spirv: consider bitsize when handling OpSwitch cases
[mesa.git] / src / compiler / spirv / vtn_cfg.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25 #include "nir/nir_vla.h"
26
27 static struct vtn_pointer *
28 vtn_pointer_for_image_or_sampler_variable(struct vtn_builder *b,
29 struct vtn_variable *var)
30 {
31 assert(var->type->base_type == vtn_base_type_image ||
32 var->type->base_type == vtn_base_type_sampler);
33
34 struct vtn_type *ptr_type = rzalloc(b, struct vtn_type);
35 ptr_type->base_type = vtn_base_type_pointer;
36 ptr_type->storage_class = SpvStorageClassUniformConstant;
37 ptr_type->deref = var->type;
38
39 return vtn_pointer_for_variable(b, var, ptr_type);
40 }
41
42 static bool
43 vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
44 const uint32_t *w, unsigned count)
45 {
46 switch (opcode) {
47 case SpvOpFunction: {
48 vtn_assert(b->func == NULL);
49 b->func = rzalloc(b, struct vtn_function);
50
51 list_inithead(&b->func->body);
52 b->func->control = w[3];
53
54 MAYBE_UNUSED const struct glsl_type *result_type =
55 vtn_value(b, w[1], vtn_value_type_type)->type->type;
56 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
57 val->func = b->func;
58
59 const struct vtn_type *func_type =
60 vtn_value(b, w[4], vtn_value_type_type)->type;
61
62 vtn_assert(func_type->return_type->type == result_type);
63
64 nir_function *func =
65 nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
66
67 func->num_params = func_type->length;
68 func->params = ralloc_array(b->shader, nir_parameter, func->num_params);
69 unsigned np = 0;
70 for (unsigned i = 0; i < func_type->length; i++) {
71 if (func_type->params[i]->base_type == vtn_base_type_pointer &&
72 func_type->params[i]->type == NULL) {
73 func->params[np].type = func_type->params[i]->deref->type;
74 func->params[np].param_type = nir_parameter_inout;
75 np++;
76 } else if (func_type->params[i]->base_type ==
77 vtn_base_type_sampled_image) {
78 /* Sampled images are actually two parameters */
79 func->params = reralloc(b->shader, func->params,
80 nir_parameter, func->num_params++);
81 func->params[np].type = func_type->params[i]->type;
82 func->params[np].param_type = nir_parameter_in;
83 np++;
84 func->params[np].type = glsl_bare_sampler_type();
85 func->params[np].param_type = nir_parameter_in;
86 np++;
87 } else {
88 func->params[np].type = func_type->params[i]->type;
89 func->params[np].param_type = nir_parameter_in;
90 np++;
91 }
92 }
93 assert(np == func->num_params);
94
95 func->return_type = func_type->return_type->type;
96
97 b->func->impl = nir_function_impl_create(func);
98 b->nb.cursor = nir_before_cf_list(&b->func->impl->body);
99
100 b->func_param_idx = 0;
101 break;
102 }
103
104 case SpvOpFunctionEnd:
105 b->func->end = w;
106 b->func = NULL;
107 break;
108
109 case SpvOpFunctionParameter: {
110 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
111
112 vtn_assert(b->func_param_idx < b->func->impl->num_params);
113 nir_variable *param = b->func->impl->params[b->func_param_idx++];
114
115 if (type->base_type == vtn_base_type_pointer && type->type == NULL) {
116 struct vtn_variable *vtn_var = rzalloc(b, struct vtn_variable);
117 vtn_var->type = type->deref;
118 vtn_var->var = param;
119
120 vtn_assert(vtn_var->type->type == param->type);
121
122 struct vtn_type *without_array = vtn_var->type;
123 while(glsl_type_is_array(without_array->type))
124 without_array = without_array->array_element;
125
126 if (glsl_type_is_image(without_array->type)) {
127 vtn_var->mode = vtn_variable_mode_image;
128 param->interface_type = without_array->type;
129 } else if (glsl_type_is_sampler(without_array->type)) {
130 vtn_var->mode = vtn_variable_mode_sampler;
131 param->interface_type = without_array->type;
132 } else {
133 vtn_var->mode = vtn_variable_mode_param;
134 }
135
136 struct vtn_value *val =
137 vtn_push_value(b, w[2], vtn_value_type_pointer);
138
139 /* Name the parameter so it shows up nicely in NIR */
140 param->name = ralloc_strdup(param, val->name);
141
142 val->pointer = vtn_pointer_for_variable(b, vtn_var, type);
143 } else if (type->base_type == vtn_base_type_image ||
144 type->base_type == vtn_base_type_sampler ||
145 type->base_type == vtn_base_type_sampled_image) {
146 struct vtn_variable *vtn_var = rzalloc(b, struct vtn_variable);
147 vtn_var->type = type;
148 vtn_var->var = param;
149 param->interface_type = param->type;
150
151 if (type->base_type == vtn_base_type_sampled_image) {
152 /* Sampled images are actually two parameters. The first is the
153 * image and the second is the sampler.
154 */
155 struct vtn_value *val =
156 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
157
158 /* Name the parameter so it shows up nicely in NIR */
159 param->name = ralloc_strdup(param, val->name);
160
161 /* Adjust the type of the image variable to the image type */
162 vtn_var->type = type->image;
163
164 /* Now get the sampler parameter and set up its variable */
165 param = b->func->impl->params[b->func_param_idx++];
166 struct vtn_variable *sampler_var = rzalloc(b, struct vtn_variable);
167 sampler_var->type = rzalloc(b, struct vtn_type);
168 sampler_var->type->base_type = vtn_base_type_sampler;
169 sampler_var->type->type = glsl_bare_sampler_type();
170 sampler_var->var = param;
171 param->interface_type = param->type;
172 param->name = ralloc_strdup(param, val->name);
173
174 val->sampled_image = ralloc(b, struct vtn_sampled_image);
175 val->sampled_image->type = type;
176 val->sampled_image->image =
177 vtn_pointer_for_image_or_sampler_variable(b, vtn_var);
178 val->sampled_image->sampler =
179 vtn_pointer_for_image_or_sampler_variable(b, sampler_var);
180 } else {
181 struct vtn_value *val =
182 vtn_push_value(b, w[2], vtn_value_type_pointer);
183
184 /* Name the parameter so it shows up nicely in NIR */
185 param->name = ralloc_strdup(param, val->name);
186
187 val->pointer =
188 vtn_pointer_for_image_or_sampler_variable(b, vtn_var);
189 }
190 } else {
191 /* We're a regular SSA value. */
192 struct vtn_ssa_value *param_ssa =
193 vtn_local_load(b, nir_deref_var_create(b, param));
194 struct vtn_value *val = vtn_push_ssa(b, w[2], type, param_ssa);
195
196 /* Name the parameter so it shows up nicely in NIR */
197 param->name = ralloc_strdup(param, val->name);
198 }
199 break;
200 }
201
202 case SpvOpLabel: {
203 vtn_assert(b->block == NULL);
204 b->block = rzalloc(b, struct vtn_block);
205 b->block->node.type = vtn_cf_node_type_block;
206 b->block->label = w;
207 vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
208
209 if (b->func->start_block == NULL) {
210 /* This is the first block encountered for this function. In this
211 * case, we set the start block and add it to the list of
212 * implemented functions that we'll walk later.
213 */
214 b->func->start_block = b->block;
215 exec_list_push_tail(&b->functions, &b->func->node);
216 }
217 break;
218 }
219
220 case SpvOpSelectionMerge:
221 case SpvOpLoopMerge:
222 vtn_assert(b->block && b->block->merge == NULL);
223 b->block->merge = w;
224 break;
225
226 case SpvOpBranch:
227 case SpvOpBranchConditional:
228 case SpvOpSwitch:
229 case SpvOpKill:
230 case SpvOpReturn:
231 case SpvOpReturnValue:
232 case SpvOpUnreachable:
233 vtn_assert(b->block && b->block->branch == NULL);
234 b->block->branch = w;
235 b->block = NULL;
236 break;
237
238 default:
239 /* Continue on as per normal */
240 return true;
241 }
242
243 return true;
244 }
245
246 static void
247 vtn_add_case(struct vtn_builder *b, struct vtn_switch *swtch,
248 struct vtn_block *break_block,
249 uint32_t block_id, uint64_t val, bool is_default)
250 {
251 struct vtn_block *case_block =
252 vtn_value(b, block_id, vtn_value_type_block)->block;
253
254 /* Don't create dummy cases that just break */
255 if (case_block == break_block)
256 return;
257
258 if (case_block->switch_case == NULL) {
259 struct vtn_case *c = ralloc(b, struct vtn_case);
260
261 list_inithead(&c->body);
262 c->start_block = case_block;
263 c->fallthrough = NULL;
264 util_dynarray_init(&c->values, b);
265 c->is_default = false;
266 c->visited = false;
267
268 list_addtail(&c->link, &swtch->cases);
269
270 case_block->switch_case = c;
271 }
272
273 if (is_default) {
274 case_block->switch_case->is_default = true;
275 } else {
276 util_dynarray_append(&case_block->switch_case->values, uint64_t, val);
277 }
278 }
279
280 /* This function performs a depth-first search of the cases and puts them
281 * in fall-through order.
282 */
283 static void
284 vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
285 {
286 if (cse->visited)
287 return;
288
289 cse->visited = true;
290
291 list_del(&cse->link);
292
293 if (cse->fallthrough) {
294 vtn_order_case(swtch, cse->fallthrough);
295
296 /* If we have a fall-through, place this case right before the case it
297 * falls through to. This ensures that fallthroughs come one after
298 * the other. These two can never get separated because that would
299 * imply something else falling through to the same case. Also, this
300 * can't break ordering because the DFS ensures that this case is
301 * visited before anything that falls through to it.
302 */
303 list_addtail(&cse->link, &cse->fallthrough->link);
304 } else {
305 list_add(&cse->link, &swtch->cases);
306 }
307 }
308
309 static enum vtn_branch_type
310 vtn_get_branch_type(struct vtn_builder *b,
311 struct vtn_block *block,
312 struct vtn_case *swcase, struct vtn_block *switch_break,
313 struct vtn_block *loop_break, struct vtn_block *loop_cont)
314 {
315 if (block->switch_case) {
316 /* This branch is actually a fallthrough */
317 vtn_assert(swcase->fallthrough == NULL ||
318 swcase->fallthrough == block->switch_case);
319 swcase->fallthrough = block->switch_case;
320 return vtn_branch_type_switch_fallthrough;
321 } else if (block == loop_break) {
322 return vtn_branch_type_loop_break;
323 } else if (block == loop_cont) {
324 return vtn_branch_type_loop_continue;
325 } else if (block == switch_break) {
326 return vtn_branch_type_switch_break;
327 } else {
328 return vtn_branch_type_none;
329 }
330 }
331
332 static void
333 vtn_cfg_walk_blocks(struct vtn_builder *b, struct list_head *cf_list,
334 struct vtn_block *start, struct vtn_case *switch_case,
335 struct vtn_block *switch_break,
336 struct vtn_block *loop_break, struct vtn_block *loop_cont,
337 struct vtn_block *end)
338 {
339 struct vtn_block *block = start;
340 while (block != end) {
341 if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
342 !block->loop) {
343 struct vtn_loop *loop = ralloc(b, struct vtn_loop);
344
345 loop->node.type = vtn_cf_node_type_loop;
346 list_inithead(&loop->body);
347 list_inithead(&loop->cont_body);
348 loop->control = block->merge[3];
349
350 list_addtail(&loop->node.link, cf_list);
351 block->loop = loop;
352
353 struct vtn_block *new_loop_break =
354 vtn_value(b, block->merge[1], vtn_value_type_block)->block;
355 struct vtn_block *new_loop_cont =
356 vtn_value(b, block->merge[2], vtn_value_type_block)->block;
357
358 /* Note: This recursive call will start with the current block as
359 * its start block. If we weren't careful, we would get here
360 * again and end up in infinite recursion. This is why we set
361 * block->loop above and check for it before creating one. This
362 * way, we only create the loop once and the second call that
363 * tries to handle this loop goes to the cases below and gets
364 * handled as a regular block.
365 *
366 * Note: When we make the recursive walk calls, we pass NULL for
367 * the switch break since you have to break out of the loop first.
368 * We do, however, still pass the current switch case because it's
369 * possible that the merge block for the loop is the start of
370 * another case.
371 */
372 vtn_cfg_walk_blocks(b, &loop->body, block, switch_case, NULL,
373 new_loop_break, new_loop_cont, NULL );
374 vtn_cfg_walk_blocks(b, &loop->cont_body, new_loop_cont, NULL, NULL,
375 new_loop_break, NULL, block);
376
377 block = new_loop_break;
378 continue;
379 }
380
381 vtn_assert(block->node.link.next == NULL);
382 list_addtail(&block->node.link, cf_list);
383
384 switch (*block->branch & SpvOpCodeMask) {
385 case SpvOpBranch: {
386 struct vtn_block *branch_block =
387 vtn_value(b, block->branch[1], vtn_value_type_block)->block;
388
389 block->branch_type = vtn_get_branch_type(b, branch_block,
390 switch_case, switch_break,
391 loop_break, loop_cont);
392
393 if (block->branch_type != vtn_branch_type_none)
394 return;
395
396 block = branch_block;
397 continue;
398 }
399
400 case SpvOpReturn:
401 case SpvOpReturnValue:
402 block->branch_type = vtn_branch_type_return;
403 return;
404
405 case SpvOpKill:
406 block->branch_type = vtn_branch_type_discard;
407 return;
408
409 case SpvOpBranchConditional: {
410 struct vtn_block *then_block =
411 vtn_value(b, block->branch[2], vtn_value_type_block)->block;
412 struct vtn_block *else_block =
413 vtn_value(b, block->branch[3], vtn_value_type_block)->block;
414
415 struct vtn_if *if_stmt = ralloc(b, struct vtn_if);
416
417 if_stmt->node.type = vtn_cf_node_type_if;
418 if_stmt->condition = block->branch[1];
419 list_inithead(&if_stmt->then_body);
420 list_inithead(&if_stmt->else_body);
421
422 list_addtail(&if_stmt->node.link, cf_list);
423
424 if (block->merge &&
425 (*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
426 if_stmt->control = block->merge[2];
427 }
428
429 if_stmt->then_type = vtn_get_branch_type(b, then_block,
430 switch_case, switch_break,
431 loop_break, loop_cont);
432 if_stmt->else_type = vtn_get_branch_type(b, else_block,
433 switch_case, switch_break,
434 loop_break, loop_cont);
435
436 if (then_block == else_block) {
437 block->branch_type = if_stmt->then_type;
438 if (block->branch_type == vtn_branch_type_none) {
439 block = then_block;
440 continue;
441 } else {
442 return;
443 }
444 } else if (if_stmt->then_type == vtn_branch_type_none &&
445 if_stmt->else_type == vtn_branch_type_none) {
446 /* Neither side of the if is something we can short-circuit. */
447 vtn_assert((*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge);
448 struct vtn_block *merge_block =
449 vtn_value(b, block->merge[1], vtn_value_type_block)->block;
450
451 vtn_cfg_walk_blocks(b, &if_stmt->then_body, then_block,
452 switch_case, switch_break,
453 loop_break, loop_cont, merge_block);
454 vtn_cfg_walk_blocks(b, &if_stmt->else_body, else_block,
455 switch_case, switch_break,
456 loop_break, loop_cont, merge_block);
457
458 enum vtn_branch_type merge_type =
459 vtn_get_branch_type(b, merge_block, switch_case, switch_break,
460 loop_break, loop_cont);
461 if (merge_type == vtn_branch_type_none) {
462 block = merge_block;
463 continue;
464 } else {
465 return;
466 }
467 } else if (if_stmt->then_type != vtn_branch_type_none &&
468 if_stmt->else_type != vtn_branch_type_none) {
469 /* Both sides were short-circuited. We're done here. */
470 return;
471 } else {
472 /* Exeactly one side of the branch could be short-circuited.
473 * We set the branch up as a predicated break/continue and we
474 * continue on with the other side as if it were what comes
475 * after the if.
476 */
477 if (if_stmt->then_type == vtn_branch_type_none) {
478 block = then_block;
479 } else {
480 block = else_block;
481 }
482 continue;
483 }
484 vtn_fail("Should have returned or continued");
485 }
486
487 case SpvOpSwitch: {
488 vtn_assert((*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge);
489 struct vtn_block *break_block =
490 vtn_value(b, block->merge[1], vtn_value_type_block)->block;
491
492 struct vtn_switch *swtch = ralloc(b, struct vtn_switch);
493
494 swtch->node.type = vtn_cf_node_type_switch;
495 swtch->selector = block->branch[1];
496 list_inithead(&swtch->cases);
497
498 list_addtail(&swtch->node.link, cf_list);
499
500 /* First, we go through and record all of the cases. */
501 const uint32_t *branch_end =
502 block->branch + (block->branch[0] >> SpvWordCountShift);
503
504 struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
505 vtn_fail_if(!cond_val->type ||
506 cond_val->type->base_type != vtn_base_type_scalar,
507 "Selector of OpSelect must have a type of OpTypeInt");
508
509 nir_alu_type cond_type =
510 nir_get_nir_type_for_glsl_type(cond_val->type->type);
511 vtn_fail_if(nir_alu_type_get_base_type(cond_type) != nir_type_int &&
512 nir_alu_type_get_base_type(cond_type) != nir_type_uint,
513 "Selector of OpSelect must have a type of OpTypeInt");
514
515 bool is_default = true;
516 const uint bitsize = nir_alu_type_get_type_size(cond_type);
517 for (const uint32_t *w = block->branch + 2; w < branch_end;) {
518 uint64_t literal = 0;
519 if (!is_default) {
520 if (bitsize <= 32) {
521 literal = *(w++);
522 } else {
523 assert(bitsize == 64);
524 literal = vtn_u64_literal(w);
525 w += 2;
526 }
527 }
528
529 uint32_t block_id = *(w++);
530
531 vtn_add_case(b, swtch, break_block, block_id, literal, is_default);
532 is_default = false;
533 }
534
535 /* Now, we go through and walk the blocks. While we walk through
536 * the blocks, we also gather the much-needed fall-through
537 * information.
538 */
539 list_for_each_entry(struct vtn_case, cse, &swtch->cases, link) {
540 vtn_assert(cse->start_block != break_block);
541 vtn_cfg_walk_blocks(b, &cse->body, cse->start_block, cse,
542 break_block, loop_break, loop_cont, NULL);
543 }
544
545 /* Finally, we walk over all of the cases one more time and put
546 * them in fall-through order.
547 */
548 for (const uint32_t *w = block->branch + 2; w < branch_end;) {
549 struct vtn_block *case_block =
550 vtn_value(b, *w, vtn_value_type_block)->block;
551
552 if (bitsize <= 32) {
553 w += 2;
554 } else {
555 assert(bitsize == 64);
556 w += 3;
557 }
558
559 if (case_block == break_block)
560 continue;
561
562 vtn_assert(case_block->switch_case);
563
564 vtn_order_case(swtch, case_block->switch_case);
565 }
566
567 enum vtn_branch_type branch_type =
568 vtn_get_branch_type(b, break_block, switch_case, NULL,
569 loop_break, loop_cont);
570
571 if (branch_type != vtn_branch_type_none) {
572 /* It is possible that the break is actually the continue block
573 * for the containing loop. In this case, we need to bail and let
574 * the loop parsing code handle the continue properly.
575 */
576 vtn_assert(branch_type == vtn_branch_type_loop_continue);
577 return;
578 }
579
580 block = break_block;
581 continue;
582 }
583
584 case SpvOpUnreachable:
585 return;
586
587 default:
588 vtn_fail("Unhandled opcode");
589 }
590 }
591 }
592
593 void
594 vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
595 {
596 vtn_foreach_instruction(b, words, end,
597 vtn_cfg_handle_prepass_instruction);
598
599 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
600 vtn_cfg_walk_blocks(b, &func->body, func->start_block,
601 NULL, NULL, NULL, NULL, NULL);
602 }
603 }
604
605 static bool
606 vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
607 const uint32_t *w, unsigned count)
608 {
609 if (opcode == SpvOpLabel)
610 return true; /* Nothing to do */
611
612 /* If this isn't a phi node, stop. */
613 if (opcode != SpvOpPhi)
614 return false;
615
616 /* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
617 * For each phi, we create a variable with the appropreate type and
618 * do a load from that variable. Then, in a second pass, we add
619 * stores to that variable to each of the predecessor blocks.
620 *
621 * We could do something more intelligent here. However, in order to
622 * handle loops and things properly, we really need dominance
623 * information. It would end up basically being the into-SSA
624 * algorithm all over again. It's easier if we just let
625 * lower_vars_to_ssa do that for us instead of repeating it here.
626 */
627 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
628 nir_variable *phi_var =
629 nir_local_variable_create(b->nb.impl, type->type, "phi");
630 _mesa_hash_table_insert(b->phi_table, w, phi_var);
631
632 vtn_push_ssa(b, w[2], type,
633 vtn_local_load(b, nir_deref_var_create(b, phi_var)));
634
635 return true;
636 }
637
638 static bool
639 vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
640 const uint32_t *w, unsigned count)
641 {
642 if (opcode != SpvOpPhi)
643 return true;
644
645 struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
646 vtn_assert(phi_entry);
647 nir_variable *phi_var = phi_entry->data;
648
649 for (unsigned i = 3; i < count; i += 2) {
650 struct vtn_block *pred =
651 vtn_value(b, w[i + 1], vtn_value_type_block)->block;
652
653 b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
654
655 struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
656
657 vtn_local_store(b, src, nir_deref_var_create(b, phi_var));
658 }
659
660 return true;
661 }
662
663 static void
664 vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
665 nir_variable *switch_fall_var, bool *has_switch_break)
666 {
667 switch (branch_type) {
668 case vtn_branch_type_switch_break:
669 nir_store_var(&b->nb, switch_fall_var, nir_imm_int(&b->nb, NIR_FALSE), 1);
670 *has_switch_break = true;
671 break;
672 case vtn_branch_type_switch_fallthrough:
673 break; /* Nothing to do */
674 case vtn_branch_type_loop_break:
675 nir_jump(&b->nb, nir_jump_break);
676 break;
677 case vtn_branch_type_loop_continue:
678 nir_jump(&b->nb, nir_jump_continue);
679 break;
680 case vtn_branch_type_return:
681 nir_jump(&b->nb, nir_jump_return);
682 break;
683 case vtn_branch_type_discard: {
684 nir_intrinsic_instr *discard =
685 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_discard);
686 nir_builder_instr_insert(&b->nb, &discard->instr);
687 break;
688 }
689 default:
690 vtn_fail("Invalid branch type");
691 }
692 }
693
694 static void
695 vtn_emit_cf_list(struct vtn_builder *b, struct list_head *cf_list,
696 nir_variable *switch_fall_var, bool *has_switch_break,
697 vtn_instruction_handler handler)
698 {
699 list_for_each_entry(struct vtn_cf_node, node, cf_list, link) {
700 switch (node->type) {
701 case vtn_cf_node_type_block: {
702 struct vtn_block *block = (struct vtn_block *)node;
703
704 const uint32_t *block_start = block->label;
705 const uint32_t *block_end = block->merge ? block->merge :
706 block->branch;
707
708 block_start = vtn_foreach_instruction(b, block_start, block_end,
709 vtn_handle_phis_first_pass);
710
711 vtn_foreach_instruction(b, block_start, block_end, handler);
712
713 block->end_nop = nir_intrinsic_instr_create(b->nb.shader,
714 nir_intrinsic_nop);
715 nir_builder_instr_insert(&b->nb, &block->end_nop->instr);
716
717 if ((*block->branch & SpvOpCodeMask) == SpvOpReturnValue) {
718 struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
719 vtn_local_store(b, src,
720 nir_deref_var_create(b, b->nb.impl->return_var));
721 }
722
723 if (block->branch_type != vtn_branch_type_none) {
724 vtn_emit_branch(b, block->branch_type,
725 switch_fall_var, has_switch_break);
726 }
727
728 break;
729 }
730
731 case vtn_cf_node_type_if: {
732 struct vtn_if *vtn_if = (struct vtn_if *)node;
733 bool sw_break = false;
734
735 nir_if *nif =
736 nir_push_if(&b->nb, vtn_ssa_value(b, vtn_if->condition)->def);
737 if (vtn_if->then_type == vtn_branch_type_none) {
738 vtn_emit_cf_list(b, &vtn_if->then_body,
739 switch_fall_var, &sw_break, handler);
740 } else {
741 vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
742 }
743
744 nir_push_else(&b->nb, nif);
745 if (vtn_if->else_type == vtn_branch_type_none) {
746 vtn_emit_cf_list(b, &vtn_if->else_body,
747 switch_fall_var, &sw_break, handler);
748 } else {
749 vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
750 }
751
752 nir_pop_if(&b->nb, nif);
753
754 /* If we encountered a switch break somewhere inside of the if,
755 * then it would have been handled correctly by calling
756 * emit_cf_list or emit_branch for the interrior. However, we
757 * need to predicate everything following on wether or not we're
758 * still going.
759 */
760 if (sw_break) {
761 *has_switch_break = true;
762 nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
763 }
764 break;
765 }
766
767 case vtn_cf_node_type_loop: {
768 struct vtn_loop *vtn_loop = (struct vtn_loop *)node;
769
770 nir_loop *loop = nir_push_loop(&b->nb);
771 vtn_emit_cf_list(b, &vtn_loop->body, NULL, NULL, handler);
772
773 if (!list_empty(&vtn_loop->cont_body)) {
774 /* If we have a non-trivial continue body then we need to put
775 * it at the beginning of the loop with a flag to ensure that
776 * it doesn't get executed in the first iteration.
777 */
778 nir_variable *do_cont =
779 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
780
781 b->nb.cursor = nir_before_cf_node(&loop->cf_node);
782 nir_store_var(&b->nb, do_cont, nir_imm_int(&b->nb, NIR_FALSE), 1);
783
784 b->nb.cursor = nir_before_cf_list(&loop->body);
785
786 nir_if *cont_if =
787 nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
788
789 vtn_emit_cf_list(b, &vtn_loop->cont_body, NULL, NULL, handler);
790
791 nir_pop_if(&b->nb, cont_if);
792
793 nir_store_var(&b->nb, do_cont, nir_imm_int(&b->nb, NIR_TRUE), 1);
794
795 b->has_loop_continue = true;
796 }
797
798 nir_pop_loop(&b->nb, loop);
799 break;
800 }
801
802 case vtn_cf_node_type_switch: {
803 struct vtn_switch *vtn_switch = (struct vtn_switch *)node;
804
805 /* First, we create a variable to keep track of whether or not the
806 * switch is still going at any given point. Any switch breaks
807 * will set this variable to false.
808 */
809 nir_variable *fall_var =
810 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
811 nir_store_var(&b->nb, fall_var, nir_imm_int(&b->nb, NIR_FALSE), 1);
812
813 /* Next, we gather up all of the conditions. We have to do this
814 * up-front because we also need to build an "any" condition so
815 * that we can use !any for default.
816 */
817 const int num_cases = list_length(&vtn_switch->cases);
818 NIR_VLA(nir_ssa_def *, conditions, num_cases);
819
820 nir_ssa_def *sel = vtn_ssa_value(b, vtn_switch->selector)->def;
821 /* An accumulation of all conditions. Used for the default */
822 nir_ssa_def *any = NULL;
823
824 int i = 0;
825 list_for_each_entry(struct vtn_case, cse, &vtn_switch->cases, link) {
826 if (cse->is_default) {
827 conditions[i++] = NULL;
828 continue;
829 }
830
831 nir_ssa_def *cond = NULL;
832 util_dynarray_foreach(&cse->values, uint64_t, val) {
833 nir_ssa_def *imm = nir_imm_intN_t(&b->nb, *val, sel->bit_size);
834 nir_ssa_def *is_val = nir_ieq(&b->nb, sel, imm);
835
836 cond = cond ? nir_ior(&b->nb, cond, is_val) : is_val;
837 }
838
839 any = any ? nir_ior(&b->nb, any, cond) : cond;
840 conditions[i++] = cond;
841 }
842 vtn_assert(i == num_cases);
843
844 /* Now we can walk the list of cases and actually emit code */
845 i = 0;
846 list_for_each_entry(struct vtn_case, cse, &vtn_switch->cases, link) {
847 /* Figure out the condition */
848 nir_ssa_def *cond = conditions[i++];
849 if (cse->is_default) {
850 vtn_assert(cond == NULL);
851 cond = nir_inot(&b->nb, any);
852 }
853 /* Take fallthrough into account */
854 cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
855
856 nir_if *case_if = nir_push_if(&b->nb, cond);
857
858 bool has_break = false;
859 nir_store_var(&b->nb, fall_var, nir_imm_int(&b->nb, NIR_TRUE), 1);
860 vtn_emit_cf_list(b, &cse->body, fall_var, &has_break, handler);
861 (void)has_break; /* We don't care */
862
863 nir_pop_if(&b->nb, case_if);
864 }
865 vtn_assert(i == num_cases);
866
867 break;
868 }
869
870 default:
871 vtn_fail("Invalid CF node type");
872 }
873 }
874 }
875
876 void
877 vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
878 vtn_instruction_handler instruction_handler)
879 {
880 nir_builder_init(&b->nb, func->impl);
881 b->nb.cursor = nir_after_cf_list(&func->impl->body);
882 b->has_loop_continue = false;
883 b->phi_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
884 _mesa_key_pointer_equal);
885
886 vtn_emit_cf_list(b, &func->body, NULL, NULL, instruction_handler);
887
888 vtn_foreach_instruction(b, func->start_block->label, func->end,
889 vtn_handle_phi_second_pass);
890
891 /* Continue blocks for loops get inserted before the body of the loop
892 * but instructions in the continue may use SSA defs in the loop body.
893 * Therefore, we need to repair SSA to insert the needed phi nodes.
894 */
895 if (b->has_loop_continue)
896 nir_repair_ssa_impl(func->impl);
897
898 func->emitted = true;
899 }