];
837 bool multisampled = w[6];
838 unsigned sampled = w[7];
839 SpvImageFormat format = w[8];
840
841 if (count > 9)
842 val->type->access_qualifier = w[9];
843 else
844 val->type->access_qualifier = SpvAccessQualifierReadWrite;
845
846 if (multisampled) {
847 assert(dim == GLSL_SAMPLER_DIM_2D);
848 dim = GLSL_SAMPLER_DIM_MS;
849 }
850
851 val->type->image_format = translate_image_format(format);
852
853 if (sampled == 1) {
854 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
855 glsl_get_base_type(sampled_type));
856 } else if (sampled == 2) {
857 assert(format);
858 assert(!is_shadow);
859 val->type->type = glsl_image_type(dim, is_array,
860 glsl_get_base_type(sampled_type));
861 } else {
862 assert(!"We need to know if the image will be sampled");
863 }
864 break;
865 }
866
867 case SpvOpTypeSampledImage:
868 val->type = vtn_value(b, w[2], vtn_value_type_type)->type;
869 break;
870
871 case SpvOpTypeSampler:
872 /* The actual sampler type here doesn't really matter. It gets
873 * thrown away the moment you combine it with an image. What really
874 * matters is that it's a sampler type as opposed to an integer type
875 * so the backend knows what to do.
876 */
877 val->type->type = glsl_bare_sampler_type();
878 break;
879
880 case SpvOpTypeOpaque:
881 case SpvOpTypeEvent:
882 case SpvOpTypeDeviceEvent:
883 case SpvOpTypeReserveId:
884 case SpvOpTypeQueue:
885 case SpvOpTypePipe:
886 default:
887 unreachable("Unhandled opcode");
888 }
889
890 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
891 }
892
893 static nir_constant *
894 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
895 {
896 nir_constant *c = rzalloc(b, nir_constant);
897
898 switch (glsl_get_base_type(type)) {
899 case GLSL_TYPE_INT:
900 case GLSL_TYPE_UINT:
901 case GLSL_TYPE_BOOL:
902 case GLSL_TYPE_FLOAT:
903 case GLSL_TYPE_DOUBLE:
904 /* Nothing to do here. It's already initialized to zero */
905 break;
906
907 case GLSL_TYPE_ARRAY:
908 assert(glsl_get_length(type) > 0);
909 c->num_elements = glsl_get_length(type);
910 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
911
912 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
913 for (unsigned i = 1; i < c->num_elements; i++)
914 c->elements[i] = c->elements[0];
915 break;
916
917 case GLSL_TYPE_STRUCT:
918 c->num_elements = glsl_get_length(type);
919 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
920
921 for (unsigned i = 0; i < c->num_elements; i++) {
922 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
923 }
924 break;
925
926 default:
927 unreachable("Invalid type for null constant");
928 }
929
930 return c;
931 }
932
933 static void
934 spec_constant_deocoration_cb(struct vtn_builder *b, struct vtn_value *v,
935 int member, const struct vtn_decoration *dec,
936 void *data)
937 {
938 assert(member == -1);
939 if (dec->decoration != SpvDecorationSpecId)
940 return;
941
942 uint32_t *const_value = data;
943
944 for (unsigned i = 0; i < b->num_specializations; i++) {
945 if (b->specializations[i].id == dec->literals[0]) {
946 *const_value = b->specializations[i].data;
947 return;
948 }
949 }
950 }
951
952 static uint32_t
953 get_specialization(struct vtn_builder *b, struct vtn_value *val,
954 uint32_t const_value)
955 {
956 vtn_foreach_decoration(b, val, spec_constant_deocoration_cb, &const_value);
957 return const_value;
958 }
959
960 static void
961 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
962 struct vtn_value *val,
963 int member,
964 const struct vtn_decoration *dec,
965 void *data)
966 {
967 assert(member == -1);
968 if (dec->decoration != SpvDecorationBuiltIn ||
969 dec->literals[0] != SpvBuiltInWorkgroupSize)
970 return;
971
972 assert(val->const_type == glsl_vector_type(GLSL_TYPE_UINT, 3));
973
974 b->shader->info.cs.local_size[0] = val->constant->value.u[0];
975 b->shader->info.cs.local_size[1] = val->constant->value.u[1];
976 b->shader->info.cs.local_size[2] = val->constant->value.u[2];
977 }
978
979 static void
980 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
981 const uint32_t *w, unsigned count)
982 {
983 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
984 val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
985 val->constant = rzalloc(b, nir_constant);
986 switch (opcode) {
987 case SpvOpConstantTrue:
988 assert(val->const_type == glsl_bool_type());
989 val->constant->value.u[0] = NIR_TRUE;
990 break;
991 case SpvOpConstantFalse:
992 assert(val->const_type == glsl_bool_type());
993 val->constant->value.u[0] = NIR_FALSE;
994 break;
995
996 case SpvOpSpecConstantTrue:
997 case SpvOpSpecConstantFalse: {
998 assert(val->const_type == glsl_bool_type());
999 uint32_t int_val =
1000 get_specialization(b, val, (opcode == SpvOpSpecConstantTrue));
1001 val->constant->value.u[0] = int_val ? NIR_TRUE : NIR_FALSE;
1002 break;
1003 }
1004
1005 case SpvOpConstant:
1006 assert(glsl_type_is_scalar(val->const_type));
1007 val->constant->value.u[0] = w[3];
1008 break;
1009 case SpvOpSpecConstant:
1010 assert(glsl_type_is_scalar(val->const_type));
1011 val->constant->value.u[0] = get_specialization(b, val, w[3]);
1012 break;
1013 case SpvOpSpecConstantComposite:
1014 case SpvOpConstantComposite: {
1015 unsigned elem_count = count - 3;
1016 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1017 for (unsigned i = 0; i < elem_count; i++)
1018 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1019
1020 switch (glsl_get_base_type(val->const_type)) {
1021 case GLSL_TYPE_UINT:
1022 case GLSL_TYPE_INT:
1023 case GLSL_TYPE_FLOAT:
1024 case GLSL_TYPE_BOOL:
1025 if (glsl_type_is_matrix(val->const_type)) {
1026 unsigned rows = glsl_get_vector_elements(val->const_type);
1027 assert(glsl_get_matrix_columns(val->const_type) == elem_count);
1028 for (unsigned i = 0; i < elem_count; i++)
1029 for (unsigned j = 0; j < rows; j++)
1030 val->constant->value.u[rows * i + j] = elems[i]->value.u[j];
1031 } else {
1032 assert(glsl_type_is_vector(val->const_type));
1033 assert(glsl_get_vector_elements(val->const_type) == elem_count);
1034 for (unsigned i = 0; i < elem_count; i++)
1035 val->constant->value.u[i] = elems[i]->value.u[0];
1036 }
1037 ralloc_free(elems);
1038 break;
1039
1040 case GLSL_TYPE_STRUCT:
1041 case GLSL_TYPE_ARRAY:
1042 ralloc_steal(val->constant, elems);
1043 val->constant->num_elements = elem_count;
1044 val->constant->elements = elems;
1045 break;
1046
1047 default:
1048 unreachable("Unsupported type for constants");
1049 }
1050 break;
1051 }
1052
1053 case SpvOpSpecConstantOp: {
1054 SpvOp opcode = get_specialization(b, val, w[3]);
1055 switch (opcode) {
1056 case SpvOpVectorShuffle: {
1057 struct vtn_value *v0 = vtn_value(b, w[4], vtn_value_type_constant);
1058 struct vtn_value *v1 = vtn_value(b, w[5], vtn_value_type_constant);
1059 unsigned len0 = glsl_get_vector_elements(v0->const_type);
1060 unsigned len1 = glsl_get_vector_elements(v1->const_type);
1061
1062 uint32_t u[8];
1063 for (unsigned i = 0; i < len0; i++)
1064 u[i] = v0->constant->value.u[i];
1065 for (unsigned i = 0; i < len1; i++)
1066 u[len0 + i] = v1->constant->value.u[i];
1067
1068 for (unsigned i = 0; i < count - 6; i++) {
1069 uint32_t comp = w[i + 6];
1070 if (comp == (uint32_t)-1) {
1071 val->constant->value.u[i] = 0xdeadbeef;
1072 } else {
1073 val->constant->value.u[i] = u[comp];
1074 }
1075 }
1076 break;
1077 }
1078
1079 case SpvOpCompositeExtract:
1080 case SpvOpCompositeInsert: {
1081 struct vtn_value *comp;
1082 unsigned deref_start;
1083 struct nir_constant **c;
1084 if (opcode == SpvOpCompositeExtract) {
1085 comp = vtn_value(b, w[4], vtn_value_type_constant);
1086 deref_start = 5;
1087 c = &comp->constant;
1088 } else {
1089 comp = vtn_value(b, w[5], vtn_value_type_constant);
1090 deref_start = 6;
1091 val->constant = nir_constant_clone(comp->constant,
1092 (nir_variable *)b);
1093 c = &val->constant;
1094 }
1095
1096 int elem = -1;
1097 const struct glsl_type *type = comp->const_type;
1098 for (unsigned i = deref_start; i < count; i++) {
1099 switch (glsl_get_base_type(type)) {
1100 case GLSL_TYPE_UINT:
1101 case GLSL_TYPE_INT:
1102 case GLSL_TYPE_FLOAT:
1103 case GLSL_TYPE_BOOL:
1104 /* If we hit this granularity, we're picking off an element */
1105 if (elem < 0)
1106 elem = 0;
1107
1108 if (glsl_type_is_matrix(type)) {
1109 elem += w[i] * glsl_get_vector_elements(type);
1110 type = glsl_get_column_type(type);
1111 } else {
1112 assert(glsl_type_is_vector(type));
1113 elem += w[i];
1114 type = glsl_scalar_type(glsl_get_base_type(type));
1115 }
1116 continue;
1117
1118 case GLSL_TYPE_ARRAY:
1119 c = &(*c)->elements[w[i]];
1120 type = glsl_get_array_element(type);
1121 continue;
1122
1123 case GLSL_TYPE_STRUCT:
1124 c = &(*c)->elements[w[i]];
1125 type = glsl_get_struct_field(type, w[i]);
1126 continue;
1127
1128 default:
1129 unreachable("Invalid constant type");
1130 }
1131 }
1132
1133 if (opcode == SpvOpCompositeExtract) {
1134 if (elem == -1) {
1135 val->constant = *c;
1136 } else {
1137 unsigned num_components = glsl_get_vector_elements(type);
1138 for (unsigned i = 0; i < num_components; i++)
1139 val->constant->value.u[i] = (*c)->value.u[elem + i];
1140 }
1141 } else {
1142 struct vtn_value *insert =
1143 vtn_value(b, w[4], vtn_value_type_constant);
1144 assert(insert->const_type == type);
1145 if (elem == -1) {
1146 *c = insert->constant;
1147 } else {
1148 unsigned num_components = glsl_get_vector_elements(type);
1149 for (unsigned i = 0; i < num_components; i++)
1150 (*c)->value.u[elem + i] = insert->constant->value.u[i];
1151 }
1152 }
1153 break;
1154 }
1155
1156 default: {
1157 bool swap;
1158 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap);
1159
1160 unsigned num_components = glsl_get_vector_elements(val->const_type);
1161 unsigned bit_size =
1162 glsl_get_bit_size(val->const_type);
1163
1164 nir_const_value src[4];
1165 assert(count <= 7);
1166 for (unsigned i = 0; i < count - 4; i++) {
1167 nir_constant *c =
1168 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1169
1170 unsigned j = swap ? 1 - i : i;
1171 assert(bit_size == 32);
1172 for (unsigned k = 0; k < num_components; k++)
1173 src[j].u32[k] = c->value.u[k];
1174 }
1175
1176 nir_const_value res = nir_eval_const_opcode(op, num_components,
1177 bit_size, src);
1178
1179 for (unsigned k = 0; k < num_components; k++)
1180 val->constant->value.u[k] = res.u32[k];
1181
1182 break;
1183 } /* default */
1184 }
1185 break;
1186 }
1187
1188 case SpvOpConstantNull:
1189 val->constant = vtn_null_constant(b, val->const_type);
1190 break;
1191
1192 case SpvOpConstantSampler:
1193 assert(!"OpConstantSampler requires Kernel Capability");
1194 break;
1195
1196 default:
1197 unreachable("Unhandled opcode");
1198 }
1199
1200 /* Now that we have the value, update the workgroup size if needed */
1201 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1202 }
1203
1204 static void
1205 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1206 const uint32_t *w, unsigned count)
1207 {
1208 struct nir_function *callee =
1209 vtn_value(b, w[3], vtn_value_type_function)->func->impl->function;
1210
1211 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1212 for (unsigned i = 0; i < call->num_params; i++) {
1213 unsigned arg_id = w[4 + i];
1214 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1215 if (arg->value_type == vtn_value_type_access_chain) {
1216 nir_deref_var *d = vtn_access_chain_to_deref(b, arg->access_chain);
1217 call->params[i] = nir_deref_as_var(nir_copy_deref(call, &d->deref));
1218 } else {
1219 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1220
1221 /* Make a temporary to store the argument in */
1222 nir_variable *tmp =
1223 nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp");
1224 call->params[i] = nir_deref_var_create(call, tmp);
1225
1226 vtn_local_store(b, arg_ssa, call->params[i]);
1227 }
1228 }
1229
1230 nir_variable *out_tmp = NULL;
1231 if (!glsl_type_is_void(callee->return_type)) {
1232 out_tmp = nir_local_variable_create(b->impl, callee->return_type,
1233 "out_tmp");
1234 call->return_deref = nir_deref_var_create(call, out_tmp);
1235 }
1236
1237 nir_builder_instr_insert(&b->nb, &call->instr);
1238
1239 if (glsl_type_is_void(callee->return_type)) {
1240 vtn_push_value(b, w[2], vtn_value_type_undef);
1241 } else {
1242 struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa);
1243 retval->ssa = vtn_local_load(b, call->return_deref);
1244 }
1245 }
1246
1247 struct vtn_ssa_value *
1248 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1249 {
1250 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1251 val->type = type;
1252
1253 if (!glsl_type_is_vector_or_scalar(type)) {
1254 unsigned elems = glsl_get_length(type);
1255 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1256 for (unsigned i = 0; i < elems; i++) {
1257 const struct glsl_type *child_type;
1258
1259 switch (glsl_get_base_type(type)) {
1260 case GLSL_TYPE_INT:
1261 case GLSL_TYPE_UINT:
1262 case GLSL_TYPE_BOOL:
1263 case GLSL_TYPE_FLOAT:
1264 case GLSL_TYPE_DOUBLE:
1265 child_type = glsl_get_column_type(type);
1266 break;
1267 case GLSL_TYPE_ARRAY:
1268 child_type = glsl_get_array_element(type);
1269 break;
1270 case GLSL_TYPE_STRUCT:
1271 child_type = glsl_get_struct_field(type, i);
1272 break;
1273 default:
1274 unreachable("unkown base type");
1275 }
1276
1277 val->elems[i] = vtn_create_ssa_value(b, child_type);
1278 }
1279 }
1280
1281 return val;
1282 }
1283
1284 static nir_tex_src
1285 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1286 {
1287 nir_tex_src src;
1288 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1289 src.src_type = type;
1290 return src;
1291 }
1292
1293 static void
1294 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1295 const uint32_t *w, unsigned count)
1296 {
1297 if (opcode == SpvOpSampledImage) {
1298 struct vtn_value *val =
1299 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1300 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1301 val->sampled_image->image =
1302 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1303 val->sampled_image->sampler =
1304 vtn_value(b, w[4], vtn_value_type_access_chain)->access_chain;
1305 return;
1306 } else if (opcode == SpvOpImage) {
1307 struct vtn_value *val =
1308 vtn_push_value(b, w[2], vtn_value_type_access_chain);
1309 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1310 if (src_val->value_type == vtn_value_type_sampled_image) {
1311 val->access_chain = src_val->sampled_image->image;
1312 } else {
1313 assert(src_val->value_type == vtn_value_type_access_chain);
1314 val->access_chain = src_val->access_chain;
1315 }
1316 return;
1317 }
1318
1319 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1320 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1321
1322 struct vtn_sampled_image sampled;
1323 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1324 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1325 sampled = *sampled_val->sampled_image;
1326 } else {
1327 assert(sampled_val->value_type == vtn_value_type_access_chain);
1328 sampled.image = NULL;
1329 sampled.sampler = sampled_val->access_chain;
1330 }
1331
1332 const struct glsl_type *image_type;
1333 if (sampled.image) {
1334 image_type = sampled.image->var->var->interface_type;
1335 } else {
1336 image_type = sampled.sampler->var->var->interface_type;
1337 }
1338
1339 nir_tex_src srcs[8]; /* 8 should be enough */
1340 nir_tex_src *p = srcs;
1341
1342 unsigned idx = 4;
1343
1344 bool has_coord = false;
1345 switch (opcode) {
1346 case SpvOpImageSampleImplicitLod:
1347 case SpvOpImageSampleExplicitLod:
1348 case SpvOpImageSampleDrefImplicitLod:
1349 case SpvOpImageSampleDrefExplicitLod:
1350 case SpvOpImageSampleProjImplicitLod:
1351 case SpvOpImageSampleProjExplicitLod:
1352 case SpvOpImageSampleProjDrefImplicitLod:
1353 case SpvOpImageSampleProjDrefExplicitLod:
1354 case SpvOpImageFetch:
1355 case SpvOpImageGather:
1356 case SpvOpImageDrefGather:
1357 case SpvOpImageQueryLod: {
1358 /* All these types have the coordinate as their first real argument */
1359 struct vtn_ssa_value *coord = vtn_ssa_value(b, w[idx++]);
1360 has_coord = true;
1361 p->src = nir_src_for_ssa(coord->def);
1362 p->src_type = nir_tex_src_coord;
1363 p++;
1364 break;
1365 }
1366
1367 default:
1368 break;
1369 }
1370
1371 unsigned gather_component = 0;
1372 switch (opcode) {
1373 case SpvOpImageSampleDrefImplicitLod:
1374 case SpvOpImageSampleDrefExplicitLod:
1375 case SpvOpImageSampleProjDrefImplicitLod:
1376 case SpvOpImageSampleProjDrefExplicitLod:
1377 case SpvOpImageDrefGather:
1378 /* These all have an explicit depth value as their next source */
1379 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparitor);
1380 break;
1381
1382 case SpvOpImageGather:
1383 /* This has a component as its next source */
1384 gather_component =
1385 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->value.u[0];
1386 break;
1387
1388 default:
1389 break;
1390 }
1391
1392 /* For OpImageQuerySizeLod, we always have an LOD */
1393 if (opcode == SpvOpImageQuerySizeLod)
1394 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1395
1396 /* Figure out the base texture operation */
1397 nir_texop texop;
1398 switch (opcode) {
1399 case SpvOpImageSampleImplicitLod:
1400 case SpvOpImageSampleDrefImplicitLod:
1401 case SpvOpImageSampleProjImplicitLod:
1402 case SpvOpImageSampleProjDrefImplicitLod:
1403 texop = nir_texop_tex;
1404 break;
1405
1406 case SpvOpImageSampleExplicitLod:
1407 case SpvOpImageSampleDrefExplicitLod:
1408 case SpvOpImageSampleProjExplicitLod:
1409 case SpvOpImageSampleProjDrefExplicitLod:
1410 texop = nir_texop_txl;
1411 break;
1412
1413 case SpvOpImageFetch:
1414 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1415 texop = nir_texop_txf_ms;
1416 } else {
1417 texop = nir_texop_txf;
1418 }
1419 break;
1420
1421 case SpvOpImageGather:
1422 case SpvOpImageDrefGather:
1423 texop = nir_texop_tg4;
1424 break;
1425
1426 case SpvOpImageQuerySizeLod:
1427 case SpvOpImageQuerySize:
1428 texop = nir_texop_txs;
1429 break;
1430
1431 case SpvOpImageQueryLod:
1432 texop = nir_texop_lod;
1433 break;
1434
1435 case SpvOpImageQueryLevels:
1436 texop = nir_texop_query_levels;
1437 break;
1438
1439 case SpvOpImageQuerySamples:
1440 default:
1441 unreachable("Unhandled opcode");
1442 }
1443
1444 /* Now we need to handle some number of optional arguments */
1445 if (idx < count) {
1446 uint32_t operands = w[idx++];
1447
1448 if (operands & SpvImageOperandsBiasMask) {
1449 assert(texop == nir_texop_tex);
1450 texop = nir_texop_txb;
1451 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
1452 }
1453
1454 if (operands & SpvImageOperandsLodMask) {
1455 assert(texop == nir_texop_txl || texop == nir_texop_txf ||
1456 texop == nir_texop_txs);
1457 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1458 }
1459
1460 if (operands & SpvImageOperandsGradMask) {
1461 assert(texop == nir_texop_txl);
1462 texop = nir_texop_txd;
1463 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
1464 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
1465 }
1466
1467 if (operands & SpvImageOperandsOffsetMask ||
1468 operands & SpvImageOperandsConstOffsetMask)
1469 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
1470
1471 if (operands & SpvImageOperandsConstOffsetsMask)
1472 assert(!"Constant offsets to texture gather not yet implemented");
1473
1474 if (operands & SpvImageOperandsSampleMask) {
1475 assert(texop == nir_texop_txf_ms);
1476 texop = nir_texop_txf_ms;
1477 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
1478 }
1479 }
1480 /* We should have now consumed exactly all of the arguments */
1481 assert(idx == count);
1482
1483 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
1484 instr->op = texop;
1485
1486 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
1487
1488 instr->sampler_dim = glsl_get_sampler_dim(image_type);
1489 instr->is_array = glsl_sampler_type_is_array(image_type);
1490 instr->is_shadow = glsl_sampler_type_is_shadow(image_type);
1491 instr->is_new_style_shadow = instr->is_shadow &&
1492 glsl_get_components(ret_type->type) == 1;
1493 instr->component = gather_component;
1494
1495 if (has_coord) {
1496 switch (instr->sampler_dim) {
1497 case GLSL_SAMPLER_DIM_1D:
1498 case GLSL_SAMPLER_DIM_BUF:
1499 instr->coord_components = 1;
1500 break;
1501 case GLSL_SAMPLER_DIM_2D:
1502 case GLSL_SAMPLER_DIM_RECT:
1503 case GLSL_SAMPLER_DIM_MS:
1504 instr->coord_components = 2;
1505 break;
1506 case GLSL_SAMPLER_DIM_3D:
1507 case GLSL_SAMPLER_DIM_CUBE:
1508 instr->coord_components = 3;
1509 break;
1510 default:
1511 assert("Invalid sampler type");
1512 }
1513
1514 if (instr->is_array)
1515 instr->coord_components++;
1516 } else {
1517 instr->coord_components = 0;
1518 }
1519
1520 switch (glsl_get_sampler_result_type(image_type)) {
1521 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
1522 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
1523 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
1524 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
1525 default:
1526 unreachable("Invalid base type for sampler result");
1527 }
1528
1529 nir_deref_var *sampler = vtn_access_chain_to_deref(b, sampled.sampler);
1530 if (sampled.image) {
1531 nir_deref_var *image = vtn_access_chain_to_deref(b, sampled.image);
1532 instr->texture = nir_deref_as_var(nir_copy_deref(instr, &image->deref));
1533 } else {
1534 instr->texture = nir_deref_as_var(nir_copy_deref(instr, &sampler->deref));
1535 }
1536
1537 switch (instr->op) {
1538 case nir_texop_tex:
1539 case nir_texop_txb:
1540 case nir_texop_txl:
1541 case nir_texop_txd:
1542 /* These operations require a sampler */
1543 instr->sampler = nir_deref_as_var(nir_copy_deref(instr, &sampler->deref));
1544 break;
1545 case nir_texop_txf:
1546 case nir_texop_txf_ms:
1547 case nir_texop_txs:
1548 case nir_texop_lod:
1549 case nir_texop_tg4:
1550 case nir_texop_query_levels:
1551 case nir_texop_texture_samples:
1552 case nir_texop_samples_identical:
1553 /* These don't */
1554 instr->sampler = NULL;
1555 break;
1556 case nir_texop_txf_ms_mcs:
1557 unreachable("unexpected nir_texop_txf_ms_mcs");
1558 }
1559
1560 nir_ssa_dest_init(&instr->instr, &instr->dest,
1561 nir_tex_instr_dest_size(instr), 32, NULL);
1562
1563 assert(glsl_get_vector_elements(ret_type->type) ==
1564 nir_tex_instr_dest_size(instr));
1565
1566 val->ssa = vtn_create_ssa_value(b, ret_type->type);
1567 val->ssa->def = &instr->dest.ssa;
1568
1569 nir_builder_instr_insert(&b->nb, &instr->instr);
1570 }
1571
1572 static nir_ssa_def *
1573 get_image_coord(struct vtn_builder *b, uint32_t value)
1574 {
1575 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
1576
1577 /* The image_load_store intrinsics assume a 4-dim coordinate */
1578 unsigned dim = glsl_get_vector_elements(coord->type);
1579 unsigned swizzle[4];
1580 for (unsigned i = 0; i < 4; i++)
1581 swizzle[i] = MIN2(i, dim - 1);
1582
1583 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
1584 }
1585
1586 static void
1587 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
1588 const uint32_t *w, unsigned count)
1589 {
1590 /* Just get this one out of the way */
1591 if (opcode == SpvOpImageTexelPointer) {
1592 struct vtn_value *val =
1593 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
1594 val->image = ralloc(b, struct vtn_image_pointer);
1595
1596 val->image->image =
1597 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1598 val->image->coord = get_image_coord(b, w[4]);
1599 val->image->sample = vtn_ssa_value(b, w[5])->def;
1600 return;
1601 }
1602
1603 struct vtn_image_pointer image;
1604
1605 switch (opcode) {
1606 case SpvOpAtomicExchange:
1607 case SpvOpAtomicCompareExchange:
1608 case SpvOpAtomicCompareExchangeWeak:
1609 case SpvOpAtomicIIncrement:
1610 case SpvOpAtomicIDecrement:
1611 case SpvOpAtomicIAdd:
1612 case SpvOpAtomicISub:
1613 case SpvOpAtomicSMin:
1614 case SpvOpAtomicUMin:
1615 case SpvOpAtomicSMax:
1616 case SpvOpAtomicUMax:
1617 case SpvOpAtomicAnd:
1618 case SpvOpAtomicOr:
1619 case SpvOpAtomicXor:
1620 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
1621 break;
1622
1623 case SpvOpImageQuerySize:
1624 image.image =
1625 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1626 image.coord = NULL;
1627 image.sample = NULL;
1628 break;
1629
1630 case SpvOpImageRead:
1631 image.image =
1632 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1633 image.coord = get_image_coord(b, w[4]);
1634
1635 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
1636 assert(w[5] == SpvImageOperandsSampleMask);
1637 image.sample = vtn_ssa_value(b, w[6])->def;
1638 } else {
1639 image.sample = nir_ssa_undef(&b->nb, 1, 32);
1640 }
1641 break;
1642
1643 case SpvOpImageWrite:
1644 image.image =
1645 vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain;
1646 image.coord = get_image_coord(b, w[2]);
1647
1648 /* texel = w[3] */
1649
1650 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
1651 assert(w[4] == SpvImageOperandsSampleMask);
1652 image.sample = vtn_ssa_value(b, w[5])->def;
1653 } else {
1654 image.sample = nir_ssa_undef(&b->nb, 1, 32);
1655 }
1656 break;
1657
1658 default:
1659 unreachable("Invalid image opcode");
1660 }
1661
1662 nir_intrinsic_op op;
1663 switch (opcode) {
1664 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
1665 OP(ImageQuerySize, size)
1666 OP(ImageRead, load)
1667 OP(ImageWrite, store)
1668 OP(AtomicExchange, atomic_exchange)
1669 OP(AtomicCompareExchange, atomic_comp_swap)
1670 OP(AtomicIIncrement, atomic_add)
1671 OP(AtomicIDecrement, atomic_add)
1672 OP(AtomicIAdd, atomic_add)
1673 OP(AtomicISub, atomic_add)
1674 OP(AtomicSMin, atomic_min)
1675 OP(AtomicUMin, atomic_min)
1676 OP(AtomicSMax, atomic_max)
1677 OP(AtomicUMax, atomic_max)
1678 OP(AtomicAnd, atomic_and)
1679 OP(AtomicOr, atomic_or)
1680 OP(AtomicXor, atomic_xor)
1681 #undef OP
1682 default:
1683 unreachable("Invalid image opcode");
1684 }
1685
1686 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
1687
1688 nir_deref_var *image_deref = vtn_access_chain_to_deref(b, image.image);
1689 intrin->variables[0] =
1690 nir_deref_as_var(nir_copy_deref(&intrin->instr, &image_deref->deref));
1691
1692 /* ImageQuerySize doesn't take any extra parameters */
1693 if (opcode != SpvOpImageQuerySize) {
1694 /* The image coordinate is always 4 components but we may not have that
1695 * many. Swizzle to compensate.
1696 */
1697 unsigned swiz[4];
1698 for (unsigned i = 0; i < 4; i++)
1699 swiz[i] = i < image.coord->num_components ? i : 0;
1700 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
1701 swiz, 4, false));
1702 intrin->src[1] = nir_src_for_ssa(image.sample);
1703 }
1704
1705 switch (opcode) {
1706 case SpvOpImageQuerySize:
1707 case SpvOpImageRead:
1708 break;
1709 case SpvOpImageWrite:
1710 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
1711 break;
1712 case SpvOpAtomicIIncrement:
1713 intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1714 break;
1715 case SpvOpAtomicIDecrement:
1716 intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1717 break;
1718
1719 case SpvOpAtomicExchange:
1720 case SpvOpAtomicIAdd:
1721 case SpvOpAtomicSMin:
1722 case SpvOpAtomicUMin:
1723 case SpvOpAtomicSMax:
1724 case SpvOpAtomicUMax:
1725 case SpvOpAtomicAnd:
1726 case SpvOpAtomicOr:
1727 case SpvOpAtomicXor:
1728 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1729 break;
1730
1731 case SpvOpAtomicCompareExchange:
1732 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1733 intrin->src[3] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1734 break;
1735
1736 case SpvOpAtomicISub:
1737 intrin->src[2] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1738 break;
1739
1740 default:
1741 unreachable("Invalid image opcode");
1742 }
1743
1744 if (opcode != SpvOpImageWrite) {
1745 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1746 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1747 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 4, 32, NULL);
1748
1749 nir_builder_instr_insert(&b->nb, &intrin->instr);
1750
1751 /* The image intrinsics always return 4 channels but we may not want
1752 * that many. Emit a mov to trim it down.
1753 */
1754 unsigned swiz[4] = {0, 1, 2, 3};
1755 val->ssa = vtn_create_ssa_value(b, type->type);
1756 val->ssa->def = nir_swizzle(&b->nb, &intrin->dest.ssa, swiz,
1757 glsl_get_vector_elements(type->type), false);
1758 } else {
1759 nir_builder_instr_insert(&b->nb, &intrin->instr);
1760 }
1761 }
1762
1763 static nir_intrinsic_op
1764 get_ssbo_nir_atomic_op(SpvOp opcode)
1765 {
1766 switch (opcode) {
1767 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
1768 OP(AtomicExchange, atomic_exchange)
1769 OP(AtomicCompareExchange, atomic_comp_swap)
1770 OP(AtomicIIncrement, atomic_add)
1771 OP(AtomicIDecrement, atomic_add)
1772 OP(AtomicIAdd, atomic_add)
1773 OP(AtomicISub, atomic_add)
1774 OP(AtomicSMin, atomic_imin)
1775 OP(AtomicUMin, atomic_umin)
1776 OP(AtomicSMax, atomic_imax)
1777 OP(AtomicUMax, atomic_umax)
1778 OP(AtomicAnd, atomic_and)
1779 OP(AtomicOr, atomic_or)
1780 OP(AtomicXor, atomic_xor)
1781 #undef OP
1782 default:
1783 unreachable("Invalid SSBO atomic");
1784 }
1785 }
1786
1787 static nir_intrinsic_op
1788 get_shared_nir_atomic_op(SpvOp opcode)
1789 {
1790 switch (opcode) {
1791 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
1792 OP(AtomicExchange, atomic_exchange)
1793 OP(AtomicCompareExchange, atomic_comp_swap)
1794 OP(AtomicIIncrement, atomic_add)
1795 OP(AtomicIDecrement, atomic_add)
1796 OP(AtomicIAdd, atomic_add)
1797 OP(AtomicISub, atomic_add)
1798 OP(AtomicSMin, atomic_imin)
1799 OP(AtomicUMin, atomic_umin)
1800 OP(AtomicSMax, atomic_imax)
1801 OP(AtomicUMax, atomic_umax)
1802 OP(AtomicAnd, atomic_and)
1803 OP(AtomicOr, atomic_or)
1804 OP(AtomicXor, atomic_xor)
1805 #undef OP
1806 default:
1807 unreachable("Invalid shared atomic");
1808 }
1809 }
1810
1811 static void
1812 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
1813 const uint32_t *w, nir_src *src)
1814 {
1815 switch (opcode) {
1816 case SpvOpAtomicIIncrement:
1817 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1818 break;
1819
1820 case SpvOpAtomicIDecrement:
1821 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1822 break;
1823
1824 case SpvOpAtomicISub:
1825 src[0] =
1826 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1827 break;
1828
1829 case SpvOpAtomicCompareExchange:
1830 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1831 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
1832 break;
1833 /* Fall through */
1834
1835 case SpvOpAtomicExchange:
1836 case SpvOpAtomicIAdd:
1837 case SpvOpAtomicSMin:
1838 case SpvOpAtomicUMin:
1839 case SpvOpAtomicSMax:
1840 case SpvOpAtomicUMax:
1841 case SpvOpAtomicAnd:
1842 case SpvOpAtomicOr:
1843 case SpvOpAtomicXor:
1844 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1845 break;
1846
1847 default:
1848 unreachable("Invalid SPIR-V atomic");
1849 }
1850 }
1851
1852 static void
1853 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
1854 const uint32_t *w, unsigned count)
1855 {
1856 struct vtn_access_chain *chain =
1857 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1858 nir_intrinsic_instr *atomic;
1859
1860 /*
1861 SpvScope scope = w[4];
1862 SpvMemorySemanticsMask semantics = w[5];
1863 */
1864
1865 if (chain->var->mode == vtn_variable_mode_workgroup) {
1866 nir_deref *deref = &vtn_access_chain_to_deref(b, chain)->deref;
1867 nir_intrinsic_op op = get_shared_nir_atomic_op(opcode);
1868 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
1869 atomic->variables[0] = nir_deref_as_var(nir_copy_deref(atomic, deref));
1870 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
1871 } else {
1872 assert(chain->var->mode == vtn_variable_mode_ssbo);
1873 struct vtn_type *type;
1874 nir_ssa_def *offset, *index;
1875 offset = vtn_access_chain_to_offset(b, chain, &index, &type, NULL, false);
1876
1877 nir_intrinsic_op op = get_ssbo_nir_atomic_op(opcode);
1878
1879 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
1880 atomic->src[0] = nir_src_for_ssa(index);
1881 atomic->src[1] = nir_src_for_ssa(offset);
1882 fill_common_atomic_sources(b, opcode, w, &atomic->src[2]);
1883 }
1884
1885 nir_ssa_dest_init(&atomic->instr, &atomic->dest, 1, 32, NULL);
1886
1887 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1888 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1889 val->ssa = rzalloc(b, struct vtn_ssa_value);
1890 val->ssa->def = &atomic->dest.ssa;
1891 val->ssa->type = type->type;
1892
1893 nir_builder_instr_insert(&b->nb, &atomic->instr);
1894 }
1895
1896 static nir_alu_instr *
1897 create_vec(nir_shader *shader, unsigned num_components, unsigned bit_size)
1898 {
1899 nir_op op;
1900 switch (num_components) {
1901 case 1: op = nir_op_fmov; break;
1902 case 2: op = nir_op_vec2; break;
1903 case 3: op = nir_op_vec3; break;
1904 case 4: op = nir_op_vec4; break;
1905 default: unreachable("bad vector size");
1906 }
1907
1908 nir_alu_instr *vec = nir_alu_instr_create(shader, op);
1909 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
1910 bit_size, NULL);
1911 vec->dest.write_mask = (1 << num_components) - 1;
1912
1913 return vec;
1914 }
1915
1916 struct vtn_ssa_value *
1917 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
1918 {
1919 if (src->transposed)
1920 return src->transposed;
1921
1922 struct vtn_ssa_value *dest =
1923 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
1924
1925 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
1926 nir_alu_instr *vec = create_vec(b->shader,
1927 glsl_get_matrix_columns(src->type),
1928 glsl_get_bit_size(src->type));
1929 if (glsl_type_is_vector_or_scalar(src->type)) {
1930 vec->src[0].src = nir_src_for_ssa(src->def);
1931 vec->src[0].swizzle[0] = i;
1932 } else {
1933 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
1934 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
1935 vec->src[j].swizzle[0] = i;
1936 }
1937 }
1938 nir_builder_instr_insert(&b->nb, &vec->instr);
1939 dest->elems[i]->def = &vec->dest.dest.ssa;
1940 }
1941
1942 dest->transposed = src;
1943
1944 return dest;
1945 }
1946
1947 nir_ssa_def *
1948 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
1949 {
1950 unsigned swiz[4] = { index };
1951 return nir_swizzle(&b->nb, src, swiz, 1, true);
1952 }
1953
1954 nir_ssa_def *
1955 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
1956 unsigned index)
1957 {
1958 nir_alu_instr *vec = create_vec(b->shader, src->num_components,
1959 src->bit_size);
1960
1961 for (unsigned i = 0; i < src->num_components; i++) {
1962 if (i == index) {
1963 vec->src[i].src = nir_src_for_ssa(insert);
1964 } else {
1965 vec->src[i].src = nir_src_for_ssa(src);
1966 vec->src[i].swizzle[0] = i;
1967 }
1968 }
1969
1970 nir_builder_instr_insert(&b->nb, &vec->instr);
1971
1972 return &vec->dest.dest.ssa;
1973 }
1974
1975 nir_ssa_def *
1976 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
1977 nir_ssa_def *index)
1978 {
1979 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
1980 for (unsigned i = 1; i < src->num_components; i++)
1981 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
1982 vtn_vector_extract(b, src, i), dest);
1983
1984 return dest;
1985 }
1986
1987 nir_ssa_def *
1988 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
1989 nir_ssa_def *insert, nir_ssa_def *index)
1990 {
1991 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
1992 for (unsigned i = 1; i < src->num_components; i++)
1993 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
1994 vtn_vector_insert(b, src, insert, i), dest);
1995
1996 return dest;
1997 }
1998
1999 static nir_ssa_def *
2000 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2001 nir_ssa_def *src0, nir_ssa_def *src1,
2002 const uint32_t *indices)
2003 {
2004 nir_alu_instr *vec = create_vec(b->shader, num_components, src0->bit_size);
2005
2006 for (unsigned i = 0; i < num_components; i++) {
2007 uint32_t index = indices[i];
2008 if (index == 0xffffffff) {
2009 vec->src[i].src =
2010 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2011 } else if (index < src0->num_components) {
2012 vec->src[i].src = nir_src_for_ssa(src0);
2013 vec->src[i].swizzle[0] = index;
2014 } else {
2015 vec->src[i].src = nir_src_for_ssa(src1);
2016 vec->src[i].swizzle[0] = index - src0->num_components;
2017 }
2018 }
2019
2020 nir_builder_instr_insert(&b->nb, &vec->instr);
2021
2022 return &vec->dest.dest.ssa;
2023 }
2024
2025 /*
2026 * Concatentates a number of vectors/scalars together to produce a vector
2027 */
2028 static nir_ssa_def *
2029 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2030 unsigned num_srcs, nir_ssa_def **srcs)
2031 {
2032 nir_alu_instr *vec = create_vec(b->shader, num_components,
2033 srcs[0]->bit_size);
2034
2035 unsigned dest_idx = 0;
2036 for (unsigned i = 0; i < num_srcs; i++) {
2037 nir_ssa_def *src = srcs[i];
2038 for (unsigned j = 0; j < src->num_components; j++) {
2039 vec->src[dest_idx].src = nir_src_for_ssa(src);
2040 vec->src[dest_idx].swizzle[0] = j;
2041 dest_idx++;
2042 }
2043 }
2044
2045 nir_builder_instr_insert(&b->nb, &vec->instr);
2046
2047 return &vec->dest.dest.ssa;
2048 }
2049
2050 static struct vtn_ssa_value *
2051 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2052 {
2053 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2054 dest->type = src->type;
2055
2056 if (glsl_type_is_vector_or_scalar(src->type)) {
2057 dest->def = src->def;
2058 } else {
2059 unsigned elems = glsl_get_length(src->type);
2060
2061 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2062 for (unsigned i = 0; i < elems; i++)
2063 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2064 }
2065
2066 return dest;
2067 }
2068
2069 static struct vtn_ssa_value *
2070 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2071 struct vtn_ssa_value *insert, const uint32_t *indices,
2072 unsigned num_indices)
2073 {
2074 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2075
2076 struct vtn_ssa_value *cur = dest;
2077 unsigned i;
2078 for (i = 0; i < num_indices - 1; i++) {
2079 cur = cur->elems[indices[i]];
2080 }
2081
2082 if (glsl_type_is_vector_or_scalar(cur->type)) {
2083 /* According to the SPIR-V spec, OpCompositeInsert may work down to
2084 * the component granularity. In that case, the last index will be
2085 * the index to insert the scalar into the vector.
2086 */
2087
2088 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2089 } else {
2090 cur->elems[indices[i]] = insert;
2091 }
2092
2093 return dest;
2094 }
2095
2096 static struct vtn_ssa_value *
2097 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2098 const uint32_t *indices, unsigned num_indices)
2099 {
2100 struct vtn_ssa_value *cur = src;
2101 for (unsigned i = 0; i < num_indices; i++) {
2102 if (glsl_type_is_vector_or_scalar(cur->type)) {
2103 assert(i == num_indices - 1);
2104 /* According to the SPIR-V spec, OpCompositeExtract may work down to
2105 * the component granularity. The last index will be the index of the
2106 * vector to extract.
2107 */
2108
2109 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2110 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2111 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2112 return ret;
2113 } else {
2114 cur = cur->elems[indices[i]];
2115 }
2116 }
2117
2118 return cur;
2119 }
2120
2121 static void
2122 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2123 const uint32_t *w, unsigned count)
2124 {
2125 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2126 const struct glsl_type *type =
2127 vtn_value(b, w[1], vtn_value_type_type)->type->type;
2128 val->ssa = vtn_create_ssa_value(b, type);
2129
2130 switch (opcode) {
2131 case SpvOpVectorExtractDynamic:
2132 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2133 vtn_ssa_value(b, w[4])->def);
2134 break;
2135
2136 case SpvOpVectorInsertDynamic:
2137 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2138 vtn_ssa_value(b, w[4])->def,
2139 vtn_ssa_value(b, w[5])->def);
2140 break;
2141
2142 case SpvOpVectorShuffle:
2143 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2144 vtn_ssa_value(b, w[3])->def,
2145 vtn_ssa_value(b, w[4])->def,
2146 w + 5);
2147 break;
2148
2149 case SpvOpCompositeConstruct: {
2150 unsigned elems = count - 3;
2151 if (glsl_type_is_vector_or_scalar(type)) {
2152 nir_ssa_def *srcs[4];
2153 for (unsigned i = 0; i < elems; i++)
2154 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2155 val->ssa->def =
2156 vtn_vector_construct(b, glsl_get_vector_elements(type),
2157 elems, srcs);
2158 } else {
2159 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2160 for (unsigned i = 0; i < elems; i++)
2161 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2162 }
2163 break;
2164 }
2165 case SpvOpCompositeExtract:
2166 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2167 w + 4, count - 4);
2168 break;
2169
2170 case SpvOpCompositeInsert:
2171 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2172 vtn_ssa_value(b, w[3]),
2173 w + 5, count - 5);
2174 break;
2175
2176 case SpvOpCopyObject:
2177 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2178 break;
2179
2180 default:
2181 unreachable("unknown composite operation");
2182 }
2183 }
2184
2185 static void
2186 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
2187 const uint32_t *w, unsigned count)
2188 {
2189 nir_intrinsic_op intrinsic_op;
2190 switch (opcode) {
2191 case SpvOpEmitVertex:
2192 case SpvOpEmitStreamVertex:
2193 intrinsic_op = nir_intrinsic_emit_vertex;
2194 break;
2195 case SpvOpEndPrimitive:
2196 case SpvOpEndStreamPrimitive:
2197 intrinsic_op = nir_intrinsic_end_primitive;
2198 break;
2199 case SpvOpMemoryBarrier:
2200 intrinsic_op = nir_intrinsic_memory_barrier;
2201 break;
2202 case SpvOpControlBarrier:
2203 intrinsic_op = nir_intrinsic_barrier;
2204 break;
2205 default:
2206 unreachable("unknown barrier instruction");
2207 }
2208
2209 nir_intrinsic_instr *intrin =
2210 nir_intrinsic_instr_create(b->shader, intrinsic_op);
2211
2212 if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
2213 nir_intrinsic_set_stream_id(intrin, w[1]);
2214
2215 nir_builder_instr_insert(&b->nb, &intrin->instr);
2216 }
2217
2218 static unsigned
2219 gl_primitive_from_spv_execution_mode(SpvExecutionMode mode)
2220 {
2221 switch (mode) {
2222 case SpvExecutionModeInputPoints:
2223 case SpvExecutionModeOutputPoints:
2224 return 0; /* GL_POINTS */
2225 case SpvExecutionModeInputLines:
2226 return 1; /* GL_LINES */
2227 case SpvExecutionModeInputLinesAdjacency:
2228 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
2229 case SpvExecutionModeTriangles:
2230 return 4; /* GL_TRIANGLES */
2231 case SpvExecutionModeInputTrianglesAdjacency:
2232 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
2233 case SpvExecutionModeQuads:
2234 return 7; /* GL_QUADS */
2235 case SpvExecutionModeIsolines:
2236 return 0x8E7A; /* GL_ISOLINES */
2237 case SpvExecutionModeOutputLineStrip:
2238 return 3; /* GL_LINE_STRIP */
2239 case SpvExecutionModeOutputTriangleStrip:
2240 return 5; /* GL_TRIANGLE_STRIP */
2241 default:
2242 assert(!"Invalid primitive type");
2243 return 4;
2244 }
2245 }
2246
2247 static unsigned
2248 vertices_in_from_spv_execution_mode(SpvExecutionMode mode)
2249 {
2250 switch (mode) {
2251 case SpvExecutionModeInputPoints:
2252 return 1;
2253 case SpvExecutionModeInputLines:
2254 return 2;
2255 case SpvExecutionModeInputLinesAdjacency:
2256 return 4;
2257 case SpvExecutionModeTriangles:
2258 return 3;
2259 case SpvExecutionModeInputTrianglesAdjacency:
2260 return 6;
2261 default:
2262 assert(!"Invalid GS input mode");
2263 return 0;
2264 }
2265 }
2266
2267 static gl_shader_stage
2268 stage_for_execution_model(SpvExecutionModel model)
2269 {
2270 switch (model) {
2271 case SpvExecutionModelVertex:
2272 return MESA_SHADER_VERTEX;
2273 case SpvExecutionModelTessellationControl:
2274 return MESA_SHADER_TESS_CTRL;
2275 case SpvExecutionModelTessellationEvaluation:
2276 return MESA_SHADER_TESS_EVAL;
2277 case SpvExecutionModelGeometry:
2278 return MESA_SHADER_GEOMETRY;
2279 case SpvExecutionModelFragment:
2280 return MESA_SHADER_FRAGMENT;
2281 case SpvExecutionModelGLCompute:
2282 return MESA_SHADER_COMPUTE;
2283 default:
2284 unreachable("Unsupported execution model");
2285 }
2286 }
2287
2288 static bool
2289 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
2290 const uint32_t *w, unsigned count)
2291 {
2292 switch (opcode) {
2293 case SpvOpSource:
2294 case SpvOpSourceExtension:
2295 case SpvOpSourceContinued:
2296 case SpvOpExtension:
2297 /* Unhandled, but these are for debug so that's ok. */
2298 break;
2299
2300 case SpvOpCapability: {
2301 SpvCapability cap = w[1];
2302 switch (cap) {
2303 case SpvCapabilityMatrix:
2304 case SpvCapabilityShader:
2305 case SpvCapabilityGeometry:
2306 case SpvCapabilityGeometryPointSize:
2307 case SpvCapabilityUniformBufferArrayDynamicIndexing:
2308 case SpvCapabilitySampledImageArrayDynamicIndexing:
2309 case SpvCapabilityStorageBufferArrayDynamicIndexing:
2310 case SpvCapabilityStorageImageArrayDynamicIndexing:
2311 case SpvCapabilityImageRect:
2312 case SpvCapabilitySampledRect:
2313 case SpvCapabilitySampled1D:
2314 case SpvCapabilityImage1D:
2315 case SpvCapabilitySampledCubeArray:
2316 case SpvCapabilitySampledBuffer:
2317 case SpvCapabilityImageBuffer:
2318 case SpvCapabilityImageQuery:
2319 case SpvCapabilityDerivativeControl:
2320 case SpvCapabilityInterpolationFunction:
2321 case SpvCapabilityMultiViewport:
2322 break;
2323
2324 case SpvCapabilityClipDistance:
2325 case SpvCapabilityCullDistance:
2326 case SpvCapabilityGeometryStreams:
2327 case SpvCapabilityTessellation:
2328 case SpvCapabilityTessellationPointSize:
2329 case SpvCapabilityLinkage:
2330 case SpvCapabilityVector16:
2331 case SpvCapabilityFloat16Buffer:
2332 case SpvCapabilityFloat16:
2333 case SpvCapabilityFloat64:
2334 case SpvCapabilityInt64:
2335 case SpvCapabilityInt64Atomics:
2336 case SpvCapabilityAtomicStorage:
2337 case SpvCapabilityInt16:
2338 case SpvCapabilityImageGatherExtended:
2339 case SpvCapabilityStorageImageMultisample:
2340 case SpvCapabilityImageCubeArray:
2341 case SpvCapabilitySampleRateShading:
2342 case SpvCapabilityInt8:
2343 case SpvCapabilityInputAttachment:
2344 case SpvCapabilitySparseResidency:
2345 case SpvCapabilityMinLod:
2346 case SpvCapabilityImageMSArray:
2347 case SpvCapabilityStorageImageExtendedFormats:
2348 case SpvCapabilityTransformFeedback:
2349 case SpvCapabilityStorageImageReadWithoutFormat:
2350 case SpvCapabilityStorageImageWriteWithoutFormat:
2351 vtn_warn("Unsupported SPIR-V capability: %s",
2352 spirv_capability_to_string(cap));
2353 break;
2354
2355 case SpvCapabilityAddresses:
2356 case SpvCapabilityKernel:
2357 case SpvCapabilityImageBasic:
2358 case SpvCapabilityImageReadWrite:
2359 case SpvCapabilityImageMipmap:
2360 case SpvCapabilityPipes:
2361 case SpvCapabilityGroups:
2362 case SpvCapabilityDeviceEnqueue:
2363 case SpvCapabilityLiteralSampler:
2364 case SpvCapabilityGenericPointer:
2365 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
2366 spirv_capability_to_string(cap));
2367 break;
2368 }
2369 break;
2370 }
2371
2372 case SpvOpExtInstImport:
2373 vtn_handle_extension(b, opcode, w, count);
2374 break;
2375
2376 case SpvOpMemoryModel:
2377 assert(w[1] == SpvAddressingModelLogical);
2378 assert(w[2] == SpvMemoryModelGLSL450);
2379 break;
2380
2381 case SpvOpEntryPoint: {
2382 struct vtn_value *entry_point = &b->values[w[2]];
2383 /* Let this be a name label regardless */
2384 unsigned name_words;
2385 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
2386
2387 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
2388 stage_for_execution_model(w[1]) != b->entry_point_stage)
2389 break;
2390
2391 assert(b->entry_point == NULL);
2392 b->entry_point = entry_point;
2393 break;
2394 }
2395
2396 case SpvOpString:
2397 vtn_push_value(b, w[1], vtn_value_type_string)->str =
2398 vtn_string_literal(b, &w[2], count - 2, NULL);
2399 break;
2400
2401 case SpvOpName:
2402 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
2403 break;
2404
2405 case SpvOpMemberName:
2406 /* TODO */
2407 break;
2408
2409 case SpvOpExecutionMode:
2410 case SpvOpDecorationGroup:
2411 case SpvOpDecorate:
2412 case SpvOpMemberDecorate:
2413 case SpvOpGroupDecorate:
2414 case SpvOpGroupMemberDecorate:
2415 vtn_handle_decoration(b, opcode, w, count);
2416 break;
2417
2418 default:
2419 return false; /* End of preamble */
2420 }
2421
2422 return true;
2423 }
2424
2425 static void
2426 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
2427 const struct vtn_decoration *mode, void *data)
2428 {
2429 assert(b->entry_point == entry_point);
2430
2431 switch(mode->exec_mode) {
2432 case SpvExecutionModeOriginUpperLeft:
2433 case SpvExecutionModeOriginLowerLeft:
2434 b->origin_upper_left =
2435 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
2436 break;
2437
2438 case SpvExecutionModeEarlyFragmentTests:
2439 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2440 b->shader->info.fs.early_fragment_tests = true;
2441 break;
2442
2443 case SpvExecutionModeInvocations:
2444 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2445 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
2446 break;
2447
2448 case SpvExecutionModeDepthReplacing:
2449 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2450 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
2451 break;
2452 case SpvExecutionModeDepthGreater:
2453 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2454 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
2455 break;
2456 case SpvExecutionModeDepthLess:
2457 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2458 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
2459 break;
2460 case SpvExecutionModeDepthUnchanged:
2461 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2462 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2463 break;
2464
2465 case SpvExecutionModeLocalSize:
2466 assert(b->shader->stage == MESA_SHADER_COMPUTE);
2467 b->shader->info.cs.local_size[0] = mode->literals[0];
2468 b->shader->info.cs.local_size[1] = mode->literals[1];
2469 b->shader->info.cs.local_size[2] = mode->literals[2];
2470 break;
2471 case SpvExecutionModeLocalSizeHint:
2472 break; /* Nothing to do with this */
2473
2474 case SpvExecutionModeOutputVertices:
2475 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2476 b->shader->info.gs.vertices_out = mode->literals[0];
2477 break;
2478
2479 case SpvExecutionModeInputPoints:
2480 case SpvExecutionModeInputLines:
2481 case SpvExecutionModeInputLinesAdjacency:
2482 case SpvExecutionModeTriangles:
2483 case SpvExecutionModeInputTrianglesAdjacency:
2484 case SpvExecutionModeQuads:
2485 case SpvExecutionModeIsolines:
2486 if (b->shader->stage == MESA_SHADER_GEOMETRY) {
2487 b->shader->info.gs.vertices_in =
2488 vertices_in_from_spv_execution_mode(mode->exec_mode);
2489 } else {
2490 assert(!"Tesselation shaders not yet supported");
2491 }
2492 break;
2493
2494 case SpvExecutionModeOutputPoints:
2495 case SpvExecutionModeOutputLineStrip:
2496 case SpvExecutionModeOutputTriangleStrip:
2497 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2498 b->shader->info.gs.output_primitive =
2499 gl_primitive_from_spv_execution_mode(mode->exec_mode);
2500 break;
2501
2502 case SpvExecutionModeSpacingEqual:
2503 case SpvExecutionModeSpacingFractionalEven:
2504 case SpvExecutionModeSpacingFractionalOdd:
2505 case SpvExecutionModeVertexOrderCw:
2506 case SpvExecutionModeVertexOrderCcw:
2507 case SpvExecutionModePointMode:
2508 assert(!"TODO: Add tessellation metadata");
2509 break;
2510
2511 case SpvExecutionModePixelCenterInteger:
2512 b->pixel_center_integer = true;
2513 break;
2514
2515 case SpvExecutionModeXfb:
2516 assert(!"Unhandled execution mode");
2517 break;
2518
2519 case SpvExecutionModeVecTypeHint:
2520 case SpvExecutionModeContractionOff:
2521 break; /* OpenCL */
2522 }
2523 }
2524
2525 static bool
2526 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
2527 const uint32_t *w, unsigned count)
2528 {
2529 switch (opcode) {
2530 case SpvOpSource:
2531 case SpvOpSourceContinued:
2532 case SpvOpSourceExtension:
2533 case SpvOpExtension:
2534 case SpvOpCapability:
2535 case SpvOpExtInstImport:
2536 case SpvOpMemoryModel:
2537 case SpvOpEntryPoint:
2538 case SpvOpExecutionMode:
2539 case SpvOpString:
2540 case SpvOpName:
2541 case SpvOpMemberName:
2542 case SpvOpDecorationGroup:
2543 case SpvOpDecorate:
2544 case SpvOpMemberDecorate:
2545 case SpvOpGroupDecorate:
2546 case SpvOpGroupMemberDecorate:
2547 assert(!"Invalid opcode types and variables section");
2548 break;
2549
2550 case SpvOpTypeVoid:
2551 case SpvOpTypeBool:
2552 case SpvOpTypeInt:
2553 case SpvOpTypeFloat:
2554 case SpvOpTypeVector:
2555 case SpvOpTypeMatrix:
2556 case SpvOpTypeImage:
2557 case SpvOpTypeSampler:
2558 case SpvOpTypeSampledImage:
2559 case SpvOpTypeArray:
2560 case SpvOpTypeRuntimeArray:
2561 case SpvOpTypeStruct:
2562 case SpvOpTypeOpaque:
2563 case SpvOpTypePointer:
2564 case SpvOpTypeFunction:
2565 case SpvOpTypeEvent:
2566 case SpvOpTypeDeviceEvent:
2567 case SpvOpTypeReserveId:
2568 case SpvOpTypeQueue:
2569 case SpvOpTypePipe:
2570 vtn_handle_type(b, opcode, w, count);
2571 break;
2572
2573 case SpvOpConstantTrue:
2574 case SpvOpConstantFalse:
2575 case SpvOpConstant:
2576 case SpvOpConstantComposite:
2577 case SpvOpConstantSampler:
2578 case SpvOpConstantNull:
2579 case SpvOpSpecConstantTrue:
2580 case SpvOpSpecConstantFalse:
2581 case SpvOpSpecConstant:
2582 case SpvOpSpecConstantComposite:
2583 case SpvOpSpecConstantOp:
2584 vtn_handle_constant(b, opcode, w, count);
2585 break;
2586
2587 case SpvOpVariable:
2588 vtn_handle_variables(b, opcode, w, count);
2589 break;
2590
2591 default:
2592 return false; /* End of preamble */
2593 }
2594
2595 return true;
2596 }
2597
2598 static bool
2599 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
2600 const uint32_t *w, unsigned count)
2601 {
2602 switch (opcode) {
2603 case SpvOpLabel:
2604 break;
2605
2606 case SpvOpLoopMerge:
2607 case SpvOpSelectionMerge:
2608 /* This is handled by cfg pre-pass and walk_blocks */
2609 break;
2610
2611 case SpvOpUndef: {
2612 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2613 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
2614 break;
2615 }
2616
2617 case SpvOpExtInst:
2618 vtn_handle_extension(b, opcode, w, count);
2619 break;
2620
2621 case SpvOpVariable:
2622 case SpvOpLoad:
2623 case SpvOpStore:
2624 case SpvOpCopyMemory:
2625 case SpvOpCopyMemorySized:
2626 case SpvOpAccessChain:
2627 case SpvOpInBoundsAccessChain:
2628 case SpvOpArrayLength:
2629 vtn_handle_variables(b, opcode, w, count);
2630 break;
2631
2632 case SpvOpFunctionCall:
2633 vtn_handle_function_call(b, opcode, w, count);
2634 break;
2635
2636 case SpvOpSampledImage:
2637 case SpvOpImage:
2638 case SpvOpImageSampleImplicitLod:
2639 case SpvOpImageSampleExplicitLod:
2640 case SpvOpImageSampleDrefImplicitLod:
2641 case SpvOpImageSampleDrefExplicitLod:
2642 case SpvOpImageSampleProjImplicitLod:
2643 case SpvOpImageSampleProjExplicitLod:
2644 case SpvOpImageSampleProjDrefImplicitLod:
2645 case SpvOpImageSampleProjDrefExplicitLod:
2646 case SpvOpImageFetch:
2647 case SpvOpImageGather:
2648 case SpvOpImageDrefGather:
2649 case SpvOpImageQuerySizeLod:
2650 case SpvOpImageQueryLod:
2651 case SpvOpImageQueryLevels:
2652 case SpvOpImageQuerySamples:
2653 vtn_handle_texture(b, opcode, w, count);
2654 break;
2655
2656 case SpvOpImageRead:
2657 case SpvOpImageWrite:
2658 case SpvOpImageTexelPointer:
2659 vtn_handle_image(b, opcode, w, count);
2660 break;
2661
2662 case SpvOpImageQuerySize: {
2663 struct vtn_access_chain *image =
2664 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
2665 if (glsl_type_is_image(image->var->var->interface_type)) {
2666 vtn_handle_image(b, opcode, w, count);
2667 } else {
2668 vtn_handle_texture(b, opcode, w, count);
2669 }
2670 break;
2671 }
2672
2673 case SpvOpAtomicExchange:
2674 case SpvOpAtomicCompareExchange:
2675 case SpvOpAtomicCompareExchangeWeak:
2676 case SpvOpAtomicIIncrement:
2677 case SpvOpAtomicIDecrement:
2678 case SpvOpAtomicIAdd:
2679 case SpvOpAtomicISub:
2680 case SpvOpAtomicSMin:
2681 case SpvOpAtomicUMin:
2682 case SpvOpAtomicSMax:
2683 case SpvOpAtomicUMax:
2684 case SpvOpAtomicAnd:
2685 case SpvOpAtomicOr:
2686 case SpvOpAtomicXor: {
2687 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
2688 if (pointer->value_type == vtn_value_type_image_pointer) {
2689 vtn_handle_image(b, opcode, w, count);
2690 } else {
2691 assert(pointer->value_type == vtn_value_type_access_chain);
2692 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
2693 }
2694 break;
2695 }
2696
2697 case SpvOpSNegate:
2698 case SpvOpFNegate:
2699 case SpvOpNot:
2700 case SpvOpAny:
2701 case SpvOpAll:
2702 case SpvOpConvertFToU:
2703 case SpvOpConvertFToS:
2704 case SpvOpConvertSToF:
2705 case SpvOpConvertUToF:
2706 case SpvOpUConvert:
2707 case SpvOpSConvert:
2708 case SpvOpFConvert:
2709 case SpvOpQuantizeToF16:
2710 case SpvOpConvertPtrToU:
2711 case SpvOpConvertUToPtr:
2712 case SpvOpPtrCastToGeneric:
2713 case SpvOpGenericCastToPtr:
2714 case SpvOpBitcast:
2715 case SpvOpIsNan:
2716 case SpvOpIsInf:
2717 case SpvOpIsFinite:
2718 case SpvOpIsNormal:
2719 case SpvOpSignBitSet:
2720 case SpvOpLessOrGreater:
2721 case SpvOpOrdered:
2722 case SpvOpUnordered:
2723 case SpvOpIAdd:
2724 case SpvOpFAdd:
2725 case SpvOpISub:
2726 case SpvOpFSub:
2727 case SpvOpIMul:
2728 case SpvOpFMul:
2729 case SpvOpUDiv:
2730 case SpvOpSDiv:
2731 case SpvOpFDiv:
2732 case SpvOpUMod:
2733 case SpvOpSRem:
2734 case SpvOpSMod:
2735 case SpvOpFRem:
2736 case SpvOpFMod:
2737 case SpvOpVectorTimesScalar:
2738 case SpvOpDot:
2739 case SpvOpIAddCarry:
2740 case SpvOpISubBorrow:
2741 case SpvOpUMulExtended:
2742 case SpvOpSMulExtended:
2743 case SpvOpShiftRightLogical:
2744 case SpvOpShiftRightArithmetic:
2745 case SpvOpShiftLeftLogical:
2746 case SpvOpLogicalEqual:
2747 case SpvOpLogicalNotEqual:
2748 case SpvOpLogicalOr:
2749 case SpvOpLogicalAnd:
2750 case SpvOpLogicalNot:
2751 case SpvOpBitwiseOr:
2752 case SpvOpBitwiseXor:
2753 case SpvOpBitwiseAnd:
2754 case SpvOpSelect:
2755 case SpvOpIEqual:
2756 case SpvOpFOrdEqual:
2757 case SpvOpFUnordEqual:
2758 case SpvOpINotEqual:
2759 case SpvOpFOrdNotEqual:
2760 case SpvOpFUnordNotEqual:
2761 case SpvOpULessThan:
2762 case SpvOpSLessThan:
2763 case SpvOpFOrdLessThan:
2764 case SpvOpFUnordLessThan:
2765 case SpvOpUGreaterThan:
2766 case SpvOpSGreaterThan:
2767 case SpvOpFOrdGreaterThan:
2768 case SpvOpFUnordGreaterThan:
2769 case SpvOpULessThanEqual:
2770 case SpvOpSLessThanEqual:
2771 case SpvOpFOrdLessThanEqual:
2772 case SpvOpFUnordLessThanEqual:
2773 case SpvOpUGreaterThanEqual:
2774 case SpvOpSGreaterThanEqual:
2775 case SpvOpFOrdGreaterThanEqual:
2776 case SpvOpFUnordGreaterThanEqual:
2777 case SpvOpDPdx:
2778 case SpvOpDPdy:
2779 case SpvOpFwidth:
2780 case SpvOpDPdxFine:
2781 case SpvOpDPdyFine:
2782 case SpvOpFwidthFine:
2783 case SpvOpDPdxCoarse:
2784 case SpvOpDPdyCoarse:
2785 case SpvOpFwidthCoarse:
2786 case SpvOpBitFieldInsert:
2787 case SpvOpBitFieldSExtract:
2788 case SpvOpBitFieldUExtract:
2789 case SpvOpBitReverse:
2790 case SpvOpBitCount:
2791 case SpvOpTranspose:
2792 case SpvOpOuterProduct:
2793 case SpvOpMatrixTimesScalar:
2794 case SpvOpVectorTimesMatrix:
2795 case SpvOpMatrixTimesVector:
2796 case SpvOpMatrixTimesMatrix:
2797 vtn_handle_alu(b, opcode, w, count);
2798 break;
2799
2800 case SpvOpVectorExtractDynamic:
2801 case SpvOpVectorInsertDynamic:
2802 case SpvOpVectorShuffle:
2803 case SpvOpCompositeConstruct:
2804 case SpvOpCompositeExtract:
2805 case SpvOpCompositeInsert:
2806 case SpvOpCopyObject:
2807 vtn_handle_composite(b, opcode, w, count);
2808 break;
2809
2810 case SpvOpEmitVertex:
2811 case SpvOpEndPrimitive:
2812 case SpvOpEmitStreamVertex:
2813 case SpvOpEndStreamPrimitive:
2814 case SpvOpControlBarrier:
2815 case SpvOpMemoryBarrier:
2816 vtn_handle_barrier(b, opcode, w, count);
2817 break;
2818
2819 default:
2820 unreachable("Unhandled opcode");
2821 }
2822
2823 return true;
2824 }
2825
2826 nir_function *
2827 spirv_to_nir(const uint32_t *words, size_t word_count,
2828 struct nir_spirv_specialization *spec, unsigned num_spec,
2829 gl_shader_stage stage, const char *entry_point_name,
2830 const nir_shader_compiler_options *options)
2831 {
2832 const uint32_t *word_end = words + word_count;
2833
2834 /* Handle the SPIR-V header (first 4 dwords) */
2835 assert(word_count > 5);
2836
2837 assert(words[0] == SpvMagicNumber);
2838 assert(words[1] >= 0x10000);
2839 /* words[2] == generator magic */
2840 unsigned value_id_bound = words[3];
2841 assert(words[4] == 0);
2842
2843 words+= 5;
2844
2845 /* Initialize the stn_builder object */
2846 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
2847 b->value_id_bound = value_id_bound;
2848 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
2849 exec_list_make_empty(&b->functions);
2850 b->entry_point_stage = stage;
2851 b->entry_point_name = entry_point_name;
2852
2853 /* Handle all the preamble instructions */
2854 words = vtn_foreach_instruction(b, words, word_end,
2855 vtn_handle_preamble_instruction);
2856
2857 if (b->entry_point == NULL) {
2858 assert(!"Entry point not found");
2859 ralloc_free(b);
2860 return NULL;
2861 }
2862
2863 b->shader = nir_shader_create(NULL, stage, options);
2864
2865 /* Set shader info defaults */
2866 b->shader->info.gs.invocations = 1;
2867
2868 /* Parse execution modes */
2869 vtn_foreach_execution_mode(b, b->entry_point,
2870 vtn_handle_execution_mode, NULL);
2871
2872 b->specializations = spec;
2873 b->num_specializations = num_spec;
2874
2875 /* Handle all variable, type, and constant instructions */
2876 words = vtn_foreach_instruction(b, words, word_end,
2877 vtn_handle_variable_or_type_instruction);
2878
2879 vtn_build_cfg(b, words, word_end);
2880
2881 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
2882 b->impl = func->impl;
2883 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
2884 _mesa_key_pointer_equal);
2885
2886 vtn_function_emit(b, func, vtn_handle_body_instruction);
2887 }
2888
2889 assert(b->entry_point->value_type == vtn_value_type_function);
2890 nir_function *entry_point = b->entry_point->func->impl->function;
2891 assert(entry_point);
2892
2893 ralloc_free(b);
2894
2895 return entry_point;
2896 }