wsi: allow to override the present mode with MESA_VK_WSI_PRESENT_MODE
[mesa.git] / src / compiler / spirv / vtn_glsl450.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include <math.h>
29
30 #include "nir/nir_builtin_builder.h"
31
32 #include "vtn_private.h"
33 #include "GLSL.std.450.h"
34
35 #define M_PIf ((float) M_PI)
36 #define M_PI_2f ((float) M_PI_2)
37 #define M_PI_4f ((float) M_PI_4)
38
39 static nir_ssa_def *
40 build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
41 {
42 unsigned swiz[2] = {1, 0 };
43 nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true));
44 return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
45 }
46
47 static nir_ssa_def *
48 build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
49 {
50 unsigned yzx[3] = {1, 2, 0 };
51 unsigned zxy[3] = {2, 0, 1 };
52
53 nir_ssa_def *prod0 =
54 nir_fmul(b, col[0],
55 nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true),
56 nir_swizzle(b, col[2], zxy, 3, true)));
57 nir_ssa_def *prod1 =
58 nir_fmul(b, col[0],
59 nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true),
60 nir_swizzle(b, col[2], yzx, 3, true)));
61
62 nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
63
64 return nir_fadd(b, nir_channel(b, diff, 0),
65 nir_fadd(b, nir_channel(b, diff, 1),
66 nir_channel(b, diff, 2)));
67 }
68
69 static nir_ssa_def *
70 build_mat4_det(nir_builder *b, nir_ssa_def **col)
71 {
72 nir_ssa_def *subdet[4];
73 for (unsigned i = 0; i < 4; i++) {
74 unsigned swiz[3];
75 for (unsigned j = 0; j < 3; j++)
76 swiz[j] = j + (j >= i);
77
78 nir_ssa_def *subcol[3];
79 subcol[0] = nir_swizzle(b, col[1], swiz, 3, true);
80 subcol[1] = nir_swizzle(b, col[2], swiz, 3, true);
81 subcol[2] = nir_swizzle(b, col[3], swiz, 3, true);
82
83 subdet[i] = build_mat3_det(b, subcol);
84 }
85
86 nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
87
88 return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
89 nir_channel(b, prod, 1)),
90 nir_fsub(b, nir_channel(b, prod, 2),
91 nir_channel(b, prod, 3)));
92 }
93
94 static nir_ssa_def *
95 build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
96 {
97 unsigned size = glsl_get_vector_elements(src->type);
98
99 nir_ssa_def *cols[4];
100 for (unsigned i = 0; i < size; i++)
101 cols[i] = src->elems[i]->def;
102
103 switch(size) {
104 case 2: return build_mat2_det(&b->nb, cols);
105 case 3: return build_mat3_det(&b->nb, cols);
106 case 4: return build_mat4_det(&b->nb, cols);
107 default:
108 vtn_fail("Invalid matrix size");
109 }
110 }
111
112 /* Computes the determinate of the submatrix given by taking src and
113 * removing the specified row and column.
114 */
115 static nir_ssa_def *
116 build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
117 unsigned size, unsigned row, unsigned col)
118 {
119 assert(row < size && col < size);
120 if (size == 2) {
121 return nir_channel(b, src->elems[1 - col]->def, 1 - row);
122 } else {
123 /* Swizzle to get all but the specified row */
124 unsigned swiz[3];
125 for (unsigned j = 0; j < 3; j++)
126 swiz[j] = j + (j >= row);
127
128 /* Grab all but the specified column */
129 nir_ssa_def *subcol[3];
130 for (unsigned j = 0; j < size; j++) {
131 if (j != col) {
132 subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
133 swiz, size - 1, true);
134 }
135 }
136
137 if (size == 3) {
138 return build_mat2_det(b, subcol);
139 } else {
140 assert(size == 4);
141 return build_mat3_det(b, subcol);
142 }
143 }
144 }
145
146 static struct vtn_ssa_value *
147 matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
148 {
149 nir_ssa_def *adj_col[4];
150 unsigned size = glsl_get_vector_elements(src->type);
151
152 /* Build up an adjugate matrix */
153 for (unsigned c = 0; c < size; c++) {
154 nir_ssa_def *elem[4];
155 for (unsigned r = 0; r < size; r++) {
156 elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
157
158 if ((r + c) % 2)
159 elem[r] = nir_fneg(&b->nb, elem[r]);
160 }
161
162 adj_col[c] = nir_vec(&b->nb, elem, size);
163 }
164
165 nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
166
167 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
168 for (unsigned i = 0; i < size; i++)
169 val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
170
171 return val;
172 }
173
174 /**
175 * Return e^x.
176 */
177 static nir_ssa_def *
178 build_exp(nir_builder *b, nir_ssa_def *x)
179 {
180 return nir_fexp2(b, nir_fmul_imm(b, x, M_LOG2E));
181 }
182
183 /**
184 * Return ln(x) - the natural logarithm of x.
185 */
186 static nir_ssa_def *
187 build_log(nir_builder *b, nir_ssa_def *x)
188 {
189 return nir_fmul_imm(b, nir_flog2(b, x), 1.0 / M_LOG2E);
190 }
191
192 /**
193 * Approximate asin(x) by the formula:
194 * asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
195 *
196 * which is correct to first order at x=0 and x=±1 regardless of the p
197 * coefficients but can be made second-order correct at both ends by selecting
198 * the fit coefficients appropriately. Different p coefficients can be used
199 * in the asin and acos implementation to minimize some relative error metric
200 * in each case.
201 */
202 static nir_ssa_def *
203 build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
204 {
205 if (x->bit_size == 16) {
206 /* The polynomial approximation isn't precise enough to meet half-float
207 * precision requirements. Alternatively, we could implement this using
208 * the formula:
209 *
210 * asin(x) = atan2(x, sqrt(1 - x*x))
211 *
212 * But that is very expensive, so instead we just do the polynomial
213 * approximation in 32-bit math and then we convert the result back to
214 * 16-bit.
215 */
216 return nir_f2f16(b, build_asin(b, nir_f2f32(b, x), p0, p1));
217 }
218
219 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, x->bit_size);
220 nir_ssa_def *abs_x = nir_fabs(b, x);
221
222 nir_ssa_def *p0_plus_xp1 = nir_fadd_imm(b, nir_fmul_imm(b, abs_x, p1), p0);
223
224 nir_ssa_def *expr_tail =
225 nir_fadd_imm(b, nir_fmul(b, abs_x,
226 nir_fadd_imm(b, nir_fmul(b, abs_x,
227 p0_plus_xp1),
228 M_PI_4f - 1.0f)),
229 M_PI_2f);
230
231 return nir_fmul(b, nir_fsign(b, x),
232 nir_fsub(b, nir_imm_floatN_t(b, M_PI_2f, x->bit_size),
233 nir_fmul(b, nir_fsqrt(b, nir_fsub(b, one, abs_x)),
234 expr_tail)));
235 }
236
237 /**
238 * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
239 */
240 static nir_ssa_def *
241 build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
242 {
243 nir_ssa_def *accum = xs[0];
244
245 for (int i = 1; i < terms; i++)
246 accum = nir_fadd(b, accum, xs[i]);
247
248 return accum;
249 }
250
251 static nir_ssa_def *
252 build_atan(nir_builder *b, nir_ssa_def *y_over_x)
253 {
254 const uint32_t bit_size = y_over_x->bit_size;
255
256 nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
257 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size);
258
259 /*
260 * range-reduction, first step:
261 *
262 * / y_over_x if |y_over_x| <= 1.0;
263 * x = <
264 * \ 1.0 / y_over_x otherwise
265 */
266 nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
267 nir_fmax(b, abs_y_over_x, one));
268
269 /*
270 * approximate atan by evaluating polynomial:
271 *
272 * x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
273 * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
274 * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
275 */
276 nir_ssa_def *x_2 = nir_fmul(b, x, x);
277 nir_ssa_def *x_3 = nir_fmul(b, x_2, x);
278 nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2);
279 nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2);
280 nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2);
281 nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
282
283 nir_ssa_def *polynomial_terms[] = {
284 nir_fmul_imm(b, x, 0.9999793128310355f),
285 nir_fmul_imm(b, x_3, -0.3326756418091246f),
286 nir_fmul_imm(b, x_5, 0.1938924977115610f),
287 nir_fmul_imm(b, x_7, -0.1173503194786851f),
288 nir_fmul_imm(b, x_9, 0.0536813784310406f),
289 nir_fmul_imm(b, x_11, -0.0121323213173444f),
290 };
291
292 nir_ssa_def *tmp =
293 build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
294
295 /* range-reduction fixup */
296 tmp = nir_fadd(b, tmp,
297 nir_fmul(b, nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size),
298 nir_fadd_imm(b, nir_fmul_imm(b, tmp, -2.0f), M_PI_2f)));
299
300 /* sign fixup */
301 return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
302 }
303
304 static nir_ssa_def *
305 build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
306 {
307 assert(y->bit_size == x->bit_size);
308 const uint32_t bit_size = x->bit_size;
309
310 nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size);
311 nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size);
312
313 /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
314 * for the y=0 discontinuity to end up aligned with the vertical
315 * discontinuity of atan(s/t) along t=0. This also makes sure that we
316 * don't attempt to divide by zero along the vertical line, which may give
317 * unspecified results on non-GLSL 4.1-capable hardware.
318 */
319 nir_ssa_def *flip = nir_fge(b, zero, x);
320 nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
321 nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
322
323 /* If the magnitude of the denominator exceeds some huge value, scale down
324 * the arguments in order to prevent the reciprocal operation from flushing
325 * its result to zero, which would cause precision problems, and for s
326 * infinite would cause us to return a NaN instead of the correct finite
327 * value.
328 *
329 * If fmin and fmax are respectively the smallest and largest positive
330 * normalized floating point values representable by the implementation,
331 * the constants below should be in agreement with:
332 *
333 * huge <= 1 / fmin
334 * scale <= 1 / fmin / fmax (for |t| >= huge)
335 *
336 * In addition scale should be a negative power of two in order to avoid
337 * loss of precision. The values chosen below should work for most usual
338 * floating point representations with at least the dynamic range of ATI's
339 * 24-bit representation.
340 */
341 const double huge_val = bit_size >= 32 ? 1e18 : 16384;
342 nir_ssa_def *huge = nir_imm_floatN_t(b, huge_val, bit_size);
343 nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
344 nir_imm_floatN_t(b, 0.25, bit_size), one);
345 nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
346 nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);
347
348 /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
349 * that ∞/∞ = 1) in order to comply with the rather artificial rules
350 * inherited from IEEE 754-2008, namely:
351 *
352 * "atan2(±∞, −∞) is ±3π/4
353 * atan2(±∞, +∞) is ±π/4"
354 *
355 * Note that this is inconsistent with the rules for the neighborhood of
356 * zero that are based on iterated limits:
357 *
358 * "atan2(±0, −0) is ±π
359 * atan2(±0, +0) is ±0"
360 *
361 * but GLSL specifically allows implementations to deviate from IEEE rules
362 * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
363 * well).
364 */
365 nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
366 one, nir_fabs(b, s_over_t));
367
368 /* Calculate the arctangent and fix up the result if we had flipped the
369 * coordinate system.
370 */
371 nir_ssa_def *arc =
372 nir_fadd(b, nir_fmul_imm(b, nir_b2f(b, flip, bit_size), M_PI_2f),
373 build_atan(b, tan));
374
375 /* Rather convoluted calculation of the sign of the result. When x < 0 we
376 * cannot use fsign because we need to be able to distinguish between
377 * negative and positive zero. We don't use bitwise arithmetic tricks for
378 * consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will
379 * always be non-negative so this won't be able to distinguish between
380 * negative and positive zero, but we don't care because atan2 is
381 * continuous along the whole positive y = 0 half-line, so it won't affect
382 * the result significantly.
383 */
384 return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
385 nir_fneg(b, arc), arc);
386 }
387
388 static nir_op
389 vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b,
390 enum GLSLstd450 opcode)
391 {
392 switch (opcode) {
393 case GLSLstd450Round: return nir_op_fround_even;
394 case GLSLstd450RoundEven: return nir_op_fround_even;
395 case GLSLstd450Trunc: return nir_op_ftrunc;
396 case GLSLstd450FAbs: return nir_op_fabs;
397 case GLSLstd450SAbs: return nir_op_iabs;
398 case GLSLstd450FSign: return nir_op_fsign;
399 case GLSLstd450SSign: return nir_op_isign;
400 case GLSLstd450Floor: return nir_op_ffloor;
401 case GLSLstd450Ceil: return nir_op_fceil;
402 case GLSLstd450Fract: return nir_op_ffract;
403 case GLSLstd450Sin: return nir_op_fsin;
404 case GLSLstd450Cos: return nir_op_fcos;
405 case GLSLstd450Pow: return nir_op_fpow;
406 case GLSLstd450Exp2: return nir_op_fexp2;
407 case GLSLstd450Log2: return nir_op_flog2;
408 case GLSLstd450Sqrt: return nir_op_fsqrt;
409 case GLSLstd450InverseSqrt: return nir_op_frsq;
410 case GLSLstd450NMin: return nir_op_fmin;
411 case GLSLstd450FMin: return nir_op_fmin;
412 case GLSLstd450UMin: return nir_op_umin;
413 case GLSLstd450SMin: return nir_op_imin;
414 case GLSLstd450NMax: return nir_op_fmax;
415 case GLSLstd450FMax: return nir_op_fmax;
416 case GLSLstd450UMax: return nir_op_umax;
417 case GLSLstd450SMax: return nir_op_imax;
418 case GLSLstd450FMix: return nir_op_flrp;
419 case GLSLstd450Fma: return nir_op_ffma;
420 case GLSLstd450Ldexp: return nir_op_ldexp;
421 case GLSLstd450FindILsb: return nir_op_find_lsb;
422 case GLSLstd450FindSMsb: return nir_op_ifind_msb;
423 case GLSLstd450FindUMsb: return nir_op_ufind_msb;
424
425 /* Packing/Unpacking functions */
426 case GLSLstd450PackSnorm4x8: return nir_op_pack_snorm_4x8;
427 case GLSLstd450PackUnorm4x8: return nir_op_pack_unorm_4x8;
428 case GLSLstd450PackSnorm2x16: return nir_op_pack_snorm_2x16;
429 case GLSLstd450PackUnorm2x16: return nir_op_pack_unorm_2x16;
430 case GLSLstd450PackHalf2x16: return nir_op_pack_half_2x16;
431 case GLSLstd450PackDouble2x32: return nir_op_pack_64_2x32;
432 case GLSLstd450UnpackSnorm4x8: return nir_op_unpack_snorm_4x8;
433 case GLSLstd450UnpackUnorm4x8: return nir_op_unpack_unorm_4x8;
434 case GLSLstd450UnpackSnorm2x16: return nir_op_unpack_snorm_2x16;
435 case GLSLstd450UnpackUnorm2x16: return nir_op_unpack_unorm_2x16;
436 case GLSLstd450UnpackHalf2x16: return nir_op_unpack_half_2x16;
437 case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32;
438
439 default:
440 vtn_fail("No NIR equivalent");
441 }
442 }
443
444 #define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size))
445
446 static void
447 handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
448 const uint32_t *w, unsigned count)
449 {
450 struct nir_builder *nb = &b->nb;
451 const struct glsl_type *dest_type =
452 vtn_value(b, w[1], vtn_value_type_type)->type->type;
453
454 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
455 val->ssa = vtn_create_ssa_value(b, dest_type);
456
457 /* Collect the various SSA sources */
458 unsigned num_inputs = count - 5;
459 nir_ssa_def *src[3] = { NULL, };
460 for (unsigned i = 0; i < num_inputs; i++) {
461 /* These are handled specially below */
462 if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer)
463 continue;
464
465 src[i] = vtn_ssa_value(b, w[i + 5])->def;
466 }
467
468 switch (entrypoint) {
469 case GLSLstd450Radians:
470 val->ssa->def = nir_radians(nb, src[0]);
471 return;
472 case GLSLstd450Degrees:
473 val->ssa->def = nir_degrees(nb, src[0]);
474 return;
475 case GLSLstd450Tan:
476 val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
477 nir_fcos(nb, src[0]));
478 return;
479
480 case GLSLstd450Modf: {
481 nir_ssa_def *sign = nir_fsign(nb, src[0]);
482 nir_ssa_def *abs = nir_fabs(nb, src[0]);
483 val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
484 nir_store_deref(nb, vtn_nir_deref(b, w[6]),
485 nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
486 return;
487 }
488
489 case GLSLstd450ModfStruct: {
490 nir_ssa_def *sign = nir_fsign(nb, src[0]);
491 nir_ssa_def *abs = nir_fabs(nb, src[0]);
492 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
493 val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
494 val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
495 return;
496 }
497
498 case GLSLstd450Step:
499 val->ssa->def = nir_sge(nb, src[1], src[0]);
500 return;
501
502 case GLSLstd450Length:
503 val->ssa->def = nir_fast_length(nb, src[0]);
504 return;
505 case GLSLstd450Distance:
506 val->ssa->def = nir_fast_distance(nb, src[0], src[1]);
507 return;
508 case GLSLstd450Normalize:
509 val->ssa->def = nir_fast_normalize(nb, src[0]);
510 return;
511
512 case GLSLstd450Exp:
513 val->ssa->def = build_exp(nb, src[0]);
514 return;
515
516 case GLSLstd450Log:
517 val->ssa->def = build_log(nb, src[0]);
518 return;
519
520 case GLSLstd450FClamp:
521 case GLSLstd450NClamp:
522 val->ssa->def = nir_fclamp(nb, src[0], src[1], src[2]);
523 return;
524 case GLSLstd450UClamp:
525 val->ssa->def = nir_uclamp(nb, src[0], src[1], src[2]);
526 return;
527 case GLSLstd450SClamp:
528 val->ssa->def = nir_iclamp(nb, src[0], src[1], src[2]);
529 return;
530
531 case GLSLstd450Cross: {
532 val->ssa->def = nir_cross3(nb, src[0], src[1]);
533 return;
534 }
535
536 case GLSLstd450SmoothStep: {
537 val->ssa->def = nir_smoothstep(nb, src[0], src[1], src[2]);
538 return;
539 }
540
541 case GLSLstd450FaceForward:
542 val->ssa->def =
543 nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
544 NIR_IMM_FP(nb, 0.0)),
545 src[0], nir_fneg(nb, src[0]));
546 return;
547
548 case GLSLstd450Reflect:
549 /* I - 2 * dot(N, I) * N */
550 val->ssa->def =
551 nir_fsub(nb, src[0], nir_fmul(nb, NIR_IMM_FP(nb, 2.0),
552 nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
553 src[1])));
554 return;
555
556 case GLSLstd450Refract: {
557 nir_ssa_def *I = src[0];
558 nir_ssa_def *N = src[1];
559 nir_ssa_def *eta = src[2];
560 nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
561 nir_ssa_def *one = NIR_IMM_FP(nb, 1.0);
562 nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0);
563 /* According to the SPIR-V and GLSL specs, eta is always a float
564 * regardless of the type of the other operands. However in practice it
565 * seems that if you try to pass it a float then glslang will just
566 * promote it to a double and generate invalid SPIR-V. In order to
567 * support a hypothetical fixed version of glslang we’ll promote eta to
568 * double if the other operands are double also.
569 */
570 if (I->bit_size != eta->bit_size) {
571 nir_op conversion_op =
572 nir_type_conversion_op(nir_type_float | eta->bit_size,
573 nir_type_float | I->bit_size,
574 nir_rounding_mode_undef);
575 eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL);
576 }
577 /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
578 nir_ssa_def *k =
579 nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
580 nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
581 nir_ssa_def *result =
582 nir_fsub(nb, nir_fmul(nb, eta, I),
583 nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
584 nir_fsqrt(nb, k)), N));
585 /* XXX: bcsel, or if statement? */
586 val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
587 return;
588 }
589
590 case GLSLstd450Sinh:
591 /* 0.5 * (e^x - e^(-x)) */
592 val->ssa->def =
593 nir_fmul_imm(nb, nir_fsub(nb, build_exp(nb, src[0]),
594 build_exp(nb, nir_fneg(nb, src[0]))),
595 0.5f);
596 return;
597
598 case GLSLstd450Cosh:
599 /* 0.5 * (e^x + e^(-x)) */
600 val->ssa->def =
601 nir_fmul_imm(nb, nir_fadd(nb, build_exp(nb, src[0]),
602 build_exp(nb, nir_fneg(nb, src[0]))),
603 0.5f);
604 return;
605
606 case GLSLstd450Tanh: {
607 /* tanh(x) := (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x)))
608 *
609 * With a little algebra this reduces to (e^2x - 1) / (e^2x + 1)
610 *
611 * We clamp x to (-inf, +10] to avoid precision problems. When x > 10,
612 * e^2x is so much larger than 1.0 that 1.0 gets flushed to zero in the
613 * computation e^2x +/- 1 so it can be ignored.
614 *
615 * For 16-bit precision we clamp x to (-inf, +4.2] since the maximum
616 * representable number is only 65,504 and e^(2*6) exceeds that. Also,
617 * if x > 4.2, tanh(x) will return 1.0 in fp16.
618 */
619 const uint32_t bit_size = src[0]->bit_size;
620 const double clamped_x = bit_size > 16 ? 10.0 : 4.2;
621 nir_ssa_def *x = nir_fmin(nb, src[0],
622 nir_imm_floatN_t(nb, clamped_x, bit_size));
623 nir_ssa_def *exp2x = build_exp(nb, nir_fmul_imm(nb, x, 2.0));
624 val->ssa->def = nir_fdiv(nb, nir_fadd_imm(nb, exp2x, -1.0),
625 nir_fadd_imm(nb, exp2x, 1.0));
626 return;
627 }
628
629 case GLSLstd450Asinh:
630 val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
631 build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
632 nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
633 1.0f)))));
634 return;
635 case GLSLstd450Acosh:
636 val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
637 nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
638 -1.0f))));
639 return;
640 case GLSLstd450Atanh: {
641 nir_ssa_def *one = nir_imm_floatN_t(nb, 1.0, src[0]->bit_size);
642 val->ssa->def =
643 nir_fmul_imm(nb, build_log(nb, nir_fdiv(nb, nir_fadd(nb, src[0], one),
644 nir_fsub(nb, one, src[0]))),
645 0.5f);
646 return;
647 }
648
649 case GLSLstd450Asin:
650 val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
651 return;
652
653 case GLSLstd450Acos:
654 val->ssa->def =
655 nir_fsub(nb, nir_imm_floatN_t(nb, M_PI_2f, src[0]->bit_size),
656 build_asin(nb, src[0], 0.08132463, -0.02363318));
657 return;
658
659 case GLSLstd450Atan:
660 val->ssa->def = build_atan(nb, src[0]);
661 return;
662
663 case GLSLstd450Atan2:
664 val->ssa->def = build_atan2(nb, src[0], src[1]);
665 return;
666
667 case GLSLstd450Frexp: {
668 nir_ssa_def *exponent = nir_frexp_exp(nb, src[0]);
669 val->ssa->def = nir_frexp_sig(nb, src[0]);
670 nir_store_deref(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
671 return;
672 }
673
674 case GLSLstd450FrexpStruct: {
675 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
676 val->ssa->elems[0]->def = nir_frexp_sig(nb, src[0]);
677 val->ssa->elems[1]->def = nir_frexp_exp(nb, src[0]);
678 return;
679 }
680
681 default:
682 val->ssa->def =
683 nir_build_alu(&b->nb,
684 vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint),
685 src[0], src[1], src[2], NULL);
686 return;
687 }
688 }
689
690 static void
691 handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode,
692 const uint32_t *w, unsigned count)
693 {
694 const struct glsl_type *dest_type =
695 vtn_value(b, w[1], vtn_value_type_type)->type->type;
696
697 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
698 val->ssa = vtn_create_ssa_value(b, dest_type);
699
700 nir_intrinsic_op op;
701 switch (opcode) {
702 case GLSLstd450InterpolateAtCentroid:
703 op = nir_intrinsic_interp_deref_at_centroid;
704 break;
705 case GLSLstd450InterpolateAtSample:
706 op = nir_intrinsic_interp_deref_at_sample;
707 break;
708 case GLSLstd450InterpolateAtOffset:
709 op = nir_intrinsic_interp_deref_at_offset;
710 break;
711 default:
712 vtn_fail("Invalid opcode");
713 }
714
715 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op);
716
717 struct vtn_pointer *ptr =
718 vtn_value(b, w[5], vtn_value_type_pointer)->pointer;
719 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
720
721 /* If the value we are interpolating has an index into a vector then
722 * interpolate the vector and index the result of that instead. This is
723 * necessary because the index will get generated as a series of nir_bcsel
724 * instructions so it would no longer be an input variable.
725 */
726 const bool vec_array_deref = deref->deref_type == nir_deref_type_array &&
727 glsl_type_is_vector(nir_deref_instr_parent(deref)->type);
728
729 nir_deref_instr *vec_deref = NULL;
730 if (vec_array_deref) {
731 vec_deref = deref;
732 deref = nir_deref_instr_parent(deref);
733 }
734 intrin->src[0] = nir_src_for_ssa(&deref->dest.ssa);
735
736 switch (opcode) {
737 case GLSLstd450InterpolateAtCentroid:
738 break;
739 case GLSLstd450InterpolateAtSample:
740 case GLSLstd450InterpolateAtOffset:
741 intrin->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
742 break;
743 default:
744 vtn_fail("Invalid opcode");
745 }
746
747 intrin->num_components = glsl_get_vector_elements(deref->type);
748 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
749 glsl_get_vector_elements(deref->type),
750 glsl_get_bit_size(deref->type), NULL);
751
752 nir_builder_instr_insert(&b->nb, &intrin->instr);
753
754 if (vec_array_deref) {
755 assert(vec_deref);
756 if (nir_src_is_const(vec_deref->arr.index)) {
757 val->ssa->def = vtn_vector_extract(b, &intrin->dest.ssa,
758 nir_src_as_uint(vec_deref->arr.index));
759 } else {
760 val->ssa->def = vtn_vector_extract_dynamic(b, &intrin->dest.ssa,
761 vec_deref->arr.index.ssa);
762 }
763 } else {
764 val->ssa->def = &intrin->dest.ssa;
765 }
766 }
767
768 bool
769 vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode,
770 const uint32_t *w, unsigned count)
771 {
772 switch ((enum GLSLstd450)ext_opcode) {
773 case GLSLstd450Determinant: {
774 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
775 val->ssa = rzalloc(b, struct vtn_ssa_value);
776 val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
777 val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
778 break;
779 }
780
781 case GLSLstd450MatrixInverse: {
782 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
783 val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
784 break;
785 }
786
787 case GLSLstd450InterpolateAtCentroid:
788 case GLSLstd450InterpolateAtSample:
789 case GLSLstd450InterpolateAtOffset:
790 handle_glsl450_interpolation(b, (enum GLSLstd450)ext_opcode, w, count);
791 break;
792
793 default:
794 handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
795 }
796
797 return true;
798 }