glsl: copy the new data fields when converting to nir
[mesa.git] / src / compiler / spirv / vtn_glsl450.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include <math.h>
29
30 #include "nir/nir_builtin_builder.h"
31
32 #include "vtn_private.h"
33 #include "GLSL.std.450.h"
34
35 #define M_PIf ((float) M_PI)
36 #define M_PI_2f ((float) M_PI_2)
37 #define M_PI_4f ((float) M_PI_4)
38
39 static nir_ssa_def *
40 build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
41 {
42 unsigned swiz[2] = {1, 0 };
43 nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2));
44 return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
45 }
46
47 static nir_ssa_def *
48 build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
49 {
50 unsigned yzx[3] = {1, 2, 0 };
51 unsigned zxy[3] = {2, 0, 1 };
52
53 nir_ssa_def *prod0 =
54 nir_fmul(b, col[0],
55 nir_fmul(b, nir_swizzle(b, col[1], yzx, 3),
56 nir_swizzle(b, col[2], zxy, 3)));
57 nir_ssa_def *prod1 =
58 nir_fmul(b, col[0],
59 nir_fmul(b, nir_swizzle(b, col[1], zxy, 3),
60 nir_swizzle(b, col[2], yzx, 3)));
61
62 nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
63
64 return nir_fadd(b, nir_channel(b, diff, 0),
65 nir_fadd(b, nir_channel(b, diff, 1),
66 nir_channel(b, diff, 2)));
67 }
68
69 static nir_ssa_def *
70 build_mat4_det(nir_builder *b, nir_ssa_def **col)
71 {
72 nir_ssa_def *subdet[4];
73 for (unsigned i = 0; i < 4; i++) {
74 unsigned swiz[3];
75 for (unsigned j = 0; j < 3; j++)
76 swiz[j] = j + (j >= i);
77
78 nir_ssa_def *subcol[3];
79 subcol[0] = nir_swizzle(b, col[1], swiz, 3);
80 subcol[1] = nir_swizzle(b, col[2], swiz, 3);
81 subcol[2] = nir_swizzle(b, col[3], swiz, 3);
82
83 subdet[i] = build_mat3_det(b, subcol);
84 }
85
86 nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
87
88 return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
89 nir_channel(b, prod, 1)),
90 nir_fsub(b, nir_channel(b, prod, 2),
91 nir_channel(b, prod, 3)));
92 }
93
94 static nir_ssa_def *
95 build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
96 {
97 unsigned size = glsl_get_vector_elements(src->type);
98
99 nir_ssa_def *cols[4];
100 for (unsigned i = 0; i < size; i++)
101 cols[i] = src->elems[i]->def;
102
103 switch(size) {
104 case 2: return build_mat2_det(&b->nb, cols);
105 case 3: return build_mat3_det(&b->nb, cols);
106 case 4: return build_mat4_det(&b->nb, cols);
107 default:
108 vtn_fail("Invalid matrix size");
109 }
110 }
111
112 /* Computes the determinate of the submatrix given by taking src and
113 * removing the specified row and column.
114 */
115 static nir_ssa_def *
116 build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
117 unsigned size, unsigned row, unsigned col)
118 {
119 assert(row < size && col < size);
120 if (size == 2) {
121 return nir_channel(b, src->elems[1 - col]->def, 1 - row);
122 } else {
123 /* Swizzle to get all but the specified row */
124 unsigned swiz[3];
125 for (unsigned j = 0; j < 3; j++)
126 swiz[j] = j + (j >= row);
127
128 /* Grab all but the specified column */
129 nir_ssa_def *subcol[3];
130 for (unsigned j = 0; j < size; j++) {
131 if (j != col) {
132 subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
133 swiz, size - 1);
134 }
135 }
136
137 if (size == 3) {
138 return build_mat2_det(b, subcol);
139 } else {
140 assert(size == 4);
141 return build_mat3_det(b, subcol);
142 }
143 }
144 }
145
146 static struct vtn_ssa_value *
147 matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
148 {
149 nir_ssa_def *adj_col[4];
150 unsigned size = glsl_get_vector_elements(src->type);
151
152 /* Build up an adjugate matrix */
153 for (unsigned c = 0; c < size; c++) {
154 nir_ssa_def *elem[4];
155 for (unsigned r = 0; r < size; r++) {
156 elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
157
158 if ((r + c) % 2)
159 elem[r] = nir_fneg(&b->nb, elem[r]);
160 }
161
162 adj_col[c] = nir_vec(&b->nb, elem, size);
163 }
164
165 nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
166
167 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
168 for (unsigned i = 0; i < size; i++)
169 val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
170
171 return val;
172 }
173
174 /**
175 * Return e^x.
176 */
177 static nir_ssa_def *
178 build_exp(nir_builder *b, nir_ssa_def *x)
179 {
180 return nir_fexp2(b, nir_fmul_imm(b, x, M_LOG2E));
181 }
182
183 /**
184 * Return ln(x) - the natural logarithm of x.
185 */
186 static nir_ssa_def *
187 build_log(nir_builder *b, nir_ssa_def *x)
188 {
189 return nir_fmul_imm(b, nir_flog2(b, x), 1.0 / M_LOG2E);
190 }
191
192 /**
193 * Approximate asin(x) by the formula:
194 * asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
195 *
196 * which is correct to first order at x=0 and x=±1 regardless of the p
197 * coefficients but can be made second-order correct at both ends by selecting
198 * the fit coefficients appropriately. Different p coefficients can be used
199 * in the asin and acos implementation to minimize some relative error metric
200 * in each case.
201 */
202 static nir_ssa_def *
203 build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
204 {
205 if (x->bit_size == 16) {
206 /* The polynomial approximation isn't precise enough to meet half-float
207 * precision requirements. Alternatively, we could implement this using
208 * the formula:
209 *
210 * asin(x) = atan2(x, sqrt(1 - x*x))
211 *
212 * But that is very expensive, so instead we just do the polynomial
213 * approximation in 32-bit math and then we convert the result back to
214 * 16-bit.
215 */
216 return nir_f2f16(b, build_asin(b, nir_f2f32(b, x), p0, p1));
217 }
218
219 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, x->bit_size);
220 nir_ssa_def *abs_x = nir_fabs(b, x);
221
222 nir_ssa_def *p0_plus_xp1 = nir_fadd_imm(b, nir_fmul_imm(b, abs_x, p1), p0);
223
224 nir_ssa_def *expr_tail =
225 nir_fadd_imm(b, nir_fmul(b, abs_x,
226 nir_fadd_imm(b, nir_fmul(b, abs_x,
227 p0_plus_xp1),
228 M_PI_4f - 1.0f)),
229 M_PI_2f);
230
231 return nir_fmul(b, nir_fsign(b, x),
232 nir_fsub(b, nir_imm_floatN_t(b, M_PI_2f, x->bit_size),
233 nir_fmul(b, nir_fsqrt(b, nir_fsub(b, one, abs_x)),
234 expr_tail)));
235 }
236
237 static nir_op
238 vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b,
239 enum GLSLstd450 opcode,
240 unsigned execution_mode)
241 {
242 switch (opcode) {
243 case GLSLstd450Round: return nir_op_fround_even;
244 case GLSLstd450RoundEven: return nir_op_fround_even;
245 case GLSLstd450Trunc: return nir_op_ftrunc;
246 case GLSLstd450FAbs: return nir_op_fabs;
247 case GLSLstd450SAbs: return nir_op_iabs;
248 case GLSLstd450FSign: return nir_op_fsign;
249 case GLSLstd450SSign: return nir_op_isign;
250 case GLSLstd450Floor: return nir_op_ffloor;
251 case GLSLstd450Ceil: return nir_op_fceil;
252 case GLSLstd450Fract: return nir_op_ffract;
253 case GLSLstd450Sin: return nir_op_fsin;
254 case GLSLstd450Cos: return nir_op_fcos;
255 case GLSLstd450Pow: return nir_op_fpow;
256 case GLSLstd450Exp2: return nir_op_fexp2;
257 case GLSLstd450Log2: return nir_op_flog2;
258 case GLSLstd450Sqrt: return nir_op_fsqrt;
259 case GLSLstd450InverseSqrt: return nir_op_frsq;
260 case GLSLstd450NMin: return nir_op_fmin;
261 case GLSLstd450FMin: return nir_op_fmin;
262 case GLSLstd450UMin: return nir_op_umin;
263 case GLSLstd450SMin: return nir_op_imin;
264 case GLSLstd450NMax: return nir_op_fmax;
265 case GLSLstd450FMax: return nir_op_fmax;
266 case GLSLstd450UMax: return nir_op_umax;
267 case GLSLstd450SMax: return nir_op_imax;
268 case GLSLstd450FMix: return nir_op_flrp;
269 case GLSLstd450Fma: return nir_op_ffma;
270 case GLSLstd450Ldexp: return nir_op_ldexp;
271 case GLSLstd450FindILsb: return nir_op_find_lsb;
272 case GLSLstd450FindSMsb: return nir_op_ifind_msb;
273 case GLSLstd450FindUMsb: return nir_op_ufind_msb;
274
275 /* Packing/Unpacking functions */
276 case GLSLstd450PackSnorm4x8: return nir_op_pack_snorm_4x8;
277 case GLSLstd450PackUnorm4x8: return nir_op_pack_unorm_4x8;
278 case GLSLstd450PackSnorm2x16: return nir_op_pack_snorm_2x16;
279 case GLSLstd450PackUnorm2x16: return nir_op_pack_unorm_2x16;
280 case GLSLstd450PackHalf2x16: return nir_op_pack_half_2x16;
281 case GLSLstd450PackDouble2x32: return nir_op_pack_64_2x32;
282 case GLSLstd450UnpackSnorm4x8: return nir_op_unpack_snorm_4x8;
283 case GLSLstd450UnpackUnorm4x8: return nir_op_unpack_unorm_4x8;
284 case GLSLstd450UnpackSnorm2x16: return nir_op_unpack_snorm_2x16;
285 case GLSLstd450UnpackUnorm2x16: return nir_op_unpack_unorm_2x16;
286 case GLSLstd450UnpackHalf2x16:
287 if (execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16)
288 return nir_op_unpack_half_2x16_flush_to_zero;
289 else
290 return nir_op_unpack_half_2x16;
291 case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32;
292
293 default:
294 vtn_fail("No NIR equivalent");
295 }
296 }
297
298 #define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size))
299
300 static void
301 handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
302 const uint32_t *w, unsigned count)
303 {
304 struct nir_builder *nb = &b->nb;
305 const struct glsl_type *dest_type =
306 vtn_value(b, w[1], vtn_value_type_type)->type->type;
307
308 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
309 val->ssa = vtn_create_ssa_value(b, dest_type);
310
311 /* Collect the various SSA sources */
312 unsigned num_inputs = count - 5;
313 nir_ssa_def *src[3] = { NULL, };
314 for (unsigned i = 0; i < num_inputs; i++) {
315 /* These are handled specially below */
316 if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer)
317 continue;
318
319 src[i] = vtn_ssa_value(b, w[i + 5])->def;
320 }
321
322 switch (entrypoint) {
323 case GLSLstd450Radians:
324 val->ssa->def = nir_radians(nb, src[0]);
325 return;
326 case GLSLstd450Degrees:
327 val->ssa->def = nir_degrees(nb, src[0]);
328 return;
329 case GLSLstd450Tan:
330 val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
331 nir_fcos(nb, src[0]));
332 return;
333
334 case GLSLstd450Modf: {
335 nir_ssa_def *sign = nir_fsign(nb, src[0]);
336 nir_ssa_def *abs = nir_fabs(nb, src[0]);
337 val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
338 nir_store_deref(nb, vtn_nir_deref(b, w[6]),
339 nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
340 return;
341 }
342
343 case GLSLstd450ModfStruct: {
344 nir_ssa_def *sign = nir_fsign(nb, src[0]);
345 nir_ssa_def *abs = nir_fabs(nb, src[0]);
346 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
347 val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
348 val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
349 return;
350 }
351
352 case GLSLstd450Step:
353 val->ssa->def = nir_sge(nb, src[1], src[0]);
354 return;
355
356 case GLSLstd450Length:
357 val->ssa->def = nir_fast_length(nb, src[0]);
358 return;
359 case GLSLstd450Distance:
360 val->ssa->def = nir_fast_distance(nb, src[0], src[1]);
361 return;
362 case GLSLstd450Normalize:
363 val->ssa->def = nir_fast_normalize(nb, src[0]);
364 return;
365
366 case GLSLstd450Exp:
367 val->ssa->def = build_exp(nb, src[0]);
368 return;
369
370 case GLSLstd450Log:
371 val->ssa->def = build_log(nb, src[0]);
372 return;
373
374 case GLSLstd450FClamp:
375 case GLSLstd450NClamp:
376 val->ssa->def = nir_fclamp(nb, src[0], src[1], src[2]);
377 return;
378 case GLSLstd450UClamp:
379 val->ssa->def = nir_uclamp(nb, src[0], src[1], src[2]);
380 return;
381 case GLSLstd450SClamp:
382 val->ssa->def = nir_iclamp(nb, src[0], src[1], src[2]);
383 return;
384
385 case GLSLstd450Cross: {
386 val->ssa->def = nir_cross3(nb, src[0], src[1]);
387 return;
388 }
389
390 case GLSLstd450SmoothStep: {
391 val->ssa->def = nir_smoothstep(nb, src[0], src[1], src[2]);
392 return;
393 }
394
395 case GLSLstd450FaceForward:
396 val->ssa->def =
397 nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
398 NIR_IMM_FP(nb, 0.0)),
399 src[0], nir_fneg(nb, src[0]));
400 return;
401
402 case GLSLstd450Reflect:
403 /* I - 2 * dot(N, I) * N */
404 val->ssa->def =
405 nir_fsub(nb, src[0], nir_fmul(nb, NIR_IMM_FP(nb, 2.0),
406 nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
407 src[1])));
408 return;
409
410 case GLSLstd450Refract: {
411 nir_ssa_def *I = src[0];
412 nir_ssa_def *N = src[1];
413 nir_ssa_def *eta = src[2];
414 nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
415 nir_ssa_def *one = NIR_IMM_FP(nb, 1.0);
416 nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0);
417 /* According to the SPIR-V and GLSL specs, eta is always a float
418 * regardless of the type of the other operands. However in practice it
419 * seems that if you try to pass it a float then glslang will just
420 * promote it to a double and generate invalid SPIR-V. In order to
421 * support a hypothetical fixed version of glslang we’ll promote eta to
422 * double if the other operands are double also.
423 */
424 if (I->bit_size != eta->bit_size) {
425 nir_op conversion_op =
426 nir_type_conversion_op(nir_type_float | eta->bit_size,
427 nir_type_float | I->bit_size,
428 nir_rounding_mode_undef);
429 eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL);
430 }
431 /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
432 nir_ssa_def *k =
433 nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
434 nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
435 nir_ssa_def *result =
436 nir_fsub(nb, nir_fmul(nb, eta, I),
437 nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
438 nir_fsqrt(nb, k)), N));
439 /* XXX: bcsel, or if statement? */
440 val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
441 return;
442 }
443
444 case GLSLstd450Sinh:
445 /* 0.5 * (e^x - e^(-x)) */
446 val->ssa->def =
447 nir_fmul_imm(nb, nir_fsub(nb, build_exp(nb, src[0]),
448 build_exp(nb, nir_fneg(nb, src[0]))),
449 0.5f);
450 return;
451
452 case GLSLstd450Cosh:
453 /* 0.5 * (e^x + e^(-x)) */
454 val->ssa->def =
455 nir_fmul_imm(nb, nir_fadd(nb, build_exp(nb, src[0]),
456 build_exp(nb, nir_fneg(nb, src[0]))),
457 0.5f);
458 return;
459
460 case GLSLstd450Tanh: {
461 /* tanh(x) := (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x)))
462 *
463 * With a little algebra this reduces to (e^2x - 1) / (e^2x + 1)
464 *
465 * We clamp x to (-inf, +10] to avoid precision problems. When x > 10,
466 * e^2x is so much larger than 1.0 that 1.0 gets flushed to zero in the
467 * computation e^2x +/- 1 so it can be ignored.
468 *
469 * For 16-bit precision we clamp x to (-inf, +4.2] since the maximum
470 * representable number is only 65,504 and e^(2*6) exceeds that. Also,
471 * if x > 4.2, tanh(x) will return 1.0 in fp16.
472 */
473 const uint32_t bit_size = src[0]->bit_size;
474 const double clamped_x = bit_size > 16 ? 10.0 : 4.2;
475 nir_ssa_def *x = nir_fmin(nb, src[0],
476 nir_imm_floatN_t(nb, clamped_x, bit_size));
477 nir_ssa_def *exp2x = build_exp(nb, nir_fmul_imm(nb, x, 2.0));
478 val->ssa->def = nir_fdiv(nb, nir_fadd_imm(nb, exp2x, -1.0),
479 nir_fadd_imm(nb, exp2x, 1.0));
480 return;
481 }
482
483 case GLSLstd450Asinh:
484 val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
485 build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
486 nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
487 1.0f)))));
488 return;
489 case GLSLstd450Acosh:
490 val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
491 nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
492 -1.0f))));
493 return;
494 case GLSLstd450Atanh: {
495 nir_ssa_def *one = nir_imm_floatN_t(nb, 1.0, src[0]->bit_size);
496 val->ssa->def =
497 nir_fmul_imm(nb, build_log(nb, nir_fdiv(nb, nir_fadd(nb, src[0], one),
498 nir_fsub(nb, one, src[0]))),
499 0.5f);
500 return;
501 }
502
503 case GLSLstd450Asin:
504 val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
505 return;
506
507 case GLSLstd450Acos:
508 val->ssa->def =
509 nir_fsub(nb, nir_imm_floatN_t(nb, M_PI_2f, src[0]->bit_size),
510 build_asin(nb, src[0], 0.08132463, -0.02363318));
511 return;
512
513 case GLSLstd450Atan:
514 val->ssa->def = nir_atan(nb, src[0]);
515 return;
516
517 case GLSLstd450Atan2:
518 val->ssa->def = nir_atan2(nb, src[0], src[1]);
519 return;
520
521 case GLSLstd450Frexp: {
522 nir_ssa_def *exponent = nir_frexp_exp(nb, src[0]);
523 val->ssa->def = nir_frexp_sig(nb, src[0]);
524 nir_store_deref(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
525 return;
526 }
527
528 case GLSLstd450FrexpStruct: {
529 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
530 val->ssa->elems[0]->def = nir_frexp_sig(nb, src[0]);
531 val->ssa->elems[1]->def = nir_frexp_exp(nb, src[0]);
532 return;
533 }
534
535 default: {
536 unsigned execution_mode =
537 b->shader->info.float_controls_execution_mode;
538 val->ssa->def =
539 nir_build_alu(&b->nb,
540 vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint, execution_mode),
541 src[0], src[1], src[2], NULL);
542 return;
543 }
544 }
545 }
546
547 static void
548 handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode,
549 const uint32_t *w, unsigned count)
550 {
551 const struct glsl_type *dest_type =
552 vtn_value(b, w[1], vtn_value_type_type)->type->type;
553
554 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
555 val->ssa = vtn_create_ssa_value(b, dest_type);
556
557 nir_intrinsic_op op;
558 switch (opcode) {
559 case GLSLstd450InterpolateAtCentroid:
560 op = nir_intrinsic_interp_deref_at_centroid;
561 break;
562 case GLSLstd450InterpolateAtSample:
563 op = nir_intrinsic_interp_deref_at_sample;
564 break;
565 case GLSLstd450InterpolateAtOffset:
566 op = nir_intrinsic_interp_deref_at_offset;
567 break;
568 default:
569 vtn_fail("Invalid opcode");
570 }
571
572 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op);
573
574 struct vtn_pointer *ptr =
575 vtn_value(b, w[5], vtn_value_type_pointer)->pointer;
576 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
577
578 /* If the value we are interpolating has an index into a vector then
579 * interpolate the vector and index the result of that instead. This is
580 * necessary because the index will get generated as a series of nir_bcsel
581 * instructions so it would no longer be an input variable.
582 */
583 const bool vec_array_deref = deref->deref_type == nir_deref_type_array &&
584 glsl_type_is_vector(nir_deref_instr_parent(deref)->type);
585
586 nir_deref_instr *vec_deref = NULL;
587 if (vec_array_deref) {
588 vec_deref = deref;
589 deref = nir_deref_instr_parent(deref);
590 }
591 intrin->src[0] = nir_src_for_ssa(&deref->dest.ssa);
592
593 switch (opcode) {
594 case GLSLstd450InterpolateAtCentroid:
595 break;
596 case GLSLstd450InterpolateAtSample:
597 case GLSLstd450InterpolateAtOffset:
598 intrin->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
599 break;
600 default:
601 vtn_fail("Invalid opcode");
602 }
603
604 intrin->num_components = glsl_get_vector_elements(deref->type);
605 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
606 glsl_get_vector_elements(deref->type),
607 glsl_get_bit_size(deref->type), NULL);
608
609 nir_builder_instr_insert(&b->nb, &intrin->instr);
610
611 if (vec_array_deref) {
612 assert(vec_deref);
613 if (nir_src_is_const(vec_deref->arr.index)) {
614 val->ssa->def = vtn_vector_extract(b, &intrin->dest.ssa,
615 nir_src_as_uint(vec_deref->arr.index));
616 } else {
617 val->ssa->def = vtn_vector_extract_dynamic(b, &intrin->dest.ssa,
618 vec_deref->arr.index.ssa);
619 }
620 } else {
621 val->ssa->def = &intrin->dest.ssa;
622 }
623 }
624
625 bool
626 vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode,
627 const uint32_t *w, unsigned count)
628 {
629 switch ((enum GLSLstd450)ext_opcode) {
630 case GLSLstd450Determinant: {
631 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
632 val->ssa = rzalloc(b, struct vtn_ssa_value);
633 val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
634 val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
635 break;
636 }
637
638 case GLSLstd450MatrixInverse: {
639 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
640 val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
641 break;
642 }
643
644 case GLSLstd450InterpolateAtCentroid:
645 case GLSLstd450InterpolateAtSample:
646 case GLSLstd450InterpolateAtOffset:
647 handle_glsl450_interpolation(b, (enum GLSLstd450)ext_opcode, w, count);
648 break;
649
650 default:
651 handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
652 }
653
654 return true;
655 }