nir/spirv: initial handling of OpenCL.std extension opcodes
[mesa.git] / src / compiler / spirv / vtn_glsl450.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include <math.h>
29
30 #include "nir/nir_builtin_builder.h"
31
32 #include "vtn_private.h"
33 #include "GLSL.std.450.h"
34
35 #define M_PIf ((float) M_PI)
36 #define M_PI_2f ((float) M_PI_2)
37 #define M_PI_4f ((float) M_PI_4)
38
39 static nir_ssa_def *
40 build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
41 {
42 unsigned swiz[2] = {1, 0 };
43 nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true));
44 return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
45 }
46
47 static nir_ssa_def *
48 build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
49 {
50 unsigned yzx[3] = {1, 2, 0 };
51 unsigned zxy[3] = {2, 0, 1 };
52
53 nir_ssa_def *prod0 =
54 nir_fmul(b, col[0],
55 nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true),
56 nir_swizzle(b, col[2], zxy, 3, true)));
57 nir_ssa_def *prod1 =
58 nir_fmul(b, col[0],
59 nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true),
60 nir_swizzle(b, col[2], yzx, 3, true)));
61
62 nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
63
64 return nir_fadd(b, nir_channel(b, diff, 0),
65 nir_fadd(b, nir_channel(b, diff, 1),
66 nir_channel(b, diff, 2)));
67 }
68
69 static nir_ssa_def *
70 build_mat4_det(nir_builder *b, nir_ssa_def **col)
71 {
72 nir_ssa_def *subdet[4];
73 for (unsigned i = 0; i < 4; i++) {
74 unsigned swiz[3];
75 for (unsigned j = 0; j < 3; j++)
76 swiz[j] = j + (j >= i);
77
78 nir_ssa_def *subcol[3];
79 subcol[0] = nir_swizzle(b, col[1], swiz, 3, true);
80 subcol[1] = nir_swizzle(b, col[2], swiz, 3, true);
81 subcol[2] = nir_swizzle(b, col[3], swiz, 3, true);
82
83 subdet[i] = build_mat3_det(b, subcol);
84 }
85
86 nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
87
88 return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
89 nir_channel(b, prod, 1)),
90 nir_fsub(b, nir_channel(b, prod, 2),
91 nir_channel(b, prod, 3)));
92 }
93
94 static nir_ssa_def *
95 build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
96 {
97 unsigned size = glsl_get_vector_elements(src->type);
98
99 nir_ssa_def *cols[4];
100 for (unsigned i = 0; i < size; i++)
101 cols[i] = src->elems[i]->def;
102
103 switch(size) {
104 case 2: return build_mat2_det(&b->nb, cols);
105 case 3: return build_mat3_det(&b->nb, cols);
106 case 4: return build_mat4_det(&b->nb, cols);
107 default:
108 vtn_fail("Invalid matrix size");
109 }
110 }
111
112 /* Computes the determinate of the submatrix given by taking src and
113 * removing the specified row and column.
114 */
115 static nir_ssa_def *
116 build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
117 unsigned size, unsigned row, unsigned col)
118 {
119 assert(row < size && col < size);
120 if (size == 2) {
121 return nir_channel(b, src->elems[1 - col]->def, 1 - row);
122 } else {
123 /* Swizzle to get all but the specified row */
124 unsigned swiz[3];
125 for (unsigned j = 0; j < 3; j++)
126 swiz[j] = j + (j >= row);
127
128 /* Grab all but the specified column */
129 nir_ssa_def *subcol[3];
130 for (unsigned j = 0; j < size; j++) {
131 if (j != col) {
132 subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
133 swiz, size - 1, true);
134 }
135 }
136
137 if (size == 3) {
138 return build_mat2_det(b, subcol);
139 } else {
140 assert(size == 4);
141 return build_mat3_det(b, subcol);
142 }
143 }
144 }
145
146 static struct vtn_ssa_value *
147 matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
148 {
149 nir_ssa_def *adj_col[4];
150 unsigned size = glsl_get_vector_elements(src->type);
151
152 /* Build up an adjugate matrix */
153 for (unsigned c = 0; c < size; c++) {
154 nir_ssa_def *elem[4];
155 for (unsigned r = 0; r < size; r++) {
156 elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
157
158 if ((r + c) % 2)
159 elem[r] = nir_fneg(&b->nb, elem[r]);
160 }
161
162 adj_col[c] = nir_vec(&b->nb, elem, size);
163 }
164
165 nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
166
167 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
168 for (unsigned i = 0; i < size; i++)
169 val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
170
171 return val;
172 }
173
174 /**
175 * Return e^x.
176 */
177 static nir_ssa_def *
178 build_exp(nir_builder *b, nir_ssa_def *x)
179 {
180 return nir_fexp2(b, nir_fmul_imm(b, x, M_LOG2E));
181 }
182
183 /**
184 * Return ln(x) - the natural logarithm of x.
185 */
186 static nir_ssa_def *
187 build_log(nir_builder *b, nir_ssa_def *x)
188 {
189 return nir_fmul_imm(b, nir_flog2(b, x), 1.0 / M_LOG2E);
190 }
191
192 /**
193 * Approximate asin(x) by the formula:
194 * asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
195 *
196 * which is correct to first order at x=0 and x=±1 regardless of the p
197 * coefficients but can be made second-order correct at both ends by selecting
198 * the fit coefficients appropriately. Different p coefficients can be used
199 * in the asin and acos implementation to minimize some relative error metric
200 * in each case.
201 */
202 static nir_ssa_def *
203 build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
204 {
205 if (x->bit_size == 16) {
206 /* The polynomial approximation isn't precise enough to meet half-float
207 * precision requirements. Alternatively, we could implement this using
208 * the formula:
209 *
210 * asin(x) = atan2(x, sqrt(1 - x*x))
211 *
212 * But that is very expensive, so instead we just do the polynomial
213 * approximation in 32-bit math and then we convert the result back to
214 * 16-bit.
215 */
216 return nir_f2f16(b, build_asin(b, nir_f2f32(b, x), p0, p1));
217 }
218
219 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, x->bit_size);
220 nir_ssa_def *abs_x = nir_fabs(b, x);
221
222 nir_ssa_def *p0_plus_xp1 = nir_fadd_imm(b, nir_fmul_imm(b, abs_x, p1), p0);
223
224 nir_ssa_def *expr_tail =
225 nir_fadd_imm(b, nir_fmul(b, abs_x,
226 nir_fadd_imm(b, nir_fmul(b, abs_x,
227 p0_plus_xp1),
228 M_PI_4f - 1.0f)),
229 M_PI_2f);
230
231 return nir_fmul(b, nir_fsign(b, x),
232 nir_fsub(b, nir_imm_floatN_t(b, M_PI_2f, x->bit_size),
233 nir_fmul(b, nir_fsqrt(b, nir_fsub(b, one, abs_x)),
234 expr_tail)));
235 }
236
237 /**
238 * Compute xs[0] + xs[1] + xs[2] + ... using fadd.
239 */
240 static nir_ssa_def *
241 build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
242 {
243 nir_ssa_def *accum = xs[0];
244
245 for (int i = 1; i < terms; i++)
246 accum = nir_fadd(b, accum, xs[i]);
247
248 return accum;
249 }
250
251 static nir_ssa_def *
252 build_atan(nir_builder *b, nir_ssa_def *y_over_x)
253 {
254 const uint32_t bit_size = y_over_x->bit_size;
255
256 nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
257 nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, bit_size);
258
259 /*
260 * range-reduction, first step:
261 *
262 * / y_over_x if |y_over_x| <= 1.0;
263 * x = <
264 * \ 1.0 / y_over_x otherwise
265 */
266 nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
267 nir_fmax(b, abs_y_over_x, one));
268
269 /*
270 * approximate atan by evaluating polynomial:
271 *
272 * x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
273 * x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
274 * x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
275 */
276 nir_ssa_def *x_2 = nir_fmul(b, x, x);
277 nir_ssa_def *x_3 = nir_fmul(b, x_2, x);
278 nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2);
279 nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2);
280 nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2);
281 nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
282
283 nir_ssa_def *polynomial_terms[] = {
284 nir_fmul_imm(b, x, 0.9999793128310355f),
285 nir_fmul_imm(b, x_3, -0.3326756418091246f),
286 nir_fmul_imm(b, x_5, 0.1938924977115610f),
287 nir_fmul_imm(b, x_7, -0.1173503194786851f),
288 nir_fmul_imm(b, x_9, 0.0536813784310406f),
289 nir_fmul_imm(b, x_11, -0.0121323213173444f),
290 };
291
292 nir_ssa_def *tmp =
293 build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
294
295 /* range-reduction fixup */
296 tmp = nir_fadd(b, tmp,
297 nir_fmul(b, nir_b2f(b, nir_flt(b, one, abs_y_over_x), bit_size),
298 nir_fadd_imm(b, nir_fmul_imm(b, tmp, -2.0f), M_PI_2f)));
299
300 /* sign fixup */
301 return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
302 }
303
304 static nir_ssa_def *
305 build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
306 {
307 assert(y->bit_size == x->bit_size);
308 const uint32_t bit_size = x->bit_size;
309
310 nir_ssa_def *zero = nir_imm_floatN_t(b, 0, bit_size);
311 nir_ssa_def *one = nir_imm_floatN_t(b, 1, bit_size);
312
313 /* If we're on the left half-plane rotate the coordinates π/2 clock-wise
314 * for the y=0 discontinuity to end up aligned with the vertical
315 * discontinuity of atan(s/t) along t=0. This also makes sure that we
316 * don't attempt to divide by zero along the vertical line, which may give
317 * unspecified results on non-GLSL 4.1-capable hardware.
318 */
319 nir_ssa_def *flip = nir_fge(b, zero, x);
320 nir_ssa_def *s = nir_bcsel(b, flip, nir_fabs(b, x), y);
321 nir_ssa_def *t = nir_bcsel(b, flip, y, nir_fabs(b, x));
322
323 /* If the magnitude of the denominator exceeds some huge value, scale down
324 * the arguments in order to prevent the reciprocal operation from flushing
325 * its result to zero, which would cause precision problems, and for s
326 * infinite would cause us to return a NaN instead of the correct finite
327 * value.
328 *
329 * If fmin and fmax are respectively the smallest and largest positive
330 * normalized floating point values representable by the implementation,
331 * the constants below should be in agreement with:
332 *
333 * huge <= 1 / fmin
334 * scale <= 1 / fmin / fmax (for |t| >= huge)
335 *
336 * In addition scale should be a negative power of two in order to avoid
337 * loss of precision. The values chosen below should work for most usual
338 * floating point representations with at least the dynamic range of ATI's
339 * 24-bit representation.
340 */
341 const double huge_val = bit_size >= 32 ? 1e18 : 16384;
342 nir_ssa_def *huge = nir_imm_floatN_t(b, huge_val, bit_size);
343 nir_ssa_def *scale = nir_bcsel(b, nir_fge(b, nir_fabs(b, t), huge),
344 nir_imm_floatN_t(b, 0.25, bit_size), one);
345 nir_ssa_def *rcp_scaled_t = nir_frcp(b, nir_fmul(b, t, scale));
346 nir_ssa_def *s_over_t = nir_fmul(b, nir_fmul(b, s, scale), rcp_scaled_t);
347
348 /* For |x| = |y| assume tan = 1 even if infinite (i.e. pretend momentarily
349 * that ∞/∞ = 1) in order to comply with the rather artificial rules
350 * inherited from IEEE 754-2008, namely:
351 *
352 * "atan2(±∞, −∞) is ±3π/4
353 * atan2(±∞, +∞) is ±π/4"
354 *
355 * Note that this is inconsistent with the rules for the neighborhood of
356 * zero that are based on iterated limits:
357 *
358 * "atan2(±0, −0) is ±π
359 * atan2(±0, +0) is ±0"
360 *
361 * but GLSL specifically allows implementations to deviate from IEEE rules
362 * at (0,0), so we take that license (i.e. pretend that 0/0 = 1 here as
363 * well).
364 */
365 nir_ssa_def *tan = nir_bcsel(b, nir_feq(b, nir_fabs(b, x), nir_fabs(b, y)),
366 one, nir_fabs(b, s_over_t));
367
368 /* Calculate the arctangent and fix up the result if we had flipped the
369 * coordinate system.
370 */
371 nir_ssa_def *arc =
372 nir_fadd(b, nir_fmul_imm(b, nir_b2f(b, flip, bit_size), M_PI_2f),
373 build_atan(b, tan));
374
375 /* Rather convoluted calculation of the sign of the result. When x < 0 we
376 * cannot use fsign because we need to be able to distinguish between
377 * negative and positive zero. We don't use bitwise arithmetic tricks for
378 * consistency with the GLSL front-end. When x >= 0 rcp_scaled_t will
379 * always be non-negative so this won't be able to distinguish between
380 * negative and positive zero, but we don't care because atan2 is
381 * continuous along the whole positive y = 0 half-line, so it won't affect
382 * the result significantly.
383 */
384 return nir_bcsel(b, nir_flt(b, nir_fmin(b, y, rcp_scaled_t), zero),
385 nir_fneg(b, arc), arc);
386 }
387
388 static nir_ssa_def *
389 build_frexp16(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
390 {
391 assert(x->bit_size == 16);
392
393 nir_ssa_def *abs_x = nir_fabs(b, x);
394 nir_ssa_def *zero = nir_imm_floatN_t(b, 0, 16);
395
396 /* Half-precision floating-point values are stored as
397 * 1 sign bit;
398 * 5 exponent bits;
399 * 10 mantissa bits.
400 *
401 * An exponent shift of 10 will shift the mantissa out, leaving only the
402 * exponent and sign bit (which itself may be zero, if the absolute value
403 * was taken before the bitcast and shift).
404 */
405 nir_ssa_def *exponent_shift = nir_imm_int(b, 10);
406 nir_ssa_def *exponent_bias = nir_imm_intN_t(b, -14, 16);
407
408 nir_ssa_def *sign_mantissa_mask = nir_imm_intN_t(b, 0x83ffu, 16);
409
410 /* Exponent of floating-point values in the range [0.5, 1.0). */
411 nir_ssa_def *exponent_value = nir_imm_intN_t(b, 0x3800u, 16);
412
413 nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
414
415 /* Significand return must be of the same type as the input, but the
416 * exponent must be a 32-bit integer.
417 */
418 *exponent =
419 nir_i2i32(b,
420 nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
421 nir_bcsel(b, is_not_zero, exponent_bias, zero)));
422
423 return nir_ior(b, nir_iand(b, x, sign_mantissa_mask),
424 nir_bcsel(b, is_not_zero, exponent_value, zero));
425 }
426
427 static nir_ssa_def *
428 build_frexp32(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
429 {
430 nir_ssa_def *abs_x = nir_fabs(b, x);
431 nir_ssa_def *zero = nir_imm_float(b, 0.0f);
432
433 /* Single-precision floating-point values are stored as
434 * 1 sign bit;
435 * 8 exponent bits;
436 * 23 mantissa bits.
437 *
438 * An exponent shift of 23 will shift the mantissa out, leaving only the
439 * exponent and sign bit (which itself may be zero, if the absolute value
440 * was taken before the bitcast and shift.
441 */
442 nir_ssa_def *exponent_shift = nir_imm_int(b, 23);
443 nir_ssa_def *exponent_bias = nir_imm_int(b, -126);
444
445 nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x807fffffu);
446
447 /* Exponent of floating-point values in the range [0.5, 1.0). */
448 nir_ssa_def *exponent_value = nir_imm_int(b, 0x3f000000u);
449
450 nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
451
452 *exponent =
453 nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
454 nir_bcsel(b, is_not_zero, exponent_bias, zero));
455
456 return nir_ior(b, nir_iand(b, x, sign_mantissa_mask),
457 nir_bcsel(b, is_not_zero, exponent_value, zero));
458 }
459
460 static nir_ssa_def *
461 build_frexp64(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
462 {
463 nir_ssa_def *abs_x = nir_fabs(b, x);
464 nir_ssa_def *zero = nir_imm_double(b, 0.0);
465 nir_ssa_def *zero32 = nir_imm_float(b, 0.0f);
466
467 /* Double-precision floating-point values are stored as
468 * 1 sign bit;
469 * 11 exponent bits;
470 * 52 mantissa bits.
471 *
472 * We only need to deal with the exponent so first we extract the upper 32
473 * bits using nir_unpack_64_2x32_split_y.
474 */
475 nir_ssa_def *upper_x = nir_unpack_64_2x32_split_y(b, x);
476 nir_ssa_def *abs_upper_x = nir_unpack_64_2x32_split_y(b, abs_x);
477
478 /* An exponent shift of 20 will shift the remaining mantissa bits out,
479 * leaving only the exponent and sign bit (which itself may be zero, if the
480 * absolute value was taken before the bitcast and shift.
481 */
482 nir_ssa_def *exponent_shift = nir_imm_int(b, 20);
483 nir_ssa_def *exponent_bias = nir_imm_int(b, -1022);
484
485 nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x800fffffu);
486
487 /* Exponent of floating-point values in the range [0.5, 1.0). */
488 nir_ssa_def *exponent_value = nir_imm_int(b, 0x3fe00000u);
489
490 nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
491
492 *exponent =
493 nir_iadd(b, nir_ushr(b, abs_upper_x, exponent_shift),
494 nir_bcsel(b, is_not_zero, exponent_bias, zero32));
495
496 nir_ssa_def *new_upper =
497 nir_ior(b, nir_iand(b, upper_x, sign_mantissa_mask),
498 nir_bcsel(b, is_not_zero, exponent_value, zero32));
499
500 nir_ssa_def *lower_x = nir_unpack_64_2x32_split_x(b, x);
501
502 return nir_pack_64_2x32_split(b, lower_x, new_upper);
503 }
504
505 static nir_op
506 vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b,
507 enum GLSLstd450 opcode)
508 {
509 switch (opcode) {
510 case GLSLstd450Round: return nir_op_fround_even;
511 case GLSLstd450RoundEven: return nir_op_fround_even;
512 case GLSLstd450Trunc: return nir_op_ftrunc;
513 case GLSLstd450FAbs: return nir_op_fabs;
514 case GLSLstd450SAbs: return nir_op_iabs;
515 case GLSLstd450FSign: return nir_op_fsign;
516 case GLSLstd450SSign: return nir_op_isign;
517 case GLSLstd450Floor: return nir_op_ffloor;
518 case GLSLstd450Ceil: return nir_op_fceil;
519 case GLSLstd450Fract: return nir_op_ffract;
520 case GLSLstd450Sin: return nir_op_fsin;
521 case GLSLstd450Cos: return nir_op_fcos;
522 case GLSLstd450Pow: return nir_op_fpow;
523 case GLSLstd450Exp2: return nir_op_fexp2;
524 case GLSLstd450Log2: return nir_op_flog2;
525 case GLSLstd450Sqrt: return nir_op_fsqrt;
526 case GLSLstd450InverseSqrt: return nir_op_frsq;
527 case GLSLstd450NMin: return nir_op_fmin;
528 case GLSLstd450FMin: return nir_op_fmin;
529 case GLSLstd450UMin: return nir_op_umin;
530 case GLSLstd450SMin: return nir_op_imin;
531 case GLSLstd450NMax: return nir_op_fmax;
532 case GLSLstd450FMax: return nir_op_fmax;
533 case GLSLstd450UMax: return nir_op_umax;
534 case GLSLstd450SMax: return nir_op_imax;
535 case GLSLstd450FMix: return nir_op_flrp;
536 case GLSLstd450Fma: return nir_op_ffma;
537 case GLSLstd450Ldexp: return nir_op_ldexp;
538 case GLSLstd450FindILsb: return nir_op_find_lsb;
539 case GLSLstd450FindSMsb: return nir_op_ifind_msb;
540 case GLSLstd450FindUMsb: return nir_op_ufind_msb;
541
542 /* Packing/Unpacking functions */
543 case GLSLstd450PackSnorm4x8: return nir_op_pack_snorm_4x8;
544 case GLSLstd450PackUnorm4x8: return nir_op_pack_unorm_4x8;
545 case GLSLstd450PackSnorm2x16: return nir_op_pack_snorm_2x16;
546 case GLSLstd450PackUnorm2x16: return nir_op_pack_unorm_2x16;
547 case GLSLstd450PackHalf2x16: return nir_op_pack_half_2x16;
548 case GLSLstd450PackDouble2x32: return nir_op_pack_64_2x32;
549 case GLSLstd450UnpackSnorm4x8: return nir_op_unpack_snorm_4x8;
550 case GLSLstd450UnpackUnorm4x8: return nir_op_unpack_unorm_4x8;
551 case GLSLstd450UnpackSnorm2x16: return nir_op_unpack_snorm_2x16;
552 case GLSLstd450UnpackUnorm2x16: return nir_op_unpack_unorm_2x16;
553 case GLSLstd450UnpackHalf2x16: return nir_op_unpack_half_2x16;
554 case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32;
555
556 default:
557 vtn_fail("No NIR equivalent");
558 }
559 }
560
561 #define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size))
562
563 static void
564 handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
565 const uint32_t *w, unsigned count)
566 {
567 struct nir_builder *nb = &b->nb;
568 const struct glsl_type *dest_type =
569 vtn_value(b, w[1], vtn_value_type_type)->type->type;
570
571 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
572 val->ssa = vtn_create_ssa_value(b, dest_type);
573
574 /* Collect the various SSA sources */
575 unsigned num_inputs = count - 5;
576 nir_ssa_def *src[3] = { NULL, };
577 for (unsigned i = 0; i < num_inputs; i++) {
578 /* These are handled specially below */
579 if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer)
580 continue;
581
582 src[i] = vtn_ssa_value(b, w[i + 5])->def;
583 }
584
585 switch (entrypoint) {
586 case GLSLstd450Radians:
587 val->ssa->def = nir_radians(nb, src[0]);
588 return;
589 case GLSLstd450Degrees:
590 val->ssa->def = nir_degrees(nb, src[0]);
591 return;
592 case GLSLstd450Tan:
593 val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
594 nir_fcos(nb, src[0]));
595 return;
596
597 case GLSLstd450Modf: {
598 nir_ssa_def *sign = nir_fsign(nb, src[0]);
599 nir_ssa_def *abs = nir_fabs(nb, src[0]);
600 val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
601 nir_store_deref(nb, vtn_nir_deref(b, w[6]),
602 nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
603 return;
604 }
605
606 case GLSLstd450ModfStruct: {
607 nir_ssa_def *sign = nir_fsign(nb, src[0]);
608 nir_ssa_def *abs = nir_fabs(nb, src[0]);
609 vtn_assert(glsl_type_is_struct(val->ssa->type));
610 val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
611 val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
612 return;
613 }
614
615 case GLSLstd450Step:
616 val->ssa->def = nir_sge(nb, src[1], src[0]);
617 return;
618
619 case GLSLstd450Length:
620 val->ssa->def = nir_fast_length(nb, src[0]);
621 return;
622 case GLSLstd450Distance:
623 val->ssa->def = nir_fast_distance(nb, src[0], src[1]);
624 return;
625 case GLSLstd450Normalize:
626 val->ssa->def = nir_fast_normalize(nb, src[0]);
627 return;
628
629 case GLSLstd450Exp:
630 val->ssa->def = build_exp(nb, src[0]);
631 return;
632
633 case GLSLstd450Log:
634 val->ssa->def = build_log(nb, src[0]);
635 return;
636
637 case GLSLstd450FClamp:
638 case GLSLstd450NClamp:
639 val->ssa->def = nir_fclamp(nb, src[0], src[1], src[2]);
640 return;
641 case GLSLstd450UClamp:
642 val->ssa->def = nir_uclamp(nb, src[0], src[1], src[2]);
643 return;
644 case GLSLstd450SClamp:
645 val->ssa->def = nir_iclamp(nb, src[0], src[1], src[2]);
646 return;
647
648 case GLSLstd450Cross: {
649 val->ssa->def = nir_cross3(nb, src[0], src[1]);
650 return;
651 }
652
653 case GLSLstd450SmoothStep: {
654 val->ssa->def = nir_smoothstep(nb, src[0], src[1], src[2]);
655 return;
656 }
657
658 case GLSLstd450FaceForward:
659 val->ssa->def =
660 nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
661 NIR_IMM_FP(nb, 0.0)),
662 src[0], nir_fneg(nb, src[0]));
663 return;
664
665 case GLSLstd450Reflect:
666 /* I - 2 * dot(N, I) * N */
667 val->ssa->def =
668 nir_fsub(nb, src[0], nir_fmul(nb, NIR_IMM_FP(nb, 2.0),
669 nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
670 src[1])));
671 return;
672
673 case GLSLstd450Refract: {
674 nir_ssa_def *I = src[0];
675 nir_ssa_def *N = src[1];
676 nir_ssa_def *eta = src[2];
677 nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
678 nir_ssa_def *one = NIR_IMM_FP(nb, 1.0);
679 nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0);
680 /* According to the SPIR-V and GLSL specs, eta is always a float
681 * regardless of the type of the other operands. However in practice it
682 * seems that if you try to pass it a float then glslang will just
683 * promote it to a double and generate invalid SPIR-V. In order to
684 * support a hypothetical fixed version of glslang we’ll promote eta to
685 * double if the other operands are double also.
686 */
687 if (I->bit_size != eta->bit_size) {
688 nir_op conversion_op =
689 nir_type_conversion_op(nir_type_float | eta->bit_size,
690 nir_type_float | I->bit_size,
691 nir_rounding_mode_undef);
692 eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL);
693 }
694 /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
695 nir_ssa_def *k =
696 nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
697 nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
698 nir_ssa_def *result =
699 nir_fsub(nb, nir_fmul(nb, eta, I),
700 nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
701 nir_fsqrt(nb, k)), N));
702 /* XXX: bcsel, or if statement? */
703 val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
704 return;
705 }
706
707 case GLSLstd450Sinh:
708 /* 0.5 * (e^x - e^(-x)) */
709 val->ssa->def =
710 nir_fmul_imm(nb, nir_fsub(nb, build_exp(nb, src[0]),
711 build_exp(nb, nir_fneg(nb, src[0]))),
712 0.5f);
713 return;
714
715 case GLSLstd450Cosh:
716 /* 0.5 * (e^x + e^(-x)) */
717 val->ssa->def =
718 nir_fmul_imm(nb, nir_fadd(nb, build_exp(nb, src[0]),
719 build_exp(nb, nir_fneg(nb, src[0]))),
720 0.5f);
721 return;
722
723 case GLSLstd450Tanh: {
724 /* tanh(x) := (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x)))
725 *
726 * With a little algebra this reduces to (e^2x - 1) / (e^2x + 1)
727 *
728 * We clamp x to (-inf, +10] to avoid precision problems. When x > 10,
729 * e^2x is so much larger than 1.0 that 1.0 gets flushed to zero in the
730 * computation e^2x +/- 1 so it can be ignored.
731 *
732 * For 16-bit precision we clamp x to (-inf, +4.2] since the maximum
733 * representable number is only 65,504 and e^(2*6) exceeds that. Also,
734 * if x > 4.2, tanh(x) will return 1.0 in fp16.
735 */
736 const uint32_t bit_size = src[0]->bit_size;
737 const double clamped_x = bit_size > 16 ? 10.0 : 4.2;
738 nir_ssa_def *x = nir_fmin(nb, src[0],
739 nir_imm_floatN_t(nb, clamped_x, bit_size));
740 nir_ssa_def *exp2x = build_exp(nb, nir_fmul_imm(nb, x, 2.0));
741 val->ssa->def = nir_fdiv(nb, nir_fadd_imm(nb, exp2x, -1.0),
742 nir_fadd_imm(nb, exp2x, 1.0));
743 return;
744 }
745
746 case GLSLstd450Asinh:
747 val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
748 build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
749 nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
750 1.0f)))));
751 return;
752 case GLSLstd450Acosh:
753 val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
754 nir_fsqrt(nb, nir_fadd_imm(nb, nir_fmul(nb, src[0], src[0]),
755 -1.0f))));
756 return;
757 case GLSLstd450Atanh: {
758 nir_ssa_def *one = nir_imm_floatN_t(nb, 1.0, src[0]->bit_size);
759 val->ssa->def =
760 nir_fmul_imm(nb, build_log(nb, nir_fdiv(nb, nir_fadd(nb, src[0], one),
761 nir_fsub(nb, one, src[0]))),
762 0.5f);
763 return;
764 }
765
766 case GLSLstd450Asin:
767 val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
768 return;
769
770 case GLSLstd450Acos:
771 val->ssa->def =
772 nir_fsub(nb, nir_imm_floatN_t(nb, M_PI_2f, src[0]->bit_size),
773 build_asin(nb, src[0], 0.08132463, -0.02363318));
774 return;
775
776 case GLSLstd450Atan:
777 val->ssa->def = build_atan(nb, src[0]);
778 return;
779
780 case GLSLstd450Atan2:
781 val->ssa->def = build_atan2(nb, src[0], src[1]);
782 return;
783
784 case GLSLstd450Frexp: {
785 nir_ssa_def *exponent;
786 if (src[0]->bit_size == 64)
787 val->ssa->def = build_frexp64(nb, src[0], &exponent);
788 else if (src[0]->bit_size == 32)
789 val->ssa->def = build_frexp32(nb, src[0], &exponent);
790 else
791 val->ssa->def = build_frexp16(nb, src[0], &exponent);
792 nir_store_deref(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
793 return;
794 }
795
796 case GLSLstd450FrexpStruct: {
797 vtn_assert(glsl_type_is_struct(val->ssa->type));
798 if (src[0]->bit_size == 64)
799 val->ssa->elems[0]->def = build_frexp64(nb, src[0],
800 &val->ssa->elems[1]->def);
801 else if (src[0]->bit_size == 32)
802 val->ssa->elems[0]->def = build_frexp32(nb, src[0],
803 &val->ssa->elems[1]->def);
804 else
805 val->ssa->elems[0]->def = build_frexp16(nb, src[0],
806 &val->ssa->elems[1]->def);
807 return;
808 }
809
810 default:
811 val->ssa->def =
812 nir_build_alu(&b->nb,
813 vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint),
814 src[0], src[1], src[2], NULL);
815 return;
816 }
817 }
818
819 static void
820 handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode,
821 const uint32_t *w, unsigned count)
822 {
823 const struct glsl_type *dest_type =
824 vtn_value(b, w[1], vtn_value_type_type)->type->type;
825
826 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
827 val->ssa = vtn_create_ssa_value(b, dest_type);
828
829 nir_intrinsic_op op;
830 switch (opcode) {
831 case GLSLstd450InterpolateAtCentroid:
832 op = nir_intrinsic_interp_deref_at_centroid;
833 break;
834 case GLSLstd450InterpolateAtSample:
835 op = nir_intrinsic_interp_deref_at_sample;
836 break;
837 case GLSLstd450InterpolateAtOffset:
838 op = nir_intrinsic_interp_deref_at_offset;
839 break;
840 default:
841 vtn_fail("Invalid opcode");
842 }
843
844 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op);
845
846 struct vtn_pointer *ptr =
847 vtn_value(b, w[5], vtn_value_type_pointer)->pointer;
848 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
849
850 /* If the value we are interpolating has an index into a vector then
851 * interpolate the vector and index the result of that instead. This is
852 * necessary because the index will get generated as a series of nir_bcsel
853 * instructions so it would no longer be an input variable.
854 */
855 const bool vec_array_deref = deref->deref_type == nir_deref_type_array &&
856 glsl_type_is_vector(nir_deref_instr_parent(deref)->type);
857
858 nir_deref_instr *vec_deref = NULL;
859 if (vec_array_deref) {
860 vec_deref = deref;
861 deref = nir_deref_instr_parent(deref);
862 }
863 intrin->src[0] = nir_src_for_ssa(&deref->dest.ssa);
864
865 switch (opcode) {
866 case GLSLstd450InterpolateAtCentroid:
867 break;
868 case GLSLstd450InterpolateAtSample:
869 case GLSLstd450InterpolateAtOffset:
870 intrin->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
871 break;
872 default:
873 vtn_fail("Invalid opcode");
874 }
875
876 intrin->num_components = glsl_get_vector_elements(deref->type);
877 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
878 glsl_get_vector_elements(deref->type),
879 glsl_get_bit_size(deref->type), NULL);
880
881 nir_builder_instr_insert(&b->nb, &intrin->instr);
882
883 if (vec_array_deref) {
884 assert(vec_deref);
885 if (nir_src_is_const(vec_deref->arr.index)) {
886 val->ssa->def = vtn_vector_extract(b, &intrin->dest.ssa,
887 nir_src_as_uint(vec_deref->arr.index));
888 } else {
889 val->ssa->def = vtn_vector_extract_dynamic(b, &intrin->dest.ssa,
890 vec_deref->arr.index.ssa);
891 }
892 } else {
893 val->ssa->def = &intrin->dest.ssa;
894 }
895 }
896
897 bool
898 vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode,
899 const uint32_t *w, unsigned count)
900 {
901 switch ((enum GLSLstd450)ext_opcode) {
902 case GLSLstd450Determinant: {
903 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
904 val->ssa = rzalloc(b, struct vtn_ssa_value);
905 val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
906 val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
907 break;
908 }
909
910 case GLSLstd450MatrixInverse: {
911 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
912 val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
913 break;
914 }
915
916 case GLSLstd450InterpolateAtCentroid:
917 case GLSLstd450InterpolateAtSample:
918 case GLSLstd450InterpolateAtOffset:
919 handle_glsl450_interpolation(b, ext_opcode, w, count);
920 break;
921
922 default:
923 handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
924 }
925
926 return true;
927 }