spirv: Add a helpers for getting types of values
[mesa.git] / src / compiler / spirv / vtn_cfg.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25 #include "nir/nir_vla.h"
26
27 static struct vtn_block *
28 vtn_block(struct vtn_builder *b, uint32_t value_id)
29 {
30 return vtn_value(b, value_id, vtn_value_type_block)->block;
31 }
32
33 static struct vtn_pointer *
34 vtn_load_param_pointer(struct vtn_builder *b,
35 struct vtn_type *param_type,
36 uint32_t param_idx)
37 {
38 struct vtn_type *ptr_type = param_type;
39 if (param_type->base_type != vtn_base_type_pointer) {
40 assert(param_type->base_type == vtn_base_type_image ||
41 param_type->base_type == vtn_base_type_sampler);
42 ptr_type = rzalloc(b, struct vtn_type);
43 ptr_type->base_type = vtn_base_type_pointer;
44 ptr_type->deref = param_type;
45 ptr_type->storage_class = SpvStorageClassUniformConstant;
46 }
47
48 return vtn_pointer_from_ssa(b, nir_load_param(&b->nb, param_idx), ptr_type);
49 }
50
51 static unsigned
52 vtn_type_count_function_params(struct vtn_type *type)
53 {
54 switch (type->base_type) {
55 case vtn_base_type_array:
56 case vtn_base_type_matrix:
57 return type->length * vtn_type_count_function_params(type->array_element);
58
59 case vtn_base_type_struct: {
60 unsigned count = 0;
61 for (unsigned i = 0; i < type->length; i++)
62 count += vtn_type_count_function_params(type->members[i]);
63 return count;
64 }
65
66 case vtn_base_type_sampled_image:
67 return 2;
68
69 default:
70 return 1;
71 }
72 }
73
74 static void
75 vtn_type_add_to_function_params(struct vtn_type *type,
76 nir_function *func,
77 unsigned *param_idx)
78 {
79 static const nir_parameter nir_deref_param = {
80 .num_components = 1,
81 .bit_size = 32,
82 };
83
84 switch (type->base_type) {
85 case vtn_base_type_array:
86 case vtn_base_type_matrix:
87 for (unsigned i = 0; i < type->length; i++)
88 vtn_type_add_to_function_params(type->array_element, func, param_idx);
89 break;
90
91 case vtn_base_type_struct:
92 for (unsigned i = 0; i < type->length; i++)
93 vtn_type_add_to_function_params(type->members[i], func, param_idx);
94 break;
95
96 case vtn_base_type_sampled_image:
97 func->params[(*param_idx)++] = nir_deref_param;
98 func->params[(*param_idx)++] = nir_deref_param;
99 break;
100
101 case vtn_base_type_image:
102 case vtn_base_type_sampler:
103 func->params[(*param_idx)++] = nir_deref_param;
104 break;
105
106 case vtn_base_type_pointer:
107 if (type->type) {
108 func->params[(*param_idx)++] = (nir_parameter) {
109 .num_components = glsl_get_vector_elements(type->type),
110 .bit_size = glsl_get_bit_size(type->type),
111 };
112 } else {
113 func->params[(*param_idx)++] = nir_deref_param;
114 }
115 break;
116
117 default:
118 func->params[(*param_idx)++] = (nir_parameter) {
119 .num_components = glsl_get_vector_elements(type->type),
120 .bit_size = glsl_get_bit_size(type->type),
121 };
122 }
123 }
124
125 static void
126 vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
127 struct vtn_ssa_value *value,
128 struct vtn_type *type,
129 nir_call_instr *call,
130 unsigned *param_idx)
131 {
132 switch (type->base_type) {
133 case vtn_base_type_array:
134 case vtn_base_type_matrix:
135 for (unsigned i = 0; i < type->length; i++) {
136 vtn_ssa_value_add_to_call_params(b, value->elems[i],
137 type->array_element,
138 call, param_idx);
139 }
140 break;
141
142 case vtn_base_type_struct:
143 for (unsigned i = 0; i < type->length; i++) {
144 vtn_ssa_value_add_to_call_params(b, value->elems[i],
145 type->members[i],
146 call, param_idx);
147 }
148 break;
149
150 default:
151 call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
152 break;
153 }
154 }
155
156 static void
157 vtn_ssa_value_load_function_param(struct vtn_builder *b,
158 struct vtn_ssa_value *value,
159 struct vtn_type *type,
160 unsigned *param_idx)
161 {
162 switch (type->base_type) {
163 case vtn_base_type_array:
164 case vtn_base_type_matrix:
165 for (unsigned i = 0; i < type->length; i++) {
166 vtn_ssa_value_load_function_param(b, value->elems[i],
167 type->array_element, param_idx);
168 }
169 break;
170
171 case vtn_base_type_struct:
172 for (unsigned i = 0; i < type->length; i++) {
173 vtn_ssa_value_load_function_param(b, value->elems[i],
174 type->members[i], param_idx);
175 }
176 break;
177
178 default:
179 value->def = nir_load_param(&b->nb, (*param_idx)++);
180 break;
181 }
182 }
183
184 void
185 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
186 const uint32_t *w, unsigned count)
187 {
188 struct vtn_type *res_type = vtn_get_type(b, w[1]);
189 struct vtn_function *vtn_callee =
190 vtn_value(b, w[3], vtn_value_type_function)->func;
191 struct nir_function *callee = vtn_callee->impl->function;
192
193 vtn_callee->referenced = true;
194
195 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
196
197 unsigned param_idx = 0;
198
199 nir_deref_instr *ret_deref = NULL;
200 struct vtn_type *ret_type = vtn_callee->type->return_type;
201 if (ret_type->base_type != vtn_base_type_void) {
202 nir_variable *ret_tmp =
203 nir_local_variable_create(b->nb.impl,
204 glsl_get_bare_type(ret_type->type),
205 "return_tmp");
206 ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
207 call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
208 }
209
210 for (unsigned i = 0; i < vtn_callee->type->length; i++) {
211 struct vtn_type *arg_type = vtn_callee->type->params[i];
212 unsigned arg_id = w[4 + i];
213
214 if (arg_type->base_type == vtn_base_type_sampled_image) {
215 struct vtn_sampled_image *sampled_image =
216 vtn_value(b, arg_id, vtn_value_type_sampled_image)->sampled_image;
217
218 call->params[param_idx++] =
219 nir_src_for_ssa(vtn_pointer_to_ssa(b, sampled_image->image));
220 call->params[param_idx++] =
221 nir_src_for_ssa(vtn_pointer_to_ssa(b, sampled_image->sampler));
222 } else if (arg_type->base_type == vtn_base_type_pointer ||
223 arg_type->base_type == vtn_base_type_image ||
224 arg_type->base_type == vtn_base_type_sampler) {
225 struct vtn_pointer *pointer =
226 vtn_value(b, arg_id, vtn_value_type_pointer)->pointer;
227 call->params[param_idx++] =
228 nir_src_for_ssa(vtn_pointer_to_ssa(b, pointer));
229 } else {
230 vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, arg_id),
231 arg_type, call, &param_idx);
232 }
233 }
234 assert(param_idx == call->num_params);
235
236 nir_builder_instr_insert(&b->nb, &call->instr);
237
238 if (ret_type->base_type == vtn_base_type_void) {
239 vtn_push_value(b, w[2], vtn_value_type_undef);
240 } else {
241 vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, ret_deref, 0));
242 }
243 }
244
245 static bool
246 vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
247 const uint32_t *w, unsigned count)
248 {
249 switch (opcode) {
250 case SpvOpFunction: {
251 vtn_assert(b->func == NULL);
252 b->func = rzalloc(b, struct vtn_function);
253
254 b->func->node.type = vtn_cf_node_type_function;
255 b->func->node.parent = NULL;
256 list_inithead(&b->func->body);
257 b->func->control = w[3];
258
259 UNUSED const struct glsl_type *result_type = vtn_get_type(b, w[1])->type;
260 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
261 val->func = b->func;
262
263 b->func->type = vtn_get_type(b, w[4]);
264 const struct vtn_type *func_type = b->func->type;
265
266 vtn_assert(func_type->return_type->type == result_type);
267
268 nir_function *func =
269 nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
270
271 unsigned num_params = 0;
272 for (unsigned i = 0; i < func_type->length; i++)
273 num_params += vtn_type_count_function_params(func_type->params[i]);
274
275 /* Add one parameter for the function return value */
276 if (func_type->return_type->base_type != vtn_base_type_void)
277 num_params++;
278
279 func->num_params = num_params;
280 func->params = ralloc_array(b->shader, nir_parameter, num_params);
281
282 unsigned idx = 0;
283 if (func_type->return_type->base_type != vtn_base_type_void) {
284 nir_address_format addr_format =
285 vtn_mode_to_address_format(b, vtn_variable_mode_function);
286 /* The return value is a regular pointer */
287 func->params[idx++] = (nir_parameter) {
288 .num_components = nir_address_format_num_components(addr_format),
289 .bit_size = nir_address_format_bit_size(addr_format),
290 };
291 }
292
293 for (unsigned i = 0; i < func_type->length; i++)
294 vtn_type_add_to_function_params(func_type->params[i], func, &idx);
295 assert(idx == num_params);
296
297 b->func->impl = nir_function_impl_create(func);
298 nir_builder_init(&b->nb, func->impl);
299 b->nb.cursor = nir_before_cf_list(&b->func->impl->body);
300 b->nb.exact = b->exact;
301
302 b->func_param_idx = 0;
303
304 /* The return value is the first parameter */
305 if (func_type->return_type->base_type != vtn_base_type_void)
306 b->func_param_idx++;
307 break;
308 }
309
310 case SpvOpFunctionEnd:
311 b->func->end = w;
312 b->func = NULL;
313 break;
314
315 case SpvOpFunctionParameter: {
316 struct vtn_type *type = vtn_get_type(b, w[1]);
317
318 vtn_assert(b->func_param_idx < b->func->impl->function->num_params);
319
320 if (type->base_type == vtn_base_type_sampled_image) {
321 /* Sampled images are actually two parameters. The first is the
322 * image and the second is the sampler.
323 */
324 struct vtn_value *val =
325 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
326
327 val->sampled_image = ralloc(b, struct vtn_sampled_image);
328
329 struct vtn_type *image_type = rzalloc(b, struct vtn_type);
330 image_type->base_type = vtn_base_type_image;
331 image_type->type = type->type;
332
333 struct vtn_type *sampler_type = rzalloc(b, struct vtn_type);
334 sampler_type->base_type = vtn_base_type_sampler;
335 sampler_type->type = glsl_bare_sampler_type();
336
337 val->sampled_image->image =
338 vtn_load_param_pointer(b, image_type, b->func_param_idx++);
339 val->sampled_image->sampler =
340 vtn_load_param_pointer(b, sampler_type, b->func_param_idx++);
341 } else if (type->base_type == vtn_base_type_pointer &&
342 type->type != NULL) {
343 /* This is a pointer with an actual storage type */
344 nir_ssa_def *ssa_ptr = nir_load_param(&b->nb, b->func_param_idx++);
345 vtn_push_value_pointer(b, w[2], vtn_pointer_from_ssa(b, ssa_ptr, type));
346 } else if (type->base_type == vtn_base_type_pointer ||
347 type->base_type == vtn_base_type_image ||
348 type->base_type == vtn_base_type_sampler) {
349 vtn_push_value_pointer(b, w[2], vtn_load_param_pointer(b, type, b->func_param_idx++));
350 } else {
351 /* We're a regular SSA value. */
352 struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
353 vtn_ssa_value_load_function_param(b, value, type, &b->func_param_idx);
354 vtn_push_ssa(b, w[2], type, value);
355 }
356 break;
357 }
358
359 case SpvOpLabel: {
360 vtn_assert(b->block == NULL);
361 b->block = rzalloc(b, struct vtn_block);
362 b->block->node.type = vtn_cf_node_type_block;
363 b->block->label = w;
364 vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
365
366 if (b->func->start_block == NULL) {
367 /* This is the first block encountered for this function. In this
368 * case, we set the start block and add it to the list of
369 * implemented functions that we'll walk later.
370 */
371 b->func->start_block = b->block;
372 list_addtail(&b->func->node.link, &b->functions);
373 }
374 break;
375 }
376
377 case SpvOpSelectionMerge:
378 case SpvOpLoopMerge:
379 vtn_assert(b->block && b->block->merge == NULL);
380 b->block->merge = w;
381 break;
382
383 case SpvOpBranch:
384 case SpvOpBranchConditional:
385 case SpvOpSwitch:
386 case SpvOpKill:
387 case SpvOpReturn:
388 case SpvOpReturnValue:
389 case SpvOpUnreachable:
390 vtn_assert(b->block && b->block->branch == NULL);
391 b->block->branch = w;
392 b->block = NULL;
393 break;
394
395 default:
396 /* Continue on as per normal */
397 return true;
398 }
399
400 return true;
401 }
402
403 /* This function performs a depth-first search of the cases and puts them
404 * in fall-through order.
405 */
406 static void
407 vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
408 {
409 if (cse->visited)
410 return;
411
412 cse->visited = true;
413
414 list_del(&cse->node.link);
415
416 if (cse->fallthrough) {
417 vtn_order_case(swtch, cse->fallthrough);
418
419 /* If we have a fall-through, place this case right before the case it
420 * falls through to. This ensures that fallthroughs come one after
421 * the other. These two can never get separated because that would
422 * imply something else falling through to the same case. Also, this
423 * can't break ordering because the DFS ensures that this case is
424 * visited before anything that falls through to it.
425 */
426 list_addtail(&cse->node.link, &cse->fallthrough->node.link);
427 } else {
428 list_add(&cse->node.link, &swtch->cases);
429 }
430 }
431
432 static void
433 vtn_switch_order_cases(struct vtn_switch *swtch)
434 {
435 struct list_head cases;
436 list_replace(&swtch->cases, &cases);
437 list_inithead(&swtch->cases);
438 while (!list_is_empty(&cases)) {
439 struct vtn_case *cse =
440 list_first_entry(&cases, struct vtn_case, node.link);
441 vtn_order_case(swtch, cse);
442 }
443 }
444
445 static void
446 vtn_block_set_merge_cf_node(struct vtn_builder *b, struct vtn_block *block,
447 struct vtn_cf_node *cf_node)
448 {
449 vtn_fail_if(block->merge_cf_node != NULL,
450 "The merge block declared by a header block cannot be a "
451 "merge block declared by any other header block.");
452
453 block->merge_cf_node = cf_node;
454 }
455
456 #define VTN_DECL_CF_NODE_FIND(_type) \
457 static inline struct vtn_##_type * \
458 vtn_cf_node_find_##_type(struct vtn_cf_node *node) \
459 { \
460 while (node && node->type != vtn_cf_node_type_##_type) \
461 node = node->parent; \
462 return (struct vtn_##_type *)node; \
463 }
464
465 VTN_DECL_CF_NODE_FIND(if)
466 VTN_DECL_CF_NODE_FIND(loop)
467 VTN_DECL_CF_NODE_FIND(case)
468 VTN_DECL_CF_NODE_FIND(switch)
469 VTN_DECL_CF_NODE_FIND(function)
470
471 static enum vtn_branch_type
472 vtn_handle_branch(struct vtn_builder *b,
473 struct vtn_cf_node *cf_parent,
474 struct vtn_block *target_block)
475 {
476 struct vtn_loop *loop = vtn_cf_node_find_loop(cf_parent);
477
478 /* Detect a loop back-edge first. That way none of the code below
479 * accidentally operates on a loop back-edge.
480 */
481 if (loop && target_block == loop->header_block)
482 return vtn_branch_type_loop_back_edge;
483
484 /* Try to detect fall-through */
485 if (target_block->switch_case) {
486 /* When it comes to handling switch cases, we can break calls to
487 * vtn_handle_branch into two cases: calls from within a case construct
488 * and calls for the jump to each case construct. In the second case,
489 * cf_parent is the vtn_switch itself and vtn_cf_node_find_case() will
490 * return the outer switch case in which this switch is contained. It's
491 * fine if the target block is a switch case from an outer switch as
492 * long as it is also the switch break for this switch.
493 */
494 struct vtn_case *switch_case = vtn_cf_node_find_case(cf_parent);
495
496 /* This doesn't get called for the OpSwitch */
497 vtn_fail_if(switch_case == NULL,
498 "A switch case can only be entered through an OpSwitch or "
499 "falling through from another switch case.");
500
501 /* Because block->switch_case is only set on the entry block for a given
502 * switch case, we only ever get here if we're jumping to the start of a
503 * switch case. It's possible, however, that a switch case could jump
504 * to itself via a back-edge. That *should* get caught by the loop
505 * handling case above but if we have a back edge without a loop merge,
506 * we could en up here.
507 */
508 vtn_fail_if(target_block->switch_case == switch_case,
509 "A switch cannot fall-through to itself. Likely, there is "
510 "a back-edge which is not to a loop header.");
511
512 vtn_fail_if(target_block->switch_case->node.parent !=
513 switch_case->node.parent,
514 "A switch case fall-through must come from the same "
515 "OpSwitch construct");
516
517 vtn_fail_if(switch_case->fallthrough != NULL &&
518 switch_case->fallthrough != target_block->switch_case,
519 "Each case construct can have at most one branch to "
520 "another case construct");
521
522 switch_case->fallthrough = target_block->switch_case;
523
524 /* We don't immediately return vtn_branch_type_switch_fallthrough
525 * because it may also be a loop or switch break for an inner loop or
526 * switch and that takes precedence.
527 */
528 }
529
530 if (loop && target_block == loop->cont_block)
531 return vtn_branch_type_loop_continue;
532
533 /* We walk blocks as a breadth-first search on the control-flow construct
534 * tree where, when we find a construct, we add the vtn_cf_node for that
535 * construct and continue iterating at the merge target block (if any).
536 * Therefore, we want merges whose with parent == cf_parent to be treated
537 * as regular branches. We only want to consider merges if they break out
538 * of the current CF construct.
539 */
540 if (target_block->merge_cf_node != NULL &&
541 target_block->merge_cf_node->parent != cf_parent) {
542 switch (target_block->merge_cf_node->type) {
543 case vtn_cf_node_type_if:
544 for (struct vtn_cf_node *node = cf_parent;
545 node != target_block->merge_cf_node; node = node->parent) {
546 vtn_fail_if(node == NULL || node->type != vtn_cf_node_type_if,
547 "Branching to the merge block of a selection "
548 "construct can only be used to break out of a "
549 "selection construct");
550
551 struct vtn_if *if_stmt = vtn_cf_node_as_if(node);
552
553 /* This should be guaranteed by our iteration */
554 assert(if_stmt->merge_block != target_block);
555
556 vtn_fail_if(if_stmt->merge_block != NULL,
557 "Branching to the merge block of a selection "
558 "construct can only be used to break out of the "
559 "inner most nested selection level");
560 }
561 return vtn_branch_type_if_merge;
562
563 case vtn_cf_node_type_loop:
564 vtn_fail_if(target_block->merge_cf_node != &loop->node,
565 "Loop breaks can only break out of the inner most "
566 "nested loop level");
567 return vtn_branch_type_loop_break;
568
569 case vtn_cf_node_type_switch: {
570 struct vtn_switch *swtch = vtn_cf_node_find_switch(cf_parent);
571 vtn_fail_if(target_block->merge_cf_node != &swtch->node,
572 "Switch breaks can only break out of the inner most "
573 "nested switch level");
574 return vtn_branch_type_switch_break;
575 }
576
577 default:
578 unreachable("Invalid CF node type for a merge");
579 }
580 }
581
582 if (target_block->switch_case)
583 return vtn_branch_type_switch_fallthrough;
584
585 return vtn_branch_type_none;
586 }
587
588 struct vtn_cfg_work_item {
589 struct list_head link;
590
591 struct vtn_cf_node *cf_parent;
592 struct list_head *cf_list;
593 struct vtn_block *start_block;
594 };
595
596 static void
597 vtn_add_cfg_work_item(struct vtn_builder *b,
598 struct list_head *work_list,
599 struct vtn_cf_node *cf_parent,
600 struct list_head *cf_list,
601 struct vtn_block *start_block)
602 {
603 struct vtn_cfg_work_item *work = ralloc(b, struct vtn_cfg_work_item);
604 work->cf_parent = cf_parent;
605 work->cf_list = cf_list;
606 work->start_block = start_block;
607 list_addtail(&work->link, work_list);
608 }
609
610 /* Processes a block and returns the next block to process or NULL if we've
611 * reached the end of the construct.
612 */
613 static struct vtn_block *
614 vtn_process_block(struct vtn_builder *b,
615 struct list_head *work_list,
616 struct vtn_cf_node *cf_parent,
617 struct list_head *cf_list,
618 struct vtn_block *block)
619 {
620 if (!list_is_empty(cf_list)) {
621 /* vtn_process_block() acts like an iterator: it processes the given
622 * block and then returns the next block to process. For a given
623 * control-flow construct, vtn_build_cfg() calls vtn_process_block()
624 * repeatedly until it finally returns NULL. Therefore, we know that
625 * the only blocks on which vtn_process_block() can be called are either
626 * the first block in a construct or a block that vtn_process_block()
627 * returned for the current construct. If cf_list is empty then we know
628 * that we're processing the first block in the construct and we have to
629 * add it to the list.
630 *
631 * If cf_list is not empty, then it must be the block returned by the
632 * previous call to vtn_process_block(). We know a priori that
633 * vtn_process_block only returns either normal branches
634 * (vtn_branch_type_none) or merge target blocks.
635 */
636 switch (vtn_handle_branch(b, cf_parent, block)) {
637 case vtn_branch_type_none:
638 /* For normal branches, we want to process them and add them to the
639 * current construct. Merge target blocks also look like normal
640 * branches from the perspective of this construct. See also
641 * vtn_handle_branch().
642 */
643 break;
644
645 case vtn_branch_type_loop_continue:
646 case vtn_branch_type_switch_fallthrough:
647 /* The two cases where we can get early exits from a construct that
648 * are not to that construct's merge target are loop continues and
649 * switch fall-throughs. In these cases, we need to break out of the
650 * current construct by returning NULL.
651 */
652 return NULL;
653
654 default:
655 /* The only way we can get here is if something was used as two kinds
656 * of merges at the same time and that's illegal.
657 */
658 vtn_fail("A block was used as a merge target from two or more "
659 "structured control-flow constructs");
660 }
661 }
662
663 /* Once a block has been processed, it is placed into and the list link
664 * will point to something non-null. If we see a node we've already
665 * processed here, it either exists in multiple functions or it's an
666 * invalid back-edge.
667 */
668 if (block->node.parent != NULL) {
669 vtn_fail_if(vtn_cf_node_find_function(&block->node) !=
670 vtn_cf_node_find_function(cf_parent),
671 "A block cannot exist in two functions at the "
672 "same time");
673
674 vtn_fail("Invalid back or cross-edge in the CFG");
675 }
676
677 if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
678 block->loop == NULL) {
679 vtn_fail_if((*block->branch & SpvOpCodeMask) != SpvOpBranch &&
680 (*block->branch & SpvOpCodeMask) != SpvOpBranchConditional,
681 "An OpLoopMerge instruction must immediately precede "
682 "either an OpBranch or OpBranchConditional instruction.");
683
684 struct vtn_loop *loop = rzalloc(b, struct vtn_loop);
685
686 loop->node.type = vtn_cf_node_type_loop;
687 loop->node.parent = cf_parent;
688 list_inithead(&loop->body);
689 list_inithead(&loop->cont_body);
690 loop->header_block = block;
691 loop->break_block = vtn_block(b, block->merge[1]);
692 loop->cont_block = vtn_block(b, block->merge[2]);
693 loop->control = block->merge[3];
694
695 list_addtail(&loop->node.link, cf_list);
696 block->loop = loop;
697
698 /* Note: The work item for the main loop body will start with the
699 * current block as its start block. If we weren't careful, we would
700 * get here again and end up in an infinite loop. This is why we set
701 * block->loop above and check for it before creating one. This way,
702 * we only create the loop once and the second iteration that tries to
703 * handle this loop goes to the cases below and gets handled as a
704 * regular block.
705 */
706 vtn_add_cfg_work_item(b, work_list, &loop->node,
707 &loop->body, loop->header_block);
708
709 /* For continue targets, SPIR-V guarantees the following:
710 *
711 * - the Continue Target must dominate the back-edge block
712 * - the back-edge block must post dominate the Continue Target
713 *
714 * If the header block is the same as the continue target, this
715 * condition is trivially satisfied and there is no real continue
716 * section.
717 */
718 if (loop->cont_block != loop->header_block) {
719 vtn_add_cfg_work_item(b, work_list, &loop->node,
720 &loop->cont_body, loop->cont_block);
721 }
722
723 vtn_block_set_merge_cf_node(b, loop->break_block, &loop->node);
724
725 return loop->break_block;
726 }
727
728 /* Add the block to the CF list */
729 block->node.parent = cf_parent;
730 list_addtail(&block->node.link, cf_list);
731
732 switch (*block->branch & SpvOpCodeMask) {
733 case SpvOpBranch: {
734 struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
735
736 block->branch_type = vtn_handle_branch(b, cf_parent, branch_block);
737
738 if (block->branch_type == vtn_branch_type_none)
739 return branch_block;
740 else
741 return NULL;
742 }
743
744 case SpvOpReturn:
745 case SpvOpReturnValue:
746 block->branch_type = vtn_branch_type_return;
747 return NULL;
748
749 case SpvOpKill:
750 block->branch_type = vtn_branch_type_discard;
751 return NULL;
752
753 case SpvOpBranchConditional: {
754 struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
755 vtn_fail_if(!cond_val->type ||
756 cond_val->type->base_type != vtn_base_type_scalar ||
757 cond_val->type->type != glsl_bool_type(),
758 "Condition must be a Boolean type scalar");
759
760 struct vtn_block *then_block = vtn_block(b, block->branch[2]);
761 struct vtn_block *else_block = vtn_block(b, block->branch[3]);
762
763 if (then_block == else_block) {
764 /* This is uncommon but it can happen. We treat this the same way as
765 * an unconditional branch.
766 */
767 block->branch_type = vtn_handle_branch(b, cf_parent, then_block);
768
769 if (block->branch_type == vtn_branch_type_none)
770 return then_block;
771 else
772 return NULL;
773 }
774
775 struct vtn_if *if_stmt = rzalloc(b, struct vtn_if);
776
777 if_stmt->node.type = vtn_cf_node_type_if;
778 if_stmt->node.parent = cf_parent;
779 if_stmt->condition = block->branch[1];
780 list_inithead(&if_stmt->then_body);
781 list_inithead(&if_stmt->else_body);
782
783 list_addtail(&if_stmt->node.link, cf_list);
784
785 if (block->merge &&
786 (*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
787 /* We may not always have a merge block and that merge doesn't
788 * technically have to be an OpSelectionMerge. We could have a block
789 * with an OpLoopMerge which ends in an OpBranchConditional.
790 */
791 if_stmt->merge_block = vtn_block(b, block->merge[1]);
792 vtn_block_set_merge_cf_node(b, if_stmt->merge_block, &if_stmt->node);
793
794 if_stmt->control = block->merge[2];
795 }
796
797 if_stmt->then_type = vtn_handle_branch(b, &if_stmt->node, then_block);
798 if (if_stmt->then_type == vtn_branch_type_none) {
799 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
800 &if_stmt->then_body, then_block);
801 }
802
803 if_stmt->else_type = vtn_handle_branch(b, &if_stmt->node, else_block);
804 if (if_stmt->else_type == vtn_branch_type_none) {
805 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
806 &if_stmt->else_body, else_block);
807 }
808
809 return if_stmt->merge_block;
810 }
811
812 case SpvOpSwitch: {
813 struct vtn_value *sel_val = vtn_untyped_value(b, block->branch[1]);
814 vtn_fail_if(!sel_val->type ||
815 sel_val->type->base_type != vtn_base_type_scalar,
816 "Selector of OpSwitch must have a type of OpTypeInt");
817
818 nir_alu_type sel_type =
819 nir_get_nir_type_for_glsl_type(sel_val->type->type);
820 vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
821 nir_alu_type_get_base_type(sel_type) != nir_type_uint,
822 "Selector of OpSwitch must have a type of OpTypeInt");
823
824 struct vtn_switch *swtch = rzalloc(b, struct vtn_switch);
825
826 swtch->node.type = vtn_cf_node_type_switch;
827 swtch->node.parent = cf_parent;
828 swtch->selector = block->branch[1];
829 list_inithead(&swtch->cases);
830
831 list_addtail(&swtch->node.link, cf_list);
832
833 /* We may not always have a merge block */
834 if (block->merge) {
835 vtn_fail_if((*block->merge & SpvOpCodeMask) != SpvOpSelectionMerge,
836 "An OpLoopMerge instruction must immediately precede "
837 "either an OpBranch or OpBranchConditional "
838 "instruction.");
839 swtch->break_block = vtn_block(b, block->merge[1]);
840 vtn_block_set_merge_cf_node(b, swtch->break_block, &swtch->node);
841 }
842
843 /* First, we go through and record all of the cases. */
844 const uint32_t *branch_end =
845 block->branch + (block->branch[0] >> SpvWordCountShift);
846
847 struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
848
849 bool is_default = true;
850 const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
851 for (const uint32_t *w = block->branch + 2; w < branch_end;) {
852 uint64_t literal = 0;
853 if (!is_default) {
854 if (bitsize <= 32) {
855 literal = *(w++);
856 } else {
857 assert(bitsize == 64);
858 literal = vtn_u64_literal(w);
859 w += 2;
860 }
861 }
862 struct vtn_block *case_block = vtn_block(b, *(w++));
863
864 struct hash_entry *case_entry =
865 _mesa_hash_table_search(block_to_case, case_block);
866
867 struct vtn_case *cse;
868 if (case_entry) {
869 cse = case_entry->data;
870 } else {
871 cse = rzalloc(b, struct vtn_case);
872
873 cse->node.type = vtn_cf_node_type_case;
874 cse->node.parent = &swtch->node;
875 list_inithead(&cse->body);
876 util_dynarray_init(&cse->values, b);
877
878 cse->type = vtn_handle_branch(b, &swtch->node, case_block);
879 switch (cse->type) {
880 case vtn_branch_type_none:
881 /* This is a "real" cases which has stuff in it */
882 vtn_fail_if(case_block->switch_case != NULL,
883 "OpSwitch has a case which is also in another "
884 "OpSwitch construct");
885 case_block->switch_case = cse;
886 vtn_add_cfg_work_item(b, work_list, &cse->node,
887 &cse->body, case_block);
888 break;
889
890 case vtn_branch_type_switch_break:
891 case vtn_branch_type_loop_break:
892 case vtn_branch_type_loop_continue:
893 /* Switch breaks as well as loop breaks and continues can be
894 * used to break out of a switch construct or as direct targets
895 * of the OpSwitch.
896 */
897 break;
898
899 default:
900 vtn_fail("Target of OpSwitch is not a valid structured exit "
901 "from the switch construct.");
902 }
903
904 list_addtail(&cse->node.link, &swtch->cases);
905
906 _mesa_hash_table_insert(block_to_case, case_block, cse);
907 }
908
909 if (is_default) {
910 cse->is_default = true;
911 } else {
912 util_dynarray_append(&cse->values, uint64_t, literal);
913 }
914
915 is_default = false;
916 }
917
918 _mesa_hash_table_destroy(block_to_case, NULL);
919
920 return swtch->break_block;
921 }
922
923 case SpvOpUnreachable:
924 return NULL;
925
926 default:
927 vtn_fail("Block did not end with a valid branch instruction");
928 }
929 }
930
931 void
932 vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
933 {
934 vtn_foreach_instruction(b, words, end,
935 vtn_cfg_handle_prepass_instruction);
936
937 vtn_foreach_cf_node(func_node, &b->functions) {
938 struct vtn_function *func = vtn_cf_node_as_function(func_node);
939
940 /* We build the CFG for each function by doing a breadth-first search on
941 * the control-flow graph. We keep track of our state using a worklist.
942 * Doing a BFS ensures that we visit each structured control-flow
943 * construct and its merge node before we visit the stuff inside the
944 * construct.
945 */
946 struct list_head work_list;
947 list_inithead(&work_list);
948 vtn_add_cfg_work_item(b, &work_list, &func->node, &func->body,
949 func->start_block);
950
951 while (!list_is_empty(&work_list)) {
952 struct vtn_cfg_work_item *work =
953 list_first_entry(&work_list, struct vtn_cfg_work_item, link);
954 list_del(&work->link);
955
956 for (struct vtn_block *block = work->start_block; block; ) {
957 block = vtn_process_block(b, &work_list, work->cf_parent,
958 work->cf_list, block);
959 }
960 }
961 }
962 }
963
964 static bool
965 vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
966 const uint32_t *w, unsigned count)
967 {
968 if (opcode == SpvOpLabel)
969 return true; /* Nothing to do */
970
971 /* If this isn't a phi node, stop. */
972 if (opcode != SpvOpPhi)
973 return false;
974
975 /* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
976 * For each phi, we create a variable with the appropreate type and
977 * do a load from that variable. Then, in a second pass, we add
978 * stores to that variable to each of the predecessor blocks.
979 *
980 * We could do something more intelligent here. However, in order to
981 * handle loops and things properly, we really need dominance
982 * information. It would end up basically being the into-SSA
983 * algorithm all over again. It's easier if we just let
984 * lower_vars_to_ssa do that for us instead of repeating it here.
985 */
986 struct vtn_type *type = vtn_get_type(b, w[1]);
987 nir_variable *phi_var =
988 nir_local_variable_create(b->nb.impl, type->type, "phi");
989 _mesa_hash_table_insert(b->phi_table, w, phi_var);
990
991 vtn_push_ssa(b, w[2], type,
992 vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
993
994 return true;
995 }
996
997 static bool
998 vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
999 const uint32_t *w, unsigned count)
1000 {
1001 if (opcode != SpvOpPhi)
1002 return true;
1003
1004 struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
1005
1006 /* It's possible that this phi is in an unreachable block in which case it
1007 * may never have been emitted and therefore may not be in the hash table.
1008 * In this case, there's no var for it and it's safe to just bail.
1009 */
1010 if (phi_entry == NULL)
1011 return true;
1012
1013 nir_variable *phi_var = phi_entry->data;
1014
1015 for (unsigned i = 3; i < count; i += 2) {
1016 struct vtn_block *pred = vtn_block(b, w[i + 1]);
1017
1018 /* If block does not have end_nop, that is because it is an unreacheable
1019 * block, and hence it is not worth to handle it */
1020 if (!pred->end_nop)
1021 continue;
1022
1023 b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
1024
1025 struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
1026
1027 vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
1028 }
1029
1030 return true;
1031 }
1032
1033 static void
1034 vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
1035 nir_variable *switch_fall_var, bool *has_switch_break)
1036 {
1037 switch (branch_type) {
1038 case vtn_branch_type_if_merge:
1039 break; /* Nothing to do */
1040 case vtn_branch_type_switch_break:
1041 nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
1042 *has_switch_break = true;
1043 break;
1044 case vtn_branch_type_switch_fallthrough:
1045 break; /* Nothing to do */
1046 case vtn_branch_type_loop_break:
1047 nir_jump(&b->nb, nir_jump_break);
1048 break;
1049 case vtn_branch_type_loop_continue:
1050 nir_jump(&b->nb, nir_jump_continue);
1051 break;
1052 case vtn_branch_type_loop_back_edge:
1053 break;
1054 case vtn_branch_type_return:
1055 nir_jump(&b->nb, nir_jump_return);
1056 break;
1057 case vtn_branch_type_discard: {
1058 nir_intrinsic_instr *discard =
1059 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_discard);
1060 nir_builder_instr_insert(&b->nb, &discard->instr);
1061 break;
1062 }
1063 default:
1064 vtn_fail("Invalid branch type");
1065 }
1066 }
1067
1068 static nir_ssa_def *
1069 vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
1070 nir_ssa_def *sel, struct vtn_case *cse)
1071 {
1072 if (cse->is_default) {
1073 nir_ssa_def *any = nir_imm_false(&b->nb);
1074 vtn_foreach_cf_node(other_node, &swtch->cases) {
1075 struct vtn_case *other = vtn_cf_node_as_case(other_node);
1076 if (other->is_default)
1077 continue;
1078
1079 any = nir_ior(&b->nb, any,
1080 vtn_switch_case_condition(b, swtch, sel, other));
1081 }
1082 return nir_inot(&b->nb, any);
1083 } else {
1084 nir_ssa_def *cond = nir_imm_false(&b->nb);
1085 util_dynarray_foreach(&cse->values, uint64_t, val) {
1086 nir_ssa_def *imm = nir_imm_intN_t(&b->nb, *val, sel->bit_size);
1087 cond = nir_ior(&b->nb, cond, nir_ieq(&b->nb, sel, imm));
1088 }
1089 return cond;
1090 }
1091 }
1092
1093 static nir_loop_control
1094 vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
1095 {
1096 if (vtn_loop->control == SpvLoopControlMaskNone)
1097 return nir_loop_control_none;
1098 else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
1099 return nir_loop_control_dont_unroll;
1100 else if (vtn_loop->control & SpvLoopControlUnrollMask)
1101 return nir_loop_control_unroll;
1102 else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
1103 vtn_loop->control & SpvLoopControlDependencyLengthMask ||
1104 vtn_loop->control & SpvLoopControlMinIterationsMask ||
1105 vtn_loop->control & SpvLoopControlMaxIterationsMask ||
1106 vtn_loop->control & SpvLoopControlIterationMultipleMask ||
1107 vtn_loop->control & SpvLoopControlPeelCountMask ||
1108 vtn_loop->control & SpvLoopControlPartialCountMask) {
1109 /* We do not do anything special with these yet. */
1110 return nir_loop_control_none;
1111 } else {
1112 vtn_fail("Invalid loop control");
1113 }
1114 }
1115
1116 static nir_selection_control
1117 vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
1118 {
1119 if (vtn_if->control == SpvSelectionControlMaskNone)
1120 return nir_selection_control_none;
1121 else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
1122 return nir_selection_control_dont_flatten;
1123 else if (vtn_if->control & SpvSelectionControlFlattenMask)
1124 return nir_selection_control_flatten;
1125 else
1126 vtn_fail("Invalid selection control");
1127 }
1128
1129 static void
1130 vtn_emit_cf_list(struct vtn_builder *b, struct list_head *cf_list,
1131 nir_variable *switch_fall_var, bool *has_switch_break,
1132 vtn_instruction_handler handler)
1133 {
1134 vtn_foreach_cf_node(node, cf_list) {
1135 switch (node->type) {
1136 case vtn_cf_node_type_block: {
1137 struct vtn_block *block = vtn_cf_node_as_block(node);
1138
1139 const uint32_t *block_start = block->label;
1140 const uint32_t *block_end = block->merge ? block->merge :
1141 block->branch;
1142
1143 block_start = vtn_foreach_instruction(b, block_start, block_end,
1144 vtn_handle_phis_first_pass);
1145
1146 vtn_foreach_instruction(b, block_start, block_end, handler);
1147
1148 block->end_nop = nir_intrinsic_instr_create(b->nb.shader,
1149 nir_intrinsic_nop);
1150 nir_builder_instr_insert(&b->nb, &block->end_nop->instr);
1151
1152 if ((*block->branch & SpvOpCodeMask) == SpvOpReturnValue) {
1153 vtn_fail_if(b->func->type->return_type->base_type ==
1154 vtn_base_type_void,
1155 "Return with a value from a function returning void");
1156 struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
1157 const struct glsl_type *ret_type =
1158 glsl_get_bare_type(b->func->type->return_type->type);
1159 nir_deref_instr *ret_deref =
1160 nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
1161 nir_var_function_temp, ret_type, 0);
1162 vtn_local_store(b, src, ret_deref, 0);
1163 }
1164
1165 if (block->branch_type != vtn_branch_type_none) {
1166 vtn_emit_branch(b, block->branch_type,
1167 switch_fall_var, has_switch_break);
1168 return;
1169 }
1170
1171 break;
1172 }
1173
1174 case vtn_cf_node_type_if: {
1175 struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
1176 bool sw_break = false;
1177
1178 nir_if *nif =
1179 nir_push_if(&b->nb, vtn_ssa_value(b, vtn_if->condition)->def);
1180
1181 nif->control = vtn_selection_control(b, vtn_if);
1182
1183 if (vtn_if->then_type == vtn_branch_type_none) {
1184 vtn_emit_cf_list(b, &vtn_if->then_body,
1185 switch_fall_var, &sw_break, handler);
1186 } else {
1187 vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
1188 }
1189
1190 nir_push_else(&b->nb, nif);
1191 if (vtn_if->else_type == vtn_branch_type_none) {
1192 vtn_emit_cf_list(b, &vtn_if->else_body,
1193 switch_fall_var, &sw_break, handler);
1194 } else {
1195 vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
1196 }
1197
1198 nir_pop_if(&b->nb, nif);
1199
1200 /* If we encountered a switch break somewhere inside of the if,
1201 * then it would have been handled correctly by calling
1202 * emit_cf_list or emit_branch for the interrior. However, we
1203 * need to predicate everything following on wether or not we're
1204 * still going.
1205 */
1206 if (sw_break) {
1207 *has_switch_break = true;
1208 nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
1209 }
1210 break;
1211 }
1212
1213 case vtn_cf_node_type_loop: {
1214 struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
1215
1216 nir_loop *loop = nir_push_loop(&b->nb);
1217 loop->control = vtn_loop_control(b, vtn_loop);
1218
1219 vtn_emit_cf_list(b, &vtn_loop->body, NULL, NULL, handler);
1220
1221 if (!list_is_empty(&vtn_loop->cont_body)) {
1222 /* If we have a non-trivial continue body then we need to put
1223 * it at the beginning of the loop with a flag to ensure that
1224 * it doesn't get executed in the first iteration.
1225 */
1226 nir_variable *do_cont =
1227 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
1228
1229 b->nb.cursor = nir_before_cf_node(&loop->cf_node);
1230 nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
1231
1232 b->nb.cursor = nir_before_cf_list(&loop->body);
1233
1234 nir_if *cont_if =
1235 nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
1236
1237 vtn_emit_cf_list(b, &vtn_loop->cont_body, NULL, NULL, handler);
1238
1239 nir_pop_if(&b->nb, cont_if);
1240
1241 nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
1242
1243 b->has_loop_continue = true;
1244 }
1245
1246 nir_pop_loop(&b->nb, loop);
1247 break;
1248 }
1249
1250 case vtn_cf_node_type_switch: {
1251 struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
1252
1253 /* Before we can emit anything, we need to sort the list of cases in
1254 * fall-through order.
1255 */
1256 vtn_switch_order_cases(vtn_switch);
1257
1258 /* First, we create a variable to keep track of whether or not the
1259 * switch is still going at any given point. Any switch breaks
1260 * will set this variable to false.
1261 */
1262 nir_variable *fall_var =
1263 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
1264 nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
1265
1266 nir_ssa_def *sel = vtn_ssa_value(b, vtn_switch->selector)->def;
1267
1268 /* Now we can walk the list of cases and actually emit code */
1269 vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
1270 struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1271
1272 /* Figure out the condition */
1273 nir_ssa_def *cond =
1274 vtn_switch_case_condition(b, vtn_switch, sel, cse);
1275 /* Take fallthrough into account */
1276 cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
1277
1278 nir_if *case_if = nir_push_if(&b->nb, cond);
1279
1280 bool has_break = false;
1281 nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
1282 vtn_emit_cf_list(b, &cse->body, fall_var, &has_break, handler);
1283 (void)has_break; /* We don't care */
1284
1285 nir_pop_if(&b->nb, case_if);
1286 }
1287
1288 break;
1289 }
1290
1291 default:
1292 vtn_fail("Invalid CF node type");
1293 }
1294 }
1295 }
1296
1297 void
1298 vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
1299 vtn_instruction_handler instruction_handler)
1300 {
1301 nir_builder_init(&b->nb, func->impl);
1302 b->func = func;
1303 b->nb.cursor = nir_after_cf_list(&func->impl->body);
1304 b->nb.exact = b->exact;
1305 b->has_loop_continue = false;
1306 b->phi_table = _mesa_pointer_hash_table_create(b);
1307
1308 vtn_emit_cf_list(b, &func->body, NULL, NULL, instruction_handler);
1309
1310 vtn_foreach_instruction(b, func->start_block->label, func->end,
1311 vtn_handle_phi_second_pass);
1312
1313 nir_rematerialize_derefs_in_use_blocks_impl(func->impl);
1314
1315 /* Continue blocks for loops get inserted before the body of the loop
1316 * but instructions in the continue may use SSA defs in the loop body.
1317 * Therefore, we need to repair SSA to insert the needed phi nodes.
1318 */
1319 if (b->has_loop_continue)
1320 nir_repair_ssa_impl(func->impl);
1321
1322 func->emitted = true;
1323 }