egl/wayland: add missing newline between functions
[mesa.git] / src / compiler / spirv / vtn_cfg.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25 #include "nir/nir_vla.h"
26
27 static struct vtn_block *
28 vtn_block(struct vtn_builder *b, uint32_t value_id)
29 {
30 return vtn_value(b, value_id, vtn_value_type_block)->block;
31 }
32
33 static struct vtn_pointer *
34 vtn_load_param_pointer(struct vtn_builder *b,
35 struct vtn_type *param_type,
36 uint32_t param_idx)
37 {
38 struct vtn_type *ptr_type = param_type;
39 if (param_type->base_type != vtn_base_type_pointer) {
40 assert(param_type->base_type == vtn_base_type_image ||
41 param_type->base_type == vtn_base_type_sampler);
42 ptr_type = rzalloc(b, struct vtn_type);
43 ptr_type->base_type = vtn_base_type_pointer;
44 ptr_type->deref = param_type;
45 ptr_type->storage_class = SpvStorageClassUniformConstant;
46 }
47
48 return vtn_pointer_from_ssa(b, nir_load_param(&b->nb, param_idx), ptr_type);
49 }
50
51 static unsigned
52 vtn_type_count_function_params(struct vtn_type *type)
53 {
54 switch (type->base_type) {
55 case vtn_base_type_array:
56 case vtn_base_type_matrix:
57 return type->length * vtn_type_count_function_params(type->array_element);
58
59 case vtn_base_type_struct: {
60 unsigned count = 0;
61 for (unsigned i = 0; i < type->length; i++)
62 count += vtn_type_count_function_params(type->members[i]);
63 return count;
64 }
65
66 case vtn_base_type_sampled_image:
67 return 2;
68
69 default:
70 return 1;
71 }
72 }
73
74 static void
75 vtn_type_add_to_function_params(struct vtn_type *type,
76 nir_function *func,
77 unsigned *param_idx)
78 {
79 static const nir_parameter nir_deref_param = {
80 .num_components = 1,
81 .bit_size = 32,
82 };
83
84 switch (type->base_type) {
85 case vtn_base_type_array:
86 case vtn_base_type_matrix:
87 for (unsigned i = 0; i < type->length; i++)
88 vtn_type_add_to_function_params(type->array_element, func, param_idx);
89 break;
90
91 case vtn_base_type_struct:
92 for (unsigned i = 0; i < type->length; i++)
93 vtn_type_add_to_function_params(type->members[i], func, param_idx);
94 break;
95
96 case vtn_base_type_sampled_image:
97 func->params[(*param_idx)++] = nir_deref_param;
98 func->params[(*param_idx)++] = nir_deref_param;
99 break;
100
101 case vtn_base_type_image:
102 case vtn_base_type_sampler:
103 func->params[(*param_idx)++] = nir_deref_param;
104 break;
105
106 case vtn_base_type_pointer:
107 if (type->type) {
108 func->params[(*param_idx)++] = (nir_parameter) {
109 .num_components = glsl_get_vector_elements(type->type),
110 .bit_size = glsl_get_bit_size(type->type),
111 };
112 } else {
113 func->params[(*param_idx)++] = nir_deref_param;
114 }
115 break;
116
117 default:
118 func->params[(*param_idx)++] = (nir_parameter) {
119 .num_components = glsl_get_vector_elements(type->type),
120 .bit_size = glsl_get_bit_size(type->type),
121 };
122 }
123 }
124
125 static void
126 vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
127 struct vtn_ssa_value *value,
128 struct vtn_type *type,
129 nir_call_instr *call,
130 unsigned *param_idx)
131 {
132 switch (type->base_type) {
133 case vtn_base_type_array:
134 case vtn_base_type_matrix:
135 for (unsigned i = 0; i < type->length; i++) {
136 vtn_ssa_value_add_to_call_params(b, value->elems[i],
137 type->array_element,
138 call, param_idx);
139 }
140 break;
141
142 case vtn_base_type_struct:
143 for (unsigned i = 0; i < type->length; i++) {
144 vtn_ssa_value_add_to_call_params(b, value->elems[i],
145 type->members[i],
146 call, param_idx);
147 }
148 break;
149
150 default:
151 call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
152 break;
153 }
154 }
155
156 static void
157 vtn_ssa_value_load_function_param(struct vtn_builder *b,
158 struct vtn_ssa_value *value,
159 struct vtn_type *type,
160 unsigned *param_idx)
161 {
162 switch (type->base_type) {
163 case vtn_base_type_array:
164 case vtn_base_type_matrix:
165 for (unsigned i = 0; i < type->length; i++) {
166 vtn_ssa_value_load_function_param(b, value->elems[i],
167 type->array_element, param_idx);
168 }
169 break;
170
171 case vtn_base_type_struct:
172 for (unsigned i = 0; i < type->length; i++) {
173 vtn_ssa_value_load_function_param(b, value->elems[i],
174 type->members[i], param_idx);
175 }
176 break;
177
178 default:
179 value->def = nir_load_param(&b->nb, (*param_idx)++);
180 break;
181 }
182 }
183
184 void
185 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
186 const uint32_t *w, unsigned count)
187 {
188 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
189 struct vtn_function *vtn_callee =
190 vtn_value(b, w[3], vtn_value_type_function)->func;
191 struct nir_function *callee = vtn_callee->impl->function;
192
193 vtn_callee->referenced = true;
194
195 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
196
197 unsigned param_idx = 0;
198
199 nir_deref_instr *ret_deref = NULL;
200 struct vtn_type *ret_type = vtn_callee->type->return_type;
201 if (ret_type->base_type != vtn_base_type_void) {
202 nir_variable *ret_tmp =
203 nir_local_variable_create(b->nb.impl,
204 glsl_get_bare_type(ret_type->type),
205 "return_tmp");
206 ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
207 call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
208 }
209
210 for (unsigned i = 0; i < vtn_callee->type->length; i++) {
211 struct vtn_type *arg_type = vtn_callee->type->params[i];
212 unsigned arg_id = w[4 + i];
213
214 if (arg_type->base_type == vtn_base_type_sampled_image) {
215 struct vtn_sampled_image *sampled_image =
216 vtn_value(b, arg_id, vtn_value_type_sampled_image)->sampled_image;
217
218 call->params[param_idx++] =
219 nir_src_for_ssa(vtn_pointer_to_ssa(b, sampled_image->image));
220 call->params[param_idx++] =
221 nir_src_for_ssa(vtn_pointer_to_ssa(b, sampled_image->sampler));
222 } else if (arg_type->base_type == vtn_base_type_pointer ||
223 arg_type->base_type == vtn_base_type_image ||
224 arg_type->base_type == vtn_base_type_sampler) {
225 struct vtn_pointer *pointer =
226 vtn_value(b, arg_id, vtn_value_type_pointer)->pointer;
227 call->params[param_idx++] =
228 nir_src_for_ssa(vtn_pointer_to_ssa(b, pointer));
229 } else {
230 vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, arg_id),
231 arg_type, call, &param_idx);
232 }
233 }
234 assert(param_idx == call->num_params);
235
236 nir_builder_instr_insert(&b->nb, &call->instr);
237
238 if (ret_type->base_type == vtn_base_type_void) {
239 vtn_push_value(b, w[2], vtn_value_type_undef);
240 } else {
241 vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, ret_deref, 0));
242 }
243 }
244
245 static bool
246 vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
247 const uint32_t *w, unsigned count)
248 {
249 switch (opcode) {
250 case SpvOpFunction: {
251 vtn_assert(b->func == NULL);
252 b->func = rzalloc(b, struct vtn_function);
253
254 b->func->node.type = vtn_cf_node_type_function;
255 b->func->node.parent = NULL;
256 list_inithead(&b->func->body);
257 b->func->control = w[3];
258
259 UNUSED const struct glsl_type *result_type =
260 vtn_value(b, w[1], vtn_value_type_type)->type->type;
261 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
262 val->func = b->func;
263
264 b->func->type = vtn_value(b, w[4], vtn_value_type_type)->type;
265 const struct vtn_type *func_type = b->func->type;
266
267 vtn_assert(func_type->return_type->type == result_type);
268
269 nir_function *func =
270 nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
271
272 unsigned num_params = 0;
273 for (unsigned i = 0; i < func_type->length; i++)
274 num_params += vtn_type_count_function_params(func_type->params[i]);
275
276 /* Add one parameter for the function return value */
277 if (func_type->return_type->base_type != vtn_base_type_void)
278 num_params++;
279
280 func->num_params = num_params;
281 func->params = ralloc_array(b->shader, nir_parameter, num_params);
282
283 unsigned idx = 0;
284 if (func_type->return_type->base_type != vtn_base_type_void) {
285 nir_address_format addr_format =
286 vtn_mode_to_address_format(b, vtn_variable_mode_function);
287 /* The return value is a regular pointer */
288 func->params[idx++] = (nir_parameter) {
289 .num_components = nir_address_format_num_components(addr_format),
290 .bit_size = nir_address_format_bit_size(addr_format),
291 };
292 }
293
294 for (unsigned i = 0; i < func_type->length; i++)
295 vtn_type_add_to_function_params(func_type->params[i], func, &idx);
296 assert(idx == num_params);
297
298 b->func->impl = nir_function_impl_create(func);
299 nir_builder_init(&b->nb, func->impl);
300 b->nb.cursor = nir_before_cf_list(&b->func->impl->body);
301 b->nb.exact = b->exact;
302
303 b->func_param_idx = 0;
304
305 /* The return value is the first parameter */
306 if (func_type->return_type->base_type != vtn_base_type_void)
307 b->func_param_idx++;
308 break;
309 }
310
311 case SpvOpFunctionEnd:
312 b->func->end = w;
313 b->func = NULL;
314 break;
315
316 case SpvOpFunctionParameter: {
317 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
318
319 vtn_assert(b->func_param_idx < b->func->impl->function->num_params);
320
321 if (type->base_type == vtn_base_type_sampled_image) {
322 /* Sampled images are actually two parameters. The first is the
323 * image and the second is the sampler.
324 */
325 struct vtn_value *val =
326 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
327
328 val->sampled_image = ralloc(b, struct vtn_sampled_image);
329
330 struct vtn_type *image_type = rzalloc(b, struct vtn_type);
331 image_type->base_type = vtn_base_type_image;
332 image_type->type = type->type;
333
334 struct vtn_type *sampler_type = rzalloc(b, struct vtn_type);
335 sampler_type->base_type = vtn_base_type_sampler;
336 sampler_type->type = glsl_bare_sampler_type();
337
338 val->sampled_image->image =
339 vtn_load_param_pointer(b, image_type, b->func_param_idx++);
340 val->sampled_image->sampler =
341 vtn_load_param_pointer(b, sampler_type, b->func_param_idx++);
342 } else if (type->base_type == vtn_base_type_pointer &&
343 type->type != NULL) {
344 /* This is a pointer with an actual storage type */
345 nir_ssa_def *ssa_ptr = nir_load_param(&b->nb, b->func_param_idx++);
346 vtn_push_value_pointer(b, w[2], vtn_pointer_from_ssa(b, ssa_ptr, type));
347 } else if (type->base_type == vtn_base_type_pointer ||
348 type->base_type == vtn_base_type_image ||
349 type->base_type == vtn_base_type_sampler) {
350 vtn_push_value_pointer(b, w[2], vtn_load_param_pointer(b, type, b->func_param_idx++));
351 } else {
352 /* We're a regular SSA value. */
353 struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
354 vtn_ssa_value_load_function_param(b, value, type, &b->func_param_idx);
355 vtn_push_ssa(b, w[2], type, value);
356 }
357 break;
358 }
359
360 case SpvOpLabel: {
361 vtn_assert(b->block == NULL);
362 b->block = rzalloc(b, struct vtn_block);
363 b->block->node.type = vtn_cf_node_type_block;
364 b->block->label = w;
365 vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
366
367 if (b->func->start_block == NULL) {
368 /* This is the first block encountered for this function. In this
369 * case, we set the start block and add it to the list of
370 * implemented functions that we'll walk later.
371 */
372 b->func->start_block = b->block;
373 list_addtail(&b->func->node.link, &b->functions);
374 }
375 break;
376 }
377
378 case SpvOpSelectionMerge:
379 case SpvOpLoopMerge:
380 vtn_assert(b->block && b->block->merge == NULL);
381 b->block->merge = w;
382 break;
383
384 case SpvOpBranch:
385 case SpvOpBranchConditional:
386 case SpvOpSwitch:
387 case SpvOpKill:
388 case SpvOpReturn:
389 case SpvOpReturnValue:
390 case SpvOpUnreachable:
391 vtn_assert(b->block && b->block->branch == NULL);
392 b->block->branch = w;
393 b->block = NULL;
394 break;
395
396 default:
397 /* Continue on as per normal */
398 return true;
399 }
400
401 return true;
402 }
403
404 /* This function performs a depth-first search of the cases and puts them
405 * in fall-through order.
406 */
407 static void
408 vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
409 {
410 if (cse->visited)
411 return;
412
413 cse->visited = true;
414
415 list_del(&cse->node.link);
416
417 if (cse->fallthrough) {
418 vtn_order_case(swtch, cse->fallthrough);
419
420 /* If we have a fall-through, place this case right before the case it
421 * falls through to. This ensures that fallthroughs come one after
422 * the other. These two can never get separated because that would
423 * imply something else falling through to the same case. Also, this
424 * can't break ordering because the DFS ensures that this case is
425 * visited before anything that falls through to it.
426 */
427 list_addtail(&cse->node.link, &cse->fallthrough->node.link);
428 } else {
429 list_add(&cse->node.link, &swtch->cases);
430 }
431 }
432
433 static void
434 vtn_switch_order_cases(struct vtn_switch *swtch)
435 {
436 struct list_head cases;
437 list_replace(&swtch->cases, &cases);
438 list_inithead(&swtch->cases);
439 while (!list_is_empty(&cases)) {
440 struct vtn_case *cse =
441 list_first_entry(&cases, struct vtn_case, node.link);
442 vtn_order_case(swtch, cse);
443 }
444 }
445
446 static void
447 vtn_block_set_merge_cf_node(struct vtn_builder *b, struct vtn_block *block,
448 struct vtn_cf_node *cf_node)
449 {
450 vtn_fail_if(block->merge_cf_node != NULL,
451 "The merge block declared by a header block cannot be a "
452 "merge block declared by any other header block.");
453
454 block->merge_cf_node = cf_node;
455 }
456
457 #define VTN_DECL_CF_NODE_FIND(_type) \
458 static inline struct vtn_##_type * \
459 vtn_cf_node_find_##_type(struct vtn_cf_node *node) \
460 { \
461 while (node && node->type != vtn_cf_node_type_##_type) \
462 node = node->parent; \
463 return (struct vtn_##_type *)node; \
464 }
465
466 VTN_DECL_CF_NODE_FIND(if)
467 VTN_DECL_CF_NODE_FIND(loop)
468 VTN_DECL_CF_NODE_FIND(case)
469 VTN_DECL_CF_NODE_FIND(switch)
470 VTN_DECL_CF_NODE_FIND(function)
471
472 static enum vtn_branch_type
473 vtn_handle_branch(struct vtn_builder *b,
474 struct vtn_cf_node *cf_parent,
475 struct vtn_block *target_block)
476 {
477 struct vtn_loop *loop = vtn_cf_node_find_loop(cf_parent);
478
479 /* Detect a loop back-edge first. That way none of the code below
480 * accidentally operates on a loop back-edge.
481 */
482 if (loop && target_block == loop->header_block)
483 return vtn_branch_type_loop_back_edge;
484
485 /* Try to detect fall-through */
486 if (target_block->switch_case) {
487 /* When it comes to handling switch cases, we can break calls to
488 * vtn_handle_branch into two cases: calls from within a case construct
489 * and calls for the jump to each case construct. In the second case,
490 * cf_parent is the vtn_switch itself and vtn_cf_node_find_case() will
491 * return the outer switch case in which this switch is contained. It's
492 * fine if the target block is a switch case from an outer switch as
493 * long as it is also the switch break for this switch.
494 */
495 struct vtn_case *switch_case = vtn_cf_node_find_case(cf_parent);
496
497 /* This doesn't get called for the OpSwitch */
498 vtn_fail_if(switch_case == NULL,
499 "A switch case can only be entered through an OpSwitch or "
500 "falling through from another switch case.");
501
502 /* Because block->switch_case is only set on the entry block for a given
503 * switch case, we only ever get here if we're jumping to the start of a
504 * switch case. It's possible, however, that a switch case could jump
505 * to itself via a back-edge. That *should* get caught by the loop
506 * handling case above but if we have a back edge without a loop merge,
507 * we could en up here.
508 */
509 vtn_fail_if(target_block->switch_case == switch_case,
510 "A switch cannot fall-through to itself. Likely, there is "
511 "a back-edge which is not to a loop header.");
512
513 vtn_fail_if(target_block->switch_case->node.parent !=
514 switch_case->node.parent,
515 "A switch case fall-through must come from the same "
516 "OpSwitch construct");
517
518 vtn_fail_if(switch_case->fallthrough != NULL &&
519 switch_case->fallthrough != target_block->switch_case,
520 "Each case construct can have at most one branch to "
521 "another case construct");
522
523 switch_case->fallthrough = target_block->switch_case;
524
525 /* We don't immediately return vtn_branch_type_switch_fallthrough
526 * because it may also be a loop or switch break for an inner loop or
527 * switch and that takes precedence.
528 */
529 }
530
531 if (loop && target_block == loop->cont_block)
532 return vtn_branch_type_loop_continue;
533
534 /* We walk blocks as a breadth-first search on the control-flow construct
535 * tree where, when we find a construct, we add the vtn_cf_node for that
536 * construct and continue iterating at the merge target block (if any).
537 * Therefore, we want merges whose with parent == cf_parent to be treated
538 * as regular branches. We only want to consider merges if they break out
539 * of the current CF construct.
540 */
541 if (target_block->merge_cf_node != NULL &&
542 target_block->merge_cf_node->parent != cf_parent) {
543 switch (target_block->merge_cf_node->type) {
544 case vtn_cf_node_type_if:
545 for (struct vtn_cf_node *node = cf_parent;
546 node != target_block->merge_cf_node; node = node->parent) {
547 vtn_fail_if(node == NULL || node->type != vtn_cf_node_type_if,
548 "Branching to the merge block of a selection "
549 "construct can only be used to break out of a "
550 "selection construct");
551
552 struct vtn_if *if_stmt = vtn_cf_node_as_if(node);
553
554 /* This should be guaranteed by our iteration */
555 assert(if_stmt->merge_block != target_block);
556
557 vtn_fail_if(if_stmt->merge_block != NULL,
558 "Branching to the merge block of a selection "
559 "construct can only be used to break out of the "
560 "inner most nested selection level");
561 }
562 return vtn_branch_type_if_merge;
563
564 case vtn_cf_node_type_loop:
565 vtn_fail_if(target_block->merge_cf_node != &loop->node,
566 "Loop breaks can only break out of the inner most "
567 "nested loop level");
568 return vtn_branch_type_loop_break;
569
570 case vtn_cf_node_type_switch: {
571 struct vtn_switch *swtch = vtn_cf_node_find_switch(cf_parent);
572 vtn_fail_if(target_block->merge_cf_node != &swtch->node,
573 "Switch breaks can only break out of the inner most "
574 "nested switch level");
575 return vtn_branch_type_switch_break;
576 }
577
578 default:
579 unreachable("Invalid CF node type for a merge");
580 }
581 }
582
583 if (target_block->switch_case)
584 return vtn_branch_type_switch_fallthrough;
585
586 return vtn_branch_type_none;
587 }
588
589 struct vtn_cfg_work_item {
590 struct list_head link;
591
592 struct vtn_cf_node *cf_parent;
593 struct list_head *cf_list;
594 struct vtn_block *start_block;
595 };
596
597 static void
598 vtn_add_cfg_work_item(struct vtn_builder *b,
599 struct list_head *work_list,
600 struct vtn_cf_node *cf_parent,
601 struct list_head *cf_list,
602 struct vtn_block *start_block)
603 {
604 struct vtn_cfg_work_item *work = ralloc(b, struct vtn_cfg_work_item);
605 work->cf_parent = cf_parent;
606 work->cf_list = cf_list;
607 work->start_block = start_block;
608 list_addtail(&work->link, work_list);
609 }
610
611 /* Processes a block and returns the next block to process or NULL if we've
612 * reached the end of the construct.
613 */
614 static struct vtn_block *
615 vtn_process_block(struct vtn_builder *b,
616 struct list_head *work_list,
617 struct vtn_cf_node *cf_parent,
618 struct list_head *cf_list,
619 struct vtn_block *block)
620 {
621 if (!list_is_empty(cf_list)) {
622 /* vtn_process_block() acts like an iterator: it processes the given
623 * block and then returns the next block to process. For a given
624 * control-flow construct, vtn_build_cfg() calls vtn_process_block()
625 * repeatedly until it finally returns NULL. Therefore, we know that
626 * the only blocks on which vtn_process_block() can be called are either
627 * the first block in a construct or a block that vtn_process_block()
628 * returned for the current construct. If cf_list is empty then we know
629 * that we're processing the first block in the construct and we have to
630 * add it to the list.
631 *
632 * If cf_list is not empty, then it must be the block returned by the
633 * previous call to vtn_process_block(). We know a priori that
634 * vtn_process_block only returns either normal branches
635 * (vtn_branch_type_none) or merge target blocks.
636 */
637 switch (vtn_handle_branch(b, cf_parent, block)) {
638 case vtn_branch_type_none:
639 /* For normal branches, we want to process them and add them to the
640 * current construct. Merge target blocks also look like normal
641 * branches from the perspective of this construct. See also
642 * vtn_handle_branch().
643 */
644 break;
645
646 case vtn_branch_type_loop_continue:
647 case vtn_branch_type_switch_fallthrough:
648 /* The two cases where we can get early exits from a construct that
649 * are not to that construct's merge target are loop continues and
650 * switch fall-throughs. In these cases, we need to break out of the
651 * current construct by returning NULL.
652 */
653 return NULL;
654
655 default:
656 /* The only way we can get here is if something was used as two kinds
657 * of merges at the same time and that's illegal.
658 */
659 vtn_fail("A block was used as a merge target from two or more "
660 "structured control-flow constructs");
661 }
662 }
663
664 /* Once a block has been processed, it is placed into and the list link
665 * will point to something non-null. If we see a node we've already
666 * processed here, it either exists in multiple functions or it's an
667 * invalid back-edge.
668 */
669 if (block->node.parent != NULL) {
670 vtn_fail_if(vtn_cf_node_find_function(&block->node) !=
671 vtn_cf_node_find_function(cf_parent),
672 "A block cannot exist in two functions at the "
673 "same time");
674
675 vtn_fail("Invalid back or cross-edge in the CFG");
676 }
677
678 if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
679 block->loop == NULL) {
680 vtn_fail_if((*block->branch & SpvOpCodeMask) != SpvOpBranch &&
681 (*block->branch & SpvOpCodeMask) != SpvOpBranchConditional,
682 "An OpLoopMerge instruction must immediately precede "
683 "either an OpBranch or OpBranchConditional instruction.");
684
685 struct vtn_loop *loop = rzalloc(b, struct vtn_loop);
686
687 loop->node.type = vtn_cf_node_type_loop;
688 loop->node.parent = cf_parent;
689 list_inithead(&loop->body);
690 list_inithead(&loop->cont_body);
691 loop->header_block = block;
692 loop->break_block = vtn_block(b, block->merge[1]);
693 loop->cont_block = vtn_block(b, block->merge[2]);
694 loop->control = block->merge[3];
695
696 list_addtail(&loop->node.link, cf_list);
697 block->loop = loop;
698
699 /* Note: The work item for the main loop body will start with the
700 * current block as its start block. If we weren't careful, we would
701 * get here again and end up in an infinite loop. This is why we set
702 * block->loop above and check for it before creating one. This way,
703 * we only create the loop once and the second iteration that tries to
704 * handle this loop goes to the cases below and gets handled as a
705 * regular block.
706 */
707 vtn_add_cfg_work_item(b, work_list, &loop->node,
708 &loop->body, loop->header_block);
709
710 /* For continue targets, SPIR-V guarantees the following:
711 *
712 * - the Continue Target must dominate the back-edge block
713 * - the back-edge block must post dominate the Continue Target
714 *
715 * If the header block is the same as the continue target, this
716 * condition is trivially satisfied and there is no real continue
717 * section.
718 */
719 if (loop->cont_block != loop->header_block) {
720 vtn_add_cfg_work_item(b, work_list, &loop->node,
721 &loop->cont_body, loop->cont_block);
722 }
723
724 vtn_block_set_merge_cf_node(b, loop->break_block, &loop->node);
725
726 return loop->break_block;
727 }
728
729 /* Add the block to the CF list */
730 block->node.parent = cf_parent;
731 list_addtail(&block->node.link, cf_list);
732
733 switch (*block->branch & SpvOpCodeMask) {
734 case SpvOpBranch: {
735 struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
736
737 block->branch_type = vtn_handle_branch(b, cf_parent, branch_block);
738
739 if (block->branch_type == vtn_branch_type_none)
740 return branch_block;
741 else
742 return NULL;
743 }
744
745 case SpvOpReturn:
746 case SpvOpReturnValue:
747 block->branch_type = vtn_branch_type_return;
748 return NULL;
749
750 case SpvOpKill:
751 block->branch_type = vtn_branch_type_discard;
752 return NULL;
753
754 case SpvOpBranchConditional: {
755 struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
756 vtn_fail_if(!cond_val->type ||
757 cond_val->type->base_type != vtn_base_type_scalar ||
758 cond_val->type->type != glsl_bool_type(),
759 "Condition must be a Boolean type scalar");
760
761 struct vtn_block *then_block = vtn_block(b, block->branch[2]);
762 struct vtn_block *else_block = vtn_block(b, block->branch[3]);
763
764 if (then_block == else_block) {
765 /* This is uncommon but it can happen. We treat this the same way as
766 * an unconditional branch.
767 */
768 block->branch_type = vtn_handle_branch(b, cf_parent, then_block);
769
770 if (block->branch_type == vtn_branch_type_none)
771 return then_block;
772 else
773 return NULL;
774 }
775
776 struct vtn_if *if_stmt = rzalloc(b, struct vtn_if);
777
778 if_stmt->node.type = vtn_cf_node_type_if;
779 if_stmt->node.parent = cf_parent;
780 if_stmt->condition = block->branch[1];
781 list_inithead(&if_stmt->then_body);
782 list_inithead(&if_stmt->else_body);
783
784 list_addtail(&if_stmt->node.link, cf_list);
785
786 if (block->merge &&
787 (*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
788 /* We may not always have a merge block and that merge doesn't
789 * technically have to be an OpSelectionMerge. We could have a block
790 * with an OpLoopMerge which ends in an OpBranchConditional.
791 */
792 if_stmt->merge_block = vtn_block(b, block->merge[1]);
793 vtn_block_set_merge_cf_node(b, if_stmt->merge_block, &if_stmt->node);
794
795 if_stmt->control = block->merge[2];
796 }
797
798 if_stmt->then_type = vtn_handle_branch(b, &if_stmt->node, then_block);
799 if (if_stmt->then_type == vtn_branch_type_none) {
800 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
801 &if_stmt->then_body, then_block);
802 }
803
804 if_stmt->else_type = vtn_handle_branch(b, &if_stmt->node, else_block);
805 if (if_stmt->else_type == vtn_branch_type_none) {
806 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
807 &if_stmt->else_body, else_block);
808 }
809
810 return if_stmt->merge_block;
811 }
812
813 case SpvOpSwitch: {
814 struct vtn_value *sel_val = vtn_untyped_value(b, block->branch[1]);
815 vtn_fail_if(!sel_val->type ||
816 sel_val->type->base_type != vtn_base_type_scalar,
817 "Selector of OpSwitch must have a type of OpTypeInt");
818
819 nir_alu_type sel_type =
820 nir_get_nir_type_for_glsl_type(sel_val->type->type);
821 vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
822 nir_alu_type_get_base_type(sel_type) != nir_type_uint,
823 "Selector of OpSwitch must have a type of OpTypeInt");
824
825 struct vtn_switch *swtch = rzalloc(b, struct vtn_switch);
826
827 swtch->node.type = vtn_cf_node_type_switch;
828 swtch->node.parent = cf_parent;
829 swtch->selector = block->branch[1];
830 list_inithead(&swtch->cases);
831
832 list_addtail(&swtch->node.link, cf_list);
833
834 /* We may not always have a merge block */
835 if (block->merge) {
836 vtn_fail_if((*block->merge & SpvOpCodeMask) != SpvOpSelectionMerge,
837 "An OpLoopMerge instruction must immediately precede "
838 "either an OpBranch or OpBranchConditional "
839 "instruction.");
840 swtch->break_block = vtn_block(b, block->merge[1]);
841 vtn_block_set_merge_cf_node(b, swtch->break_block, &swtch->node);
842 }
843
844 /* First, we go through and record all of the cases. */
845 const uint32_t *branch_end =
846 block->branch + (block->branch[0] >> SpvWordCountShift);
847
848 struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
849
850 bool is_default = true;
851 const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
852 for (const uint32_t *w = block->branch + 2; w < branch_end;) {
853 uint64_t literal = 0;
854 if (!is_default) {
855 if (bitsize <= 32) {
856 literal = *(w++);
857 } else {
858 assert(bitsize == 64);
859 literal = vtn_u64_literal(w);
860 w += 2;
861 }
862 }
863 struct vtn_block *case_block = vtn_block(b, *(w++));
864
865 struct hash_entry *case_entry =
866 _mesa_hash_table_search(block_to_case, case_block);
867
868 struct vtn_case *cse;
869 if (case_entry) {
870 cse = case_entry->data;
871 } else {
872 cse = rzalloc(b, struct vtn_case);
873
874 cse->node.type = vtn_cf_node_type_case;
875 cse->node.parent = &swtch->node;
876 list_inithead(&cse->body);
877 util_dynarray_init(&cse->values, b);
878
879 cse->type = vtn_handle_branch(b, &swtch->node, case_block);
880 switch (cse->type) {
881 case vtn_branch_type_none:
882 /* This is a "real" cases which has stuff in it */
883 vtn_fail_if(case_block->switch_case != NULL,
884 "OpSwitch has a case which is also in another "
885 "OpSwitch construct");
886 case_block->switch_case = cse;
887 vtn_add_cfg_work_item(b, work_list, &cse->node,
888 &cse->body, case_block);
889 break;
890
891 case vtn_branch_type_switch_break:
892 case vtn_branch_type_loop_break:
893 case vtn_branch_type_loop_continue:
894 /* Switch breaks as well as loop breaks and continues can be
895 * used to break out of a switch construct or as direct targets
896 * of the OpSwitch.
897 */
898 break;
899
900 default:
901 vtn_fail("Target of OpSwitch is not a valid structured exit "
902 "from the switch construct.");
903 }
904
905 list_addtail(&cse->node.link, &swtch->cases);
906
907 _mesa_hash_table_insert(block_to_case, case_block, cse);
908 }
909
910 if (is_default) {
911 cse->is_default = true;
912 } else {
913 util_dynarray_append(&cse->values, uint64_t, literal);
914 }
915
916 is_default = false;
917 }
918
919 _mesa_hash_table_destroy(block_to_case, NULL);
920
921 return swtch->break_block;
922 }
923
924 case SpvOpUnreachable:
925 return NULL;
926
927 default:
928 vtn_fail("Block did not end with a valid branch instruction");
929 }
930 }
931
932 void
933 vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
934 {
935 vtn_foreach_instruction(b, words, end,
936 vtn_cfg_handle_prepass_instruction);
937
938 vtn_foreach_cf_node(func_node, &b->functions) {
939 struct vtn_function *func = vtn_cf_node_as_function(func_node);
940
941 /* We build the CFG for each function by doing a breadth-first search on
942 * the control-flow graph. We keep track of our state using a worklist.
943 * Doing a BFS ensures that we visit each structured control-flow
944 * construct and its merge node before we visit the stuff inside the
945 * construct.
946 */
947 struct list_head work_list;
948 list_inithead(&work_list);
949 vtn_add_cfg_work_item(b, &work_list, &func->node, &func->body,
950 func->start_block);
951
952 while (!list_is_empty(&work_list)) {
953 struct vtn_cfg_work_item *work =
954 list_first_entry(&work_list, struct vtn_cfg_work_item, link);
955 list_del(&work->link);
956
957 for (struct vtn_block *block = work->start_block; block; ) {
958 block = vtn_process_block(b, &work_list, work->cf_parent,
959 work->cf_list, block);
960 }
961 }
962 }
963 }
964
965 static bool
966 vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
967 const uint32_t *w, unsigned count)
968 {
969 if (opcode == SpvOpLabel)
970 return true; /* Nothing to do */
971
972 /* If this isn't a phi node, stop. */
973 if (opcode != SpvOpPhi)
974 return false;
975
976 /* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
977 * For each phi, we create a variable with the appropreate type and
978 * do a load from that variable. Then, in a second pass, we add
979 * stores to that variable to each of the predecessor blocks.
980 *
981 * We could do something more intelligent here. However, in order to
982 * handle loops and things properly, we really need dominance
983 * information. It would end up basically being the into-SSA
984 * algorithm all over again. It's easier if we just let
985 * lower_vars_to_ssa do that for us instead of repeating it here.
986 */
987 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
988 nir_variable *phi_var =
989 nir_local_variable_create(b->nb.impl, type->type, "phi");
990 _mesa_hash_table_insert(b->phi_table, w, phi_var);
991
992 vtn_push_ssa(b, w[2], type,
993 vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
994
995 return true;
996 }
997
998 static bool
999 vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
1000 const uint32_t *w, unsigned count)
1001 {
1002 if (opcode != SpvOpPhi)
1003 return true;
1004
1005 struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
1006
1007 /* It's possible that this phi is in an unreachable block in which case it
1008 * may never have been emitted and therefore may not be in the hash table.
1009 * In this case, there's no var for it and it's safe to just bail.
1010 */
1011 if (phi_entry == NULL)
1012 return true;
1013
1014 nir_variable *phi_var = phi_entry->data;
1015
1016 for (unsigned i = 3; i < count; i += 2) {
1017 struct vtn_block *pred = vtn_block(b, w[i + 1]);
1018
1019 /* If block does not have end_nop, that is because it is an unreacheable
1020 * block, and hence it is not worth to handle it */
1021 if (!pred->end_nop)
1022 continue;
1023
1024 b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
1025
1026 struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
1027
1028 vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
1029 }
1030
1031 return true;
1032 }
1033
1034 static void
1035 vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
1036 nir_variable *switch_fall_var, bool *has_switch_break)
1037 {
1038 switch (branch_type) {
1039 case vtn_branch_type_if_merge:
1040 break; /* Nothing to do */
1041 case vtn_branch_type_switch_break:
1042 nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
1043 *has_switch_break = true;
1044 break;
1045 case vtn_branch_type_switch_fallthrough:
1046 break; /* Nothing to do */
1047 case vtn_branch_type_loop_break:
1048 nir_jump(&b->nb, nir_jump_break);
1049 break;
1050 case vtn_branch_type_loop_continue:
1051 nir_jump(&b->nb, nir_jump_continue);
1052 break;
1053 case vtn_branch_type_loop_back_edge:
1054 break;
1055 case vtn_branch_type_return:
1056 nir_jump(&b->nb, nir_jump_return);
1057 break;
1058 case vtn_branch_type_discard: {
1059 nir_intrinsic_instr *discard =
1060 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_discard);
1061 nir_builder_instr_insert(&b->nb, &discard->instr);
1062 break;
1063 }
1064 default:
1065 vtn_fail("Invalid branch type");
1066 }
1067 }
1068
1069 static nir_ssa_def *
1070 vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
1071 nir_ssa_def *sel, struct vtn_case *cse)
1072 {
1073 if (cse->is_default) {
1074 nir_ssa_def *any = nir_imm_false(&b->nb);
1075 vtn_foreach_cf_node(other_node, &swtch->cases) {
1076 struct vtn_case *other = vtn_cf_node_as_case(other_node);
1077 if (other->is_default)
1078 continue;
1079
1080 any = nir_ior(&b->nb, any,
1081 vtn_switch_case_condition(b, swtch, sel, other));
1082 }
1083 return nir_inot(&b->nb, any);
1084 } else {
1085 nir_ssa_def *cond = nir_imm_false(&b->nb);
1086 util_dynarray_foreach(&cse->values, uint64_t, val) {
1087 nir_ssa_def *imm = nir_imm_intN_t(&b->nb, *val, sel->bit_size);
1088 cond = nir_ior(&b->nb, cond, nir_ieq(&b->nb, sel, imm));
1089 }
1090 return cond;
1091 }
1092 }
1093
1094 static nir_loop_control
1095 vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
1096 {
1097 if (vtn_loop->control == SpvLoopControlMaskNone)
1098 return nir_loop_control_none;
1099 else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
1100 return nir_loop_control_dont_unroll;
1101 else if (vtn_loop->control & SpvLoopControlUnrollMask)
1102 return nir_loop_control_unroll;
1103 else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
1104 vtn_loop->control & SpvLoopControlDependencyLengthMask ||
1105 vtn_loop->control & SpvLoopControlMinIterationsMask ||
1106 vtn_loop->control & SpvLoopControlMaxIterationsMask ||
1107 vtn_loop->control & SpvLoopControlIterationMultipleMask ||
1108 vtn_loop->control & SpvLoopControlPeelCountMask ||
1109 vtn_loop->control & SpvLoopControlPartialCountMask) {
1110 /* We do not do anything special with these yet. */
1111 return nir_loop_control_none;
1112 } else {
1113 vtn_fail("Invalid loop control");
1114 }
1115 }
1116
1117 static nir_selection_control
1118 vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
1119 {
1120 if (vtn_if->control == SpvSelectionControlMaskNone)
1121 return nir_selection_control_none;
1122 else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
1123 return nir_selection_control_dont_flatten;
1124 else if (vtn_if->control & SpvSelectionControlFlattenMask)
1125 return nir_selection_control_flatten;
1126 else
1127 vtn_fail("Invalid selection control");
1128 }
1129
1130 static void
1131 vtn_emit_cf_list(struct vtn_builder *b, struct list_head *cf_list,
1132 nir_variable *switch_fall_var, bool *has_switch_break,
1133 vtn_instruction_handler handler)
1134 {
1135 vtn_foreach_cf_node(node, cf_list) {
1136 switch (node->type) {
1137 case vtn_cf_node_type_block: {
1138 struct vtn_block *block = vtn_cf_node_as_block(node);
1139
1140 const uint32_t *block_start = block->label;
1141 const uint32_t *block_end = block->merge ? block->merge :
1142 block->branch;
1143
1144 block_start = vtn_foreach_instruction(b, block_start, block_end,
1145 vtn_handle_phis_first_pass);
1146
1147 vtn_foreach_instruction(b, block_start, block_end, handler);
1148
1149 block->end_nop = nir_intrinsic_instr_create(b->nb.shader,
1150 nir_intrinsic_nop);
1151 nir_builder_instr_insert(&b->nb, &block->end_nop->instr);
1152
1153 if ((*block->branch & SpvOpCodeMask) == SpvOpReturnValue) {
1154 vtn_fail_if(b->func->type->return_type->base_type ==
1155 vtn_base_type_void,
1156 "Return with a value from a function returning void");
1157 struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
1158 const struct glsl_type *ret_type =
1159 glsl_get_bare_type(b->func->type->return_type->type);
1160 nir_deref_instr *ret_deref =
1161 nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
1162 nir_var_function_temp, ret_type, 0);
1163 vtn_local_store(b, src, ret_deref, 0);
1164 }
1165
1166 if (block->branch_type != vtn_branch_type_none) {
1167 vtn_emit_branch(b, block->branch_type,
1168 switch_fall_var, has_switch_break);
1169 return;
1170 }
1171
1172 break;
1173 }
1174
1175 case vtn_cf_node_type_if: {
1176 struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
1177 bool sw_break = false;
1178
1179 nir_if *nif =
1180 nir_push_if(&b->nb, vtn_ssa_value(b, vtn_if->condition)->def);
1181
1182 nif->control = vtn_selection_control(b, vtn_if);
1183
1184 if (vtn_if->then_type == vtn_branch_type_none) {
1185 vtn_emit_cf_list(b, &vtn_if->then_body,
1186 switch_fall_var, &sw_break, handler);
1187 } else {
1188 vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
1189 }
1190
1191 nir_push_else(&b->nb, nif);
1192 if (vtn_if->else_type == vtn_branch_type_none) {
1193 vtn_emit_cf_list(b, &vtn_if->else_body,
1194 switch_fall_var, &sw_break, handler);
1195 } else {
1196 vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
1197 }
1198
1199 nir_pop_if(&b->nb, nif);
1200
1201 /* If we encountered a switch break somewhere inside of the if,
1202 * then it would have been handled correctly by calling
1203 * emit_cf_list or emit_branch for the interrior. However, we
1204 * need to predicate everything following on wether or not we're
1205 * still going.
1206 */
1207 if (sw_break) {
1208 *has_switch_break = true;
1209 nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
1210 }
1211 break;
1212 }
1213
1214 case vtn_cf_node_type_loop: {
1215 struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
1216
1217 nir_loop *loop = nir_push_loop(&b->nb);
1218 loop->control = vtn_loop_control(b, vtn_loop);
1219
1220 vtn_emit_cf_list(b, &vtn_loop->body, NULL, NULL, handler);
1221
1222 if (!list_is_empty(&vtn_loop->cont_body)) {
1223 /* If we have a non-trivial continue body then we need to put
1224 * it at the beginning of the loop with a flag to ensure that
1225 * it doesn't get executed in the first iteration.
1226 */
1227 nir_variable *do_cont =
1228 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
1229
1230 b->nb.cursor = nir_before_cf_node(&loop->cf_node);
1231 nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
1232
1233 b->nb.cursor = nir_before_cf_list(&loop->body);
1234
1235 nir_if *cont_if =
1236 nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
1237
1238 vtn_emit_cf_list(b, &vtn_loop->cont_body, NULL, NULL, handler);
1239
1240 nir_pop_if(&b->nb, cont_if);
1241
1242 nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
1243
1244 b->has_loop_continue = true;
1245 }
1246
1247 nir_pop_loop(&b->nb, loop);
1248 break;
1249 }
1250
1251 case vtn_cf_node_type_switch: {
1252 struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
1253
1254 /* Before we can emit anything, we need to sort the list of cases in
1255 * fall-through order.
1256 */
1257 vtn_switch_order_cases(vtn_switch);
1258
1259 /* First, we create a variable to keep track of whether or not the
1260 * switch is still going at any given point. Any switch breaks
1261 * will set this variable to false.
1262 */
1263 nir_variable *fall_var =
1264 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
1265 nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
1266
1267 nir_ssa_def *sel = vtn_ssa_value(b, vtn_switch->selector)->def;
1268
1269 /* Now we can walk the list of cases and actually emit code */
1270 vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
1271 struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1272
1273 /* Figure out the condition */
1274 nir_ssa_def *cond =
1275 vtn_switch_case_condition(b, vtn_switch, sel, cse);
1276 /* Take fallthrough into account */
1277 cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
1278
1279 nir_if *case_if = nir_push_if(&b->nb, cond);
1280
1281 bool has_break = false;
1282 nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
1283 vtn_emit_cf_list(b, &cse->body, fall_var, &has_break, handler);
1284 (void)has_break; /* We don't care */
1285
1286 nir_pop_if(&b->nb, case_if);
1287 }
1288
1289 break;
1290 }
1291
1292 default:
1293 vtn_fail("Invalid CF node type");
1294 }
1295 }
1296 }
1297
1298 void
1299 vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
1300 vtn_instruction_handler instruction_handler)
1301 {
1302 nir_builder_init(&b->nb, func->impl);
1303 b->func = func;
1304 b->nb.cursor = nir_after_cf_list(&func->impl->body);
1305 b->nb.exact = b->exact;
1306 b->has_loop_continue = false;
1307 b->phi_table = _mesa_pointer_hash_table_create(b);
1308
1309 vtn_emit_cf_list(b, &func->body, NULL, NULL, instruction_handler);
1310
1311 vtn_foreach_instruction(b, func->start_block->label, func->end,
1312 vtn_handle_phi_second_pass);
1313
1314 nir_rematerialize_derefs_in_use_blocks_impl(func->impl);
1315
1316 /* Continue blocks for loops get inserted before the body of the loop
1317 * but instructions in the continue may use SSA defs in the loop body.
1318 * Therefore, we need to repair SSA to insert the needed phi nodes.
1319 */
1320 if (b->has_loop_continue)
1321 nir_repair_ssa_impl(func->impl);
1322
1323 func->emitted = true;
1324 }