spirv: Rewrite CFG construction
[mesa.git] / src / compiler / spirv / vtn_cfg.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "vtn_private.h"
25 #include "nir/nir_vla.h"
26
27 static struct vtn_block *
28 vtn_block(struct vtn_builder *b, uint32_t value_id)
29 {
30 return vtn_value(b, value_id, vtn_value_type_block)->block;
31 }
32
33 static struct vtn_pointer *
34 vtn_load_param_pointer(struct vtn_builder *b,
35 struct vtn_type *param_type,
36 uint32_t param_idx)
37 {
38 struct vtn_type *ptr_type = param_type;
39 if (param_type->base_type != vtn_base_type_pointer) {
40 assert(param_type->base_type == vtn_base_type_image ||
41 param_type->base_type == vtn_base_type_sampler);
42 ptr_type = rzalloc(b, struct vtn_type);
43 ptr_type->base_type = vtn_base_type_pointer;
44 ptr_type->deref = param_type;
45 ptr_type->storage_class = SpvStorageClassUniformConstant;
46 }
47
48 return vtn_pointer_from_ssa(b, nir_load_param(&b->nb, param_idx), ptr_type);
49 }
50
51 static unsigned
52 vtn_type_count_function_params(struct vtn_type *type)
53 {
54 switch (type->base_type) {
55 case vtn_base_type_array:
56 case vtn_base_type_matrix:
57 return type->length * vtn_type_count_function_params(type->array_element);
58
59 case vtn_base_type_struct: {
60 unsigned count = 0;
61 for (unsigned i = 0; i < type->length; i++)
62 count += vtn_type_count_function_params(type->members[i]);
63 return count;
64 }
65
66 case vtn_base_type_sampled_image:
67 return 2;
68
69 default:
70 return 1;
71 }
72 }
73
74 static void
75 vtn_type_add_to_function_params(struct vtn_type *type,
76 nir_function *func,
77 unsigned *param_idx)
78 {
79 static const nir_parameter nir_deref_param = {
80 .num_components = 1,
81 .bit_size = 32,
82 };
83
84 switch (type->base_type) {
85 case vtn_base_type_array:
86 case vtn_base_type_matrix:
87 for (unsigned i = 0; i < type->length; i++)
88 vtn_type_add_to_function_params(type->array_element, func, param_idx);
89 break;
90
91 case vtn_base_type_struct:
92 for (unsigned i = 0; i < type->length; i++)
93 vtn_type_add_to_function_params(type->members[i], func, param_idx);
94 break;
95
96 case vtn_base_type_sampled_image:
97 func->params[(*param_idx)++] = nir_deref_param;
98 func->params[(*param_idx)++] = nir_deref_param;
99 break;
100
101 case vtn_base_type_image:
102 case vtn_base_type_sampler:
103 func->params[(*param_idx)++] = nir_deref_param;
104 break;
105
106 case vtn_base_type_pointer:
107 if (type->type) {
108 func->params[(*param_idx)++] = (nir_parameter) {
109 .num_components = glsl_get_vector_elements(type->type),
110 .bit_size = glsl_get_bit_size(type->type),
111 };
112 } else {
113 func->params[(*param_idx)++] = nir_deref_param;
114 }
115 break;
116
117 default:
118 func->params[(*param_idx)++] = (nir_parameter) {
119 .num_components = glsl_get_vector_elements(type->type),
120 .bit_size = glsl_get_bit_size(type->type),
121 };
122 }
123 }
124
125 static void
126 vtn_ssa_value_add_to_call_params(struct vtn_builder *b,
127 struct vtn_ssa_value *value,
128 struct vtn_type *type,
129 nir_call_instr *call,
130 unsigned *param_idx)
131 {
132 switch (type->base_type) {
133 case vtn_base_type_array:
134 case vtn_base_type_matrix:
135 for (unsigned i = 0; i < type->length; i++) {
136 vtn_ssa_value_add_to_call_params(b, value->elems[i],
137 type->array_element,
138 call, param_idx);
139 }
140 break;
141
142 case vtn_base_type_struct:
143 for (unsigned i = 0; i < type->length; i++) {
144 vtn_ssa_value_add_to_call_params(b, value->elems[i],
145 type->members[i],
146 call, param_idx);
147 }
148 break;
149
150 default:
151 call->params[(*param_idx)++] = nir_src_for_ssa(value->def);
152 break;
153 }
154 }
155
156 static void
157 vtn_ssa_value_load_function_param(struct vtn_builder *b,
158 struct vtn_ssa_value *value,
159 struct vtn_type *type,
160 unsigned *param_idx)
161 {
162 switch (type->base_type) {
163 case vtn_base_type_array:
164 case vtn_base_type_matrix:
165 for (unsigned i = 0; i < type->length; i++) {
166 vtn_ssa_value_load_function_param(b, value->elems[i],
167 type->array_element, param_idx);
168 }
169 break;
170
171 case vtn_base_type_struct:
172 for (unsigned i = 0; i < type->length; i++) {
173 vtn_ssa_value_load_function_param(b, value->elems[i],
174 type->members[i], param_idx);
175 }
176 break;
177
178 default:
179 value->def = nir_load_param(&b->nb, (*param_idx)++);
180 break;
181 }
182 }
183
184 void
185 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
186 const uint32_t *w, unsigned count)
187 {
188 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
189 struct vtn_function *vtn_callee =
190 vtn_value(b, w[3], vtn_value_type_function)->func;
191 struct nir_function *callee = vtn_callee->impl->function;
192
193 vtn_callee->referenced = true;
194
195 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
196
197 unsigned param_idx = 0;
198
199 nir_deref_instr *ret_deref = NULL;
200 struct vtn_type *ret_type = vtn_callee->type->return_type;
201 if (ret_type->base_type != vtn_base_type_void) {
202 nir_variable *ret_tmp =
203 nir_local_variable_create(b->nb.impl,
204 glsl_get_bare_type(ret_type->type),
205 "return_tmp");
206 ret_deref = nir_build_deref_var(&b->nb, ret_tmp);
207 call->params[param_idx++] = nir_src_for_ssa(&ret_deref->dest.ssa);
208 }
209
210 for (unsigned i = 0; i < vtn_callee->type->length; i++) {
211 struct vtn_type *arg_type = vtn_callee->type->params[i];
212 unsigned arg_id = w[4 + i];
213
214 if (arg_type->base_type == vtn_base_type_sampled_image) {
215 struct vtn_sampled_image *sampled_image =
216 vtn_value(b, arg_id, vtn_value_type_sampled_image)->sampled_image;
217
218 call->params[param_idx++] =
219 nir_src_for_ssa(&sampled_image->image->deref->dest.ssa);
220 call->params[param_idx++] =
221 nir_src_for_ssa(&sampled_image->sampler->deref->dest.ssa);
222 } else if (arg_type->base_type == vtn_base_type_pointer ||
223 arg_type->base_type == vtn_base_type_image ||
224 arg_type->base_type == vtn_base_type_sampler) {
225 struct vtn_pointer *pointer =
226 vtn_value(b, arg_id, vtn_value_type_pointer)->pointer;
227 call->params[param_idx++] =
228 nir_src_for_ssa(vtn_pointer_to_ssa(b, pointer));
229 } else {
230 vtn_ssa_value_add_to_call_params(b, vtn_ssa_value(b, arg_id),
231 arg_type, call, &param_idx);
232 }
233 }
234 assert(param_idx == call->num_params);
235
236 nir_builder_instr_insert(&b->nb, &call->instr);
237
238 if (ret_type->base_type == vtn_base_type_void) {
239 vtn_push_value(b, w[2], vtn_value_type_undef);
240 } else {
241 vtn_push_ssa(b, w[2], res_type, vtn_local_load(b, ret_deref, 0));
242 }
243 }
244
245 static bool
246 vtn_cfg_handle_prepass_instruction(struct vtn_builder *b, SpvOp opcode,
247 const uint32_t *w, unsigned count)
248 {
249 switch (opcode) {
250 case SpvOpFunction: {
251 vtn_assert(b->func == NULL);
252 b->func = rzalloc(b, struct vtn_function);
253
254 b->func->node.type = vtn_cf_node_type_function;
255 b->func->node.parent = NULL;
256 list_inithead(&b->func->body);
257 b->func->control = w[3];
258
259 UNUSED const struct glsl_type *result_type =
260 vtn_value(b, w[1], vtn_value_type_type)->type->type;
261 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_function);
262 val->func = b->func;
263
264 b->func->type = vtn_value(b, w[4], vtn_value_type_type)->type;
265 const struct vtn_type *func_type = b->func->type;
266
267 vtn_assert(func_type->return_type->type == result_type);
268
269 nir_function *func =
270 nir_function_create(b->shader, ralloc_strdup(b->shader, val->name));
271
272 unsigned num_params = 0;
273 for (unsigned i = 0; i < func_type->length; i++)
274 num_params += vtn_type_count_function_params(func_type->params[i]);
275
276 /* Add one parameter for the function return value */
277 if (func_type->return_type->base_type != vtn_base_type_void)
278 num_params++;
279
280 func->num_params = num_params;
281 func->params = ralloc_array(b->shader, nir_parameter, num_params);
282
283 unsigned idx = 0;
284 if (func_type->return_type->base_type != vtn_base_type_void) {
285 nir_address_format addr_format =
286 vtn_mode_to_address_format(b, vtn_variable_mode_function);
287 /* The return value is a regular pointer */
288 func->params[idx++] = (nir_parameter) {
289 .num_components = nir_address_format_num_components(addr_format),
290 .bit_size = nir_address_format_bit_size(addr_format),
291 };
292 }
293
294 for (unsigned i = 0; i < func_type->length; i++)
295 vtn_type_add_to_function_params(func_type->params[i], func, &idx);
296 assert(idx == num_params);
297
298 b->func->impl = nir_function_impl_create(func);
299 nir_builder_init(&b->nb, func->impl);
300 b->nb.cursor = nir_before_cf_list(&b->func->impl->body);
301 b->nb.exact = b->exact;
302
303 b->func_param_idx = 0;
304
305 /* The return value is the first parameter */
306 if (func_type->return_type->base_type != vtn_base_type_void)
307 b->func_param_idx++;
308 break;
309 }
310
311 case SpvOpFunctionEnd:
312 b->func->end = w;
313 b->func = NULL;
314 break;
315
316 case SpvOpFunctionParameter: {
317 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
318
319 vtn_assert(b->func_param_idx < b->func->impl->function->num_params);
320
321 if (type->base_type == vtn_base_type_sampled_image) {
322 /* Sampled images are actually two parameters. The first is the
323 * image and the second is the sampler.
324 */
325 struct vtn_value *val =
326 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
327
328 val->sampled_image = ralloc(b, struct vtn_sampled_image);
329
330 struct vtn_type *sampler_type = rzalloc(b, struct vtn_type);
331 sampler_type->base_type = vtn_base_type_sampler;
332 sampler_type->type = glsl_bare_sampler_type();
333
334 val->sampled_image->image =
335 vtn_load_param_pointer(b, type, b->func_param_idx++);
336 val->sampled_image->sampler =
337 vtn_load_param_pointer(b, sampler_type, b->func_param_idx++);
338 } else if (type->base_type == vtn_base_type_pointer &&
339 type->type != NULL) {
340 /* This is a pointer with an actual storage type */
341 nir_ssa_def *ssa_ptr = nir_load_param(&b->nb, b->func_param_idx++);
342 vtn_push_value_pointer(b, w[2], vtn_pointer_from_ssa(b, ssa_ptr, type));
343 } else if (type->base_type == vtn_base_type_pointer ||
344 type->base_type == vtn_base_type_image ||
345 type->base_type == vtn_base_type_sampler) {
346 vtn_push_value_pointer(b, w[2], vtn_load_param_pointer(b, type, b->func_param_idx++));
347 } else {
348 /* We're a regular SSA value. */
349 struct vtn_ssa_value *value = vtn_create_ssa_value(b, type->type);
350 vtn_ssa_value_load_function_param(b, value, type, &b->func_param_idx);
351 vtn_push_ssa(b, w[2], type, value);
352 }
353 break;
354 }
355
356 case SpvOpLabel: {
357 vtn_assert(b->block == NULL);
358 b->block = rzalloc(b, struct vtn_block);
359 b->block->node.type = vtn_cf_node_type_block;
360 b->block->label = w;
361 vtn_push_value(b, w[1], vtn_value_type_block)->block = b->block;
362
363 if (b->func->start_block == NULL) {
364 /* This is the first block encountered for this function. In this
365 * case, we set the start block and add it to the list of
366 * implemented functions that we'll walk later.
367 */
368 b->func->start_block = b->block;
369 list_addtail(&b->func->node.link, &b->functions);
370 }
371 break;
372 }
373
374 case SpvOpSelectionMerge:
375 case SpvOpLoopMerge:
376 vtn_assert(b->block && b->block->merge == NULL);
377 b->block->merge = w;
378 break;
379
380 case SpvOpBranch:
381 case SpvOpBranchConditional:
382 case SpvOpSwitch:
383 case SpvOpKill:
384 case SpvOpReturn:
385 case SpvOpReturnValue:
386 case SpvOpUnreachable:
387 vtn_assert(b->block && b->block->branch == NULL);
388 b->block->branch = w;
389 b->block = NULL;
390 break;
391
392 default:
393 /* Continue on as per normal */
394 return true;
395 }
396
397 return true;
398 }
399
400 /* This function performs a depth-first search of the cases and puts them
401 * in fall-through order.
402 */
403 static void
404 vtn_order_case(struct vtn_switch *swtch, struct vtn_case *cse)
405 {
406 if (cse->visited)
407 return;
408
409 cse->visited = true;
410
411 list_del(&cse->node.link);
412
413 if (cse->fallthrough) {
414 vtn_order_case(swtch, cse->fallthrough);
415
416 /* If we have a fall-through, place this case right before the case it
417 * falls through to. This ensures that fallthroughs come one after
418 * the other. These two can never get separated because that would
419 * imply something else falling through to the same case. Also, this
420 * can't break ordering because the DFS ensures that this case is
421 * visited before anything that falls through to it.
422 */
423 list_addtail(&cse->node.link, &cse->fallthrough->node.link);
424 } else {
425 list_add(&cse->node.link, &swtch->cases);
426 }
427 }
428
429 static void
430 vtn_switch_order_cases(struct vtn_switch *swtch)
431 {
432 struct list_head cases;
433 list_replace(&swtch->cases, &cases);
434 list_inithead(&swtch->cases);
435 while (!list_is_empty(&cases)) {
436 struct vtn_case *cse =
437 list_first_entry(&cases, struct vtn_case, node.link);
438 vtn_order_case(swtch, cse);
439 }
440 }
441
442 static void
443 vtn_block_set_merge_cf_node(struct vtn_builder *b, struct vtn_block *block,
444 struct vtn_cf_node *cf_node)
445 {
446 vtn_fail_if(block->merge_cf_node != NULL,
447 "The merge block declared by a header block cannot be a "
448 "merge block declared by any other header block.");
449
450 block->merge_cf_node = cf_node;
451 }
452
453 #define VTN_DECL_CF_NODE_FIND(_type) \
454 static inline struct vtn_##_type * \
455 vtn_cf_node_find_##_type(struct vtn_cf_node *node) \
456 { \
457 while (node && node->type != vtn_cf_node_type_##_type) \
458 node = node->parent; \
459 return (struct vtn_##_type *)node; \
460 }
461
462 VTN_DECL_CF_NODE_FIND(if)
463 VTN_DECL_CF_NODE_FIND(loop)
464 VTN_DECL_CF_NODE_FIND(case)
465 VTN_DECL_CF_NODE_FIND(switch)
466 VTN_DECL_CF_NODE_FIND(function)
467
468 static enum vtn_branch_type
469 vtn_handle_branch(struct vtn_builder *b,
470 struct vtn_cf_node *cf_parent,
471 struct vtn_block *target_block)
472 {
473 struct vtn_loop *loop = vtn_cf_node_find_loop(cf_parent);
474
475 /* Detect a loop back-edge first. That way none of the code below
476 * accidentally operates on a loop back-edge.
477 */
478 if (loop && target_block == loop->header_block)
479 return vtn_branch_type_loop_back_edge;
480
481 /* Try to detect fall-through */
482 if (target_block->switch_case) {
483 /* When it comes to handling switch cases, we can break calls to
484 * vtn_handle_branch into two cases: calls from within a case construct
485 * and calls for the jump to each case construct. In the second case,
486 * cf_parent is the vtn_switch itself and vtn_cf_node_find_case() will
487 * return the outer switch case in which this switch is contained. It's
488 * fine if the target block is a switch case from an outer switch as
489 * long as it is also the switch break for this switch.
490 */
491 struct vtn_case *switch_case = vtn_cf_node_find_case(cf_parent);
492
493 /* This doesn't get called for the OpSwitch */
494 vtn_fail_if(switch_case == NULL,
495 "A switch case can only be entered through an OpSwitch or "
496 "falling through from another switch case.");
497
498 /* Because block->switch_case is only set on the entry block for a given
499 * switch case, we only ever get here if we're jumping to the start of a
500 * switch case. It's possible, however, that a switch case could jump
501 * to itself via a back-edge. That *should* get caught by the loop
502 * handling case above but if we have a back edge without a loop merge,
503 * we could en up here.
504 */
505 vtn_fail_if(target_block->switch_case == switch_case,
506 "A switch cannot fall-through to itself. Likely, there is "
507 "a back-edge which is not to a loop header.");
508
509 vtn_fail_if(target_block->switch_case->node.parent !=
510 switch_case->node.parent,
511 "A switch case fall-through must come from the same "
512 "OpSwitch construct");
513
514 vtn_fail_if(switch_case->fallthrough != NULL &&
515 switch_case->fallthrough != target_block->switch_case,
516 "Each case construct can have at most one branch to "
517 "another case construct");
518
519 switch_case->fallthrough = target_block->switch_case;
520
521 /* We don't immediately return vtn_branch_type_switch_fallthrough
522 * because it may also be a loop or switch break for an inner loop or
523 * switch and that takes precedence.
524 */
525 }
526
527 if (loop && target_block == loop->cont_block)
528 return vtn_branch_type_loop_continue;
529
530 /* We walk blocks as a breadth-first search on the control-flow construct
531 * tree where, when we find a construct, we add the vtn_cf_node for that
532 * construct and continue iterating at the merge target block (if any).
533 * Therefore, we want merges whose with parent == cf_parent to be treated
534 * as regular branches. We only want to consider merges if they break out
535 * of the current CF construct.
536 */
537 if (target_block->merge_cf_node != NULL &&
538 target_block->merge_cf_node->parent != cf_parent) {
539 switch (target_block->merge_cf_node->type) {
540 case vtn_cf_node_type_if:
541 for (struct vtn_cf_node *node = cf_parent;
542 node != target_block->merge_cf_node; node = node->parent) {
543 vtn_fail_if(node == NULL || node->type != vtn_cf_node_type_if,
544 "Branching to the merge block of a selection "
545 "construct can only be used to break out of a "
546 "selection construct");
547
548 struct vtn_if *if_stmt = vtn_cf_node_as_if(node);
549
550 /* This should be guaranteed by our iteration */
551 assert(if_stmt->merge_block != target_block);
552
553 vtn_fail_if(if_stmt->merge_block != NULL,
554 "Branching to the merge block of a selection "
555 "construct can only be used to break out of the "
556 "inner most nested selection level");
557 }
558 return vtn_branch_type_if_merge;
559
560 case vtn_cf_node_type_loop:
561 vtn_fail_if(target_block->merge_cf_node != &loop->node,
562 "Loop breaks can only break out of the inner most "
563 "nested loop level");
564 return vtn_branch_type_loop_break;
565
566 case vtn_cf_node_type_switch: {
567 struct vtn_switch *swtch = vtn_cf_node_find_switch(cf_parent);
568 vtn_fail_if(target_block->merge_cf_node != &swtch->node,
569 "Switch breaks can only break out of the inner most "
570 "nested switch level");
571 return vtn_branch_type_switch_break;
572 }
573
574 default:
575 unreachable("Invalid CF node type for a merge");
576 }
577 }
578
579 if (target_block->switch_case)
580 return vtn_branch_type_switch_fallthrough;
581
582 return vtn_branch_type_none;
583 }
584
585 struct vtn_cfg_work_item {
586 struct list_head link;
587
588 struct vtn_cf_node *cf_parent;
589 struct list_head *cf_list;
590 struct vtn_block *start_block;
591 };
592
593 static void
594 vtn_add_cfg_work_item(struct vtn_builder *b,
595 struct list_head *work_list,
596 struct vtn_cf_node *cf_parent,
597 struct list_head *cf_list,
598 struct vtn_block *start_block)
599 {
600 struct vtn_cfg_work_item *work = ralloc(b, struct vtn_cfg_work_item);
601 work->cf_parent = cf_parent;
602 work->cf_list = cf_list;
603 work->start_block = start_block;
604 list_addtail(&work->link, work_list);
605 }
606
607 /* Processes a block and returns the next block to process or NULL if we've
608 * reached the end of the construct.
609 */
610 static struct vtn_block *
611 vtn_process_block(struct vtn_builder *b,
612 struct list_head *work_list,
613 struct vtn_cf_node *cf_parent,
614 struct list_head *cf_list,
615 struct vtn_block *block)
616 {
617 if (!list_is_empty(cf_list)) {
618 /* vtn_process_block() acts like an iterator: it processes the given
619 * block and then returns the next block to process. For a given
620 * control-flow construct, vtn_build_cfg() calls vtn_process_block()
621 * repeatedly until it finally returns NULL. Therefore, we know that
622 * the only blocks on which vtn_process_block() can be called are either
623 * the first block in a construct or a block that vtn_process_block()
624 * returned for the current construct. If cf_list is empty then we know
625 * that we're processing the first block in the construct and we have to
626 * add it to the list.
627 *
628 * If cf_list is not empty, then it must be the block returned by the
629 * previous call to vtn_process_block(). We know a priori that
630 * vtn_process_block only returns either normal branches
631 * (vtn_branch_type_none) or merge target blocks.
632 */
633 switch (vtn_handle_branch(b, cf_parent, block)) {
634 case vtn_branch_type_none:
635 /* For normal branches, we want to process them and add them to the
636 * current construct. Merge target blocks also look like normal
637 * branches from the perspective of this construct. See also
638 * vtn_handle_branch().
639 */
640 break;
641
642 case vtn_branch_type_loop_continue:
643 case vtn_branch_type_switch_fallthrough:
644 /* The two cases where we can get early exits from a construct that
645 * are not to that construct's merge target are loop continues and
646 * switch fall-throughs. In these cases, we need to break out of the
647 * current construct by returning NULL.
648 */
649 return NULL;
650
651 default:
652 /* The only way we can get here is if something was used as two kinds
653 * of merges at the same time and that's illegal.
654 */
655 vtn_fail("A block was used as a merge target from two or more "
656 "structured control-flow constructs");
657 }
658 }
659
660 /* Once a block has been processed, it is placed into and the list link
661 * will point to something non-null. If we see a node we've already
662 * processed here, it either exists in multiple functions or it's an
663 * invalid back-edge.
664 */
665 if (block->node.parent != NULL) {
666 vtn_fail_if(vtn_cf_node_find_function(&block->node) !=
667 vtn_cf_node_find_function(cf_parent),
668 "A block cannot exist in two functions at the "
669 "same time");
670
671 vtn_fail("Invalid back or cross-edge in the CFG");
672 }
673
674 if (block->merge && (*block->merge & SpvOpCodeMask) == SpvOpLoopMerge &&
675 block->loop == NULL) {
676 vtn_fail_if((*block->branch & SpvOpCodeMask) != SpvOpBranch &&
677 (*block->branch & SpvOpCodeMask) != SpvOpBranchConditional,
678 "An OpLoopMerge instruction must immediately precede "
679 "either an OpBranch or OpBranchConditional instruction.");
680
681 struct vtn_loop *loop = rzalloc(b, struct vtn_loop);
682
683 loop->node.type = vtn_cf_node_type_loop;
684 loop->node.parent = cf_parent;
685 list_inithead(&loop->body);
686 list_inithead(&loop->cont_body);
687 loop->header_block = block;
688 loop->break_block = vtn_block(b, block->merge[1]);
689 loop->cont_block = vtn_block(b, block->merge[2]);
690 loop->control = block->merge[3];
691
692 list_addtail(&loop->node.link, cf_list);
693 block->loop = loop;
694
695 /* Note: The work item for the main loop body will start with the
696 * current block as its start block. If we weren't careful, we would
697 * get here again and end up in an infinite loop. This is why we set
698 * block->loop above and check for it before creating one. This way,
699 * we only create the loop once and the second iteration that tries to
700 * handle this loop goes to the cases below and gets handled as a
701 * regular block.
702 */
703 vtn_add_cfg_work_item(b, work_list, &loop->node,
704 &loop->body, loop->header_block);
705
706 /* For continue targets, SPIR-V guarantees the following:
707 *
708 * - the Continue Target must dominate the back-edge block
709 * - the back-edge block must post dominate the Continue Target
710 *
711 * If the header block is the same as the continue target, this
712 * condition is trivially satisfied and there is no real continue
713 * section.
714 */
715 if (loop->cont_block != loop->header_block) {
716 vtn_add_cfg_work_item(b, work_list, &loop->node,
717 &loop->cont_body, loop->cont_block);
718 }
719
720 vtn_block_set_merge_cf_node(b, loop->break_block, &loop->node);
721
722 return loop->break_block;
723 }
724
725 /* Add the block to the CF list */
726 block->node.parent = cf_parent;
727 list_addtail(&block->node.link, cf_list);
728
729 switch (*block->branch & SpvOpCodeMask) {
730 case SpvOpBranch: {
731 struct vtn_block *branch_block = vtn_block(b, block->branch[1]);
732
733 block->branch_type = vtn_handle_branch(b, cf_parent, branch_block);
734
735 if (block->branch_type == vtn_branch_type_none)
736 return branch_block;
737 else
738 return NULL;
739 }
740
741 case SpvOpReturn:
742 case SpvOpReturnValue:
743 block->branch_type = vtn_branch_type_return;
744 return NULL;
745
746 case SpvOpKill:
747 block->branch_type = vtn_branch_type_discard;
748 return NULL;
749
750 case SpvOpBranchConditional: {
751 struct vtn_value *cond_val = vtn_untyped_value(b, block->branch[1]);
752 vtn_fail_if(!cond_val->type ||
753 cond_val->type->base_type != vtn_base_type_scalar ||
754 cond_val->type->type != glsl_bool_type(),
755 "Condition must be a Boolean type scalar");
756
757 struct vtn_block *then_block = vtn_block(b, block->branch[2]);
758 struct vtn_block *else_block = vtn_block(b, block->branch[3]);
759
760 if (then_block == else_block) {
761 /* This is uncommon but it can happen. We treat this the same way as
762 * an unconditional branch.
763 */
764 block->branch_type = vtn_handle_branch(b, cf_parent, then_block);
765
766 if (block->branch_type == vtn_branch_type_none)
767 return then_block;
768 else
769 return NULL;
770 }
771
772 struct vtn_if *if_stmt = rzalloc(b, struct vtn_if);
773
774 if_stmt->node.type = vtn_cf_node_type_if;
775 if_stmt->node.parent = cf_parent;
776 if_stmt->condition = block->branch[1];
777 list_inithead(&if_stmt->then_body);
778 list_inithead(&if_stmt->else_body);
779
780 list_addtail(&if_stmt->node.link, cf_list);
781
782 if (block->merge &&
783 (*block->merge & SpvOpCodeMask) == SpvOpSelectionMerge) {
784 /* We may not always have a merge block and that merge doesn't
785 * technically have to be an OpSelectionMerge. We could have a block
786 * with an OpLoopMerge which ends in an OpBranchConditional.
787 */
788 if_stmt->merge_block = vtn_block(b, block->merge[1]);
789 vtn_block_set_merge_cf_node(b, if_stmt->merge_block, &if_stmt->node);
790
791 if_stmt->control = block->merge[2];
792 }
793
794 if_stmt->then_type = vtn_handle_branch(b, &if_stmt->node, then_block);
795 if (if_stmt->then_type == vtn_branch_type_none) {
796 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
797 &if_stmt->then_body, then_block);
798 }
799
800 if_stmt->else_type = vtn_handle_branch(b, &if_stmt->node, else_block);
801 if (if_stmt->else_type == vtn_branch_type_none) {
802 vtn_add_cfg_work_item(b, work_list, &if_stmt->node,
803 &if_stmt->else_body, else_block);
804 }
805
806 return if_stmt->merge_block;
807 }
808
809 case SpvOpSwitch: {
810 struct vtn_value *sel_val = vtn_untyped_value(b, block->branch[1]);
811 vtn_fail_if(!sel_val->type ||
812 sel_val->type->base_type != vtn_base_type_scalar,
813 "Selector of OpSwitch must have a type of OpTypeInt");
814
815 nir_alu_type sel_type =
816 nir_get_nir_type_for_glsl_type(sel_val->type->type);
817 vtn_fail_if(nir_alu_type_get_base_type(sel_type) != nir_type_int &&
818 nir_alu_type_get_base_type(sel_type) != nir_type_uint,
819 "Selector of OpSwitch must have a type of OpTypeInt");
820
821 struct vtn_switch *swtch = rzalloc(b, struct vtn_switch);
822
823 swtch->node.type = vtn_cf_node_type_switch;
824 swtch->node.parent = cf_parent;
825 swtch->selector = block->branch[1];
826 list_inithead(&swtch->cases);
827
828 list_addtail(&swtch->node.link, cf_list);
829
830 /* We may not always have a merge block */
831 if (block->merge) {
832 vtn_fail_if((*block->merge & SpvOpCodeMask) != SpvOpSelectionMerge,
833 "An OpLoopMerge instruction must immediately precede "
834 "either an OpBranch or OpBranchConditional "
835 "instruction.");
836 swtch->break_block = vtn_block(b, block->merge[1]);
837 vtn_block_set_merge_cf_node(b, swtch->break_block, &swtch->node);
838 }
839
840 /* First, we go through and record all of the cases. */
841 const uint32_t *branch_end =
842 block->branch + (block->branch[0] >> SpvWordCountShift);
843
844 struct hash_table *block_to_case = _mesa_pointer_hash_table_create(b);
845
846 bool is_default = true;
847 const unsigned bitsize = nir_alu_type_get_type_size(sel_type);
848 for (const uint32_t *w = block->branch + 2; w < branch_end;) {
849 uint64_t literal = 0;
850 if (!is_default) {
851 if (bitsize <= 32) {
852 literal = *(w++);
853 } else {
854 assert(bitsize == 64);
855 literal = vtn_u64_literal(w);
856 w += 2;
857 }
858 }
859 struct vtn_block *case_block = vtn_block(b, *(w++));
860
861 struct hash_entry *case_entry =
862 _mesa_hash_table_search(block_to_case, case_block);
863
864 struct vtn_case *cse;
865 if (case_entry) {
866 cse = case_entry->data;
867 } else {
868 cse = rzalloc(b, struct vtn_case);
869
870 cse->node.type = vtn_cf_node_type_case;
871 cse->node.parent = &swtch->node;
872 list_inithead(&cse->body);
873 util_dynarray_init(&cse->values, b);
874
875 cse->type = vtn_handle_branch(b, &swtch->node, case_block);
876 switch (cse->type) {
877 case vtn_branch_type_none:
878 /* This is a "real" cases which has stuff in it */
879 vtn_fail_if(case_block->switch_case != NULL,
880 "OpSwitch has a case which is also in another "
881 "OpSwitch construct");
882 case_block->switch_case = cse;
883 vtn_add_cfg_work_item(b, work_list, &cse->node,
884 &cse->body, case_block);
885 break;
886
887 case vtn_branch_type_switch_break:
888 case vtn_branch_type_loop_break:
889 case vtn_branch_type_loop_continue:
890 /* Switch breaks as well as loop breaks and continues can be
891 * used to break out of a switch construct or as direct targets
892 * of the OpSwitch.
893 */
894 break;
895
896 default:
897 vtn_fail("Target of OpSwitch is not a valid structured exit "
898 "from the switch construct.");
899 }
900
901 list_addtail(&cse->node.link, &swtch->cases);
902
903 _mesa_hash_table_insert(block_to_case, case_block, cse);
904 }
905
906 if (is_default) {
907 cse->is_default = true;
908 } else {
909 util_dynarray_append(&cse->values, uint64_t, literal);
910 }
911
912 is_default = false;
913 }
914
915 _mesa_hash_table_destroy(block_to_case, NULL);
916
917 return swtch->break_block;
918 }
919
920 case SpvOpUnreachable:
921 return NULL;
922
923 default:
924 vtn_fail("Block did not end with a valid branch instruction");
925 }
926 }
927
928 void
929 vtn_build_cfg(struct vtn_builder *b, const uint32_t *words, const uint32_t *end)
930 {
931 vtn_foreach_instruction(b, words, end,
932 vtn_cfg_handle_prepass_instruction);
933
934 vtn_foreach_cf_node(func_node, &b->functions) {
935 struct vtn_function *func = vtn_cf_node_as_function(func_node);
936
937 /* We build the CFG for each function by doing a breadth-first search on
938 * the control-flow graph. We keep track of our state using a worklist.
939 * Doing a BFS ensures that we visit each structured control-flow
940 * construct and its merge node before we visit the stuff inside the
941 * construct.
942 */
943 struct list_head work_list;
944 list_inithead(&work_list);
945 vtn_add_cfg_work_item(b, &work_list, &func->node, &func->body,
946 func->start_block);
947
948 while (!list_is_empty(&work_list)) {
949 struct vtn_cfg_work_item *work =
950 list_first_entry(&work_list, struct vtn_cfg_work_item, link);
951 list_del(&work->link);
952
953 for (struct vtn_block *block = work->start_block; block; ) {
954 block = vtn_process_block(b, &work_list, work->cf_parent,
955 work->cf_list, block);
956 }
957 }
958 }
959 }
960
961 static bool
962 vtn_handle_phis_first_pass(struct vtn_builder *b, SpvOp opcode,
963 const uint32_t *w, unsigned count)
964 {
965 if (opcode == SpvOpLabel)
966 return true; /* Nothing to do */
967
968 /* If this isn't a phi node, stop. */
969 if (opcode != SpvOpPhi)
970 return false;
971
972 /* For handling phi nodes, we do a poor-man's out-of-ssa on the spot.
973 * For each phi, we create a variable with the appropreate type and
974 * do a load from that variable. Then, in a second pass, we add
975 * stores to that variable to each of the predecessor blocks.
976 *
977 * We could do something more intelligent here. However, in order to
978 * handle loops and things properly, we really need dominance
979 * information. It would end up basically being the into-SSA
980 * algorithm all over again. It's easier if we just let
981 * lower_vars_to_ssa do that for us instead of repeating it here.
982 */
983 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
984 nir_variable *phi_var =
985 nir_local_variable_create(b->nb.impl, type->type, "phi");
986 _mesa_hash_table_insert(b->phi_table, w, phi_var);
987
988 vtn_push_ssa(b, w[2], type,
989 vtn_local_load(b, nir_build_deref_var(&b->nb, phi_var), 0));
990
991 return true;
992 }
993
994 static bool
995 vtn_handle_phi_second_pass(struct vtn_builder *b, SpvOp opcode,
996 const uint32_t *w, unsigned count)
997 {
998 if (opcode != SpvOpPhi)
999 return true;
1000
1001 struct hash_entry *phi_entry = _mesa_hash_table_search(b->phi_table, w);
1002 vtn_assert(phi_entry);
1003 nir_variable *phi_var = phi_entry->data;
1004
1005 for (unsigned i = 3; i < count; i += 2) {
1006 struct vtn_block *pred = vtn_block(b, w[i + 1]);
1007
1008 /* If block does not have end_nop, that is because it is an unreacheable
1009 * block, and hence it is not worth to handle it */
1010 if (!pred->end_nop)
1011 continue;
1012
1013 b->nb.cursor = nir_after_instr(&pred->end_nop->instr);
1014
1015 struct vtn_ssa_value *src = vtn_ssa_value(b, w[i]);
1016
1017 vtn_local_store(b, src, nir_build_deref_var(&b->nb, phi_var), 0);
1018 }
1019
1020 return true;
1021 }
1022
1023 static void
1024 vtn_emit_branch(struct vtn_builder *b, enum vtn_branch_type branch_type,
1025 nir_variable *switch_fall_var, bool *has_switch_break)
1026 {
1027 switch (branch_type) {
1028 case vtn_branch_type_if_merge:
1029 break; /* Nothing to do */
1030 case vtn_branch_type_switch_break:
1031 nir_store_var(&b->nb, switch_fall_var, nir_imm_false(&b->nb), 1);
1032 *has_switch_break = true;
1033 break;
1034 case vtn_branch_type_switch_fallthrough:
1035 break; /* Nothing to do */
1036 case vtn_branch_type_loop_break:
1037 nir_jump(&b->nb, nir_jump_break);
1038 break;
1039 case vtn_branch_type_loop_continue:
1040 nir_jump(&b->nb, nir_jump_continue);
1041 break;
1042 case vtn_branch_type_loop_back_edge:
1043 break;
1044 case vtn_branch_type_return:
1045 nir_jump(&b->nb, nir_jump_return);
1046 break;
1047 case vtn_branch_type_discard: {
1048 nir_intrinsic_instr *discard =
1049 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_discard);
1050 nir_builder_instr_insert(&b->nb, &discard->instr);
1051 break;
1052 }
1053 default:
1054 vtn_fail("Invalid branch type");
1055 }
1056 }
1057
1058 static nir_ssa_def *
1059 vtn_switch_case_condition(struct vtn_builder *b, struct vtn_switch *swtch,
1060 nir_ssa_def *sel, struct vtn_case *cse)
1061 {
1062 if (cse->is_default) {
1063 nir_ssa_def *any = nir_imm_false(&b->nb);
1064 vtn_foreach_cf_node(other_node, &swtch->cases) {
1065 struct vtn_case *other = vtn_cf_node_as_case(other_node);
1066 if (other->is_default)
1067 continue;
1068
1069 any = nir_ior(&b->nb, any,
1070 vtn_switch_case_condition(b, swtch, sel, other));
1071 }
1072 return nir_inot(&b->nb, any);
1073 } else {
1074 nir_ssa_def *cond = nir_imm_false(&b->nb);
1075 util_dynarray_foreach(&cse->values, uint64_t, val) {
1076 nir_ssa_def *imm = nir_imm_intN_t(&b->nb, *val, sel->bit_size);
1077 cond = nir_ior(&b->nb, cond, nir_ieq(&b->nb, sel, imm));
1078 }
1079 return cond;
1080 }
1081 }
1082
1083 static nir_loop_control
1084 vtn_loop_control(struct vtn_builder *b, struct vtn_loop *vtn_loop)
1085 {
1086 if (vtn_loop->control == SpvLoopControlMaskNone)
1087 return nir_loop_control_none;
1088 else if (vtn_loop->control & SpvLoopControlDontUnrollMask)
1089 return nir_loop_control_dont_unroll;
1090 else if (vtn_loop->control & SpvLoopControlUnrollMask)
1091 return nir_loop_control_unroll;
1092 else if (vtn_loop->control & SpvLoopControlDependencyInfiniteMask ||
1093 vtn_loop->control & SpvLoopControlDependencyLengthMask ||
1094 vtn_loop->control & SpvLoopControlMinIterationsMask ||
1095 vtn_loop->control & SpvLoopControlMaxIterationsMask ||
1096 vtn_loop->control & SpvLoopControlIterationMultipleMask ||
1097 vtn_loop->control & SpvLoopControlPeelCountMask ||
1098 vtn_loop->control & SpvLoopControlPartialCountMask) {
1099 /* We do not do anything special with these yet. */
1100 return nir_loop_control_none;
1101 } else {
1102 vtn_fail("Invalid loop control");
1103 }
1104 }
1105
1106 static nir_selection_control
1107 vtn_selection_control(struct vtn_builder *b, struct vtn_if *vtn_if)
1108 {
1109 if (vtn_if->control == SpvSelectionControlMaskNone)
1110 return nir_selection_control_none;
1111 else if (vtn_if->control & SpvSelectionControlDontFlattenMask)
1112 return nir_selection_control_dont_flatten;
1113 else if (vtn_if->control & SpvSelectionControlFlattenMask)
1114 return nir_selection_control_flatten;
1115 else
1116 vtn_fail("Invalid selection control");
1117 }
1118
1119 static void
1120 vtn_emit_cf_list(struct vtn_builder *b, struct list_head *cf_list,
1121 nir_variable *switch_fall_var, bool *has_switch_break,
1122 vtn_instruction_handler handler)
1123 {
1124 vtn_foreach_cf_node(node, cf_list) {
1125 switch (node->type) {
1126 case vtn_cf_node_type_block: {
1127 struct vtn_block *block = vtn_cf_node_as_block(node);
1128
1129 const uint32_t *block_start = block->label;
1130 const uint32_t *block_end = block->merge ? block->merge :
1131 block->branch;
1132
1133 block_start = vtn_foreach_instruction(b, block_start, block_end,
1134 vtn_handle_phis_first_pass);
1135
1136 vtn_foreach_instruction(b, block_start, block_end, handler);
1137
1138 block->end_nop = nir_intrinsic_instr_create(b->nb.shader,
1139 nir_intrinsic_nop);
1140 nir_builder_instr_insert(&b->nb, &block->end_nop->instr);
1141
1142 if ((*block->branch & SpvOpCodeMask) == SpvOpReturnValue) {
1143 vtn_fail_if(b->func->type->return_type->base_type ==
1144 vtn_base_type_void,
1145 "Return with a value from a function returning void");
1146 struct vtn_ssa_value *src = vtn_ssa_value(b, block->branch[1]);
1147 const struct glsl_type *ret_type =
1148 glsl_get_bare_type(b->func->type->return_type->type);
1149 nir_deref_instr *ret_deref =
1150 nir_build_deref_cast(&b->nb, nir_load_param(&b->nb, 0),
1151 nir_var_function_temp, ret_type, 0);
1152 vtn_local_store(b, src, ret_deref, 0);
1153 }
1154
1155 if (block->branch_type != vtn_branch_type_none) {
1156 vtn_emit_branch(b, block->branch_type,
1157 switch_fall_var, has_switch_break);
1158 return;
1159 }
1160
1161 break;
1162 }
1163
1164 case vtn_cf_node_type_if: {
1165 struct vtn_if *vtn_if = vtn_cf_node_as_if(node);
1166 bool sw_break = false;
1167
1168 nir_if *nif =
1169 nir_push_if(&b->nb, vtn_ssa_value(b, vtn_if->condition)->def);
1170
1171 nif->control = vtn_selection_control(b, vtn_if);
1172
1173 if (vtn_if->then_type == vtn_branch_type_none) {
1174 vtn_emit_cf_list(b, &vtn_if->then_body,
1175 switch_fall_var, &sw_break, handler);
1176 } else {
1177 vtn_emit_branch(b, vtn_if->then_type, switch_fall_var, &sw_break);
1178 }
1179
1180 nir_push_else(&b->nb, nif);
1181 if (vtn_if->else_type == vtn_branch_type_none) {
1182 vtn_emit_cf_list(b, &vtn_if->else_body,
1183 switch_fall_var, &sw_break, handler);
1184 } else {
1185 vtn_emit_branch(b, vtn_if->else_type, switch_fall_var, &sw_break);
1186 }
1187
1188 nir_pop_if(&b->nb, nif);
1189
1190 /* If we encountered a switch break somewhere inside of the if,
1191 * then it would have been handled correctly by calling
1192 * emit_cf_list or emit_branch for the interrior. However, we
1193 * need to predicate everything following on wether or not we're
1194 * still going.
1195 */
1196 if (sw_break) {
1197 *has_switch_break = true;
1198 nir_push_if(&b->nb, nir_load_var(&b->nb, switch_fall_var));
1199 }
1200 break;
1201 }
1202
1203 case vtn_cf_node_type_loop: {
1204 struct vtn_loop *vtn_loop = vtn_cf_node_as_loop(node);
1205
1206 nir_loop *loop = nir_push_loop(&b->nb);
1207 loop->control = vtn_loop_control(b, vtn_loop);
1208
1209 vtn_emit_cf_list(b, &vtn_loop->body, NULL, NULL, handler);
1210
1211 if (!list_is_empty(&vtn_loop->cont_body)) {
1212 /* If we have a non-trivial continue body then we need to put
1213 * it at the beginning of the loop with a flag to ensure that
1214 * it doesn't get executed in the first iteration.
1215 */
1216 nir_variable *do_cont =
1217 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "cont");
1218
1219 b->nb.cursor = nir_before_cf_node(&loop->cf_node);
1220 nir_store_var(&b->nb, do_cont, nir_imm_false(&b->nb), 1);
1221
1222 b->nb.cursor = nir_before_cf_list(&loop->body);
1223
1224 nir_if *cont_if =
1225 nir_push_if(&b->nb, nir_load_var(&b->nb, do_cont));
1226
1227 vtn_emit_cf_list(b, &vtn_loop->cont_body, NULL, NULL, handler);
1228
1229 nir_pop_if(&b->nb, cont_if);
1230
1231 nir_store_var(&b->nb, do_cont, nir_imm_true(&b->nb), 1);
1232
1233 b->has_loop_continue = true;
1234 }
1235
1236 nir_pop_loop(&b->nb, loop);
1237 break;
1238 }
1239
1240 case vtn_cf_node_type_switch: {
1241 struct vtn_switch *vtn_switch = vtn_cf_node_as_switch(node);
1242
1243 /* Before we can emit anything, we need to sort the list of cases in
1244 * fall-through order.
1245 */
1246 vtn_switch_order_cases(vtn_switch);
1247
1248 /* First, we create a variable to keep track of whether or not the
1249 * switch is still going at any given point. Any switch breaks
1250 * will set this variable to false.
1251 */
1252 nir_variable *fall_var =
1253 nir_local_variable_create(b->nb.impl, glsl_bool_type(), "fall");
1254 nir_store_var(&b->nb, fall_var, nir_imm_false(&b->nb), 1);
1255
1256 nir_ssa_def *sel = vtn_ssa_value(b, vtn_switch->selector)->def;
1257
1258 /* Now we can walk the list of cases and actually emit code */
1259 vtn_foreach_cf_node(case_node, &vtn_switch->cases) {
1260 struct vtn_case *cse = vtn_cf_node_as_case(case_node);
1261
1262 /* Figure out the condition */
1263 nir_ssa_def *cond =
1264 vtn_switch_case_condition(b, vtn_switch, sel, cse);
1265 /* Take fallthrough into account */
1266 cond = nir_ior(&b->nb, cond, nir_load_var(&b->nb, fall_var));
1267
1268 nir_if *case_if = nir_push_if(&b->nb, cond);
1269
1270 bool has_break = false;
1271 nir_store_var(&b->nb, fall_var, nir_imm_true(&b->nb), 1);
1272 vtn_emit_cf_list(b, &cse->body, fall_var, &has_break, handler);
1273 (void)has_break; /* We don't care */
1274
1275 nir_pop_if(&b->nb, case_if);
1276 }
1277
1278 break;
1279 }
1280
1281 default:
1282 vtn_fail("Invalid CF node type");
1283 }
1284 }
1285 }
1286
1287 void
1288 vtn_function_emit(struct vtn_builder *b, struct vtn_function *func,
1289 vtn_instruction_handler instruction_handler)
1290 {
1291 nir_builder_init(&b->nb, func->impl);
1292 b->func = func;
1293 b->nb.cursor = nir_after_cf_list(&func->impl->body);
1294 b->nb.exact = b->exact;
1295 b->has_loop_continue = false;
1296 b->phi_table = _mesa_pointer_hash_table_create(b);
1297
1298 vtn_emit_cf_list(b, &func->body, NULL, NULL, instruction_handler);
1299
1300 vtn_foreach_instruction(b, func->start_block->label, func->end,
1301 vtn_handle_phi_second_pass);
1302
1303 nir_rematerialize_derefs_in_use_blocks_impl(func->impl);
1304
1305 /* Continue blocks for loops get inserted before the body of the loop
1306 * but instructions in the continue may use SSA defs in the loop body.
1307 * Therefore, we need to repair SSA to insert the needed phi nodes.
1308 */
1309 if (b->has_loop_continue)
1310 nir_repair_ssa_impl(func->impl);
1311
1312 func->emitted = true;
1313 }