spirv: Add subgroup quad support
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33
34 #include <stdio.h>
35
36 void
37 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
38 size_t spirv_offset, const char *message)
39 {
40 if (b->options->debug.func) {
41 b->options->debug.func(b->options->debug.private_data,
42 level, spirv_offset, message);
43 }
44
45 #ifndef NDEBUG
46 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
47 fprintf(stderr, "%s\n", message);
48 #endif
49 }
50
51 void
52 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
53 size_t spirv_offset, const char *fmt, ...)
54 {
55 va_list args;
56 char *msg;
57
58 va_start(args, fmt);
59 msg = ralloc_vasprintf(NULL, fmt, args);
60 va_end(args);
61
62 vtn_log(b, level, spirv_offset, msg);
63
64 ralloc_free(msg);
65 }
66
67 static void
68 vtn_log_err(struct vtn_builder *b,
69 enum nir_spirv_debug_level level, const char *prefix,
70 const char *file, unsigned line,
71 const char *fmt, va_list args)
72 {
73 char *msg;
74
75 msg = ralloc_strdup(NULL, prefix);
76
77 #ifndef NDEBUG
78 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
79 #endif
80
81 ralloc_asprintf_append(&msg, " ");
82
83 ralloc_vasprintf_append(&msg, fmt, args);
84
85 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
86 b->spirv_offset);
87
88 if (b->file) {
89 ralloc_asprintf_append(&msg,
90 "\n in SPIR-V source file %s, line %d, col %d",
91 b->file, b->line, b->col);
92 }
93
94 vtn_log(b, level, b->spirv_offset, msg);
95
96 ralloc_free(msg);
97 }
98
99 static void
100 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
101 {
102 static int idx = 0;
103
104 char filename[1024];
105 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
106 path, prefix, idx++);
107 if (len < 0 || len >= sizeof(filename))
108 return;
109
110 FILE *f = fopen(filename, "w");
111 if (f == NULL)
112 return;
113
114 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
115 fclose(f);
116
117 vtn_info("SPIR-V shader dumped to %s", filename);
118 }
119
120 void
121 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
122 const char *fmt, ...)
123 {
124 va_list args;
125
126 va_start(args, fmt);
127 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
128 file, line, fmt, args);
129 va_end(args);
130 }
131
132 void
133 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
134 const char *fmt, ...)
135 {
136 va_list args;
137
138 va_start(args, fmt);
139 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
140 file, line, fmt, args);
141 va_end(args);
142
143 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
144 if (dump_path)
145 vtn_dump_shader(b, dump_path, "fail");
146
147 longjmp(b->fail_jump, 1);
148 }
149
150 struct spec_constant_value {
151 bool is_double;
152 union {
153 uint32_t data32;
154 uint64_t data64;
155 };
156 };
157
158 static struct vtn_ssa_value *
159 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
160 {
161 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
162 val->type = type;
163
164 if (glsl_type_is_vector_or_scalar(type)) {
165 unsigned num_components = glsl_get_vector_elements(val->type);
166 unsigned bit_size = glsl_get_bit_size(val->type);
167 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
168 } else {
169 unsigned elems = glsl_get_length(val->type);
170 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
171 if (glsl_type_is_matrix(type)) {
172 const struct glsl_type *elem_type =
173 glsl_vector_type(glsl_get_base_type(type),
174 glsl_get_vector_elements(type));
175
176 for (unsigned i = 0; i < elems; i++)
177 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
178 } else if (glsl_type_is_array(type)) {
179 const struct glsl_type *elem_type = glsl_get_array_element(type);
180 for (unsigned i = 0; i < elems; i++)
181 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
182 } else {
183 for (unsigned i = 0; i < elems; i++) {
184 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
185 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
186 }
187 }
188 }
189
190 return val;
191 }
192
193 static struct vtn_ssa_value *
194 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
195 const struct glsl_type *type)
196 {
197 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
198
199 if (entry)
200 return entry->data;
201
202 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
203 val->type = type;
204
205 switch (glsl_get_base_type(type)) {
206 case GLSL_TYPE_INT:
207 case GLSL_TYPE_UINT:
208 case GLSL_TYPE_INT16:
209 case GLSL_TYPE_UINT16:
210 case GLSL_TYPE_INT64:
211 case GLSL_TYPE_UINT64:
212 case GLSL_TYPE_BOOL:
213 case GLSL_TYPE_FLOAT:
214 case GLSL_TYPE_FLOAT16:
215 case GLSL_TYPE_DOUBLE: {
216 int bit_size = glsl_get_bit_size(type);
217 if (glsl_type_is_vector_or_scalar(type)) {
218 unsigned num_components = glsl_get_vector_elements(val->type);
219 nir_load_const_instr *load =
220 nir_load_const_instr_create(b->shader, num_components, bit_size);
221
222 load->value = constant->values[0];
223
224 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
225 val->def = &load->def;
226 } else {
227 assert(glsl_type_is_matrix(type));
228 unsigned rows = glsl_get_vector_elements(val->type);
229 unsigned columns = glsl_get_matrix_columns(val->type);
230 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
231
232 for (unsigned i = 0; i < columns; i++) {
233 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
234 col_val->type = glsl_get_column_type(val->type);
235 nir_load_const_instr *load =
236 nir_load_const_instr_create(b->shader, rows, bit_size);
237
238 load->value = constant->values[i];
239
240 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
241 col_val->def = &load->def;
242
243 val->elems[i] = col_val;
244 }
245 }
246 break;
247 }
248
249 case GLSL_TYPE_ARRAY: {
250 unsigned elems = glsl_get_length(val->type);
251 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
252 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
253 for (unsigned i = 0; i < elems; i++)
254 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
255 elem_type);
256 break;
257 }
258
259 case GLSL_TYPE_STRUCT: {
260 unsigned elems = glsl_get_length(val->type);
261 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
262 for (unsigned i = 0; i < elems; i++) {
263 const struct glsl_type *elem_type =
264 glsl_get_struct_field(val->type, i);
265 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
266 elem_type);
267 }
268 break;
269 }
270
271 default:
272 vtn_fail("bad constant type");
273 }
274
275 return val;
276 }
277
278 struct vtn_ssa_value *
279 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
280 {
281 struct vtn_value *val = vtn_untyped_value(b, value_id);
282 switch (val->value_type) {
283 case vtn_value_type_undef:
284 return vtn_undef_ssa_value(b, val->type->type);
285
286 case vtn_value_type_constant:
287 return vtn_const_ssa_value(b, val->constant, val->type->type);
288
289 case vtn_value_type_ssa:
290 return val->ssa;
291
292 case vtn_value_type_pointer:
293 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
294 struct vtn_ssa_value *ssa =
295 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
296 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
297 return ssa;
298
299 default:
300 vtn_fail("Invalid type for an SSA value");
301 }
302 }
303
304 static char *
305 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
306 unsigned word_count, unsigned *words_used)
307 {
308 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
309 if (words_used) {
310 /* Ammount of space taken by the string (including the null) */
311 unsigned len = strlen(dup) + 1;
312 *words_used = DIV_ROUND_UP(len, sizeof(*words));
313 }
314 return dup;
315 }
316
317 const uint32_t *
318 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
319 const uint32_t *end, vtn_instruction_handler handler)
320 {
321 b->file = NULL;
322 b->line = -1;
323 b->col = -1;
324
325 const uint32_t *w = start;
326 while (w < end) {
327 SpvOp opcode = w[0] & SpvOpCodeMask;
328 unsigned count = w[0] >> SpvWordCountShift;
329 vtn_assert(count >= 1 && w + count <= end);
330
331 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
332
333 switch (opcode) {
334 case SpvOpNop:
335 break; /* Do nothing */
336
337 case SpvOpLine:
338 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
339 b->line = w[2];
340 b->col = w[3];
341 break;
342
343 case SpvOpNoLine:
344 b->file = NULL;
345 b->line = -1;
346 b->col = -1;
347 break;
348
349 default:
350 if (!handler(b, opcode, w, count))
351 return w;
352 break;
353 }
354
355 w += count;
356 }
357
358 b->spirv_offset = 0;
359 b->file = NULL;
360 b->line = -1;
361 b->col = -1;
362
363 assert(w == end);
364 return w;
365 }
366
367 static void
368 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
369 const uint32_t *w, unsigned count)
370 {
371 switch (opcode) {
372 case SpvOpExtInstImport: {
373 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
374 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
375 val->ext_handler = vtn_handle_glsl450_instruction;
376 } else {
377 vtn_fail("Unsupported extension");
378 }
379 break;
380 }
381
382 case SpvOpExtInst: {
383 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
384 bool handled = val->ext_handler(b, w[4], w, count);
385 vtn_assert(handled);
386 break;
387 }
388
389 default:
390 vtn_fail("Unhandled opcode");
391 }
392 }
393
394 static void
395 _foreach_decoration_helper(struct vtn_builder *b,
396 struct vtn_value *base_value,
397 int parent_member,
398 struct vtn_value *value,
399 vtn_decoration_foreach_cb cb, void *data)
400 {
401 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
402 int member;
403 if (dec->scope == VTN_DEC_DECORATION) {
404 member = parent_member;
405 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
406 vtn_fail_if(value->value_type != vtn_value_type_type ||
407 value->type->base_type != vtn_base_type_struct,
408 "OpMemberDecorate and OpGroupMemberDecorate are only "
409 "allowed on OpTypeStruct");
410 /* This means we haven't recursed yet */
411 assert(value == base_value);
412
413 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
414
415 vtn_fail_if(member >= base_value->type->length,
416 "OpMemberDecorate specifies member %d but the "
417 "OpTypeStruct has only %u members",
418 member, base_value->type->length);
419 } else {
420 /* Not a decoration */
421 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
422 continue;
423 }
424
425 if (dec->group) {
426 assert(dec->group->value_type == vtn_value_type_decoration_group);
427 _foreach_decoration_helper(b, base_value, member, dec->group,
428 cb, data);
429 } else {
430 cb(b, base_value, member, dec, data);
431 }
432 }
433 }
434
435 /** Iterates (recursively if needed) over all of the decorations on a value
436 *
437 * This function iterates over all of the decorations applied to a given
438 * value. If it encounters a decoration group, it recurses into the group
439 * and iterates over all of those decorations as well.
440 */
441 void
442 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
443 vtn_decoration_foreach_cb cb, void *data)
444 {
445 _foreach_decoration_helper(b, value, -1, value, cb, data);
446 }
447
448 void
449 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
450 vtn_execution_mode_foreach_cb cb, void *data)
451 {
452 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
453 if (dec->scope != VTN_DEC_EXECUTION_MODE)
454 continue;
455
456 assert(dec->group == NULL);
457 cb(b, value, dec, data);
458 }
459 }
460
461 static void
462 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
463 const uint32_t *w, unsigned count)
464 {
465 const uint32_t *w_end = w + count;
466 const uint32_t target = w[1];
467 w += 2;
468
469 switch (opcode) {
470 case SpvOpDecorationGroup:
471 vtn_push_value(b, target, vtn_value_type_decoration_group);
472 break;
473
474 case SpvOpDecorate:
475 case SpvOpMemberDecorate:
476 case SpvOpExecutionMode: {
477 struct vtn_value *val = vtn_untyped_value(b, target);
478
479 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
480 switch (opcode) {
481 case SpvOpDecorate:
482 dec->scope = VTN_DEC_DECORATION;
483 break;
484 case SpvOpMemberDecorate:
485 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
486 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
487 "Member argument of OpMemberDecorate too large");
488 break;
489 case SpvOpExecutionMode:
490 dec->scope = VTN_DEC_EXECUTION_MODE;
491 break;
492 default:
493 unreachable("Invalid decoration opcode");
494 }
495 dec->decoration = *(w++);
496 dec->literals = w;
497
498 /* Link into the list */
499 dec->next = val->decoration;
500 val->decoration = dec;
501 break;
502 }
503
504 case SpvOpGroupMemberDecorate:
505 case SpvOpGroupDecorate: {
506 struct vtn_value *group =
507 vtn_value(b, target, vtn_value_type_decoration_group);
508
509 for (; w < w_end; w++) {
510 struct vtn_value *val = vtn_untyped_value(b, *w);
511 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
512
513 dec->group = group;
514 if (opcode == SpvOpGroupDecorate) {
515 dec->scope = VTN_DEC_DECORATION;
516 } else {
517 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
518 vtn_fail_if(dec->scope < 0, /* Check for overflow */
519 "Member argument of OpGroupMemberDecorate too large");
520 }
521
522 /* Link into the list */
523 dec->next = val->decoration;
524 val->decoration = dec;
525 }
526 break;
527 }
528
529 default:
530 unreachable("Unhandled opcode");
531 }
532 }
533
534 struct member_decoration_ctx {
535 unsigned num_fields;
536 struct glsl_struct_field *fields;
537 struct vtn_type *type;
538 };
539
540 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
541 * OpStore, or OpCopyMemory between them without breaking anything.
542 * Technically, the SPIR-V rules require the exact same type ID but this lets
543 * us internally be a bit looser.
544 */
545 bool
546 vtn_types_compatible(struct vtn_builder *b,
547 struct vtn_type *t1, struct vtn_type *t2)
548 {
549 if (t1->id == t2->id)
550 return true;
551
552 if (t1->base_type != t2->base_type)
553 return false;
554
555 switch (t1->base_type) {
556 case vtn_base_type_void:
557 case vtn_base_type_scalar:
558 case vtn_base_type_vector:
559 case vtn_base_type_matrix:
560 case vtn_base_type_image:
561 case vtn_base_type_sampler:
562 case vtn_base_type_sampled_image:
563 return t1->type == t2->type;
564
565 case vtn_base_type_array:
566 return t1->length == t2->length &&
567 vtn_types_compatible(b, t1->array_element, t2->array_element);
568
569 case vtn_base_type_pointer:
570 return vtn_types_compatible(b, t1->deref, t2->deref);
571
572 case vtn_base_type_struct:
573 if (t1->length != t2->length)
574 return false;
575
576 for (unsigned i = 0; i < t1->length; i++) {
577 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
578 return false;
579 }
580 return true;
581
582 case vtn_base_type_function:
583 /* This case shouldn't get hit since you can't copy around function
584 * types. Just require them to be identical.
585 */
586 return false;
587 }
588
589 vtn_fail("Invalid base type");
590 }
591
592 /* does a shallow copy of a vtn_type */
593
594 static struct vtn_type *
595 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
596 {
597 struct vtn_type *dest = ralloc(b, struct vtn_type);
598 *dest = *src;
599
600 switch (src->base_type) {
601 case vtn_base_type_void:
602 case vtn_base_type_scalar:
603 case vtn_base_type_vector:
604 case vtn_base_type_matrix:
605 case vtn_base_type_array:
606 case vtn_base_type_pointer:
607 case vtn_base_type_image:
608 case vtn_base_type_sampler:
609 case vtn_base_type_sampled_image:
610 /* Nothing more to do */
611 break;
612
613 case vtn_base_type_struct:
614 dest->members = ralloc_array(b, struct vtn_type *, src->length);
615 memcpy(dest->members, src->members,
616 src->length * sizeof(src->members[0]));
617
618 dest->offsets = ralloc_array(b, unsigned, src->length);
619 memcpy(dest->offsets, src->offsets,
620 src->length * sizeof(src->offsets[0]));
621 break;
622
623 case vtn_base_type_function:
624 dest->params = ralloc_array(b, struct vtn_type *, src->length);
625 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
626 break;
627 }
628
629 return dest;
630 }
631
632 static struct vtn_type *
633 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
634 {
635 type->members[member] = vtn_type_copy(b, type->members[member]);
636 type = type->members[member];
637
638 /* We may have an array of matrices.... Oh, joy! */
639 while (glsl_type_is_array(type->type)) {
640 type->array_element = vtn_type_copy(b, type->array_element);
641 type = type->array_element;
642 }
643
644 vtn_assert(glsl_type_is_matrix(type->type));
645
646 return type;
647 }
648
649 static void
650 struct_member_decoration_cb(struct vtn_builder *b,
651 struct vtn_value *val, int member,
652 const struct vtn_decoration *dec, void *void_ctx)
653 {
654 struct member_decoration_ctx *ctx = void_ctx;
655
656 if (member < 0)
657 return;
658
659 assert(member < ctx->num_fields);
660
661 switch (dec->decoration) {
662 case SpvDecorationNonWritable:
663 case SpvDecorationNonReadable:
664 case SpvDecorationRelaxedPrecision:
665 case SpvDecorationVolatile:
666 case SpvDecorationCoherent:
667 case SpvDecorationUniform:
668 break; /* FIXME: Do nothing with this for now. */
669 case SpvDecorationNoPerspective:
670 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
671 break;
672 case SpvDecorationFlat:
673 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
674 break;
675 case SpvDecorationCentroid:
676 ctx->fields[member].centroid = true;
677 break;
678 case SpvDecorationSample:
679 ctx->fields[member].sample = true;
680 break;
681 case SpvDecorationStream:
682 /* Vulkan only allows one GS stream */
683 vtn_assert(dec->literals[0] == 0);
684 break;
685 case SpvDecorationLocation:
686 ctx->fields[member].location = dec->literals[0];
687 break;
688 case SpvDecorationComponent:
689 break; /* FIXME: What should we do with these? */
690 case SpvDecorationBuiltIn:
691 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
692 ctx->type->members[member]->is_builtin = true;
693 ctx->type->members[member]->builtin = dec->literals[0];
694 ctx->type->builtin_block = true;
695 break;
696 case SpvDecorationOffset:
697 ctx->type->offsets[member] = dec->literals[0];
698 break;
699 case SpvDecorationMatrixStride:
700 /* Handled as a second pass */
701 break;
702 case SpvDecorationColMajor:
703 break; /* Nothing to do here. Column-major is the default. */
704 case SpvDecorationRowMajor:
705 mutable_matrix_member(b, ctx->type, member)->row_major = true;
706 break;
707
708 case SpvDecorationPatch:
709 break;
710
711 case SpvDecorationSpecId:
712 case SpvDecorationBlock:
713 case SpvDecorationBufferBlock:
714 case SpvDecorationArrayStride:
715 case SpvDecorationGLSLShared:
716 case SpvDecorationGLSLPacked:
717 case SpvDecorationInvariant:
718 case SpvDecorationRestrict:
719 case SpvDecorationAliased:
720 case SpvDecorationConstant:
721 case SpvDecorationIndex:
722 case SpvDecorationBinding:
723 case SpvDecorationDescriptorSet:
724 case SpvDecorationLinkageAttributes:
725 case SpvDecorationNoContraction:
726 case SpvDecorationInputAttachmentIndex:
727 vtn_warn("Decoration not allowed on struct members: %s",
728 spirv_decoration_to_string(dec->decoration));
729 break;
730
731 case SpvDecorationXfbBuffer:
732 case SpvDecorationXfbStride:
733 vtn_warn("Vulkan does not have transform feedback");
734 break;
735
736 case SpvDecorationCPacked:
737 case SpvDecorationSaturatedConversion:
738 case SpvDecorationFuncParamAttr:
739 case SpvDecorationFPRoundingMode:
740 case SpvDecorationFPFastMathMode:
741 case SpvDecorationAlignment:
742 vtn_warn("Decoration only allowed for CL-style kernels: %s",
743 spirv_decoration_to_string(dec->decoration));
744 break;
745
746 default:
747 vtn_fail("Unhandled decoration");
748 }
749 }
750
751 /* Matrix strides are handled as a separate pass because we need to know
752 * whether the matrix is row-major or not first.
753 */
754 static void
755 struct_member_matrix_stride_cb(struct vtn_builder *b,
756 struct vtn_value *val, int member,
757 const struct vtn_decoration *dec,
758 void *void_ctx)
759 {
760 if (dec->decoration != SpvDecorationMatrixStride)
761 return;
762
763 vtn_fail_if(member < 0,
764 "The MatrixStride decoration is only allowed on members "
765 "of OpTypeStruct");
766
767 struct member_decoration_ctx *ctx = void_ctx;
768
769 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
770 if (mat_type->row_major) {
771 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
772 mat_type->stride = mat_type->array_element->stride;
773 mat_type->array_element->stride = dec->literals[0];
774 } else {
775 vtn_assert(mat_type->array_element->stride > 0);
776 mat_type->stride = dec->literals[0];
777 }
778 }
779
780 static void
781 type_decoration_cb(struct vtn_builder *b,
782 struct vtn_value *val, int member,
783 const struct vtn_decoration *dec, void *ctx)
784 {
785 struct vtn_type *type = val->type;
786
787 if (member != -1) {
788 /* This should have been handled by OpTypeStruct */
789 assert(val->type->base_type == vtn_base_type_struct);
790 assert(member >= 0 && member < val->type->length);
791 return;
792 }
793
794 switch (dec->decoration) {
795 case SpvDecorationArrayStride:
796 vtn_assert(type->base_type == vtn_base_type_matrix ||
797 type->base_type == vtn_base_type_array ||
798 type->base_type == vtn_base_type_pointer);
799 type->stride = dec->literals[0];
800 break;
801 case SpvDecorationBlock:
802 vtn_assert(type->base_type == vtn_base_type_struct);
803 type->block = true;
804 break;
805 case SpvDecorationBufferBlock:
806 vtn_assert(type->base_type == vtn_base_type_struct);
807 type->buffer_block = true;
808 break;
809 case SpvDecorationGLSLShared:
810 case SpvDecorationGLSLPacked:
811 /* Ignore these, since we get explicit offsets anyways */
812 break;
813
814 case SpvDecorationRowMajor:
815 case SpvDecorationColMajor:
816 case SpvDecorationMatrixStride:
817 case SpvDecorationBuiltIn:
818 case SpvDecorationNoPerspective:
819 case SpvDecorationFlat:
820 case SpvDecorationPatch:
821 case SpvDecorationCentroid:
822 case SpvDecorationSample:
823 case SpvDecorationVolatile:
824 case SpvDecorationCoherent:
825 case SpvDecorationNonWritable:
826 case SpvDecorationNonReadable:
827 case SpvDecorationUniform:
828 case SpvDecorationStream:
829 case SpvDecorationLocation:
830 case SpvDecorationComponent:
831 case SpvDecorationOffset:
832 case SpvDecorationXfbBuffer:
833 case SpvDecorationXfbStride:
834 vtn_warn("Decoration only allowed for struct members: %s",
835 spirv_decoration_to_string(dec->decoration));
836 break;
837
838 case SpvDecorationRelaxedPrecision:
839 case SpvDecorationSpecId:
840 case SpvDecorationInvariant:
841 case SpvDecorationRestrict:
842 case SpvDecorationAliased:
843 case SpvDecorationConstant:
844 case SpvDecorationIndex:
845 case SpvDecorationBinding:
846 case SpvDecorationDescriptorSet:
847 case SpvDecorationLinkageAttributes:
848 case SpvDecorationNoContraction:
849 case SpvDecorationInputAttachmentIndex:
850 vtn_warn("Decoration not allowed on types: %s",
851 spirv_decoration_to_string(dec->decoration));
852 break;
853
854 case SpvDecorationCPacked:
855 case SpvDecorationSaturatedConversion:
856 case SpvDecorationFuncParamAttr:
857 case SpvDecorationFPRoundingMode:
858 case SpvDecorationFPFastMathMode:
859 case SpvDecorationAlignment:
860 vtn_warn("Decoration only allowed for CL-style kernels: %s",
861 spirv_decoration_to_string(dec->decoration));
862 break;
863
864 default:
865 vtn_fail("Unhandled decoration");
866 }
867 }
868
869 static unsigned
870 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
871 {
872 switch (format) {
873 case SpvImageFormatUnknown: return 0; /* GL_NONE */
874 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
875 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
876 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
877 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
878 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
879 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
880 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
881 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
882 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
883 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
884 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
885 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
886 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
887 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
888 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
889 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
890 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
891 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
892 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
893 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
894 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
895 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
896 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
897 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
898 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
899 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
900 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
901 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
902 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
903 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
904 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
905 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
906 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
907 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
908 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
909 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
910 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
911 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
912 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
913 default:
914 vtn_fail("Invalid image format");
915 }
916 }
917
918 static struct vtn_type *
919 vtn_type_layout_std430(struct vtn_builder *b, struct vtn_type *type,
920 uint32_t *size_out, uint32_t *align_out)
921 {
922 switch (type->base_type) {
923 case vtn_base_type_scalar: {
924 uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
925 *size_out = comp_size;
926 *align_out = comp_size;
927 return type;
928 }
929
930 case vtn_base_type_vector: {
931 uint32_t comp_size = glsl_get_bit_size(type->type) / 8;
932 assert(type->length > 0 && type->length <= 4);
933 unsigned align_comps = type->length == 3 ? 4 : type->length;
934 *size_out = comp_size * type->length,
935 *align_out = comp_size * align_comps;
936 return type;
937 }
938
939 case vtn_base_type_matrix:
940 case vtn_base_type_array: {
941 /* We're going to add an array stride */
942 type = vtn_type_copy(b, type);
943 uint32_t elem_size, elem_align;
944 type->array_element = vtn_type_layout_std430(b, type->array_element,
945 &elem_size, &elem_align);
946 type->stride = vtn_align_u32(elem_size, elem_align);
947 *size_out = type->stride * type->length;
948 *align_out = elem_align;
949 return type;
950 }
951
952 case vtn_base_type_struct: {
953 /* We're going to add member offsets */
954 type = vtn_type_copy(b, type);
955 uint32_t offset = 0;
956 uint32_t align = 0;
957 for (unsigned i = 0; i < type->length; i++) {
958 uint32_t mem_size, mem_align;
959 type->members[i] = vtn_type_layout_std430(b, type->members[i],
960 &mem_size, &mem_align);
961 offset = vtn_align_u32(offset, mem_align);
962 type->offsets[i] = offset;
963 offset += mem_size;
964 align = MAX2(align, mem_align);
965 }
966 *size_out = offset;
967 *align_out = align;
968 return type;
969 }
970
971 default:
972 unreachable("Invalid SPIR-V type for std430");
973 }
974 }
975
976 static void
977 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
978 const uint32_t *w, unsigned count)
979 {
980 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
981
982 val->type = rzalloc(b, struct vtn_type);
983 val->type->id = w[1];
984
985 switch (opcode) {
986 case SpvOpTypeVoid:
987 val->type->base_type = vtn_base_type_void;
988 val->type->type = glsl_void_type();
989 break;
990 case SpvOpTypeBool:
991 val->type->base_type = vtn_base_type_scalar;
992 val->type->type = glsl_bool_type();
993 val->type->length = 1;
994 break;
995 case SpvOpTypeInt: {
996 int bit_size = w[2];
997 const bool signedness = w[3];
998 val->type->base_type = vtn_base_type_scalar;
999 switch (bit_size) {
1000 case 64:
1001 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1002 break;
1003 case 32:
1004 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1005 break;
1006 case 16:
1007 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1008 break;
1009 default:
1010 vtn_fail("Invalid int bit size");
1011 }
1012 val->type->length = 1;
1013 break;
1014 }
1015
1016 case SpvOpTypeFloat: {
1017 int bit_size = w[2];
1018 val->type->base_type = vtn_base_type_scalar;
1019 switch (bit_size) {
1020 case 16:
1021 val->type->type = glsl_float16_t_type();
1022 break;
1023 case 32:
1024 val->type->type = glsl_float_type();
1025 break;
1026 case 64:
1027 val->type->type = glsl_double_type();
1028 break;
1029 default:
1030 vtn_fail("Invalid float bit size");
1031 }
1032 val->type->length = 1;
1033 break;
1034 }
1035
1036 case SpvOpTypeVector: {
1037 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1038 unsigned elems = w[3];
1039
1040 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1041 "Base type for OpTypeVector must be a scalar");
1042 vtn_fail_if(elems < 2 || elems > 4,
1043 "Invalid component count for OpTypeVector");
1044
1045 val->type->base_type = vtn_base_type_vector;
1046 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1047 val->type->length = elems;
1048 val->type->stride = glsl_get_bit_size(base->type) / 8;
1049 val->type->array_element = base;
1050 break;
1051 }
1052
1053 case SpvOpTypeMatrix: {
1054 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1055 unsigned columns = w[3];
1056
1057 vtn_fail_if(base->base_type != vtn_base_type_vector,
1058 "Base type for OpTypeMatrix must be a vector");
1059 vtn_fail_if(columns < 2 || columns > 4,
1060 "Invalid column count for OpTypeMatrix");
1061
1062 val->type->base_type = vtn_base_type_matrix;
1063 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1064 glsl_get_vector_elements(base->type),
1065 columns);
1066 vtn_fail_if(glsl_type_is_error(val->type->type),
1067 "Unsupported base type for OpTypeMatrix");
1068 assert(!glsl_type_is_error(val->type->type));
1069 val->type->length = columns;
1070 val->type->array_element = base;
1071 val->type->row_major = false;
1072 val->type->stride = 0;
1073 break;
1074 }
1075
1076 case SpvOpTypeRuntimeArray:
1077 case SpvOpTypeArray: {
1078 struct vtn_type *array_element =
1079 vtn_value(b, w[2], vtn_value_type_type)->type;
1080
1081 if (opcode == SpvOpTypeRuntimeArray) {
1082 /* A length of 0 is used to denote unsized arrays */
1083 val->type->length = 0;
1084 } else {
1085 val->type->length =
1086 vtn_value(b, w[3], vtn_value_type_constant)->constant->values[0].u32[0];
1087 }
1088
1089 val->type->base_type = vtn_base_type_array;
1090 val->type->type = glsl_array_type(array_element->type, val->type->length);
1091 val->type->array_element = array_element;
1092 val->type->stride = 0;
1093 break;
1094 }
1095
1096 case SpvOpTypeStruct: {
1097 unsigned num_fields = count - 2;
1098 val->type->base_type = vtn_base_type_struct;
1099 val->type->length = num_fields;
1100 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1101 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1102
1103 NIR_VLA(struct glsl_struct_field, fields, count);
1104 for (unsigned i = 0; i < num_fields; i++) {
1105 val->type->members[i] =
1106 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1107 fields[i] = (struct glsl_struct_field) {
1108 .type = val->type->members[i]->type,
1109 .name = ralloc_asprintf(b, "field%d", i),
1110 .location = -1,
1111 };
1112 }
1113
1114 struct member_decoration_ctx ctx = {
1115 .num_fields = num_fields,
1116 .fields = fields,
1117 .type = val->type
1118 };
1119
1120 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1121 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1122
1123 const char *name = val->name ? val->name : "struct";
1124
1125 val->type->type = glsl_struct_type(fields, num_fields, name);
1126 break;
1127 }
1128
1129 case SpvOpTypeFunction: {
1130 val->type->base_type = vtn_base_type_function;
1131 val->type->type = NULL;
1132
1133 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1134
1135 const unsigned num_params = count - 3;
1136 val->type->length = num_params;
1137 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1138 for (unsigned i = 0; i < count - 3; i++) {
1139 val->type->params[i] =
1140 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1141 }
1142 break;
1143 }
1144
1145 case SpvOpTypePointer: {
1146 SpvStorageClass storage_class = w[2];
1147 struct vtn_type *deref_type =
1148 vtn_value(b, w[3], vtn_value_type_type)->type;
1149
1150 val->type->base_type = vtn_base_type_pointer;
1151 val->type->storage_class = storage_class;
1152 val->type->deref = deref_type;
1153
1154 if (storage_class == SpvStorageClassUniform ||
1155 storage_class == SpvStorageClassStorageBuffer) {
1156 /* These can actually be stored to nir_variables and used as SSA
1157 * values so they need a real glsl_type.
1158 */
1159 val->type->type = glsl_vector_type(GLSL_TYPE_UINT, 2);
1160 }
1161
1162 if (storage_class == SpvStorageClassWorkgroup &&
1163 b->options->lower_workgroup_access_to_offsets) {
1164 uint32_t size, align;
1165 val->type->deref = vtn_type_layout_std430(b, val->type->deref,
1166 &size, &align);
1167 val->type->length = size;
1168 val->type->align = align;
1169 /* These can actually be stored to nir_variables and used as SSA
1170 * values so they need a real glsl_type.
1171 */
1172 val->type->type = glsl_uint_type();
1173 }
1174 break;
1175 }
1176
1177 case SpvOpTypeImage: {
1178 val->type->base_type = vtn_base_type_image;
1179
1180 const struct vtn_type *sampled_type =
1181 vtn_value(b, w[2], vtn_value_type_type)->type;
1182
1183 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1184 glsl_get_bit_size(sampled_type->type) != 32,
1185 "Sampled type of OpTypeImage must be a 32-bit scalar");
1186
1187 enum glsl_sampler_dim dim;
1188 switch ((SpvDim)w[3]) {
1189 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1190 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1191 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1192 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1193 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1194 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1195 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1196 default:
1197 vtn_fail("Invalid SPIR-V image dimensionality");
1198 }
1199
1200 bool is_shadow = w[4];
1201 bool is_array = w[5];
1202 bool multisampled = w[6];
1203 unsigned sampled = w[7];
1204 SpvImageFormat format = w[8];
1205
1206 if (count > 9)
1207 val->type->access_qualifier = w[9];
1208 else
1209 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1210
1211 if (multisampled) {
1212 if (dim == GLSL_SAMPLER_DIM_2D)
1213 dim = GLSL_SAMPLER_DIM_MS;
1214 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1215 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1216 else
1217 vtn_fail("Unsupported multisampled image type");
1218 }
1219
1220 val->type->image_format = translate_image_format(b, format);
1221
1222 enum glsl_base_type sampled_base_type =
1223 glsl_get_base_type(sampled_type->type);
1224 if (sampled == 1) {
1225 val->type->sampled = true;
1226 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
1227 sampled_base_type);
1228 } else if (sampled == 2) {
1229 vtn_assert(!is_shadow);
1230 val->type->sampled = false;
1231 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1232 } else {
1233 vtn_fail("We need to know if the image will be sampled");
1234 }
1235 break;
1236 }
1237
1238 case SpvOpTypeSampledImage:
1239 val->type->base_type = vtn_base_type_sampled_image;
1240 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1241 val->type->type = val->type->image->type;
1242 break;
1243
1244 case SpvOpTypeSampler:
1245 /* The actual sampler type here doesn't really matter. It gets
1246 * thrown away the moment you combine it with an image. What really
1247 * matters is that it's a sampler type as opposed to an integer type
1248 * so the backend knows what to do.
1249 */
1250 val->type->base_type = vtn_base_type_sampler;
1251 val->type->type = glsl_bare_sampler_type();
1252 break;
1253
1254 case SpvOpTypeOpaque:
1255 case SpvOpTypeEvent:
1256 case SpvOpTypeDeviceEvent:
1257 case SpvOpTypeReserveId:
1258 case SpvOpTypeQueue:
1259 case SpvOpTypePipe:
1260 default:
1261 vtn_fail("Unhandled opcode");
1262 }
1263
1264 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1265 }
1266
1267 static nir_constant *
1268 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
1269 {
1270 nir_constant *c = rzalloc(b, nir_constant);
1271
1272 /* For pointers and other typeless things, we have to return something but
1273 * it doesn't matter what.
1274 */
1275 if (!type)
1276 return c;
1277
1278 switch (glsl_get_base_type(type)) {
1279 case GLSL_TYPE_INT:
1280 case GLSL_TYPE_UINT:
1281 case GLSL_TYPE_INT16:
1282 case GLSL_TYPE_UINT16:
1283 case GLSL_TYPE_INT64:
1284 case GLSL_TYPE_UINT64:
1285 case GLSL_TYPE_BOOL:
1286 case GLSL_TYPE_FLOAT:
1287 case GLSL_TYPE_FLOAT16:
1288 case GLSL_TYPE_DOUBLE:
1289 /* Nothing to do here. It's already initialized to zero */
1290 break;
1291
1292 case GLSL_TYPE_ARRAY:
1293 vtn_assert(glsl_get_length(type) > 0);
1294 c->num_elements = glsl_get_length(type);
1295 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1296
1297 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
1298 for (unsigned i = 1; i < c->num_elements; i++)
1299 c->elements[i] = c->elements[0];
1300 break;
1301
1302 case GLSL_TYPE_STRUCT:
1303 c->num_elements = glsl_get_length(type);
1304 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1305
1306 for (unsigned i = 0; i < c->num_elements; i++) {
1307 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
1308 }
1309 break;
1310
1311 default:
1312 vtn_fail("Invalid type for null constant");
1313 }
1314
1315 return c;
1316 }
1317
1318 static void
1319 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1320 int member, const struct vtn_decoration *dec,
1321 void *data)
1322 {
1323 vtn_assert(member == -1);
1324 if (dec->decoration != SpvDecorationSpecId)
1325 return;
1326
1327 struct spec_constant_value *const_value = data;
1328
1329 for (unsigned i = 0; i < b->num_specializations; i++) {
1330 if (b->specializations[i].id == dec->literals[0]) {
1331 if (const_value->is_double)
1332 const_value->data64 = b->specializations[i].data64;
1333 else
1334 const_value->data32 = b->specializations[i].data32;
1335 return;
1336 }
1337 }
1338 }
1339
1340 static uint32_t
1341 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1342 uint32_t const_value)
1343 {
1344 struct spec_constant_value data;
1345 data.is_double = false;
1346 data.data32 = const_value;
1347 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1348 return data.data32;
1349 }
1350
1351 static uint64_t
1352 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1353 uint64_t const_value)
1354 {
1355 struct spec_constant_value data;
1356 data.is_double = true;
1357 data.data64 = const_value;
1358 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1359 return data.data64;
1360 }
1361
1362 static void
1363 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1364 struct vtn_value *val,
1365 int member,
1366 const struct vtn_decoration *dec,
1367 void *data)
1368 {
1369 vtn_assert(member == -1);
1370 if (dec->decoration != SpvDecorationBuiltIn ||
1371 dec->literals[0] != SpvBuiltInWorkgroupSize)
1372 return;
1373
1374 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1375
1376 b->shader->info.cs.local_size[0] = val->constant->values[0].u32[0];
1377 b->shader->info.cs.local_size[1] = val->constant->values[0].u32[1];
1378 b->shader->info.cs.local_size[2] = val->constant->values[0].u32[2];
1379 }
1380
1381 static void
1382 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1383 const uint32_t *w, unsigned count)
1384 {
1385 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1386 val->constant = rzalloc(b, nir_constant);
1387 switch (opcode) {
1388 case SpvOpConstantTrue:
1389 case SpvOpConstantFalse:
1390 case SpvOpSpecConstantTrue:
1391 case SpvOpSpecConstantFalse: {
1392 vtn_fail_if(val->type->type != glsl_bool_type(),
1393 "Result type of %s must be OpTypeBool",
1394 spirv_op_to_string(opcode));
1395
1396 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1397 opcode == SpvOpSpecConstantTrue);
1398
1399 if (opcode == SpvOpSpecConstantTrue ||
1400 opcode == SpvOpSpecConstantFalse)
1401 int_val = get_specialization(b, val, int_val);
1402
1403 val->constant->values[0].u32[0] = int_val ? NIR_TRUE : NIR_FALSE;
1404 break;
1405 }
1406
1407 case SpvOpConstant: {
1408 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1409 "Result type of %s must be a scalar",
1410 spirv_op_to_string(opcode));
1411 int bit_size = glsl_get_bit_size(val->type->type);
1412 switch (bit_size) {
1413 case 64:
1414 val->constant->values->u64[0] = vtn_u64_literal(&w[3]);
1415 break;
1416 case 32:
1417 val->constant->values->u32[0] = w[3];
1418 break;
1419 case 16:
1420 val->constant->values->u16[0] = w[3];
1421 break;
1422 default:
1423 vtn_fail("Unsupported SpvOpConstant bit size");
1424 }
1425 break;
1426 }
1427
1428 case SpvOpSpecConstant: {
1429 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1430 "Result type of %s must be a scalar",
1431 spirv_op_to_string(opcode));
1432 int bit_size = glsl_get_bit_size(val->type->type);
1433 switch (bit_size) {
1434 case 64:
1435 val->constant->values[0].u64[0] =
1436 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1437 break;
1438 case 32:
1439 val->constant->values[0].u32[0] = get_specialization(b, val, w[3]);
1440 break;
1441 case 16:
1442 val->constant->values[0].u16[0] = get_specialization(b, val, w[3]);
1443 break;
1444 default:
1445 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1446 }
1447 break;
1448 }
1449
1450 case SpvOpSpecConstantComposite:
1451 case SpvOpConstantComposite: {
1452 unsigned elem_count = count - 3;
1453 vtn_fail_if(elem_count != val->type->length,
1454 "%s has %u constituents, expected %u",
1455 spirv_op_to_string(opcode), elem_count, val->type->length);
1456
1457 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1458 for (unsigned i = 0; i < elem_count; i++)
1459 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1460
1461 switch (val->type->base_type) {
1462 case vtn_base_type_vector: {
1463 assert(glsl_type_is_vector(val->type->type));
1464 int bit_size = glsl_get_bit_size(val->type->type);
1465 for (unsigned i = 0; i < elem_count; i++) {
1466 switch (bit_size) {
1467 case 64:
1468 val->constant->values[0].u64[i] = elems[i]->values[0].u64[0];
1469 break;
1470 case 32:
1471 val->constant->values[0].u32[i] = elems[i]->values[0].u32[0];
1472 break;
1473 case 16:
1474 val->constant->values[0].u16[i] = elems[i]->values[0].u16[0];
1475 break;
1476 default:
1477 vtn_fail("Invalid SpvOpConstantComposite bit size");
1478 }
1479 }
1480 break;
1481 }
1482
1483 case vtn_base_type_matrix:
1484 assert(glsl_type_is_matrix(val->type->type));
1485 for (unsigned i = 0; i < elem_count; i++)
1486 val->constant->values[i] = elems[i]->values[0];
1487 break;
1488
1489 case vtn_base_type_struct:
1490 case vtn_base_type_array:
1491 ralloc_steal(val->constant, elems);
1492 val->constant->num_elements = elem_count;
1493 val->constant->elements = elems;
1494 break;
1495
1496 default:
1497 vtn_fail("Result type of %s must be a composite type",
1498 spirv_op_to_string(opcode));
1499 }
1500 break;
1501 }
1502
1503 case SpvOpSpecConstantOp: {
1504 SpvOp opcode = get_specialization(b, val, w[3]);
1505 switch (opcode) {
1506 case SpvOpVectorShuffle: {
1507 struct vtn_value *v0 = &b->values[w[4]];
1508 struct vtn_value *v1 = &b->values[w[5]];
1509
1510 vtn_assert(v0->value_type == vtn_value_type_constant ||
1511 v0->value_type == vtn_value_type_undef);
1512 vtn_assert(v1->value_type == vtn_value_type_constant ||
1513 v1->value_type == vtn_value_type_undef);
1514
1515 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1516 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1517
1518 vtn_assert(len0 + len1 < 16);
1519
1520 unsigned bit_size = glsl_get_bit_size(val->type->type);
1521 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1522 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1523
1524 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1525 (void)bit_size0; (void)bit_size1;
1526
1527 if (bit_size == 64) {
1528 uint64_t u64[8];
1529 if (v0->value_type == vtn_value_type_constant) {
1530 for (unsigned i = 0; i < len0; i++)
1531 u64[i] = v0->constant->values[0].u64[i];
1532 }
1533 if (v1->value_type == vtn_value_type_constant) {
1534 for (unsigned i = 0; i < len1; i++)
1535 u64[len0 + i] = v1->constant->values[0].u64[i];
1536 }
1537
1538 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1539 uint32_t comp = w[i + 6];
1540 /* If component is not used, set the value to a known constant
1541 * to detect if it is wrongly used.
1542 */
1543 if (comp == (uint32_t)-1)
1544 val->constant->values[0].u64[j] = 0xdeadbeefdeadbeef;
1545 else
1546 val->constant->values[0].u64[j] = u64[comp];
1547 }
1548 } else {
1549 /* This is for both 32-bit and 16-bit values */
1550 uint32_t u32[8];
1551 if (v0->value_type == vtn_value_type_constant) {
1552 for (unsigned i = 0; i < len0; i++)
1553 u32[i] = v0->constant->values[0].u32[i];
1554 }
1555 if (v1->value_type == vtn_value_type_constant) {
1556 for (unsigned i = 0; i < len1; i++)
1557 u32[len0 + i] = v1->constant->values[0].u32[i];
1558 }
1559
1560 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1561 uint32_t comp = w[i + 6];
1562 /* If component is not used, set the value to a known constant
1563 * to detect if it is wrongly used.
1564 */
1565 if (comp == (uint32_t)-1)
1566 val->constant->values[0].u32[j] = 0xdeadbeef;
1567 else
1568 val->constant->values[0].u32[j] = u32[comp];
1569 }
1570 }
1571 break;
1572 }
1573
1574 case SpvOpCompositeExtract:
1575 case SpvOpCompositeInsert: {
1576 struct vtn_value *comp;
1577 unsigned deref_start;
1578 struct nir_constant **c;
1579 if (opcode == SpvOpCompositeExtract) {
1580 comp = vtn_value(b, w[4], vtn_value_type_constant);
1581 deref_start = 5;
1582 c = &comp->constant;
1583 } else {
1584 comp = vtn_value(b, w[5], vtn_value_type_constant);
1585 deref_start = 6;
1586 val->constant = nir_constant_clone(comp->constant,
1587 (nir_variable *)b);
1588 c = &val->constant;
1589 }
1590
1591 int elem = -1;
1592 int col = 0;
1593 const struct vtn_type *type = comp->type;
1594 for (unsigned i = deref_start; i < count; i++) {
1595 vtn_fail_if(w[i] > type->length,
1596 "%uth index of %s is %u but the type has only "
1597 "%u elements", i - deref_start,
1598 spirv_op_to_string(opcode), w[i], type->length);
1599
1600 switch (type->base_type) {
1601 case vtn_base_type_vector:
1602 elem = w[i];
1603 type = type->array_element;
1604 break;
1605
1606 case vtn_base_type_matrix:
1607 assert(col == 0 && elem == -1);
1608 col = w[i];
1609 elem = 0;
1610 type = type->array_element;
1611 break;
1612
1613 case vtn_base_type_array:
1614 c = &(*c)->elements[w[i]];
1615 type = type->array_element;
1616 break;
1617
1618 case vtn_base_type_struct:
1619 c = &(*c)->elements[w[i]];
1620 type = type->members[w[i]];
1621 break;
1622
1623 default:
1624 vtn_fail("%s must only index into composite types",
1625 spirv_op_to_string(opcode));
1626 }
1627 }
1628
1629 if (opcode == SpvOpCompositeExtract) {
1630 if (elem == -1) {
1631 val->constant = *c;
1632 } else {
1633 unsigned num_components = type->length;
1634 unsigned bit_size = glsl_get_bit_size(type->type);
1635 for (unsigned i = 0; i < num_components; i++)
1636 switch(bit_size) {
1637 case 64:
1638 val->constant->values[0].u64[i] = (*c)->values[col].u64[elem + i];
1639 break;
1640 case 32:
1641 val->constant->values[0].u32[i] = (*c)->values[col].u32[elem + i];
1642 break;
1643 case 16:
1644 val->constant->values[0].u16[i] = (*c)->values[col].u16[elem + i];
1645 break;
1646 default:
1647 vtn_fail("Invalid SpvOpCompositeExtract bit size");
1648 }
1649 }
1650 } else {
1651 struct vtn_value *insert =
1652 vtn_value(b, w[4], vtn_value_type_constant);
1653 vtn_assert(insert->type == type);
1654 if (elem == -1) {
1655 *c = insert->constant;
1656 } else {
1657 unsigned num_components = type->length;
1658 unsigned bit_size = glsl_get_bit_size(type->type);
1659 for (unsigned i = 0; i < num_components; i++)
1660 switch (bit_size) {
1661 case 64:
1662 (*c)->values[col].u64[elem + i] = insert->constant->values[0].u64[i];
1663 break;
1664 case 32:
1665 (*c)->values[col].u32[elem + i] = insert->constant->values[0].u32[i];
1666 break;
1667 case 16:
1668 (*c)->values[col].u16[elem + i] = insert->constant->values[0].u16[i];
1669 break;
1670 default:
1671 vtn_fail("Invalid SpvOpCompositeInsert bit size");
1672 }
1673 }
1674 }
1675 break;
1676 }
1677
1678 default: {
1679 bool swap;
1680 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1681 nir_alu_type src_alu_type = dst_alu_type;
1682 unsigned num_components = glsl_get_vector_elements(val->type->type);
1683 unsigned bit_size;
1684
1685 vtn_assert(count <= 7);
1686
1687 switch (opcode) {
1688 case SpvOpSConvert:
1689 case SpvOpFConvert:
1690 /* We have a source in a conversion */
1691 src_alu_type =
1692 nir_get_nir_type_for_glsl_type(
1693 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1694 /* We use the bitsize of the conversion source to evaluate the opcode later */
1695 bit_size = glsl_get_bit_size(
1696 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1697 break;
1698 default:
1699 bit_size = glsl_get_bit_size(val->type->type);
1700 };
1701
1702 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1703 src_alu_type,
1704 dst_alu_type);
1705 nir_const_value src[4];
1706
1707 for (unsigned i = 0; i < count - 4; i++) {
1708 nir_constant *c =
1709 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1710
1711 unsigned j = swap ? 1 - i : i;
1712 src[j] = c->values[0];
1713 }
1714
1715 val->constant->values[0] =
1716 nir_eval_const_opcode(op, num_components, bit_size, src);
1717 break;
1718 } /* default */
1719 }
1720 break;
1721 }
1722
1723 case SpvOpConstantNull:
1724 val->constant = vtn_null_constant(b, val->type->type);
1725 break;
1726
1727 case SpvOpConstantSampler:
1728 vtn_fail("OpConstantSampler requires Kernel Capability");
1729 break;
1730
1731 default:
1732 vtn_fail("Unhandled opcode");
1733 }
1734
1735 /* Now that we have the value, update the workgroup size if needed */
1736 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1737 }
1738
1739 static void
1740 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1741 const uint32_t *w, unsigned count)
1742 {
1743 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1744 struct vtn_function *vtn_callee =
1745 vtn_value(b, w[3], vtn_value_type_function)->func;
1746 struct nir_function *callee = vtn_callee->impl->function;
1747
1748 vtn_callee->referenced = true;
1749
1750 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1751 for (unsigned i = 0; i < call->num_params; i++) {
1752 unsigned arg_id = w[4 + i];
1753 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1754 if (arg->value_type == vtn_value_type_pointer &&
1755 arg->pointer->ptr_type->type == NULL) {
1756 nir_deref_var *d = vtn_pointer_to_deref(b, arg->pointer);
1757 call->params[i] = nir_deref_var_clone(d, call);
1758 } else {
1759 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1760
1761 /* Make a temporary to store the argument in */
1762 nir_variable *tmp =
1763 nir_local_variable_create(b->nb.impl, arg_ssa->type, "arg_tmp");
1764 call->params[i] = nir_deref_var_create(call, tmp);
1765
1766 vtn_local_store(b, arg_ssa, call->params[i]);
1767 }
1768 }
1769
1770 nir_variable *out_tmp = NULL;
1771 vtn_assert(res_type->type == callee->return_type);
1772 if (!glsl_type_is_void(callee->return_type)) {
1773 out_tmp = nir_local_variable_create(b->nb.impl, callee->return_type,
1774 "out_tmp");
1775 call->return_deref = nir_deref_var_create(call, out_tmp);
1776 }
1777
1778 nir_builder_instr_insert(&b->nb, &call->instr);
1779
1780 if (glsl_type_is_void(callee->return_type)) {
1781 vtn_push_value(b, w[2], vtn_value_type_undef);
1782 } else {
1783 vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, call->return_deref));
1784 }
1785 }
1786
1787 struct vtn_ssa_value *
1788 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1789 {
1790 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1791 val->type = type;
1792
1793 if (!glsl_type_is_vector_or_scalar(type)) {
1794 unsigned elems = glsl_get_length(type);
1795 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1796 for (unsigned i = 0; i < elems; i++) {
1797 const struct glsl_type *child_type;
1798
1799 switch (glsl_get_base_type(type)) {
1800 case GLSL_TYPE_INT:
1801 case GLSL_TYPE_UINT:
1802 case GLSL_TYPE_INT16:
1803 case GLSL_TYPE_UINT16:
1804 case GLSL_TYPE_INT64:
1805 case GLSL_TYPE_UINT64:
1806 case GLSL_TYPE_BOOL:
1807 case GLSL_TYPE_FLOAT:
1808 case GLSL_TYPE_FLOAT16:
1809 case GLSL_TYPE_DOUBLE:
1810 child_type = glsl_get_column_type(type);
1811 break;
1812 case GLSL_TYPE_ARRAY:
1813 child_type = glsl_get_array_element(type);
1814 break;
1815 case GLSL_TYPE_STRUCT:
1816 child_type = glsl_get_struct_field(type, i);
1817 break;
1818 default:
1819 vtn_fail("unkown base type");
1820 }
1821
1822 val->elems[i] = vtn_create_ssa_value(b, child_type);
1823 }
1824 }
1825
1826 return val;
1827 }
1828
1829 static nir_tex_src
1830 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1831 {
1832 nir_tex_src src;
1833 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1834 src.src_type = type;
1835 return src;
1836 }
1837
1838 static void
1839 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1840 const uint32_t *w, unsigned count)
1841 {
1842 if (opcode == SpvOpSampledImage) {
1843 struct vtn_value *val =
1844 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1845 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1846 val->sampled_image->type =
1847 vtn_value(b, w[1], vtn_value_type_type)->type;
1848 val->sampled_image->image =
1849 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1850 val->sampled_image->sampler =
1851 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1852 return;
1853 } else if (opcode == SpvOpImage) {
1854 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
1855 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1856 if (src_val->value_type == vtn_value_type_sampled_image) {
1857 val->pointer = src_val->sampled_image->image;
1858 } else {
1859 vtn_assert(src_val->value_type == vtn_value_type_pointer);
1860 val->pointer = src_val->pointer;
1861 }
1862 return;
1863 }
1864
1865 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1866 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1867
1868 struct vtn_sampled_image sampled;
1869 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1870 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1871 sampled = *sampled_val->sampled_image;
1872 } else {
1873 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
1874 sampled.type = sampled_val->pointer->type;
1875 sampled.image = NULL;
1876 sampled.sampler = sampled_val->pointer;
1877 }
1878
1879 const struct glsl_type *image_type = sampled.type->type;
1880 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
1881 const bool is_array = glsl_sampler_type_is_array(image_type);
1882 const bool is_shadow = glsl_sampler_type_is_shadow(image_type);
1883
1884 /* Figure out the base texture operation */
1885 nir_texop texop;
1886 switch (opcode) {
1887 case SpvOpImageSampleImplicitLod:
1888 case SpvOpImageSampleDrefImplicitLod:
1889 case SpvOpImageSampleProjImplicitLod:
1890 case SpvOpImageSampleProjDrefImplicitLod:
1891 texop = nir_texop_tex;
1892 break;
1893
1894 case SpvOpImageSampleExplicitLod:
1895 case SpvOpImageSampleDrefExplicitLod:
1896 case SpvOpImageSampleProjExplicitLod:
1897 case SpvOpImageSampleProjDrefExplicitLod:
1898 texop = nir_texop_txl;
1899 break;
1900
1901 case SpvOpImageFetch:
1902 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1903 texop = nir_texop_txf_ms;
1904 } else {
1905 texop = nir_texop_txf;
1906 }
1907 break;
1908
1909 case SpvOpImageGather:
1910 case SpvOpImageDrefGather:
1911 texop = nir_texop_tg4;
1912 break;
1913
1914 case SpvOpImageQuerySizeLod:
1915 case SpvOpImageQuerySize:
1916 texop = nir_texop_txs;
1917 break;
1918
1919 case SpvOpImageQueryLod:
1920 texop = nir_texop_lod;
1921 break;
1922
1923 case SpvOpImageQueryLevels:
1924 texop = nir_texop_query_levels;
1925 break;
1926
1927 case SpvOpImageQuerySamples:
1928 texop = nir_texop_texture_samples;
1929 break;
1930
1931 default:
1932 vtn_fail("Unhandled opcode");
1933 }
1934
1935 nir_tex_src srcs[8]; /* 8 should be enough */
1936 nir_tex_src *p = srcs;
1937
1938 unsigned idx = 4;
1939
1940 struct nir_ssa_def *coord;
1941 unsigned coord_components;
1942 switch (opcode) {
1943 case SpvOpImageSampleImplicitLod:
1944 case SpvOpImageSampleExplicitLod:
1945 case SpvOpImageSampleDrefImplicitLod:
1946 case SpvOpImageSampleDrefExplicitLod:
1947 case SpvOpImageSampleProjImplicitLod:
1948 case SpvOpImageSampleProjExplicitLod:
1949 case SpvOpImageSampleProjDrefImplicitLod:
1950 case SpvOpImageSampleProjDrefExplicitLod:
1951 case SpvOpImageFetch:
1952 case SpvOpImageGather:
1953 case SpvOpImageDrefGather:
1954 case SpvOpImageQueryLod: {
1955 /* All these types have the coordinate as their first real argument */
1956 switch (sampler_dim) {
1957 case GLSL_SAMPLER_DIM_1D:
1958 case GLSL_SAMPLER_DIM_BUF:
1959 coord_components = 1;
1960 break;
1961 case GLSL_SAMPLER_DIM_2D:
1962 case GLSL_SAMPLER_DIM_RECT:
1963 case GLSL_SAMPLER_DIM_MS:
1964 coord_components = 2;
1965 break;
1966 case GLSL_SAMPLER_DIM_3D:
1967 case GLSL_SAMPLER_DIM_CUBE:
1968 coord_components = 3;
1969 break;
1970 default:
1971 vtn_fail("Invalid sampler type");
1972 }
1973
1974 if (is_array && texop != nir_texop_lod)
1975 coord_components++;
1976
1977 coord = vtn_ssa_value(b, w[idx++])->def;
1978 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
1979 (1 << coord_components) - 1));
1980 p->src_type = nir_tex_src_coord;
1981 p++;
1982 break;
1983 }
1984
1985 default:
1986 coord = NULL;
1987 coord_components = 0;
1988 break;
1989 }
1990
1991 switch (opcode) {
1992 case SpvOpImageSampleProjImplicitLod:
1993 case SpvOpImageSampleProjExplicitLod:
1994 case SpvOpImageSampleProjDrefImplicitLod:
1995 case SpvOpImageSampleProjDrefExplicitLod:
1996 /* These have the projector as the last coordinate component */
1997 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
1998 p->src_type = nir_tex_src_projector;
1999 p++;
2000 break;
2001
2002 default:
2003 break;
2004 }
2005
2006 unsigned gather_component = 0;
2007 switch (opcode) {
2008 case SpvOpImageSampleDrefImplicitLod:
2009 case SpvOpImageSampleDrefExplicitLod:
2010 case SpvOpImageSampleProjDrefImplicitLod:
2011 case SpvOpImageSampleProjDrefExplicitLod:
2012 case SpvOpImageDrefGather:
2013 /* These all have an explicit depth value as their next source */
2014 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2015 break;
2016
2017 case SpvOpImageGather:
2018 /* This has a component as its next source */
2019 gather_component =
2020 vtn_value(b, w[idx++], vtn_value_type_constant)->constant->values[0].u32[0];
2021 break;
2022
2023 default:
2024 break;
2025 }
2026
2027 /* For OpImageQuerySizeLod, we always have an LOD */
2028 if (opcode == SpvOpImageQuerySizeLod)
2029 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2030
2031 /* Now we need to handle some number of optional arguments */
2032 const struct vtn_ssa_value *gather_offsets = NULL;
2033 if (idx < count) {
2034 uint32_t operands = w[idx++];
2035
2036 if (operands & SpvImageOperandsBiasMask) {
2037 vtn_assert(texop == nir_texop_tex);
2038 texop = nir_texop_txb;
2039 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2040 }
2041
2042 if (operands & SpvImageOperandsLodMask) {
2043 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2044 texop == nir_texop_txs);
2045 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2046 }
2047
2048 if (operands & SpvImageOperandsGradMask) {
2049 vtn_assert(texop == nir_texop_txl);
2050 texop = nir_texop_txd;
2051 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2052 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2053 }
2054
2055 if (operands & SpvImageOperandsOffsetMask ||
2056 operands & SpvImageOperandsConstOffsetMask)
2057 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2058
2059 if (operands & SpvImageOperandsConstOffsetsMask) {
2060 gather_offsets = vtn_ssa_value(b, w[idx++]);
2061 (*p++) = (nir_tex_src){};
2062 }
2063
2064 if (operands & SpvImageOperandsSampleMask) {
2065 vtn_assert(texop == nir_texop_txf_ms);
2066 texop = nir_texop_txf_ms;
2067 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2068 }
2069 }
2070 /* We should have now consumed exactly all of the arguments */
2071 vtn_assert(idx == count);
2072
2073 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2074 instr->op = texop;
2075
2076 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2077
2078 instr->coord_components = coord_components;
2079 instr->sampler_dim = sampler_dim;
2080 instr->is_array = is_array;
2081 instr->is_shadow = is_shadow;
2082 instr->is_new_style_shadow =
2083 is_shadow && glsl_get_components(ret_type->type) == 1;
2084 instr->component = gather_component;
2085
2086 switch (glsl_get_sampler_result_type(image_type)) {
2087 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2088 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2089 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2090 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2091 default:
2092 vtn_fail("Invalid base type for sampler result");
2093 }
2094
2095 nir_deref_var *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2096 nir_deref_var *texture;
2097 if (sampled.image) {
2098 nir_deref_var *image = vtn_pointer_to_deref(b, sampled.image);
2099 texture = image;
2100 } else {
2101 texture = sampler;
2102 }
2103
2104 instr->texture = nir_deref_var_clone(texture, instr);
2105
2106 switch (instr->op) {
2107 case nir_texop_tex:
2108 case nir_texop_txb:
2109 case nir_texop_txl:
2110 case nir_texop_txd:
2111 case nir_texop_tg4:
2112 /* These operations require a sampler */
2113 instr->sampler = nir_deref_var_clone(sampler, instr);
2114 break;
2115 case nir_texop_txf:
2116 case nir_texop_txf_ms:
2117 case nir_texop_txs:
2118 case nir_texop_lod:
2119 case nir_texop_query_levels:
2120 case nir_texop_texture_samples:
2121 case nir_texop_samples_identical:
2122 /* These don't */
2123 instr->sampler = NULL;
2124 break;
2125 case nir_texop_txf_ms_mcs:
2126 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2127 }
2128
2129 nir_ssa_dest_init(&instr->instr, &instr->dest,
2130 nir_tex_instr_dest_size(instr), 32, NULL);
2131
2132 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2133 nir_tex_instr_dest_size(instr));
2134
2135 nir_ssa_def *def;
2136 nir_instr *instruction;
2137 if (gather_offsets) {
2138 vtn_assert(glsl_get_base_type(gather_offsets->type) == GLSL_TYPE_ARRAY);
2139 vtn_assert(glsl_get_length(gather_offsets->type) == 4);
2140 nir_tex_instr *instrs[4] = {instr, NULL, NULL, NULL};
2141
2142 /* Copy the current instruction 4x */
2143 for (uint32_t i = 1; i < 4; i++) {
2144 instrs[i] = nir_tex_instr_create(b->shader, instr->num_srcs);
2145 instrs[i]->op = instr->op;
2146 instrs[i]->coord_components = instr->coord_components;
2147 instrs[i]->sampler_dim = instr->sampler_dim;
2148 instrs[i]->is_array = instr->is_array;
2149 instrs[i]->is_shadow = instr->is_shadow;
2150 instrs[i]->is_new_style_shadow = instr->is_new_style_shadow;
2151 instrs[i]->component = instr->component;
2152 instrs[i]->dest_type = instr->dest_type;
2153 instrs[i]->texture = nir_deref_var_clone(texture, instrs[i]);
2154 instrs[i]->sampler = NULL;
2155
2156 memcpy(instrs[i]->src, srcs, instr->num_srcs * sizeof(*instr->src));
2157
2158 nir_ssa_dest_init(&instrs[i]->instr, &instrs[i]->dest,
2159 nir_tex_instr_dest_size(instr), 32, NULL);
2160 }
2161
2162 /* Fill in the last argument with the offset from the passed in offsets
2163 * and insert the instruction into the stream.
2164 */
2165 for (uint32_t i = 0; i < 4; i++) {
2166 nir_tex_src src;
2167 src.src = nir_src_for_ssa(gather_offsets->elems[i]->def);
2168 src.src_type = nir_tex_src_offset;
2169 instrs[i]->src[instrs[i]->num_srcs - 1] = src;
2170 nir_builder_instr_insert(&b->nb, &instrs[i]->instr);
2171 }
2172
2173 /* Combine the results of the 4 instructions by taking their .w
2174 * components
2175 */
2176 nir_alu_instr *vec4 = nir_alu_instr_create(b->shader, nir_op_vec4);
2177 nir_ssa_dest_init(&vec4->instr, &vec4->dest.dest, 4, 32, NULL);
2178 vec4->dest.write_mask = 0xf;
2179 for (uint32_t i = 0; i < 4; i++) {
2180 vec4->src[i].src = nir_src_for_ssa(&instrs[i]->dest.ssa);
2181 vec4->src[i].swizzle[0] = 3;
2182 }
2183 def = &vec4->dest.dest.ssa;
2184 instruction = &vec4->instr;
2185 } else {
2186 def = &instr->dest.ssa;
2187 instruction = &instr->instr;
2188 }
2189
2190 val->ssa = vtn_create_ssa_value(b, ret_type->type);
2191 val->ssa->def = def;
2192
2193 nir_builder_instr_insert(&b->nb, instruction);
2194 }
2195
2196 static void
2197 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2198 const uint32_t *w, nir_src *src)
2199 {
2200 switch (opcode) {
2201 case SpvOpAtomicIIncrement:
2202 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2203 break;
2204
2205 case SpvOpAtomicIDecrement:
2206 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2207 break;
2208
2209 case SpvOpAtomicISub:
2210 src[0] =
2211 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2212 break;
2213
2214 case SpvOpAtomicCompareExchange:
2215 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2216 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2217 break;
2218
2219 case SpvOpAtomicExchange:
2220 case SpvOpAtomicIAdd:
2221 case SpvOpAtomicSMin:
2222 case SpvOpAtomicUMin:
2223 case SpvOpAtomicSMax:
2224 case SpvOpAtomicUMax:
2225 case SpvOpAtomicAnd:
2226 case SpvOpAtomicOr:
2227 case SpvOpAtomicXor:
2228 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2229 break;
2230
2231 default:
2232 vtn_fail("Invalid SPIR-V atomic");
2233 }
2234 }
2235
2236 static nir_ssa_def *
2237 get_image_coord(struct vtn_builder *b, uint32_t value)
2238 {
2239 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2240
2241 /* The image_load_store intrinsics assume a 4-dim coordinate */
2242 unsigned dim = glsl_get_vector_elements(coord->type);
2243 unsigned swizzle[4];
2244 for (unsigned i = 0; i < 4; i++)
2245 swizzle[i] = MIN2(i, dim - 1);
2246
2247 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
2248 }
2249
2250 static void
2251 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2252 const uint32_t *w, unsigned count)
2253 {
2254 /* Just get this one out of the way */
2255 if (opcode == SpvOpImageTexelPointer) {
2256 struct vtn_value *val =
2257 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2258 val->image = ralloc(b, struct vtn_image_pointer);
2259
2260 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2261 val->image->coord = get_image_coord(b, w[4]);
2262 val->image->sample = vtn_ssa_value(b, w[5])->def;
2263 return;
2264 }
2265
2266 struct vtn_image_pointer image;
2267
2268 switch (opcode) {
2269 case SpvOpAtomicExchange:
2270 case SpvOpAtomicCompareExchange:
2271 case SpvOpAtomicCompareExchangeWeak:
2272 case SpvOpAtomicIIncrement:
2273 case SpvOpAtomicIDecrement:
2274 case SpvOpAtomicIAdd:
2275 case SpvOpAtomicISub:
2276 case SpvOpAtomicLoad:
2277 case SpvOpAtomicSMin:
2278 case SpvOpAtomicUMin:
2279 case SpvOpAtomicSMax:
2280 case SpvOpAtomicUMax:
2281 case SpvOpAtomicAnd:
2282 case SpvOpAtomicOr:
2283 case SpvOpAtomicXor:
2284 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2285 break;
2286
2287 case SpvOpAtomicStore:
2288 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2289 break;
2290
2291 case SpvOpImageQuerySize:
2292 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2293 image.coord = NULL;
2294 image.sample = NULL;
2295 break;
2296
2297 case SpvOpImageRead:
2298 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2299 image.coord = get_image_coord(b, w[4]);
2300
2301 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2302 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2303 image.sample = vtn_ssa_value(b, w[6])->def;
2304 } else {
2305 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2306 }
2307 break;
2308
2309 case SpvOpImageWrite:
2310 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2311 image.coord = get_image_coord(b, w[2]);
2312
2313 /* texel = w[3] */
2314
2315 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2316 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2317 image.sample = vtn_ssa_value(b, w[5])->def;
2318 } else {
2319 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2320 }
2321 break;
2322
2323 default:
2324 vtn_fail("Invalid image opcode");
2325 }
2326
2327 nir_intrinsic_op op;
2328 switch (opcode) {
2329 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
2330 OP(ImageQuerySize, size)
2331 OP(ImageRead, load)
2332 OP(ImageWrite, store)
2333 OP(AtomicLoad, load)
2334 OP(AtomicStore, store)
2335 OP(AtomicExchange, atomic_exchange)
2336 OP(AtomicCompareExchange, atomic_comp_swap)
2337 OP(AtomicIIncrement, atomic_add)
2338 OP(AtomicIDecrement, atomic_add)
2339 OP(AtomicIAdd, atomic_add)
2340 OP(AtomicISub, atomic_add)
2341 OP(AtomicSMin, atomic_min)
2342 OP(AtomicUMin, atomic_min)
2343 OP(AtomicSMax, atomic_max)
2344 OP(AtomicUMax, atomic_max)
2345 OP(AtomicAnd, atomic_and)
2346 OP(AtomicOr, atomic_or)
2347 OP(AtomicXor, atomic_xor)
2348 #undef OP
2349 default:
2350 vtn_fail("Invalid image opcode");
2351 }
2352
2353 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2354
2355 nir_deref_var *image_deref = vtn_pointer_to_deref(b, image.image);
2356 intrin->variables[0] = nir_deref_var_clone(image_deref, intrin);
2357
2358 /* ImageQuerySize doesn't take any extra parameters */
2359 if (opcode != SpvOpImageQuerySize) {
2360 /* The image coordinate is always 4 components but we may not have that
2361 * many. Swizzle to compensate.
2362 */
2363 unsigned swiz[4];
2364 for (unsigned i = 0; i < 4; i++)
2365 swiz[i] = i < image.coord->num_components ? i : 0;
2366 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
2367 swiz, 4, false));
2368 intrin->src[1] = nir_src_for_ssa(image.sample);
2369 }
2370
2371 switch (opcode) {
2372 case SpvOpAtomicLoad:
2373 case SpvOpImageQuerySize:
2374 case SpvOpImageRead:
2375 break;
2376 case SpvOpAtomicStore:
2377 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2378 break;
2379 case SpvOpImageWrite:
2380 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
2381 break;
2382
2383 case SpvOpAtomicCompareExchange:
2384 case SpvOpAtomicIIncrement:
2385 case SpvOpAtomicIDecrement:
2386 case SpvOpAtomicExchange:
2387 case SpvOpAtomicIAdd:
2388 case SpvOpAtomicISub:
2389 case SpvOpAtomicSMin:
2390 case SpvOpAtomicUMin:
2391 case SpvOpAtomicSMax:
2392 case SpvOpAtomicUMax:
2393 case SpvOpAtomicAnd:
2394 case SpvOpAtomicOr:
2395 case SpvOpAtomicXor:
2396 fill_common_atomic_sources(b, opcode, w, &intrin->src[2]);
2397 break;
2398
2399 default:
2400 vtn_fail("Invalid image opcode");
2401 }
2402
2403 if (opcode != SpvOpImageWrite) {
2404 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2405 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2406
2407 unsigned dest_components =
2408 nir_intrinsic_infos[intrin->intrinsic].dest_components;
2409 if (intrin->intrinsic == nir_intrinsic_image_size) {
2410 dest_components = intrin->num_components =
2411 glsl_get_vector_elements(type->type);
2412 }
2413
2414 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2415 dest_components, 32, NULL);
2416
2417 nir_builder_instr_insert(&b->nb, &intrin->instr);
2418
2419 val->ssa = vtn_create_ssa_value(b, type->type);
2420 val->ssa->def = &intrin->dest.ssa;
2421 } else {
2422 nir_builder_instr_insert(&b->nb, &intrin->instr);
2423 }
2424 }
2425
2426 static nir_intrinsic_op
2427 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2428 {
2429 switch (opcode) {
2430 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2431 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2432 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2433 OP(AtomicExchange, atomic_exchange)
2434 OP(AtomicCompareExchange, atomic_comp_swap)
2435 OP(AtomicIIncrement, atomic_add)
2436 OP(AtomicIDecrement, atomic_add)
2437 OP(AtomicIAdd, atomic_add)
2438 OP(AtomicISub, atomic_add)
2439 OP(AtomicSMin, atomic_imin)
2440 OP(AtomicUMin, atomic_umin)
2441 OP(AtomicSMax, atomic_imax)
2442 OP(AtomicUMax, atomic_umax)
2443 OP(AtomicAnd, atomic_and)
2444 OP(AtomicOr, atomic_or)
2445 OP(AtomicXor, atomic_xor)
2446 #undef OP
2447 default:
2448 vtn_fail("Invalid SSBO atomic");
2449 }
2450 }
2451
2452 static nir_intrinsic_op
2453 get_shared_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2454 {
2455 switch (opcode) {
2456 case SpvOpAtomicLoad: return nir_intrinsic_load_shared;
2457 case SpvOpAtomicStore: return nir_intrinsic_store_shared;
2458 #define OP(S, N) case SpvOp##S: return nir_intrinsic_shared_##N;
2459 OP(AtomicExchange, atomic_exchange)
2460 OP(AtomicCompareExchange, atomic_comp_swap)
2461 OP(AtomicIIncrement, atomic_add)
2462 OP(AtomicIDecrement, atomic_add)
2463 OP(AtomicIAdd, atomic_add)
2464 OP(AtomicISub, atomic_add)
2465 OP(AtomicSMin, atomic_imin)
2466 OP(AtomicUMin, atomic_umin)
2467 OP(AtomicSMax, atomic_imax)
2468 OP(AtomicUMax, atomic_umax)
2469 OP(AtomicAnd, atomic_and)
2470 OP(AtomicOr, atomic_or)
2471 OP(AtomicXor, atomic_xor)
2472 #undef OP
2473 default:
2474 vtn_fail("Invalid shared atomic");
2475 }
2476 }
2477
2478 static nir_intrinsic_op
2479 get_var_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2480 {
2481 switch (opcode) {
2482 case SpvOpAtomicLoad: return nir_intrinsic_load_var;
2483 case SpvOpAtomicStore: return nir_intrinsic_store_var;
2484 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
2485 OP(AtomicExchange, atomic_exchange)
2486 OP(AtomicCompareExchange, atomic_comp_swap)
2487 OP(AtomicIIncrement, atomic_add)
2488 OP(AtomicIDecrement, atomic_add)
2489 OP(AtomicIAdd, atomic_add)
2490 OP(AtomicISub, atomic_add)
2491 OP(AtomicSMin, atomic_imin)
2492 OP(AtomicUMin, atomic_umin)
2493 OP(AtomicSMax, atomic_imax)
2494 OP(AtomicUMax, atomic_umax)
2495 OP(AtomicAnd, atomic_and)
2496 OP(AtomicOr, atomic_or)
2497 OP(AtomicXor, atomic_xor)
2498 #undef OP
2499 default:
2500 vtn_fail("Invalid shared atomic");
2501 }
2502 }
2503
2504 static void
2505 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
2506 const uint32_t *w, unsigned count)
2507 {
2508 struct vtn_pointer *ptr;
2509 nir_intrinsic_instr *atomic;
2510
2511 switch (opcode) {
2512 case SpvOpAtomicLoad:
2513 case SpvOpAtomicExchange:
2514 case SpvOpAtomicCompareExchange:
2515 case SpvOpAtomicCompareExchangeWeak:
2516 case SpvOpAtomicIIncrement:
2517 case SpvOpAtomicIDecrement:
2518 case SpvOpAtomicIAdd:
2519 case SpvOpAtomicISub:
2520 case SpvOpAtomicSMin:
2521 case SpvOpAtomicUMin:
2522 case SpvOpAtomicSMax:
2523 case SpvOpAtomicUMax:
2524 case SpvOpAtomicAnd:
2525 case SpvOpAtomicOr:
2526 case SpvOpAtomicXor:
2527 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2528 break;
2529
2530 case SpvOpAtomicStore:
2531 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2532 break;
2533
2534 default:
2535 vtn_fail("Invalid SPIR-V atomic");
2536 }
2537
2538 /*
2539 SpvScope scope = w[4];
2540 SpvMemorySemanticsMask semantics = w[5];
2541 */
2542
2543 if (ptr->mode == vtn_variable_mode_workgroup &&
2544 !b->options->lower_workgroup_access_to_offsets) {
2545 nir_deref_var *deref = vtn_pointer_to_deref(b, ptr);
2546 const struct glsl_type *deref_type = nir_deref_tail(&deref->deref)->type;
2547 nir_intrinsic_op op = get_var_nir_atomic_op(b, opcode);
2548 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2549 atomic->variables[0] = nir_deref_var_clone(deref, atomic);
2550
2551 switch (opcode) {
2552 case SpvOpAtomicLoad:
2553 atomic->num_components = glsl_get_vector_elements(deref_type);
2554 break;
2555
2556 case SpvOpAtomicStore:
2557 atomic->num_components = glsl_get_vector_elements(deref_type);
2558 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2559 atomic->src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2560 break;
2561
2562 case SpvOpAtomicExchange:
2563 case SpvOpAtomicCompareExchange:
2564 case SpvOpAtomicCompareExchangeWeak:
2565 case SpvOpAtomicIIncrement:
2566 case SpvOpAtomicIDecrement:
2567 case SpvOpAtomicIAdd:
2568 case SpvOpAtomicISub:
2569 case SpvOpAtomicSMin:
2570 case SpvOpAtomicUMin:
2571 case SpvOpAtomicSMax:
2572 case SpvOpAtomicUMax:
2573 case SpvOpAtomicAnd:
2574 case SpvOpAtomicOr:
2575 case SpvOpAtomicXor:
2576 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
2577 break;
2578
2579 default:
2580 vtn_fail("Invalid SPIR-V atomic");
2581
2582 }
2583 } else {
2584 nir_ssa_def *offset, *index;
2585 offset = vtn_pointer_to_offset(b, ptr, &index, NULL);
2586
2587 nir_intrinsic_op op;
2588 if (ptr->mode == vtn_variable_mode_ssbo) {
2589 op = get_ssbo_nir_atomic_op(b, opcode);
2590 } else {
2591 vtn_assert(ptr->mode == vtn_variable_mode_workgroup &&
2592 b->options->lower_workgroup_access_to_offsets);
2593 op = get_shared_nir_atomic_op(b, opcode);
2594 }
2595
2596 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2597
2598 int src = 0;
2599 switch (opcode) {
2600 case SpvOpAtomicLoad:
2601 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2602 if (ptr->mode == vtn_variable_mode_ssbo)
2603 atomic->src[src++] = nir_src_for_ssa(index);
2604 atomic->src[src++] = nir_src_for_ssa(offset);
2605 break;
2606
2607 case SpvOpAtomicStore:
2608 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2609 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2610 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2611 if (ptr->mode == vtn_variable_mode_ssbo)
2612 atomic->src[src++] = nir_src_for_ssa(index);
2613 atomic->src[src++] = nir_src_for_ssa(offset);
2614 break;
2615
2616 case SpvOpAtomicExchange:
2617 case SpvOpAtomicCompareExchange:
2618 case SpvOpAtomicCompareExchangeWeak:
2619 case SpvOpAtomicIIncrement:
2620 case SpvOpAtomicIDecrement:
2621 case SpvOpAtomicIAdd:
2622 case SpvOpAtomicISub:
2623 case SpvOpAtomicSMin:
2624 case SpvOpAtomicUMin:
2625 case SpvOpAtomicSMax:
2626 case SpvOpAtomicUMax:
2627 case SpvOpAtomicAnd:
2628 case SpvOpAtomicOr:
2629 case SpvOpAtomicXor:
2630 if (ptr->mode == vtn_variable_mode_ssbo)
2631 atomic->src[src++] = nir_src_for_ssa(index);
2632 atomic->src[src++] = nir_src_for_ssa(offset);
2633 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2634 break;
2635
2636 default:
2637 vtn_fail("Invalid SPIR-V atomic");
2638 }
2639 }
2640
2641 if (opcode != SpvOpAtomicStore) {
2642 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2643
2644 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2645 glsl_get_vector_elements(type->type),
2646 glsl_get_bit_size(type->type), NULL);
2647
2648 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2649 val->ssa = rzalloc(b, struct vtn_ssa_value);
2650 val->ssa->def = &atomic->dest.ssa;
2651 val->ssa->type = type->type;
2652 }
2653
2654 nir_builder_instr_insert(&b->nb, &atomic->instr);
2655 }
2656
2657 static nir_alu_instr *
2658 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2659 {
2660 nir_op op;
2661 switch (num_components) {
2662 case 1: op = nir_op_fmov; break;
2663 case 2: op = nir_op_vec2; break;
2664 case 3: op = nir_op_vec3; break;
2665 case 4: op = nir_op_vec4; break;
2666 default: vtn_fail("bad vector size");
2667 }
2668
2669 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2670 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2671 bit_size, NULL);
2672 vec->dest.write_mask = (1 << num_components) - 1;
2673
2674 return vec;
2675 }
2676
2677 struct vtn_ssa_value *
2678 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2679 {
2680 if (src->transposed)
2681 return src->transposed;
2682
2683 struct vtn_ssa_value *dest =
2684 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2685
2686 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2687 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2688 glsl_get_bit_size(src->type));
2689 if (glsl_type_is_vector_or_scalar(src->type)) {
2690 vec->src[0].src = nir_src_for_ssa(src->def);
2691 vec->src[0].swizzle[0] = i;
2692 } else {
2693 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2694 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2695 vec->src[j].swizzle[0] = i;
2696 }
2697 }
2698 nir_builder_instr_insert(&b->nb, &vec->instr);
2699 dest->elems[i]->def = &vec->dest.dest.ssa;
2700 }
2701
2702 dest->transposed = src;
2703
2704 return dest;
2705 }
2706
2707 nir_ssa_def *
2708 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2709 {
2710 unsigned swiz[4] = { index };
2711 return nir_swizzle(&b->nb, src, swiz, 1, true);
2712 }
2713
2714 nir_ssa_def *
2715 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2716 unsigned index)
2717 {
2718 nir_alu_instr *vec = create_vec(b, src->num_components,
2719 src->bit_size);
2720
2721 for (unsigned i = 0; i < src->num_components; i++) {
2722 if (i == index) {
2723 vec->src[i].src = nir_src_for_ssa(insert);
2724 } else {
2725 vec->src[i].src = nir_src_for_ssa(src);
2726 vec->src[i].swizzle[0] = i;
2727 }
2728 }
2729
2730 nir_builder_instr_insert(&b->nb, &vec->instr);
2731
2732 return &vec->dest.dest.ssa;
2733 }
2734
2735 nir_ssa_def *
2736 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2737 nir_ssa_def *index)
2738 {
2739 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
2740 for (unsigned i = 1; i < src->num_components; i++)
2741 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2742 vtn_vector_extract(b, src, i), dest);
2743
2744 return dest;
2745 }
2746
2747 nir_ssa_def *
2748 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2749 nir_ssa_def *insert, nir_ssa_def *index)
2750 {
2751 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2752 for (unsigned i = 1; i < src->num_components; i++)
2753 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
2754 vtn_vector_insert(b, src, insert, i), dest);
2755
2756 return dest;
2757 }
2758
2759 static nir_ssa_def *
2760 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2761 nir_ssa_def *src0, nir_ssa_def *src1,
2762 const uint32_t *indices)
2763 {
2764 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
2765
2766 for (unsigned i = 0; i < num_components; i++) {
2767 uint32_t index = indices[i];
2768 if (index == 0xffffffff) {
2769 vec->src[i].src =
2770 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2771 } else if (index < src0->num_components) {
2772 vec->src[i].src = nir_src_for_ssa(src0);
2773 vec->src[i].swizzle[0] = index;
2774 } else {
2775 vec->src[i].src = nir_src_for_ssa(src1);
2776 vec->src[i].swizzle[0] = index - src0->num_components;
2777 }
2778 }
2779
2780 nir_builder_instr_insert(&b->nb, &vec->instr);
2781
2782 return &vec->dest.dest.ssa;
2783 }
2784
2785 /*
2786 * Concatentates a number of vectors/scalars together to produce a vector
2787 */
2788 static nir_ssa_def *
2789 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2790 unsigned num_srcs, nir_ssa_def **srcs)
2791 {
2792 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
2793
2794 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2795 *
2796 * "When constructing a vector, there must be at least two Constituent
2797 * operands."
2798 */
2799 vtn_assert(num_srcs >= 2);
2800
2801 unsigned dest_idx = 0;
2802 for (unsigned i = 0; i < num_srcs; i++) {
2803 nir_ssa_def *src = srcs[i];
2804 vtn_assert(dest_idx + src->num_components <= num_components);
2805 for (unsigned j = 0; j < src->num_components; j++) {
2806 vec->src[dest_idx].src = nir_src_for_ssa(src);
2807 vec->src[dest_idx].swizzle[0] = j;
2808 dest_idx++;
2809 }
2810 }
2811
2812 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2813 *
2814 * "When constructing a vector, the total number of components in all
2815 * the operands must equal the number of components in Result Type."
2816 */
2817 vtn_assert(dest_idx == num_components);
2818
2819 nir_builder_instr_insert(&b->nb, &vec->instr);
2820
2821 return &vec->dest.dest.ssa;
2822 }
2823
2824 static struct vtn_ssa_value *
2825 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2826 {
2827 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2828 dest->type = src->type;
2829
2830 if (glsl_type_is_vector_or_scalar(src->type)) {
2831 dest->def = src->def;
2832 } else {
2833 unsigned elems = glsl_get_length(src->type);
2834
2835 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2836 for (unsigned i = 0; i < elems; i++)
2837 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2838 }
2839
2840 return dest;
2841 }
2842
2843 static struct vtn_ssa_value *
2844 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2845 struct vtn_ssa_value *insert, const uint32_t *indices,
2846 unsigned num_indices)
2847 {
2848 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2849
2850 struct vtn_ssa_value *cur = dest;
2851 unsigned i;
2852 for (i = 0; i < num_indices - 1; i++) {
2853 cur = cur->elems[indices[i]];
2854 }
2855
2856 if (glsl_type_is_vector_or_scalar(cur->type)) {
2857 /* According to the SPIR-V spec, OpCompositeInsert may work down to
2858 * the component granularity. In that case, the last index will be
2859 * the index to insert the scalar into the vector.
2860 */
2861
2862 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2863 } else {
2864 cur->elems[indices[i]] = insert;
2865 }
2866
2867 return dest;
2868 }
2869
2870 static struct vtn_ssa_value *
2871 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2872 const uint32_t *indices, unsigned num_indices)
2873 {
2874 struct vtn_ssa_value *cur = src;
2875 for (unsigned i = 0; i < num_indices; i++) {
2876 if (glsl_type_is_vector_or_scalar(cur->type)) {
2877 vtn_assert(i == num_indices - 1);
2878 /* According to the SPIR-V spec, OpCompositeExtract may work down to
2879 * the component granularity. The last index will be the index of the
2880 * vector to extract.
2881 */
2882
2883 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2884 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2885 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2886 return ret;
2887 } else {
2888 cur = cur->elems[indices[i]];
2889 }
2890 }
2891
2892 return cur;
2893 }
2894
2895 static void
2896 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2897 const uint32_t *w, unsigned count)
2898 {
2899 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2900 const struct glsl_type *type =
2901 vtn_value(b, w[1], vtn_value_type_type)->type->type;
2902 val->ssa = vtn_create_ssa_value(b, type);
2903
2904 switch (opcode) {
2905 case SpvOpVectorExtractDynamic:
2906 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2907 vtn_ssa_value(b, w[4])->def);
2908 break;
2909
2910 case SpvOpVectorInsertDynamic:
2911 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2912 vtn_ssa_value(b, w[4])->def,
2913 vtn_ssa_value(b, w[5])->def);
2914 break;
2915
2916 case SpvOpVectorShuffle:
2917 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2918 vtn_ssa_value(b, w[3])->def,
2919 vtn_ssa_value(b, w[4])->def,
2920 w + 5);
2921 break;
2922
2923 case SpvOpCompositeConstruct: {
2924 unsigned elems = count - 3;
2925 if (glsl_type_is_vector_or_scalar(type)) {
2926 nir_ssa_def *srcs[4];
2927 for (unsigned i = 0; i < elems; i++)
2928 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2929 val->ssa->def =
2930 vtn_vector_construct(b, glsl_get_vector_elements(type),
2931 elems, srcs);
2932 } else {
2933 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2934 for (unsigned i = 0; i < elems; i++)
2935 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2936 }
2937 break;
2938 }
2939 case SpvOpCompositeExtract:
2940 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2941 w + 4, count - 4);
2942 break;
2943
2944 case SpvOpCompositeInsert:
2945 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2946 vtn_ssa_value(b, w[3]),
2947 w + 5, count - 5);
2948 break;
2949
2950 case SpvOpCopyObject:
2951 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2952 break;
2953
2954 default:
2955 vtn_fail("unknown composite operation");
2956 }
2957 }
2958
2959 static void
2960 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
2961 {
2962 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2963 nir_builder_instr_insert(&b->nb, &intrin->instr);
2964 }
2965
2966 static void
2967 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
2968 SpvMemorySemanticsMask semantics)
2969 {
2970 static const SpvMemorySemanticsMask all_memory_semantics =
2971 SpvMemorySemanticsUniformMemoryMask |
2972 SpvMemorySemanticsWorkgroupMemoryMask |
2973 SpvMemorySemanticsAtomicCounterMemoryMask |
2974 SpvMemorySemanticsImageMemoryMask;
2975
2976 /* If we're not actually doing a memory barrier, bail */
2977 if (!(semantics & all_memory_semantics))
2978 return;
2979
2980 /* GL and Vulkan don't have these */
2981 vtn_assert(scope != SpvScopeCrossDevice);
2982
2983 if (scope == SpvScopeSubgroup)
2984 return; /* Nothing to do here */
2985
2986 if (scope == SpvScopeWorkgroup) {
2987 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
2988 return;
2989 }
2990
2991 /* There's only two scopes thing left */
2992 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
2993
2994 if ((semantics & all_memory_semantics) == all_memory_semantics) {
2995 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
2996 return;
2997 }
2998
2999 /* Issue a bunch of more specific barriers */
3000 uint32_t bits = semantics;
3001 while (bits) {
3002 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3003 switch (semantic) {
3004 case SpvMemorySemanticsUniformMemoryMask:
3005 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3006 break;
3007 case SpvMemorySemanticsWorkgroupMemoryMask:
3008 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3009 break;
3010 case SpvMemorySemanticsAtomicCounterMemoryMask:
3011 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3012 break;
3013 case SpvMemorySemanticsImageMemoryMask:
3014 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3015 break;
3016 default:
3017 break;;
3018 }
3019 }
3020 }
3021
3022 static void
3023 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3024 const uint32_t *w, unsigned count)
3025 {
3026 switch (opcode) {
3027 case SpvOpEmitVertex:
3028 case SpvOpEmitStreamVertex:
3029 case SpvOpEndPrimitive:
3030 case SpvOpEndStreamPrimitive: {
3031 nir_intrinsic_op intrinsic_op;
3032 switch (opcode) {
3033 case SpvOpEmitVertex:
3034 case SpvOpEmitStreamVertex:
3035 intrinsic_op = nir_intrinsic_emit_vertex;
3036 break;
3037 case SpvOpEndPrimitive:
3038 case SpvOpEndStreamPrimitive:
3039 intrinsic_op = nir_intrinsic_end_primitive;
3040 break;
3041 default:
3042 unreachable("Invalid opcode");
3043 }
3044
3045 nir_intrinsic_instr *intrin =
3046 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3047
3048 switch (opcode) {
3049 case SpvOpEmitStreamVertex:
3050 case SpvOpEndStreamPrimitive:
3051 nir_intrinsic_set_stream_id(intrin, w[1]);
3052 break;
3053 default:
3054 break;
3055 }
3056
3057 nir_builder_instr_insert(&b->nb, &intrin->instr);
3058 break;
3059 }
3060
3061 case SpvOpMemoryBarrier: {
3062 SpvScope scope = vtn_constant_value(b, w[1])->values[0].u32[0];
3063 SpvMemorySemanticsMask semantics =
3064 vtn_constant_value(b, w[2])->values[0].u32[0];
3065 vtn_emit_memory_barrier(b, scope, semantics);
3066 return;
3067 }
3068
3069 case SpvOpControlBarrier: {
3070 SpvScope execution_scope =
3071 vtn_constant_value(b, w[1])->values[0].u32[0];
3072 if (execution_scope == SpvScopeWorkgroup)
3073 vtn_emit_barrier(b, nir_intrinsic_barrier);
3074
3075 SpvScope memory_scope =
3076 vtn_constant_value(b, w[2])->values[0].u32[0];
3077 SpvMemorySemanticsMask memory_semantics =
3078 vtn_constant_value(b, w[3])->values[0].u32[0];
3079 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3080 break;
3081 }
3082
3083 default:
3084 unreachable("unknown barrier instruction");
3085 }
3086 }
3087
3088 static unsigned
3089 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3090 SpvExecutionMode mode)
3091 {
3092 switch (mode) {
3093 case SpvExecutionModeInputPoints:
3094 case SpvExecutionModeOutputPoints:
3095 return 0; /* GL_POINTS */
3096 case SpvExecutionModeInputLines:
3097 return 1; /* GL_LINES */
3098 case SpvExecutionModeInputLinesAdjacency:
3099 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3100 case SpvExecutionModeTriangles:
3101 return 4; /* GL_TRIANGLES */
3102 case SpvExecutionModeInputTrianglesAdjacency:
3103 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3104 case SpvExecutionModeQuads:
3105 return 7; /* GL_QUADS */
3106 case SpvExecutionModeIsolines:
3107 return 0x8E7A; /* GL_ISOLINES */
3108 case SpvExecutionModeOutputLineStrip:
3109 return 3; /* GL_LINE_STRIP */
3110 case SpvExecutionModeOutputTriangleStrip:
3111 return 5; /* GL_TRIANGLE_STRIP */
3112 default:
3113 vtn_fail("Invalid primitive type");
3114 }
3115 }
3116
3117 static unsigned
3118 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3119 SpvExecutionMode mode)
3120 {
3121 switch (mode) {
3122 case SpvExecutionModeInputPoints:
3123 return 1;
3124 case SpvExecutionModeInputLines:
3125 return 2;
3126 case SpvExecutionModeInputLinesAdjacency:
3127 return 4;
3128 case SpvExecutionModeTriangles:
3129 return 3;
3130 case SpvExecutionModeInputTrianglesAdjacency:
3131 return 6;
3132 default:
3133 vtn_fail("Invalid GS input mode");
3134 }
3135 }
3136
3137 static gl_shader_stage
3138 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3139 {
3140 switch (model) {
3141 case SpvExecutionModelVertex:
3142 return MESA_SHADER_VERTEX;
3143 case SpvExecutionModelTessellationControl:
3144 return MESA_SHADER_TESS_CTRL;
3145 case SpvExecutionModelTessellationEvaluation:
3146 return MESA_SHADER_TESS_EVAL;
3147 case SpvExecutionModelGeometry:
3148 return MESA_SHADER_GEOMETRY;
3149 case SpvExecutionModelFragment:
3150 return MESA_SHADER_FRAGMENT;
3151 case SpvExecutionModelGLCompute:
3152 return MESA_SHADER_COMPUTE;
3153 default:
3154 vtn_fail("Unsupported execution model");
3155 }
3156 }
3157
3158 #define spv_check_supported(name, cap) do { \
3159 if (!(b->options && b->options->caps.name)) \
3160 vtn_warn("Unsupported SPIR-V capability: %s", \
3161 spirv_capability_to_string(cap)); \
3162 } while(0)
3163
3164 static bool
3165 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3166 const uint32_t *w, unsigned count)
3167 {
3168 switch (opcode) {
3169 case SpvOpSource: {
3170 const char *lang;
3171 switch (w[1]) {
3172 default:
3173 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3174 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3175 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3176 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3177 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3178 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3179 }
3180
3181 uint32_t version = w[2];
3182
3183 const char *file =
3184 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3185
3186 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3187 break;
3188 }
3189
3190 case SpvOpSourceExtension:
3191 case SpvOpSourceContinued:
3192 case SpvOpExtension:
3193 case SpvOpModuleProcessed:
3194 /* Unhandled, but these are for debug so that's ok. */
3195 break;
3196
3197 case SpvOpCapability: {
3198 SpvCapability cap = w[1];
3199 switch (cap) {
3200 case SpvCapabilityMatrix:
3201 case SpvCapabilityShader:
3202 case SpvCapabilityGeometry:
3203 case SpvCapabilityGeometryPointSize:
3204 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3205 case SpvCapabilitySampledImageArrayDynamicIndexing:
3206 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3207 case SpvCapabilityStorageImageArrayDynamicIndexing:
3208 case SpvCapabilityImageRect:
3209 case SpvCapabilitySampledRect:
3210 case SpvCapabilitySampled1D:
3211 case SpvCapabilityImage1D:
3212 case SpvCapabilitySampledCubeArray:
3213 case SpvCapabilityImageCubeArray:
3214 case SpvCapabilitySampledBuffer:
3215 case SpvCapabilityImageBuffer:
3216 case SpvCapabilityImageQuery:
3217 case SpvCapabilityDerivativeControl:
3218 case SpvCapabilityInterpolationFunction:
3219 case SpvCapabilityMultiViewport:
3220 case SpvCapabilitySampleRateShading:
3221 case SpvCapabilityClipDistance:
3222 case SpvCapabilityCullDistance:
3223 case SpvCapabilityInputAttachment:
3224 case SpvCapabilityImageGatherExtended:
3225 case SpvCapabilityStorageImageExtendedFormats:
3226 break;
3227
3228 case SpvCapabilityGeometryStreams:
3229 case SpvCapabilityLinkage:
3230 case SpvCapabilityVector16:
3231 case SpvCapabilityFloat16Buffer:
3232 case SpvCapabilityFloat16:
3233 case SpvCapabilityInt64Atomics:
3234 case SpvCapabilityAtomicStorage:
3235 case SpvCapabilityInt16:
3236 case SpvCapabilityStorageImageMultisample:
3237 case SpvCapabilityInt8:
3238 case SpvCapabilitySparseResidency:
3239 case SpvCapabilityMinLod:
3240 case SpvCapabilityTransformFeedback:
3241 vtn_warn("Unsupported SPIR-V capability: %s",
3242 spirv_capability_to_string(cap));
3243 break;
3244
3245 case SpvCapabilityFloat64:
3246 spv_check_supported(float64, cap);
3247 break;
3248 case SpvCapabilityInt64:
3249 spv_check_supported(int64, cap);
3250 break;
3251
3252 case SpvCapabilityAddresses:
3253 case SpvCapabilityKernel:
3254 case SpvCapabilityImageBasic:
3255 case SpvCapabilityImageReadWrite:
3256 case SpvCapabilityImageMipmap:
3257 case SpvCapabilityPipes:
3258 case SpvCapabilityGroups:
3259 case SpvCapabilityDeviceEnqueue:
3260 case SpvCapabilityLiteralSampler:
3261 case SpvCapabilityGenericPointer:
3262 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3263 spirv_capability_to_string(cap));
3264 break;
3265
3266 case SpvCapabilityImageMSArray:
3267 spv_check_supported(image_ms_array, cap);
3268 break;
3269
3270 case SpvCapabilityTessellation:
3271 case SpvCapabilityTessellationPointSize:
3272 spv_check_supported(tessellation, cap);
3273 break;
3274
3275 case SpvCapabilityDrawParameters:
3276 spv_check_supported(draw_parameters, cap);
3277 break;
3278
3279 case SpvCapabilityStorageImageReadWithoutFormat:
3280 spv_check_supported(image_read_without_format, cap);
3281 break;
3282
3283 case SpvCapabilityStorageImageWriteWithoutFormat:
3284 spv_check_supported(image_write_without_format, cap);
3285 break;
3286
3287 case SpvCapabilityDeviceGroup:
3288 spv_check_supported(device_group, cap);
3289 break;
3290
3291 case SpvCapabilityMultiView:
3292 spv_check_supported(multiview, cap);
3293 break;
3294
3295 case SpvCapabilityGroupNonUniform:
3296 spv_check_supported(subgroup_basic, cap);
3297 break;
3298
3299 case SpvCapabilityGroupNonUniformVote:
3300 spv_check_supported(subgroup_vote, cap);
3301 break;
3302
3303 case SpvCapabilitySubgroupBallotKHR:
3304 case SpvCapabilityGroupNonUniformBallot:
3305 spv_check_supported(subgroup_ballot, cap);
3306 break;
3307
3308 case SpvCapabilityGroupNonUniformShuffle:
3309 case SpvCapabilityGroupNonUniformShuffleRelative:
3310 spv_check_supported(subgroup_shuffle, cap);
3311 break;
3312
3313 case SpvCapabilityGroupNonUniformQuad:
3314 spv_check_supported(subgroup_quad, cap);
3315
3316 case SpvCapabilityVariablePointersStorageBuffer:
3317 case SpvCapabilityVariablePointers:
3318 spv_check_supported(variable_pointers, cap);
3319 break;
3320
3321 case SpvCapabilityStorageUniformBufferBlock16:
3322 case SpvCapabilityStorageUniform16:
3323 case SpvCapabilityStoragePushConstant16:
3324 case SpvCapabilityStorageInputOutput16:
3325 spv_check_supported(storage_16bit, cap);
3326 break;
3327
3328 case SpvCapabilityShaderViewportIndexLayerEXT:
3329 spv_check_supported(shader_viewport_index_layer, cap);
3330 break;
3331
3332 default:
3333 vtn_fail("Unhandled capability");
3334 }
3335 break;
3336 }
3337
3338 case SpvOpExtInstImport:
3339 vtn_handle_extension(b, opcode, w, count);
3340 break;
3341
3342 case SpvOpMemoryModel:
3343 vtn_assert(w[1] == SpvAddressingModelLogical);
3344 vtn_assert(w[2] == SpvMemoryModelSimple ||
3345 w[2] == SpvMemoryModelGLSL450);
3346 break;
3347
3348 case SpvOpEntryPoint: {
3349 struct vtn_value *entry_point = &b->values[w[2]];
3350 /* Let this be a name label regardless */
3351 unsigned name_words;
3352 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3353
3354 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3355 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3356 break;
3357
3358 vtn_assert(b->entry_point == NULL);
3359 b->entry_point = entry_point;
3360 break;
3361 }
3362
3363 case SpvOpString:
3364 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3365 vtn_string_literal(b, &w[2], count - 2, NULL);
3366 break;
3367
3368 case SpvOpName:
3369 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3370 break;
3371
3372 case SpvOpMemberName:
3373 /* TODO */
3374 break;
3375
3376 case SpvOpExecutionMode:
3377 case SpvOpDecorationGroup:
3378 case SpvOpDecorate:
3379 case SpvOpMemberDecorate:
3380 case SpvOpGroupDecorate:
3381 case SpvOpGroupMemberDecorate:
3382 vtn_handle_decoration(b, opcode, w, count);
3383 break;
3384
3385 default:
3386 return false; /* End of preamble */
3387 }
3388
3389 return true;
3390 }
3391
3392 static void
3393 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3394 const struct vtn_decoration *mode, void *data)
3395 {
3396 vtn_assert(b->entry_point == entry_point);
3397
3398 switch(mode->exec_mode) {
3399 case SpvExecutionModeOriginUpperLeft:
3400 case SpvExecutionModeOriginLowerLeft:
3401 b->origin_upper_left =
3402 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3403 break;
3404
3405 case SpvExecutionModeEarlyFragmentTests:
3406 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3407 b->shader->info.fs.early_fragment_tests = true;
3408 break;
3409
3410 case SpvExecutionModeInvocations:
3411 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3412 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
3413 break;
3414
3415 case SpvExecutionModeDepthReplacing:
3416 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3417 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3418 break;
3419 case SpvExecutionModeDepthGreater:
3420 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3421 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3422 break;
3423 case SpvExecutionModeDepthLess:
3424 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3425 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3426 break;
3427 case SpvExecutionModeDepthUnchanged:
3428 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3429 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3430 break;
3431
3432 case SpvExecutionModeLocalSize:
3433 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3434 b->shader->info.cs.local_size[0] = mode->literals[0];
3435 b->shader->info.cs.local_size[1] = mode->literals[1];
3436 b->shader->info.cs.local_size[2] = mode->literals[2];
3437 break;
3438 case SpvExecutionModeLocalSizeHint:
3439 break; /* Nothing to do with this */
3440
3441 case SpvExecutionModeOutputVertices:
3442 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3443 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3444 b->shader->info.tess.tcs_vertices_out = mode->literals[0];
3445 } else {
3446 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3447 b->shader->info.gs.vertices_out = mode->literals[0];
3448 }
3449 break;
3450
3451 case SpvExecutionModeInputPoints:
3452 case SpvExecutionModeInputLines:
3453 case SpvExecutionModeInputLinesAdjacency:
3454 case SpvExecutionModeTriangles:
3455 case SpvExecutionModeInputTrianglesAdjacency:
3456 case SpvExecutionModeQuads:
3457 case SpvExecutionModeIsolines:
3458 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3459 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3460 b->shader->info.tess.primitive_mode =
3461 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3462 } else {
3463 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3464 b->shader->info.gs.vertices_in =
3465 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3466 }
3467 break;
3468
3469 case SpvExecutionModeOutputPoints:
3470 case SpvExecutionModeOutputLineStrip:
3471 case SpvExecutionModeOutputTriangleStrip:
3472 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3473 b->shader->info.gs.output_primitive =
3474 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3475 break;
3476
3477 case SpvExecutionModeSpacingEqual:
3478 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3479 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3480 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3481 break;
3482 case SpvExecutionModeSpacingFractionalEven:
3483 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3484 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3485 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3486 break;
3487 case SpvExecutionModeSpacingFractionalOdd:
3488 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3489 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3490 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3491 break;
3492 case SpvExecutionModeVertexOrderCw:
3493 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3494 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3495 b->shader->info.tess.ccw = false;
3496 break;
3497 case SpvExecutionModeVertexOrderCcw:
3498 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3499 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3500 b->shader->info.tess.ccw = true;
3501 break;
3502 case SpvExecutionModePointMode:
3503 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3504 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3505 b->shader->info.tess.point_mode = true;
3506 break;
3507
3508 case SpvExecutionModePixelCenterInteger:
3509 b->pixel_center_integer = true;
3510 break;
3511
3512 case SpvExecutionModeXfb:
3513 vtn_fail("Unhandled execution mode");
3514 break;
3515
3516 case SpvExecutionModeVecTypeHint:
3517 case SpvExecutionModeContractionOff:
3518 break; /* OpenCL */
3519
3520 default:
3521 vtn_fail("Unhandled execution mode");
3522 }
3523 }
3524
3525 static bool
3526 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3527 const uint32_t *w, unsigned count)
3528 {
3529 vtn_set_instruction_result_type(b, opcode, w, count);
3530
3531 switch (opcode) {
3532 case SpvOpSource:
3533 case SpvOpSourceContinued:
3534 case SpvOpSourceExtension:
3535 case SpvOpExtension:
3536 case SpvOpCapability:
3537 case SpvOpExtInstImport:
3538 case SpvOpMemoryModel:
3539 case SpvOpEntryPoint:
3540 case SpvOpExecutionMode:
3541 case SpvOpString:
3542 case SpvOpName:
3543 case SpvOpMemberName:
3544 case SpvOpDecorationGroup:
3545 case SpvOpDecorate:
3546 case SpvOpMemberDecorate:
3547 case SpvOpGroupDecorate:
3548 case SpvOpGroupMemberDecorate:
3549 vtn_fail("Invalid opcode types and variables section");
3550 break;
3551
3552 case SpvOpTypeVoid:
3553 case SpvOpTypeBool:
3554 case SpvOpTypeInt:
3555 case SpvOpTypeFloat:
3556 case SpvOpTypeVector:
3557 case SpvOpTypeMatrix:
3558 case SpvOpTypeImage:
3559 case SpvOpTypeSampler:
3560 case SpvOpTypeSampledImage:
3561 case SpvOpTypeArray:
3562 case SpvOpTypeRuntimeArray:
3563 case SpvOpTypeStruct:
3564 case SpvOpTypeOpaque:
3565 case SpvOpTypePointer:
3566 case SpvOpTypeFunction:
3567 case SpvOpTypeEvent:
3568 case SpvOpTypeDeviceEvent:
3569 case SpvOpTypeReserveId:
3570 case SpvOpTypeQueue:
3571 case SpvOpTypePipe:
3572 vtn_handle_type(b, opcode, w, count);
3573 break;
3574
3575 case SpvOpConstantTrue:
3576 case SpvOpConstantFalse:
3577 case SpvOpConstant:
3578 case SpvOpConstantComposite:
3579 case SpvOpConstantSampler:
3580 case SpvOpConstantNull:
3581 case SpvOpSpecConstantTrue:
3582 case SpvOpSpecConstantFalse:
3583 case SpvOpSpecConstant:
3584 case SpvOpSpecConstantComposite:
3585 case SpvOpSpecConstantOp:
3586 vtn_handle_constant(b, opcode, w, count);
3587 break;
3588
3589 case SpvOpUndef:
3590 case SpvOpVariable:
3591 vtn_handle_variables(b, opcode, w, count);
3592 break;
3593
3594 default:
3595 return false; /* End of preamble */
3596 }
3597
3598 return true;
3599 }
3600
3601 static bool
3602 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
3603 const uint32_t *w, unsigned count)
3604 {
3605 switch (opcode) {
3606 case SpvOpLabel:
3607 break;
3608
3609 case SpvOpLoopMerge:
3610 case SpvOpSelectionMerge:
3611 /* This is handled by cfg pre-pass and walk_blocks */
3612 break;
3613
3614 case SpvOpUndef: {
3615 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
3616 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
3617 break;
3618 }
3619
3620 case SpvOpExtInst:
3621 vtn_handle_extension(b, opcode, w, count);
3622 break;
3623
3624 case SpvOpVariable:
3625 case SpvOpLoad:
3626 case SpvOpStore:
3627 case SpvOpCopyMemory:
3628 case SpvOpCopyMemorySized:
3629 case SpvOpAccessChain:
3630 case SpvOpPtrAccessChain:
3631 case SpvOpInBoundsAccessChain:
3632 case SpvOpArrayLength:
3633 vtn_handle_variables(b, opcode, w, count);
3634 break;
3635
3636 case SpvOpFunctionCall:
3637 vtn_handle_function_call(b, opcode, w, count);
3638 break;
3639
3640 case SpvOpSampledImage:
3641 case SpvOpImage:
3642 case SpvOpImageSampleImplicitLod:
3643 case SpvOpImageSampleExplicitLod:
3644 case SpvOpImageSampleDrefImplicitLod:
3645 case SpvOpImageSampleDrefExplicitLod:
3646 case SpvOpImageSampleProjImplicitLod:
3647 case SpvOpImageSampleProjExplicitLod:
3648 case SpvOpImageSampleProjDrefImplicitLod:
3649 case SpvOpImageSampleProjDrefExplicitLod:
3650 case SpvOpImageFetch:
3651 case SpvOpImageGather:
3652 case SpvOpImageDrefGather:
3653 case SpvOpImageQuerySizeLod:
3654 case SpvOpImageQueryLod:
3655 case SpvOpImageQueryLevels:
3656 case SpvOpImageQuerySamples:
3657 vtn_handle_texture(b, opcode, w, count);
3658 break;
3659
3660 case SpvOpImageRead:
3661 case SpvOpImageWrite:
3662 case SpvOpImageTexelPointer:
3663 vtn_handle_image(b, opcode, w, count);
3664 break;
3665
3666 case SpvOpImageQuerySize: {
3667 struct vtn_pointer *image =
3668 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3669 if (image->mode == vtn_variable_mode_image) {
3670 vtn_handle_image(b, opcode, w, count);
3671 } else {
3672 vtn_assert(image->mode == vtn_variable_mode_sampler);
3673 vtn_handle_texture(b, opcode, w, count);
3674 }
3675 break;
3676 }
3677
3678 case SpvOpAtomicLoad:
3679 case SpvOpAtomicExchange:
3680 case SpvOpAtomicCompareExchange:
3681 case SpvOpAtomicCompareExchangeWeak:
3682 case SpvOpAtomicIIncrement:
3683 case SpvOpAtomicIDecrement:
3684 case SpvOpAtomicIAdd:
3685 case SpvOpAtomicISub:
3686 case SpvOpAtomicSMin:
3687 case SpvOpAtomicUMin:
3688 case SpvOpAtomicSMax:
3689 case SpvOpAtomicUMax:
3690 case SpvOpAtomicAnd:
3691 case SpvOpAtomicOr:
3692 case SpvOpAtomicXor: {
3693 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
3694 if (pointer->value_type == vtn_value_type_image_pointer) {
3695 vtn_handle_image(b, opcode, w, count);
3696 } else {
3697 vtn_assert(pointer->value_type == vtn_value_type_pointer);
3698 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3699 }
3700 break;
3701 }
3702
3703 case SpvOpAtomicStore: {
3704 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
3705 if (pointer->value_type == vtn_value_type_image_pointer) {
3706 vtn_handle_image(b, opcode, w, count);
3707 } else {
3708 vtn_assert(pointer->value_type == vtn_value_type_pointer);
3709 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
3710 }
3711 break;
3712 }
3713
3714 case SpvOpSelect: {
3715 /* Handle OpSelect up-front here because it needs to be able to handle
3716 * pointers and not just regular vectors and scalars.
3717 */
3718 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
3719 struct vtn_value *sel_val = vtn_untyped_value(b, w[3]);
3720 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
3721 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
3722
3723 const struct glsl_type *sel_type;
3724 switch (res_val->type->base_type) {
3725 case vtn_base_type_scalar:
3726 sel_type = glsl_bool_type();
3727 break;
3728 case vtn_base_type_vector:
3729 sel_type = glsl_vector_type(GLSL_TYPE_BOOL, res_val->type->length);
3730 break;
3731 case vtn_base_type_pointer:
3732 /* We need to have actual storage for pointer types */
3733 vtn_fail_if(res_val->type->type == NULL,
3734 "Invalid pointer result type for OpSelect");
3735 sel_type = glsl_bool_type();
3736 break;
3737 default:
3738 vtn_fail("Result type of OpSelect must be a scalar, vector, or pointer");
3739 }
3740
3741 if (unlikely(sel_val->type->type != sel_type)) {
3742 if (sel_val->type->type == glsl_bool_type()) {
3743 /* This case is illegal but some older versions of GLSLang produce
3744 * it. The GLSLang issue was fixed on March 30, 2017:
3745 *
3746 * https://github.com/KhronosGroup/glslang/issues/809
3747 *
3748 * Unfortunately, there are applications in the wild which are
3749 * shipping with this bug so it isn't nice to fail on them so we
3750 * throw a warning instead. It's not actually a problem for us as
3751 * nir_builder will just splat the condition out which is most
3752 * likely what the client wanted anyway.
3753 */
3754 vtn_warn("Condition type of OpSelect must have the same number "
3755 "of components as Result Type");
3756 } else {
3757 vtn_fail("Condition type of OpSelect must be a scalar or vector "
3758 "of Boolean type. It must have the same number of "
3759 "components as Result Type");
3760 }
3761 }
3762
3763 vtn_fail_if(obj1_val->type != res_val->type ||
3764 obj2_val->type != res_val->type,
3765 "Object types must match the result type in OpSelect");
3766
3767 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
3768 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, res_type->type);
3769 ssa->def = nir_bcsel(&b->nb, vtn_ssa_value(b, w[3])->def,
3770 vtn_ssa_value(b, w[4])->def,
3771 vtn_ssa_value(b, w[5])->def);
3772 vtn_push_ssa(b, w[2], res_type, ssa);
3773 break;
3774 }
3775
3776 case SpvOpSNegate:
3777 case SpvOpFNegate:
3778 case SpvOpNot:
3779 case SpvOpAny:
3780 case SpvOpAll:
3781 case SpvOpConvertFToU:
3782 case SpvOpConvertFToS:
3783 case SpvOpConvertSToF:
3784 case SpvOpConvertUToF:
3785 case SpvOpUConvert:
3786 case SpvOpSConvert:
3787 case SpvOpFConvert:
3788 case SpvOpQuantizeToF16:
3789 case SpvOpConvertPtrToU:
3790 case SpvOpConvertUToPtr:
3791 case SpvOpPtrCastToGeneric:
3792 case SpvOpGenericCastToPtr:
3793 case SpvOpBitcast:
3794 case SpvOpIsNan:
3795 case SpvOpIsInf:
3796 case SpvOpIsFinite:
3797 case SpvOpIsNormal:
3798 case SpvOpSignBitSet:
3799 case SpvOpLessOrGreater:
3800 case SpvOpOrdered:
3801 case SpvOpUnordered:
3802 case SpvOpIAdd:
3803 case SpvOpFAdd:
3804 case SpvOpISub:
3805 case SpvOpFSub:
3806 case SpvOpIMul:
3807 case SpvOpFMul:
3808 case SpvOpUDiv:
3809 case SpvOpSDiv:
3810 case SpvOpFDiv:
3811 case SpvOpUMod:
3812 case SpvOpSRem:
3813 case SpvOpSMod:
3814 case SpvOpFRem:
3815 case SpvOpFMod:
3816 case SpvOpVectorTimesScalar:
3817 case SpvOpDot:
3818 case SpvOpIAddCarry:
3819 case SpvOpISubBorrow:
3820 case SpvOpUMulExtended:
3821 case SpvOpSMulExtended:
3822 case SpvOpShiftRightLogical:
3823 case SpvOpShiftRightArithmetic:
3824 case SpvOpShiftLeftLogical:
3825 case SpvOpLogicalEqual:
3826 case SpvOpLogicalNotEqual:
3827 case SpvOpLogicalOr:
3828 case SpvOpLogicalAnd:
3829 case SpvOpLogicalNot:
3830 case SpvOpBitwiseOr:
3831 case SpvOpBitwiseXor:
3832 case SpvOpBitwiseAnd:
3833 case SpvOpIEqual:
3834 case SpvOpFOrdEqual:
3835 case SpvOpFUnordEqual:
3836 case SpvOpINotEqual:
3837 case SpvOpFOrdNotEqual:
3838 case SpvOpFUnordNotEqual:
3839 case SpvOpULessThan:
3840 case SpvOpSLessThan:
3841 case SpvOpFOrdLessThan:
3842 case SpvOpFUnordLessThan:
3843 case SpvOpUGreaterThan:
3844 case SpvOpSGreaterThan:
3845 case SpvOpFOrdGreaterThan:
3846 case SpvOpFUnordGreaterThan:
3847 case SpvOpULessThanEqual:
3848 case SpvOpSLessThanEqual:
3849 case SpvOpFOrdLessThanEqual:
3850 case SpvOpFUnordLessThanEqual:
3851 case SpvOpUGreaterThanEqual:
3852 case SpvOpSGreaterThanEqual:
3853 case SpvOpFOrdGreaterThanEqual:
3854 case SpvOpFUnordGreaterThanEqual:
3855 case SpvOpDPdx:
3856 case SpvOpDPdy:
3857 case SpvOpFwidth:
3858 case SpvOpDPdxFine:
3859 case SpvOpDPdyFine:
3860 case SpvOpFwidthFine:
3861 case SpvOpDPdxCoarse:
3862 case SpvOpDPdyCoarse:
3863 case SpvOpFwidthCoarse:
3864 case SpvOpBitFieldInsert:
3865 case SpvOpBitFieldSExtract:
3866 case SpvOpBitFieldUExtract:
3867 case SpvOpBitReverse:
3868 case SpvOpBitCount:
3869 case SpvOpTranspose:
3870 case SpvOpOuterProduct:
3871 case SpvOpMatrixTimesScalar:
3872 case SpvOpVectorTimesMatrix:
3873 case SpvOpMatrixTimesVector:
3874 case SpvOpMatrixTimesMatrix:
3875 vtn_handle_alu(b, opcode, w, count);
3876 break;
3877
3878 case SpvOpVectorExtractDynamic:
3879 case SpvOpVectorInsertDynamic:
3880 case SpvOpVectorShuffle:
3881 case SpvOpCompositeConstruct:
3882 case SpvOpCompositeExtract:
3883 case SpvOpCompositeInsert:
3884 case SpvOpCopyObject:
3885 vtn_handle_composite(b, opcode, w, count);
3886 break;
3887
3888 case SpvOpEmitVertex:
3889 case SpvOpEndPrimitive:
3890 case SpvOpEmitStreamVertex:
3891 case SpvOpEndStreamPrimitive:
3892 case SpvOpControlBarrier:
3893 case SpvOpMemoryBarrier:
3894 vtn_handle_barrier(b, opcode, w, count);
3895 break;
3896
3897 case SpvOpGroupNonUniformElect:
3898 case SpvOpGroupNonUniformAll:
3899 case SpvOpGroupNonUniformAny:
3900 case SpvOpGroupNonUniformAllEqual:
3901 case SpvOpGroupNonUniformBroadcast:
3902 case SpvOpGroupNonUniformBroadcastFirst:
3903 case SpvOpGroupNonUniformBallot:
3904 case SpvOpGroupNonUniformInverseBallot:
3905 case SpvOpGroupNonUniformBallotBitExtract:
3906 case SpvOpGroupNonUniformBallotBitCount:
3907 case SpvOpGroupNonUniformBallotFindLSB:
3908 case SpvOpGroupNonUniformBallotFindMSB:
3909 case SpvOpGroupNonUniformShuffle:
3910 case SpvOpGroupNonUniformShuffleXor:
3911 case SpvOpGroupNonUniformShuffleUp:
3912 case SpvOpGroupNonUniformShuffleDown:
3913 case SpvOpGroupNonUniformIAdd:
3914 case SpvOpGroupNonUniformFAdd:
3915 case SpvOpGroupNonUniformIMul:
3916 case SpvOpGroupNonUniformFMul:
3917 case SpvOpGroupNonUniformSMin:
3918 case SpvOpGroupNonUniformUMin:
3919 case SpvOpGroupNonUniformFMin:
3920 case SpvOpGroupNonUniformSMax:
3921 case SpvOpGroupNonUniformUMax:
3922 case SpvOpGroupNonUniformFMax:
3923 case SpvOpGroupNonUniformBitwiseAnd:
3924 case SpvOpGroupNonUniformBitwiseOr:
3925 case SpvOpGroupNonUniformBitwiseXor:
3926 case SpvOpGroupNonUniformLogicalAnd:
3927 case SpvOpGroupNonUniformLogicalOr:
3928 case SpvOpGroupNonUniformLogicalXor:
3929 case SpvOpGroupNonUniformQuadBroadcast:
3930 case SpvOpGroupNonUniformQuadSwap:
3931 vtn_handle_subgroup(b, opcode, w, count);
3932 break;
3933
3934 default:
3935 vtn_fail("Unhandled opcode");
3936 }
3937
3938 return true;
3939 }
3940
3941 nir_function *
3942 spirv_to_nir(const uint32_t *words, size_t word_count,
3943 struct nir_spirv_specialization *spec, unsigned num_spec,
3944 gl_shader_stage stage, const char *entry_point_name,
3945 const struct spirv_to_nir_options *options,
3946 const nir_shader_compiler_options *nir_options)
3947 {
3948 /* Initialize the stn_builder object */
3949 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
3950 b->spirv = words;
3951 b->spirv_word_count = word_count;
3952 b->file = NULL;
3953 b->line = -1;
3954 b->col = -1;
3955 exec_list_make_empty(&b->functions);
3956 b->entry_point_stage = stage;
3957 b->entry_point_name = entry_point_name;
3958 b->options = options;
3959
3960 /* See also _vtn_fail() */
3961 if (setjmp(b->fail_jump)) {
3962 ralloc_free(b);
3963 return NULL;
3964 }
3965
3966 const uint32_t *word_end = words + word_count;
3967
3968 /* Handle the SPIR-V header (first 4 dwords) */
3969 vtn_assert(word_count > 5);
3970
3971 vtn_assert(words[0] == SpvMagicNumber);
3972 vtn_assert(words[1] >= 0x10000);
3973 /* words[2] == generator magic */
3974 unsigned value_id_bound = words[3];
3975 vtn_assert(words[4] == 0);
3976
3977 words+= 5;
3978
3979 b->value_id_bound = value_id_bound;
3980 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
3981
3982 /* Handle all the preamble instructions */
3983 words = vtn_foreach_instruction(b, words, word_end,
3984 vtn_handle_preamble_instruction);
3985
3986 if (b->entry_point == NULL) {
3987 vtn_fail("Entry point not found");
3988 ralloc_free(b);
3989 return NULL;
3990 }
3991
3992 b->shader = nir_shader_create(b, stage, nir_options, NULL);
3993
3994 /* Set shader info defaults */
3995 b->shader->info.gs.invocations = 1;
3996
3997 /* Parse execution modes */
3998 vtn_foreach_execution_mode(b, b->entry_point,
3999 vtn_handle_execution_mode, NULL);
4000
4001 b->specializations = spec;
4002 b->num_specializations = num_spec;
4003
4004 /* Handle all variable, type, and constant instructions */
4005 words = vtn_foreach_instruction(b, words, word_end,
4006 vtn_handle_variable_or_type_instruction);
4007
4008 /* Set types on all vtn_values */
4009 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4010
4011 vtn_build_cfg(b, words, word_end);
4012
4013 assert(b->entry_point->value_type == vtn_value_type_function);
4014 b->entry_point->func->referenced = true;
4015
4016 bool progress;
4017 do {
4018 progress = false;
4019 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4020 if (func->referenced && !func->emitted) {
4021 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
4022 _mesa_key_pointer_equal);
4023
4024 vtn_function_emit(b, func, vtn_handle_body_instruction);
4025 progress = true;
4026 }
4027 }
4028 } while (progress);
4029
4030 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4031 nir_function *entry_point = b->entry_point->func->impl->function;
4032 vtn_assert(entry_point);
4033
4034 /* Unparent the shader from the vtn_builder before we delete the builder */
4035 ralloc_steal(NULL, b->shader);
4036
4037 ralloc_free(b);
4038
4039 return entry_point;
4040 }