spirv: propagate the access flag for store and load derefs
[mesa.git] / src / compiler / spirv / vtn_variables.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "spirv_info.h"
30 #include "nir_deref.h"
31 #include <vulkan/vulkan_core.h>
32
33 static struct vtn_access_chain *
34 vtn_access_chain_create(struct vtn_builder *b, unsigned length)
35 {
36 struct vtn_access_chain *chain;
37
38 /* Subtract 1 from the length since there's already one built in */
39 size_t size = sizeof(*chain) +
40 (MAX2(length, 1) - 1) * sizeof(chain->link[0]);
41 chain = rzalloc_size(b, size);
42 chain->length = length;
43
44 return chain;
45 }
46
47 bool
48 vtn_pointer_uses_ssa_offset(struct vtn_builder *b,
49 struct vtn_pointer *ptr)
50 {
51 return ((ptr->mode == vtn_variable_mode_ubo ||
52 ptr->mode == vtn_variable_mode_ssbo) &&
53 b->options->lower_ubo_ssbo_access_to_offsets) ||
54 ptr->mode == vtn_variable_mode_push_constant ||
55 (ptr->mode == vtn_variable_mode_workgroup &&
56 b->options->lower_workgroup_access_to_offsets);
57 }
58
59 static bool
60 vtn_pointer_is_external_block(struct vtn_builder *b,
61 struct vtn_pointer *ptr)
62 {
63 return ptr->mode == vtn_variable_mode_ssbo ||
64 ptr->mode == vtn_variable_mode_ubo ||
65 ptr->mode == vtn_variable_mode_phys_ssbo ||
66 ptr->mode == vtn_variable_mode_push_constant ||
67 (ptr->mode == vtn_variable_mode_workgroup &&
68 b->options->lower_workgroup_access_to_offsets);
69 }
70
71 static nir_ssa_def *
72 vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
73 unsigned stride, unsigned bit_size)
74 {
75 vtn_assert(stride > 0);
76 if (link.mode == vtn_access_mode_literal) {
77 return nir_imm_intN_t(&b->nb, link.id * stride, bit_size);
78 } else {
79 nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def;
80 if (ssa->bit_size != bit_size)
81 ssa = nir_i2i(&b->nb, ssa, bit_size);
82 return nir_imul_imm(&b->nb, ssa, stride);
83 }
84 }
85
86 static VkDescriptorType
87 vk_desc_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode)
88 {
89 switch (mode) {
90 case vtn_variable_mode_ubo:
91 return VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
92 case vtn_variable_mode_ssbo:
93 return VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
94 default:
95 vtn_fail("Invalid mode for vulkan_resource_index");
96 }
97 }
98
99 static const struct glsl_type *
100 vtn_ptr_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode)
101 {
102 switch (mode) {
103 case vtn_variable_mode_ubo:
104 return b->options->ubo_ptr_type;
105 case vtn_variable_mode_ssbo:
106 return b->options->ssbo_ptr_type;
107 default:
108 vtn_fail("Invalid mode for vulkan_resource_index");
109 }
110 }
111
112 static nir_ssa_def *
113 vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
114 nir_ssa_def *desc_array_index)
115 {
116 if (!desc_array_index) {
117 vtn_assert(glsl_type_is_struct_or_ifc(var->type->type));
118 desc_array_index = nir_imm_int(&b->nb, 0);
119 }
120
121 nir_intrinsic_instr *instr =
122 nir_intrinsic_instr_create(b->nb.shader,
123 nir_intrinsic_vulkan_resource_index);
124 instr->src[0] = nir_src_for_ssa(desc_array_index);
125 nir_intrinsic_set_desc_set(instr, var->descriptor_set);
126 nir_intrinsic_set_binding(instr, var->binding);
127 nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, var->mode));
128
129 const struct glsl_type *index_type =
130 b->options->lower_ubo_ssbo_access_to_offsets ?
131 glsl_uint_type() : vtn_ptr_type_for_mode(b, var->mode);
132
133 instr->num_components = glsl_get_vector_elements(index_type);
134 nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components,
135 glsl_get_bit_size(index_type), NULL);
136 nir_builder_instr_insert(&b->nb, &instr->instr);
137
138 return &instr->dest.ssa;
139 }
140
141 static nir_ssa_def *
142 vtn_resource_reindex(struct vtn_builder *b, enum vtn_variable_mode mode,
143 nir_ssa_def *base_index, nir_ssa_def *offset_index)
144 {
145 nir_intrinsic_instr *instr =
146 nir_intrinsic_instr_create(b->nb.shader,
147 nir_intrinsic_vulkan_resource_reindex);
148 instr->src[0] = nir_src_for_ssa(base_index);
149 instr->src[1] = nir_src_for_ssa(offset_index);
150 nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, mode));
151
152 const struct glsl_type *index_type =
153 b->options->lower_ubo_ssbo_access_to_offsets ?
154 glsl_uint_type() : vtn_ptr_type_for_mode(b, mode);
155
156 instr->num_components = glsl_get_vector_elements(index_type);
157 nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components,
158 glsl_get_bit_size(index_type), NULL);
159 nir_builder_instr_insert(&b->nb, &instr->instr);
160
161 return &instr->dest.ssa;
162 }
163
164 static nir_ssa_def *
165 vtn_descriptor_load(struct vtn_builder *b, enum vtn_variable_mode mode,
166 nir_ssa_def *desc_index)
167 {
168 nir_intrinsic_instr *desc_load =
169 nir_intrinsic_instr_create(b->nb.shader,
170 nir_intrinsic_load_vulkan_descriptor);
171 desc_load->src[0] = nir_src_for_ssa(desc_index);
172 nir_intrinsic_set_desc_type(desc_load, vk_desc_type_for_mode(b, mode));
173
174 const struct glsl_type *ptr_type = vtn_ptr_type_for_mode(b, mode);
175
176 desc_load->num_components = glsl_get_vector_elements(ptr_type);
177 nir_ssa_dest_init(&desc_load->instr, &desc_load->dest,
178 desc_load->num_components,
179 glsl_get_bit_size(ptr_type), NULL);
180 nir_builder_instr_insert(&b->nb, &desc_load->instr);
181
182 return &desc_load->dest.ssa;
183 }
184
185 /* Dereference the given base pointer by the access chain */
186 static struct vtn_pointer *
187 vtn_nir_deref_pointer_dereference(struct vtn_builder *b,
188 struct vtn_pointer *base,
189 struct vtn_access_chain *deref_chain)
190 {
191 struct vtn_type *type = base->type;
192 enum gl_access_qualifier access = base->access;
193 unsigned idx = 0;
194
195 nir_deref_instr *tail;
196 if (base->deref) {
197 tail = base->deref;
198 } else if (vtn_pointer_is_external_block(b, base)) {
199 nir_ssa_def *block_index = base->block_index;
200
201 /* We dereferencing an external block pointer. Correctness of this
202 * operation relies on one particular line in the SPIR-V spec, section
203 * entitled "Validation Rules for Shader Capabilities":
204 *
205 * "Block and BufferBlock decorations cannot decorate a structure
206 * type that is nested at any level inside another structure type
207 * decorated with Block or BufferBlock."
208 *
209 * This means that we can detect the point where we cross over from
210 * descriptor indexing to buffer indexing by looking for the block
211 * decorated struct type. Anything before the block decorated struct
212 * type is a descriptor indexing operation and anything after the block
213 * decorated struct is a buffer offset operation.
214 */
215
216 /* Figure out the descriptor array index if any
217 *
218 * Some of the Vulkan CTS tests with hand-rolled SPIR-V have been known
219 * to forget the Block or BufferBlock decoration from time to time.
220 * It's more robust if we check for both !block_index and for the type
221 * to contain a block. This way there's a decent chance that arrays of
222 * UBOs/SSBOs will work correctly even if variable pointers are
223 * completley toast.
224 */
225 nir_ssa_def *desc_arr_idx = NULL;
226 if (!block_index || vtn_type_contains_block(b, type)) {
227 /* If our type contains a block, then we're still outside the block
228 * and we need to process enough levels of dereferences to get inside
229 * of it.
230 */
231 if (deref_chain->ptr_as_array) {
232 unsigned aoa_size = glsl_get_aoa_size(type->type);
233 desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[idx],
234 MAX2(aoa_size, 1), 32);
235 idx++;
236 }
237
238 for (; idx < deref_chain->length; idx++) {
239 if (type->base_type != vtn_base_type_array) {
240 vtn_assert(type->base_type == vtn_base_type_struct);
241 break;
242 }
243
244 unsigned aoa_size = glsl_get_aoa_size(type->array_element->type);
245 nir_ssa_def *arr_offset =
246 vtn_access_link_as_ssa(b, deref_chain->link[idx],
247 MAX2(aoa_size, 1), 32);
248 if (desc_arr_idx)
249 desc_arr_idx = nir_iadd(&b->nb, desc_arr_idx, arr_offset);
250 else
251 desc_arr_idx = arr_offset;
252
253 type = type->array_element;
254 access |= type->access;
255 }
256 }
257
258 if (!block_index) {
259 vtn_assert(base->var && base->type);
260 block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
261 } else if (desc_arr_idx) {
262 block_index = vtn_resource_reindex(b, base->mode,
263 block_index, desc_arr_idx);
264 }
265
266 if (idx == deref_chain->length) {
267 /* The entire deref was consumed in finding the block index. Return
268 * a pointer which just has a block index and a later access chain
269 * will dereference deeper.
270 */
271 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
272 ptr->mode = base->mode;
273 ptr->type = type;
274 ptr->block_index = block_index;
275 ptr->access = access;
276 return ptr;
277 }
278
279 /* If we got here, there's more access chain to handle and we have the
280 * final block index. Insert a descriptor load and cast to a deref to
281 * start the deref chain.
282 */
283 nir_ssa_def *desc = vtn_descriptor_load(b, base->mode, block_index);
284
285 assert(base->mode == vtn_variable_mode_ssbo ||
286 base->mode == vtn_variable_mode_ubo);
287 nir_variable_mode nir_mode =
288 base->mode == vtn_variable_mode_ssbo ? nir_var_mem_ssbo : nir_var_mem_ubo;
289
290 tail = nir_build_deref_cast(&b->nb, desc, nir_mode, type->type,
291 base->ptr_type->stride);
292 } else {
293 assert(base->var && base->var->var);
294 tail = nir_build_deref_var(&b->nb, base->var->var);
295 if (base->ptr_type && base->ptr_type->type) {
296 tail->dest.ssa.num_components =
297 glsl_get_vector_elements(base->ptr_type->type);
298 tail->dest.ssa.bit_size = glsl_get_bit_size(base->ptr_type->type);
299 }
300 }
301
302 if (idx == 0 && deref_chain->ptr_as_array) {
303 /* We start with a deref cast to get the stride. Hopefully, we'll be
304 * able to delete that cast eventually.
305 */
306 tail = nir_build_deref_cast(&b->nb, &tail->dest.ssa, tail->mode,
307 tail->type, base->ptr_type->stride);
308
309 nir_ssa_def *index = vtn_access_link_as_ssa(b, deref_chain->link[0], 1,
310 tail->dest.ssa.bit_size);
311 tail = nir_build_deref_ptr_as_array(&b->nb, tail, index);
312 idx++;
313 }
314
315 for (; idx < deref_chain->length; idx++) {
316 if (glsl_type_is_struct_or_ifc(type->type)) {
317 vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
318 unsigned field = deref_chain->link[idx].id;
319 tail = nir_build_deref_struct(&b->nb, tail, field);
320 type = type->members[field];
321 } else {
322 nir_ssa_def *arr_index =
323 vtn_access_link_as_ssa(b, deref_chain->link[idx], 1,
324 tail->dest.ssa.bit_size);
325 tail = nir_build_deref_array(&b->nb, tail, arr_index);
326 type = type->array_element;
327 }
328
329 access |= type->access;
330 }
331
332 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
333 ptr->mode = base->mode;
334 ptr->type = type;
335 ptr->var = base->var;
336 ptr->deref = tail;
337 ptr->access = access;
338
339 return ptr;
340 }
341
342 static struct vtn_pointer *
343 vtn_ssa_offset_pointer_dereference(struct vtn_builder *b,
344 struct vtn_pointer *base,
345 struct vtn_access_chain *deref_chain)
346 {
347 nir_ssa_def *block_index = base->block_index;
348 nir_ssa_def *offset = base->offset;
349 struct vtn_type *type = base->type;
350 enum gl_access_qualifier access = base->access;
351
352 unsigned idx = 0;
353 if (base->mode == vtn_variable_mode_ubo ||
354 base->mode == vtn_variable_mode_ssbo) {
355 if (!block_index) {
356 vtn_assert(base->var && base->type);
357 nir_ssa_def *desc_arr_idx;
358 if (glsl_type_is_array(type->type)) {
359 if (deref_chain->length >= 1) {
360 desc_arr_idx =
361 vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
362 idx++;
363 /* This consumes a level of type */
364 type = type->array_element;
365 access |= type->access;
366 } else {
367 /* This is annoying. We've been asked for a pointer to the
368 * array of UBOs/SSBOs and not a specifc buffer. Return a
369 * pointer with a descriptor index of 0 and we'll have to do
370 * a reindex later to adjust it to the right thing.
371 */
372 desc_arr_idx = nir_imm_int(&b->nb, 0);
373 }
374 } else if (deref_chain->ptr_as_array) {
375 /* You can't have a zero-length OpPtrAccessChain */
376 vtn_assert(deref_chain->length >= 1);
377 desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
378 } else {
379 /* We have a regular non-array SSBO. */
380 desc_arr_idx = NULL;
381 }
382 block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
383 } else if (deref_chain->ptr_as_array &&
384 type->base_type == vtn_base_type_struct && type->block) {
385 /* We are doing an OpPtrAccessChain on a pointer to a struct that is
386 * decorated block. This is an interesting corner in the SPIR-V
387 * spec. One interpretation would be that they client is clearly
388 * trying to treat that block as if it's an implicit array of blocks
389 * repeated in the buffer. However, the SPIR-V spec for the
390 * OpPtrAccessChain says:
391 *
392 * "Base is treated as the address of the first element of an
393 * array, and the Element element’s address is computed to be the
394 * base for the Indexes, as per OpAccessChain."
395 *
396 * Taken literally, that would mean that your struct type is supposed
397 * to be treated as an array of such a struct and, since it's
398 * decorated block, that means an array of blocks which corresponds
399 * to an array descriptor. Therefore, we need to do a reindex
400 * operation to add the index from the first link in the access chain
401 * to the index we recieved.
402 *
403 * The downside to this interpretation (there always is one) is that
404 * this might be somewhat surprising behavior to apps if they expect
405 * the implicit array behavior described above.
406 */
407 vtn_assert(deref_chain->length >= 1);
408 nir_ssa_def *offset_index =
409 vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
410 idx++;
411
412 block_index = vtn_resource_reindex(b, base->mode,
413 block_index, offset_index);
414 }
415 }
416
417 if (!offset) {
418 if (base->mode == vtn_variable_mode_workgroup) {
419 /* SLM doesn't need nor have a block index */
420 vtn_assert(!block_index);
421
422 /* We need the variable for the base offset */
423 vtn_assert(base->var);
424
425 /* We need ptr_type for size and alignment */
426 vtn_assert(base->ptr_type);
427
428 /* Assign location on first use so that we don't end up bloating SLM
429 * address space for variables which are never statically used.
430 */
431 if (base->var->shared_location < 0) {
432 vtn_assert(base->ptr_type->length > 0 && base->ptr_type->align > 0);
433 b->shader->num_shared = vtn_align_u32(b->shader->num_shared,
434 base->ptr_type->align);
435 base->var->shared_location = b->shader->num_shared;
436 b->shader->num_shared += base->ptr_type->length;
437 }
438
439 offset = nir_imm_int(&b->nb, base->var->shared_location);
440 } else if (base->mode == vtn_variable_mode_push_constant) {
441 /* Push constants neither need nor have a block index */
442 vtn_assert(!block_index);
443
444 /* Start off with at the start of the push constant block. */
445 offset = nir_imm_int(&b->nb, 0);
446 } else {
447 /* The code above should have ensured a block_index when needed. */
448 vtn_assert(block_index);
449
450 /* Start off with at the start of the buffer. */
451 offset = nir_imm_int(&b->nb, 0);
452 }
453 }
454
455 if (deref_chain->ptr_as_array && idx == 0) {
456 /* We need ptr_type for the stride */
457 vtn_assert(base->ptr_type);
458
459 /* We need at least one element in the chain */
460 vtn_assert(deref_chain->length >= 1);
461
462 nir_ssa_def *elem_offset =
463 vtn_access_link_as_ssa(b, deref_chain->link[idx],
464 base->ptr_type->stride, offset->bit_size);
465 offset = nir_iadd(&b->nb, offset, elem_offset);
466 idx++;
467 }
468
469 for (; idx < deref_chain->length; idx++) {
470 switch (glsl_get_base_type(type->type)) {
471 case GLSL_TYPE_UINT:
472 case GLSL_TYPE_INT:
473 case GLSL_TYPE_UINT16:
474 case GLSL_TYPE_INT16:
475 case GLSL_TYPE_UINT8:
476 case GLSL_TYPE_INT8:
477 case GLSL_TYPE_UINT64:
478 case GLSL_TYPE_INT64:
479 case GLSL_TYPE_FLOAT:
480 case GLSL_TYPE_FLOAT16:
481 case GLSL_TYPE_DOUBLE:
482 case GLSL_TYPE_BOOL:
483 case GLSL_TYPE_ARRAY: {
484 nir_ssa_def *elem_offset =
485 vtn_access_link_as_ssa(b, deref_chain->link[idx],
486 type->stride, offset->bit_size);
487 offset = nir_iadd(&b->nb, offset, elem_offset);
488 type = type->array_element;
489 access |= type->access;
490 break;
491 }
492
493 case GLSL_TYPE_INTERFACE:
494 case GLSL_TYPE_STRUCT: {
495 vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
496 unsigned member = deref_chain->link[idx].id;
497 offset = nir_iadd_imm(&b->nb, offset, type->offsets[member]);
498 type = type->members[member];
499 access |= type->access;
500 break;
501 }
502
503 default:
504 vtn_fail("Invalid type for deref");
505 }
506 }
507
508 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
509 ptr->mode = base->mode;
510 ptr->type = type;
511 ptr->block_index = block_index;
512 ptr->offset = offset;
513 ptr->access = access;
514
515 return ptr;
516 }
517
518 /* Dereference the given base pointer by the access chain */
519 static struct vtn_pointer *
520 vtn_pointer_dereference(struct vtn_builder *b,
521 struct vtn_pointer *base,
522 struct vtn_access_chain *deref_chain)
523 {
524 if (vtn_pointer_uses_ssa_offset(b, base)) {
525 return vtn_ssa_offset_pointer_dereference(b, base, deref_chain);
526 } else {
527 return vtn_nir_deref_pointer_dereference(b, base, deref_chain);
528 }
529 }
530
531 struct vtn_pointer *
532 vtn_pointer_for_variable(struct vtn_builder *b,
533 struct vtn_variable *var, struct vtn_type *ptr_type)
534 {
535 struct vtn_pointer *pointer = rzalloc(b, struct vtn_pointer);
536
537 pointer->mode = var->mode;
538 pointer->type = var->type;
539 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
540 vtn_assert(ptr_type->deref->type == var->type->type);
541 pointer->ptr_type = ptr_type;
542 pointer->var = var;
543 pointer->access = var->access | var->type->access;
544
545 return pointer;
546 }
547
548 /* Returns an atomic_uint type based on the original uint type. The returned
549 * type will be equivalent to the original one but will have an atomic_uint
550 * type as leaf instead of an uint.
551 *
552 * Manages uint scalars, arrays, and arrays of arrays of any nested depth.
553 */
554 static const struct glsl_type *
555 repair_atomic_type(const struct glsl_type *type)
556 {
557 assert(glsl_get_base_type(glsl_without_array(type)) == GLSL_TYPE_UINT);
558 assert(glsl_type_is_scalar(glsl_without_array(type)));
559
560 if (glsl_type_is_array(type)) {
561 const struct glsl_type *atomic =
562 repair_atomic_type(glsl_get_array_element(type));
563
564 return glsl_array_type(atomic, glsl_get_length(type),
565 glsl_get_explicit_stride(type));
566 } else {
567 return glsl_atomic_uint_type();
568 }
569 }
570
571 nir_deref_instr *
572 vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
573 {
574 if (b->wa_glslang_179) {
575 /* Do on-the-fly copy propagation for samplers. */
576 if (ptr->var && ptr->var->copy_prop_sampler)
577 return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler);
578 }
579
580 vtn_assert(!vtn_pointer_uses_ssa_offset(b, ptr));
581 if (!ptr->deref) {
582 struct vtn_access_chain chain = {
583 .length = 0,
584 };
585 ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain);
586 }
587
588 return ptr->deref;
589 }
590
591 static void
592 _vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref,
593 struct vtn_ssa_value *inout,
594 enum gl_access_qualifier access)
595 {
596 if (glsl_type_is_vector_or_scalar(deref->type)) {
597 if (load) {
598 inout->def = nir_load_deref_with_access(&b->nb, deref, access);
599 } else {
600 nir_store_deref_with_access(&b->nb, deref, inout->def, ~0, access);
601 }
602 } else if (glsl_type_is_array(deref->type) ||
603 glsl_type_is_matrix(deref->type)) {
604 unsigned elems = glsl_get_length(deref->type);
605 for (unsigned i = 0; i < elems; i++) {
606 nir_deref_instr *child =
607 nir_build_deref_array_imm(&b->nb, deref, i);
608 _vtn_local_load_store(b, load, child, inout->elems[i], access);
609 }
610 } else {
611 vtn_assert(glsl_type_is_struct_or_ifc(deref->type));
612 unsigned elems = glsl_get_length(deref->type);
613 for (unsigned i = 0; i < elems; i++) {
614 nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i);
615 _vtn_local_load_store(b, load, child, inout->elems[i], access);
616 }
617 }
618 }
619
620 nir_deref_instr *
621 vtn_nir_deref(struct vtn_builder *b, uint32_t id)
622 {
623 struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer;
624 return vtn_pointer_to_deref(b, ptr);
625 }
626
627 /*
628 * Gets the NIR-level deref tail, which may have as a child an array deref
629 * selecting which component due to OpAccessChain supporting per-component
630 * indexing in SPIR-V.
631 */
632 static nir_deref_instr *
633 get_deref_tail(nir_deref_instr *deref)
634 {
635 if (deref->deref_type != nir_deref_type_array)
636 return deref;
637
638 nir_deref_instr *parent =
639 nir_instr_as_deref(deref->parent.ssa->parent_instr);
640
641 if (glsl_type_is_vector(parent->type))
642 return parent;
643 else
644 return deref;
645 }
646
647 struct vtn_ssa_value *
648 vtn_local_load(struct vtn_builder *b, nir_deref_instr *src,
649 enum gl_access_qualifier access)
650 {
651 nir_deref_instr *src_tail = get_deref_tail(src);
652 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
653 _vtn_local_load_store(b, true, src_tail, val, access);
654
655 if (src_tail != src) {
656 val->type = src->type;
657 if (nir_src_is_const(src->arr.index))
658 val->def = vtn_vector_extract(b, val->def,
659 nir_src_as_uint(src->arr.index));
660 else
661 val->def = vtn_vector_extract_dynamic(b, val->def, src->arr.index.ssa);
662 }
663
664 return val;
665 }
666
667 void
668 vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
669 nir_deref_instr *dest, enum gl_access_qualifier access)
670 {
671 nir_deref_instr *dest_tail = get_deref_tail(dest);
672
673 if (dest_tail != dest) {
674 struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
675 _vtn_local_load_store(b, true, dest_tail, val, access);
676
677 if (nir_src_is_const(dest->arr.index))
678 val->def = vtn_vector_insert(b, val->def, src->def,
679 nir_src_as_uint(dest->arr.index));
680 else
681 val->def = vtn_vector_insert_dynamic(b, val->def, src->def,
682 dest->arr.index.ssa);
683 _vtn_local_load_store(b, false, dest_tail, val, access);
684 } else {
685 _vtn_local_load_store(b, false, dest_tail, src, access);
686 }
687 }
688
689 nir_ssa_def *
690 vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr,
691 nir_ssa_def **index_out)
692 {
693 assert(vtn_pointer_uses_ssa_offset(b, ptr));
694 if (!ptr->offset) {
695 struct vtn_access_chain chain = {
696 .length = 0,
697 };
698 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
699 }
700 *index_out = ptr->block_index;
701 return ptr->offset;
702 }
703
704 /* Tries to compute the size of an interface block based on the strides and
705 * offsets that are provided to us in the SPIR-V source.
706 */
707 static unsigned
708 vtn_type_block_size(struct vtn_builder *b, struct vtn_type *type)
709 {
710 enum glsl_base_type base_type = glsl_get_base_type(type->type);
711 switch (base_type) {
712 case GLSL_TYPE_UINT:
713 case GLSL_TYPE_INT:
714 case GLSL_TYPE_UINT16:
715 case GLSL_TYPE_INT16:
716 case GLSL_TYPE_UINT8:
717 case GLSL_TYPE_INT8:
718 case GLSL_TYPE_UINT64:
719 case GLSL_TYPE_INT64:
720 case GLSL_TYPE_FLOAT:
721 case GLSL_TYPE_FLOAT16:
722 case GLSL_TYPE_BOOL:
723 case GLSL_TYPE_DOUBLE: {
724 unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) :
725 glsl_get_matrix_columns(type->type);
726 if (cols > 1) {
727 vtn_assert(type->stride > 0);
728 return type->stride * cols;
729 } else {
730 unsigned type_size = glsl_get_bit_size(type->type) / 8;
731 return glsl_get_vector_elements(type->type) * type_size;
732 }
733 }
734
735 case GLSL_TYPE_STRUCT:
736 case GLSL_TYPE_INTERFACE: {
737 unsigned size = 0;
738 unsigned num_fields = glsl_get_length(type->type);
739 for (unsigned f = 0; f < num_fields; f++) {
740 unsigned field_end = type->offsets[f] +
741 vtn_type_block_size(b, type->members[f]);
742 size = MAX2(size, field_end);
743 }
744 return size;
745 }
746
747 case GLSL_TYPE_ARRAY:
748 vtn_assert(type->stride > 0);
749 vtn_assert(glsl_get_length(type->type) > 0);
750 return type->stride * glsl_get_length(type->type);
751
752 default:
753 vtn_fail("Invalid block type");
754 return 0;
755 }
756 }
757
758 static void
759 _vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load,
760 nir_ssa_def *index, nir_ssa_def *offset,
761 unsigned access_offset, unsigned access_size,
762 struct vtn_ssa_value **inout, const struct glsl_type *type,
763 enum gl_access_qualifier access)
764 {
765 nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op);
766 instr->num_components = glsl_get_vector_elements(type);
767
768 /* Booleans usually shouldn't show up in external memory in SPIR-V.
769 * However, they do for certain older GLSLang versions and can for shared
770 * memory when we lower access chains internally.
771 */
772 const unsigned data_bit_size = glsl_type_is_boolean(type) ? 32 :
773 glsl_get_bit_size(type);
774
775 int src = 0;
776 if (!load) {
777 nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1);
778 instr->src[src++] = nir_src_for_ssa((*inout)->def);
779 }
780
781 if (op == nir_intrinsic_load_push_constant) {
782 nir_intrinsic_set_base(instr, access_offset);
783 nir_intrinsic_set_range(instr, access_size);
784 }
785
786 if (op == nir_intrinsic_load_ssbo ||
787 op == nir_intrinsic_store_ssbo) {
788 nir_intrinsic_set_access(instr, access);
789 }
790
791 /* With extensions like relaxed_block_layout, we really can't guarantee
792 * much more than scalar alignment.
793 */
794 if (op != nir_intrinsic_load_push_constant)
795 nir_intrinsic_set_align(instr, data_bit_size / 8, 0);
796
797 if (index)
798 instr->src[src++] = nir_src_for_ssa(index);
799
800 if (op == nir_intrinsic_load_push_constant) {
801 /* We need to subtract the offset from where the intrinsic will load the
802 * data. */
803 instr->src[src++] =
804 nir_src_for_ssa(nir_isub(&b->nb, offset,
805 nir_imm_int(&b->nb, access_offset)));
806 } else {
807 instr->src[src++] = nir_src_for_ssa(offset);
808 }
809
810 if (load) {
811 nir_ssa_dest_init(&instr->instr, &instr->dest,
812 instr->num_components, data_bit_size, NULL);
813 (*inout)->def = &instr->dest.ssa;
814 }
815
816 nir_builder_instr_insert(&b->nb, &instr->instr);
817
818 if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL)
819 (*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0));
820 }
821
822 static void
823 _vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load,
824 nir_ssa_def *index, nir_ssa_def *offset,
825 unsigned access_offset, unsigned access_size,
826 struct vtn_type *type, enum gl_access_qualifier access,
827 struct vtn_ssa_value **inout)
828 {
829 if (load && *inout == NULL)
830 *inout = vtn_create_ssa_value(b, type->type);
831
832 enum glsl_base_type base_type = glsl_get_base_type(type->type);
833 switch (base_type) {
834 case GLSL_TYPE_UINT:
835 case GLSL_TYPE_INT:
836 case GLSL_TYPE_UINT16:
837 case GLSL_TYPE_INT16:
838 case GLSL_TYPE_UINT8:
839 case GLSL_TYPE_INT8:
840 case GLSL_TYPE_UINT64:
841 case GLSL_TYPE_INT64:
842 case GLSL_TYPE_FLOAT:
843 case GLSL_TYPE_FLOAT16:
844 case GLSL_TYPE_DOUBLE:
845 case GLSL_TYPE_BOOL:
846 /* This is where things get interesting. At this point, we've hit
847 * a vector, a scalar, or a matrix.
848 */
849 if (glsl_type_is_matrix(type->type)) {
850 /* Loading the whole matrix */
851 struct vtn_ssa_value *transpose;
852 unsigned num_ops, vec_width, col_stride;
853 if (type->row_major) {
854 num_ops = glsl_get_vector_elements(type->type);
855 vec_width = glsl_get_matrix_columns(type->type);
856 col_stride = type->array_element->stride;
857 if (load) {
858 const struct glsl_type *transpose_type =
859 glsl_matrix_type(base_type, vec_width, num_ops);
860 *inout = vtn_create_ssa_value(b, transpose_type);
861 } else {
862 transpose = vtn_ssa_transpose(b, *inout);
863 inout = &transpose;
864 }
865 } else {
866 num_ops = glsl_get_matrix_columns(type->type);
867 vec_width = glsl_get_vector_elements(type->type);
868 col_stride = type->stride;
869 }
870
871 for (unsigned i = 0; i < num_ops; i++) {
872 nir_ssa_def *elem_offset =
873 nir_iadd_imm(&b->nb, offset, i * col_stride);
874 _vtn_load_store_tail(b, op, load, index, elem_offset,
875 access_offset, access_size,
876 &(*inout)->elems[i],
877 glsl_vector_type(base_type, vec_width),
878 type->access | access);
879 }
880
881 if (load && type->row_major)
882 *inout = vtn_ssa_transpose(b, *inout);
883 } else {
884 unsigned elems = glsl_get_vector_elements(type->type);
885 unsigned type_size = glsl_get_bit_size(type->type) / 8;
886 if (elems == 1 || type->stride == type_size) {
887 /* This is a tightly-packed normal scalar or vector load */
888 vtn_assert(glsl_type_is_vector_or_scalar(type->type));
889 _vtn_load_store_tail(b, op, load, index, offset,
890 access_offset, access_size,
891 inout, type->type,
892 type->access | access);
893 } else {
894 /* This is a strided load. We have to load N things separately.
895 * This is the single column of a row-major matrix case.
896 */
897 vtn_assert(type->stride > type_size);
898 vtn_assert(type->stride % type_size == 0);
899
900 nir_ssa_def *per_comp[4];
901 for (unsigned i = 0; i < elems; i++) {
902 nir_ssa_def *elem_offset =
903 nir_iadd_imm(&b->nb, offset, i * type->stride);
904 struct vtn_ssa_value *comp, temp_val;
905 if (!load) {
906 temp_val.def = nir_channel(&b->nb, (*inout)->def, i);
907 temp_val.type = glsl_scalar_type(base_type);
908 }
909 comp = &temp_val;
910 _vtn_load_store_tail(b, op, load, index, elem_offset,
911 access_offset, access_size,
912 &comp, glsl_scalar_type(base_type),
913 type->access | access);
914 per_comp[i] = comp->def;
915 }
916
917 if (load) {
918 if (*inout == NULL)
919 *inout = vtn_create_ssa_value(b, type->type);
920 (*inout)->def = nir_vec(&b->nb, per_comp, elems);
921 }
922 }
923 }
924 return;
925
926 case GLSL_TYPE_ARRAY: {
927 unsigned elems = glsl_get_length(type->type);
928 for (unsigned i = 0; i < elems; i++) {
929 nir_ssa_def *elem_off =
930 nir_iadd_imm(&b->nb, offset, i * type->stride);
931 _vtn_block_load_store(b, op, load, index, elem_off,
932 access_offset, access_size,
933 type->array_element,
934 type->array_element->access | access,
935 &(*inout)->elems[i]);
936 }
937 return;
938 }
939
940 case GLSL_TYPE_INTERFACE:
941 case GLSL_TYPE_STRUCT: {
942 unsigned elems = glsl_get_length(type->type);
943 for (unsigned i = 0; i < elems; i++) {
944 nir_ssa_def *elem_off =
945 nir_iadd_imm(&b->nb, offset, type->offsets[i]);
946 _vtn_block_load_store(b, op, load, index, elem_off,
947 access_offset, access_size,
948 type->members[i],
949 type->members[i]->access | access,
950 &(*inout)->elems[i]);
951 }
952 return;
953 }
954
955 default:
956 vtn_fail("Invalid block member type");
957 }
958 }
959
960 static struct vtn_ssa_value *
961 vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src)
962 {
963 nir_intrinsic_op op;
964 unsigned access_offset = 0, access_size = 0;
965 switch (src->mode) {
966 case vtn_variable_mode_ubo:
967 op = nir_intrinsic_load_ubo;
968 break;
969 case vtn_variable_mode_ssbo:
970 op = nir_intrinsic_load_ssbo;
971 break;
972 case vtn_variable_mode_push_constant:
973 op = nir_intrinsic_load_push_constant;
974 access_size = b->shader->num_uniforms;
975 break;
976 case vtn_variable_mode_workgroup:
977 op = nir_intrinsic_load_shared;
978 break;
979 default:
980 vtn_fail("Invalid block variable mode");
981 }
982
983 nir_ssa_def *offset, *index = NULL;
984 offset = vtn_pointer_to_offset(b, src, &index);
985
986 struct vtn_ssa_value *value = NULL;
987 _vtn_block_load_store(b, op, true, index, offset,
988 access_offset, access_size,
989 src->type, src->access, &value);
990 return value;
991 }
992
993 static void
994 vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src,
995 struct vtn_pointer *dst)
996 {
997 nir_intrinsic_op op;
998 switch (dst->mode) {
999 case vtn_variable_mode_ssbo:
1000 op = nir_intrinsic_store_ssbo;
1001 break;
1002 case vtn_variable_mode_workgroup:
1003 op = nir_intrinsic_store_shared;
1004 break;
1005 default:
1006 vtn_fail("Invalid block variable mode");
1007 }
1008
1009 nir_ssa_def *offset, *index = NULL;
1010 offset = vtn_pointer_to_offset(b, dst, &index);
1011
1012 _vtn_block_load_store(b, op, false, index, offset,
1013 0, 0, dst->type, dst->access, &src);
1014 }
1015
1016 static void
1017 _vtn_variable_load_store(struct vtn_builder *b, bool load,
1018 struct vtn_pointer *ptr,
1019 enum gl_access_qualifier access,
1020 struct vtn_ssa_value **inout)
1021 {
1022 enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
1023 switch (base_type) {
1024 case GLSL_TYPE_UINT:
1025 case GLSL_TYPE_INT:
1026 case GLSL_TYPE_UINT16:
1027 case GLSL_TYPE_INT16:
1028 case GLSL_TYPE_UINT8:
1029 case GLSL_TYPE_INT8:
1030 case GLSL_TYPE_UINT64:
1031 case GLSL_TYPE_INT64:
1032 case GLSL_TYPE_FLOAT:
1033 case GLSL_TYPE_FLOAT16:
1034 case GLSL_TYPE_BOOL:
1035 case GLSL_TYPE_DOUBLE:
1036 if (glsl_type_is_vector_or_scalar(ptr->type->type)) {
1037 /* We hit a vector or scalar; go ahead and emit the load[s] */
1038 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
1039 if (vtn_pointer_is_external_block(b, ptr)) {
1040 /* If it's external, we call nir_load/store_deref directly. The
1041 * vtn_local_load/store helpers are too clever and do magic to
1042 * avoid array derefs of vectors. That magic is both less
1043 * efficient than the direct load/store and, in the case of
1044 * stores, is broken because it creates a race condition if two
1045 * threads are writing to different components of the same vector
1046 * due to the load+insert+store it uses to emulate the array
1047 * deref.
1048 */
1049 if (load) {
1050 *inout = vtn_create_ssa_value(b, ptr->type->type);
1051 (*inout)->def = nir_load_deref_with_access(&b->nb, deref,
1052 ptr->type->access | access);
1053 } else {
1054 nir_store_deref_with_access(&b->nb, deref, (*inout)->def, ~0,
1055 ptr->type->access | access);
1056 }
1057 } else {
1058 if (load) {
1059 *inout = vtn_local_load(b, deref, ptr->type->access | access);
1060 } else {
1061 vtn_local_store(b, *inout, deref, ptr->type->access | access);
1062 }
1063 }
1064 return;
1065 }
1066 /* Fall through */
1067
1068 case GLSL_TYPE_INTERFACE:
1069 case GLSL_TYPE_ARRAY:
1070 case GLSL_TYPE_STRUCT: {
1071 unsigned elems = glsl_get_length(ptr->type->type);
1072 if (load) {
1073 vtn_assert(*inout == NULL);
1074 *inout = rzalloc(b, struct vtn_ssa_value);
1075 (*inout)->type = ptr->type->type;
1076 (*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems);
1077 }
1078
1079 struct vtn_access_chain chain = {
1080 .length = 1,
1081 .link = {
1082 { .mode = vtn_access_mode_literal, },
1083 }
1084 };
1085 for (unsigned i = 0; i < elems; i++) {
1086 chain.link[0].id = i;
1087 struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
1088 _vtn_variable_load_store(b, load, elem, ptr->type->access | access,
1089 &(*inout)->elems[i]);
1090 }
1091 return;
1092 }
1093
1094 default:
1095 vtn_fail("Invalid access chain type");
1096 }
1097 }
1098
1099 struct vtn_ssa_value *
1100 vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src)
1101 {
1102 if (vtn_pointer_uses_ssa_offset(b, src)) {
1103 return vtn_block_load(b, src);
1104 } else {
1105 struct vtn_ssa_value *val = NULL;
1106 _vtn_variable_load_store(b, true, src, src->access, &val);
1107 return val;
1108 }
1109 }
1110
1111 void
1112 vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
1113 struct vtn_pointer *dest)
1114 {
1115 if (vtn_pointer_uses_ssa_offset(b, dest)) {
1116 vtn_assert(dest->mode == vtn_variable_mode_ssbo ||
1117 dest->mode == vtn_variable_mode_workgroup);
1118 vtn_block_store(b, src, dest);
1119 } else {
1120 _vtn_variable_load_store(b, false, dest, dest->access, &src);
1121 }
1122 }
1123
1124 static void
1125 _vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
1126 struct vtn_pointer *src)
1127 {
1128 vtn_assert(src->type->type == dest->type->type);
1129 enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
1130 switch (base_type) {
1131 case GLSL_TYPE_UINT:
1132 case GLSL_TYPE_INT:
1133 case GLSL_TYPE_UINT16:
1134 case GLSL_TYPE_INT16:
1135 case GLSL_TYPE_UINT8:
1136 case GLSL_TYPE_INT8:
1137 case GLSL_TYPE_UINT64:
1138 case GLSL_TYPE_INT64:
1139 case GLSL_TYPE_FLOAT:
1140 case GLSL_TYPE_FLOAT16:
1141 case GLSL_TYPE_DOUBLE:
1142 case GLSL_TYPE_BOOL:
1143 /* At this point, we have a scalar, vector, or matrix so we know that
1144 * there cannot be any structure splitting still in the way. By
1145 * stopping at the matrix level rather than the vector level, we
1146 * ensure that matrices get loaded in the optimal way even if they
1147 * are storred row-major in a UBO.
1148 */
1149 vtn_variable_store(b, vtn_variable_load(b, src), dest);
1150 return;
1151
1152 case GLSL_TYPE_INTERFACE:
1153 case GLSL_TYPE_ARRAY:
1154 case GLSL_TYPE_STRUCT: {
1155 struct vtn_access_chain chain = {
1156 .length = 1,
1157 .link = {
1158 { .mode = vtn_access_mode_literal, },
1159 }
1160 };
1161 unsigned elems = glsl_get_length(src->type->type);
1162 for (unsigned i = 0; i < elems; i++) {
1163 chain.link[0].id = i;
1164 struct vtn_pointer *src_elem =
1165 vtn_pointer_dereference(b, src, &chain);
1166 struct vtn_pointer *dest_elem =
1167 vtn_pointer_dereference(b, dest, &chain);
1168
1169 _vtn_variable_copy(b, dest_elem, src_elem);
1170 }
1171 return;
1172 }
1173
1174 default:
1175 vtn_fail("Invalid access chain type");
1176 }
1177 }
1178
1179 static void
1180 vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
1181 struct vtn_pointer *src)
1182 {
1183 /* TODO: At some point, we should add a special-case for when we can
1184 * just emit a copy_var intrinsic.
1185 */
1186 _vtn_variable_copy(b, dest, src);
1187 }
1188
1189 static void
1190 set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
1191 {
1192 vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in);
1193 *mode = nir_var_system_value;
1194 }
1195
1196 static void
1197 vtn_get_builtin_location(struct vtn_builder *b,
1198 SpvBuiltIn builtin, int *location,
1199 nir_variable_mode *mode)
1200 {
1201 switch (builtin) {
1202 case SpvBuiltInPosition:
1203 *location = VARYING_SLOT_POS;
1204 break;
1205 case SpvBuiltInPointSize:
1206 *location = VARYING_SLOT_PSIZ;
1207 break;
1208 case SpvBuiltInClipDistance:
1209 *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */
1210 break;
1211 case SpvBuiltInCullDistance:
1212 *location = VARYING_SLOT_CULL_DIST0;
1213 break;
1214 case SpvBuiltInVertexId:
1215 case SpvBuiltInVertexIndex:
1216 /* The Vulkan spec defines VertexIndex to be non-zero-based and doesn't
1217 * allow VertexId. The ARB_gl_spirv spec defines VertexId to be the
1218 * same as gl_VertexID, which is non-zero-based, and removes
1219 * VertexIndex. Since they're both defined to be non-zero-based, we use
1220 * SYSTEM_VALUE_VERTEX_ID for both.
1221 */
1222 *location = SYSTEM_VALUE_VERTEX_ID;
1223 set_mode_system_value(b, mode);
1224 break;
1225 case SpvBuiltInInstanceIndex:
1226 *location = SYSTEM_VALUE_INSTANCE_INDEX;
1227 set_mode_system_value(b, mode);
1228 break;
1229 case SpvBuiltInInstanceId:
1230 *location = SYSTEM_VALUE_INSTANCE_ID;
1231 set_mode_system_value(b, mode);
1232 break;
1233 case SpvBuiltInPrimitiveId:
1234 if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
1235 vtn_assert(*mode == nir_var_shader_in);
1236 *location = VARYING_SLOT_PRIMITIVE_ID;
1237 } else if (*mode == nir_var_shader_out) {
1238 *location = VARYING_SLOT_PRIMITIVE_ID;
1239 } else {
1240 *location = SYSTEM_VALUE_PRIMITIVE_ID;
1241 set_mode_system_value(b, mode);
1242 }
1243 break;
1244 case SpvBuiltInInvocationId:
1245 *location = SYSTEM_VALUE_INVOCATION_ID;
1246 set_mode_system_value(b, mode);
1247 break;
1248 case SpvBuiltInLayer:
1249 *location = VARYING_SLOT_LAYER;
1250 if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
1251 *mode = nir_var_shader_in;
1252 else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
1253 *mode = nir_var_shader_out;
1254 else if (b->options && b->options->caps.shader_viewport_index_layer &&
1255 (b->shader->info.stage == MESA_SHADER_VERTEX ||
1256 b->shader->info.stage == MESA_SHADER_TESS_EVAL))
1257 *mode = nir_var_shader_out;
1258 else
1259 vtn_fail("invalid stage for SpvBuiltInLayer");
1260 break;
1261 case SpvBuiltInViewportIndex:
1262 *location = VARYING_SLOT_VIEWPORT;
1263 if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
1264 *mode = nir_var_shader_out;
1265 else if (b->options && b->options->caps.shader_viewport_index_layer &&
1266 (b->shader->info.stage == MESA_SHADER_VERTEX ||
1267 b->shader->info.stage == MESA_SHADER_TESS_EVAL))
1268 *mode = nir_var_shader_out;
1269 else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
1270 *mode = nir_var_shader_in;
1271 else
1272 vtn_fail("invalid stage for SpvBuiltInViewportIndex");
1273 break;
1274 case SpvBuiltInTessLevelOuter:
1275 *location = VARYING_SLOT_TESS_LEVEL_OUTER;
1276 break;
1277 case SpvBuiltInTessLevelInner:
1278 *location = VARYING_SLOT_TESS_LEVEL_INNER;
1279 break;
1280 case SpvBuiltInTessCoord:
1281 *location = SYSTEM_VALUE_TESS_COORD;
1282 set_mode_system_value(b, mode);
1283 break;
1284 case SpvBuiltInPatchVertices:
1285 *location = SYSTEM_VALUE_VERTICES_IN;
1286 set_mode_system_value(b, mode);
1287 break;
1288 case SpvBuiltInFragCoord:
1289 *location = VARYING_SLOT_POS;
1290 vtn_assert(*mode == nir_var_shader_in);
1291 break;
1292 case SpvBuiltInPointCoord:
1293 *location = VARYING_SLOT_PNTC;
1294 vtn_assert(*mode == nir_var_shader_in);
1295 break;
1296 case SpvBuiltInFrontFacing:
1297 *location = SYSTEM_VALUE_FRONT_FACE;
1298 set_mode_system_value(b, mode);
1299 break;
1300 case SpvBuiltInSampleId:
1301 *location = SYSTEM_VALUE_SAMPLE_ID;
1302 set_mode_system_value(b, mode);
1303 break;
1304 case SpvBuiltInSamplePosition:
1305 *location = SYSTEM_VALUE_SAMPLE_POS;
1306 set_mode_system_value(b, mode);
1307 break;
1308 case SpvBuiltInSampleMask:
1309 if (*mode == nir_var_shader_out) {
1310 *location = FRAG_RESULT_SAMPLE_MASK;
1311 } else {
1312 *location = SYSTEM_VALUE_SAMPLE_MASK_IN;
1313 set_mode_system_value(b, mode);
1314 }
1315 break;
1316 case SpvBuiltInFragDepth:
1317 *location = FRAG_RESULT_DEPTH;
1318 vtn_assert(*mode == nir_var_shader_out);
1319 break;
1320 case SpvBuiltInHelperInvocation:
1321 *location = SYSTEM_VALUE_HELPER_INVOCATION;
1322 set_mode_system_value(b, mode);
1323 break;
1324 case SpvBuiltInNumWorkgroups:
1325 *location = SYSTEM_VALUE_NUM_WORK_GROUPS;
1326 set_mode_system_value(b, mode);
1327 break;
1328 case SpvBuiltInWorkgroupSize:
1329 *location = SYSTEM_VALUE_LOCAL_GROUP_SIZE;
1330 set_mode_system_value(b, mode);
1331 break;
1332 case SpvBuiltInWorkgroupId:
1333 *location = SYSTEM_VALUE_WORK_GROUP_ID;
1334 set_mode_system_value(b, mode);
1335 break;
1336 case SpvBuiltInLocalInvocationId:
1337 *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
1338 set_mode_system_value(b, mode);
1339 break;
1340 case SpvBuiltInLocalInvocationIndex:
1341 *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
1342 set_mode_system_value(b, mode);
1343 break;
1344 case SpvBuiltInGlobalInvocationId:
1345 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
1346 set_mode_system_value(b, mode);
1347 break;
1348 case SpvBuiltInGlobalLinearId:
1349 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX;
1350 set_mode_system_value(b, mode);
1351 break;
1352 case SpvBuiltInBaseVertex:
1353 /* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same
1354 * semantic as SPIR-V BaseVertex (SYSTEM_VALUE_FIRST_VERTEX).
1355 */
1356 *location = SYSTEM_VALUE_FIRST_VERTEX;
1357 set_mode_system_value(b, mode);
1358 break;
1359 case SpvBuiltInBaseInstance:
1360 *location = SYSTEM_VALUE_BASE_INSTANCE;
1361 set_mode_system_value(b, mode);
1362 break;
1363 case SpvBuiltInDrawIndex:
1364 *location = SYSTEM_VALUE_DRAW_ID;
1365 set_mode_system_value(b, mode);
1366 break;
1367 case SpvBuiltInSubgroupSize:
1368 *location = SYSTEM_VALUE_SUBGROUP_SIZE;
1369 set_mode_system_value(b, mode);
1370 break;
1371 case SpvBuiltInSubgroupId:
1372 *location = SYSTEM_VALUE_SUBGROUP_ID;
1373 set_mode_system_value(b, mode);
1374 break;
1375 case SpvBuiltInSubgroupLocalInvocationId:
1376 *location = SYSTEM_VALUE_SUBGROUP_INVOCATION;
1377 set_mode_system_value(b, mode);
1378 break;
1379 case SpvBuiltInNumSubgroups:
1380 *location = SYSTEM_VALUE_NUM_SUBGROUPS;
1381 set_mode_system_value(b, mode);
1382 break;
1383 case SpvBuiltInDeviceIndex:
1384 *location = SYSTEM_VALUE_DEVICE_INDEX;
1385 set_mode_system_value(b, mode);
1386 break;
1387 case SpvBuiltInViewIndex:
1388 *location = SYSTEM_VALUE_VIEW_INDEX;
1389 set_mode_system_value(b, mode);
1390 break;
1391 case SpvBuiltInSubgroupEqMask:
1392 *location = SYSTEM_VALUE_SUBGROUP_EQ_MASK,
1393 set_mode_system_value(b, mode);
1394 break;
1395 case SpvBuiltInSubgroupGeMask:
1396 *location = SYSTEM_VALUE_SUBGROUP_GE_MASK,
1397 set_mode_system_value(b, mode);
1398 break;
1399 case SpvBuiltInSubgroupGtMask:
1400 *location = SYSTEM_VALUE_SUBGROUP_GT_MASK,
1401 set_mode_system_value(b, mode);
1402 break;
1403 case SpvBuiltInSubgroupLeMask:
1404 *location = SYSTEM_VALUE_SUBGROUP_LE_MASK,
1405 set_mode_system_value(b, mode);
1406 break;
1407 case SpvBuiltInSubgroupLtMask:
1408 *location = SYSTEM_VALUE_SUBGROUP_LT_MASK,
1409 set_mode_system_value(b, mode);
1410 break;
1411 case SpvBuiltInFragStencilRefEXT:
1412 *location = FRAG_RESULT_STENCIL;
1413 vtn_assert(*mode == nir_var_shader_out);
1414 break;
1415 case SpvBuiltInWorkDim:
1416 *location = SYSTEM_VALUE_WORK_DIM;
1417 set_mode_system_value(b, mode);
1418 break;
1419 case SpvBuiltInGlobalSize:
1420 *location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE;
1421 set_mode_system_value(b, mode);
1422 break;
1423 default:
1424 vtn_fail("unsupported builtin: %u", builtin);
1425 }
1426 }
1427
1428 static void
1429 apply_var_decoration(struct vtn_builder *b,
1430 struct nir_variable_data *var_data,
1431 const struct vtn_decoration *dec)
1432 {
1433 switch (dec->decoration) {
1434 case SpvDecorationRelaxedPrecision:
1435 break; /* FIXME: Do nothing with this for now. */
1436 case SpvDecorationNoPerspective:
1437 var_data->interpolation = INTERP_MODE_NOPERSPECTIVE;
1438 break;
1439 case SpvDecorationFlat:
1440 var_data->interpolation = INTERP_MODE_FLAT;
1441 break;
1442 case SpvDecorationCentroid:
1443 var_data->centroid = true;
1444 break;
1445 case SpvDecorationSample:
1446 var_data->sample = true;
1447 break;
1448 case SpvDecorationInvariant:
1449 var_data->invariant = true;
1450 break;
1451 case SpvDecorationConstant:
1452 var_data->read_only = true;
1453 break;
1454 case SpvDecorationNonReadable:
1455 var_data->image.access |= ACCESS_NON_READABLE;
1456 break;
1457 case SpvDecorationNonWritable:
1458 var_data->read_only = true;
1459 var_data->image.access |= ACCESS_NON_WRITEABLE;
1460 break;
1461 case SpvDecorationRestrict:
1462 var_data->image.access |= ACCESS_RESTRICT;
1463 break;
1464 case SpvDecorationVolatile:
1465 var_data->image.access |= ACCESS_VOLATILE;
1466 break;
1467 case SpvDecorationCoherent:
1468 var_data->image.access |= ACCESS_COHERENT;
1469 break;
1470 case SpvDecorationComponent:
1471 var_data->location_frac = dec->literals[0];
1472 break;
1473 case SpvDecorationIndex:
1474 var_data->index = dec->literals[0];
1475 break;
1476 case SpvDecorationBuiltIn: {
1477 SpvBuiltIn builtin = dec->literals[0];
1478
1479 nir_variable_mode mode = var_data->mode;
1480 vtn_get_builtin_location(b, builtin, &var_data->location, &mode);
1481 var_data->mode = mode;
1482
1483 switch (builtin) {
1484 case SpvBuiltInTessLevelOuter:
1485 case SpvBuiltInTessLevelInner:
1486 case SpvBuiltInClipDistance:
1487 case SpvBuiltInCullDistance:
1488 var_data->compact = true;
1489 break;
1490 default:
1491 break;
1492 }
1493 }
1494
1495 case SpvDecorationSpecId:
1496 case SpvDecorationRowMajor:
1497 case SpvDecorationColMajor:
1498 case SpvDecorationMatrixStride:
1499 case SpvDecorationAliased:
1500 case SpvDecorationUniform:
1501 case SpvDecorationLinkageAttributes:
1502 break; /* Do nothing with these here */
1503
1504 case SpvDecorationPatch:
1505 var_data->patch = true;
1506 break;
1507
1508 case SpvDecorationLocation:
1509 vtn_fail("Handled above");
1510
1511 case SpvDecorationBlock:
1512 case SpvDecorationBufferBlock:
1513 case SpvDecorationArrayStride:
1514 case SpvDecorationGLSLShared:
1515 case SpvDecorationGLSLPacked:
1516 break; /* These can apply to a type but we don't care about them */
1517
1518 case SpvDecorationBinding:
1519 case SpvDecorationDescriptorSet:
1520 case SpvDecorationNoContraction:
1521 case SpvDecorationInputAttachmentIndex:
1522 vtn_warn("Decoration not allowed for variable or structure member: %s",
1523 spirv_decoration_to_string(dec->decoration));
1524 break;
1525
1526 case SpvDecorationXfbBuffer:
1527 var_data->explicit_xfb_buffer = true;
1528 var_data->xfb_buffer = dec->literals[0];
1529 var_data->always_active_io = true;
1530 break;
1531 case SpvDecorationXfbStride:
1532 var_data->explicit_xfb_stride = true;
1533 var_data->xfb_stride = dec->literals[0];
1534 break;
1535 case SpvDecorationOffset:
1536 var_data->explicit_offset = true;
1537 var_data->offset = dec->literals[0];
1538 break;
1539
1540 case SpvDecorationStream:
1541 var_data->stream = dec->literals[0];
1542 break;
1543
1544 case SpvDecorationCPacked:
1545 case SpvDecorationSaturatedConversion:
1546 case SpvDecorationFuncParamAttr:
1547 case SpvDecorationFPRoundingMode:
1548 case SpvDecorationFPFastMathMode:
1549 case SpvDecorationAlignment:
1550 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
1551 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1552 spirv_decoration_to_string(dec->decoration));
1553 }
1554 break;
1555
1556 case SpvDecorationHlslSemanticGOOGLE:
1557 /* HLSL semantic decorations can safely be ignored by the driver. */
1558 break;
1559
1560 case SpvDecorationRestrictPointerEXT:
1561 case SpvDecorationAliasedPointerEXT:
1562 /* TODO: We should actually plumb alias information through NIR. */
1563 break;
1564
1565 default:
1566 vtn_fail("Unhandled decoration");
1567 }
1568 }
1569
1570 static void
1571 var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1572 const struct vtn_decoration *dec, void *out_is_patch)
1573 {
1574 if (dec->decoration == SpvDecorationPatch) {
1575 *((bool *) out_is_patch) = true;
1576 }
1577 }
1578
1579 static void
1580 var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1581 const struct vtn_decoration *dec, void *void_var)
1582 {
1583 struct vtn_variable *vtn_var = void_var;
1584
1585 /* Handle decorations that apply to a vtn_variable as a whole */
1586 switch (dec->decoration) {
1587 case SpvDecorationBinding:
1588 vtn_var->binding = dec->literals[0];
1589 vtn_var->explicit_binding = true;
1590 return;
1591 case SpvDecorationDescriptorSet:
1592 vtn_var->descriptor_set = dec->literals[0];
1593 return;
1594 case SpvDecorationInputAttachmentIndex:
1595 vtn_var->input_attachment_index = dec->literals[0];
1596 return;
1597 case SpvDecorationPatch:
1598 vtn_var->patch = true;
1599 break;
1600 case SpvDecorationOffset:
1601 vtn_var->offset = dec->literals[0];
1602 break;
1603 case SpvDecorationNonWritable:
1604 vtn_var->access |= ACCESS_NON_WRITEABLE;
1605 break;
1606 case SpvDecorationNonReadable:
1607 vtn_var->access |= ACCESS_NON_READABLE;
1608 break;
1609 case SpvDecorationVolatile:
1610 vtn_var->access |= ACCESS_VOLATILE;
1611 break;
1612 case SpvDecorationCoherent:
1613 vtn_var->access |= ACCESS_COHERENT;
1614 break;
1615 case SpvDecorationHlslCounterBufferGOOGLE:
1616 /* HLSL semantic decorations can safely be ignored by the driver. */
1617 break;
1618 default:
1619 break;
1620 }
1621
1622 if (val->value_type == vtn_value_type_pointer) {
1623 assert(val->pointer->var == void_var);
1624 assert(member == -1);
1625 } else {
1626 assert(val->value_type == vtn_value_type_type);
1627 }
1628
1629 /* Location is odd. If applied to a split structure, we have to walk the
1630 * whole thing and accumulate the location. It's easier to handle as a
1631 * special case.
1632 */
1633 if (dec->decoration == SpvDecorationLocation) {
1634 unsigned location = dec->literals[0];
1635 if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
1636 vtn_var->mode == vtn_variable_mode_output) {
1637 location += FRAG_RESULT_DATA0;
1638 } else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
1639 vtn_var->mode == vtn_variable_mode_input) {
1640 location += VERT_ATTRIB_GENERIC0;
1641 } else if (vtn_var->mode == vtn_variable_mode_input ||
1642 vtn_var->mode == vtn_variable_mode_output) {
1643 location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0;
1644 } else if (vtn_var->mode != vtn_variable_mode_uniform) {
1645 vtn_warn("Location must be on input, output, uniform, sampler or "
1646 "image variable");
1647 return;
1648 }
1649
1650 if (vtn_var->var->num_members == 0) {
1651 /* This handles the member and lone variable cases */
1652 vtn_var->var->data.location = location;
1653 } else {
1654 /* This handles the structure member case */
1655 assert(vtn_var->var->members);
1656
1657 if (member == -1)
1658 vtn_var->base_location = location;
1659 else
1660 vtn_var->var->members[member].location = location;
1661 }
1662
1663 return;
1664 } else {
1665 if (vtn_var->var) {
1666 if (vtn_var->var->num_members == 0) {
1667 /* We call this function on types as well as variables and not all
1668 * struct types get split so we can end up having stray member
1669 * decorations; just ignore them.
1670 */
1671 if (member == -1)
1672 apply_var_decoration(b, &vtn_var->var->data, dec);
1673 } else if (member >= 0) {
1674 /* Member decorations must come from a type */
1675 assert(val->value_type == vtn_value_type_type);
1676 apply_var_decoration(b, &vtn_var->var->members[member], dec);
1677 } else {
1678 unsigned length =
1679 glsl_get_length(glsl_without_array(vtn_var->type->type));
1680 for (unsigned i = 0; i < length; i++)
1681 apply_var_decoration(b, &vtn_var->var->members[i], dec);
1682 }
1683 } else {
1684 /* A few variables, those with external storage, have no actual
1685 * nir_variables associated with them. Fortunately, all decorations
1686 * we care about for those variables are on the type only.
1687 */
1688 vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
1689 vtn_var->mode == vtn_variable_mode_ssbo ||
1690 vtn_var->mode == vtn_variable_mode_push_constant ||
1691 (vtn_var->mode == vtn_variable_mode_workgroup &&
1692 b->options->lower_workgroup_access_to_offsets));
1693 }
1694 }
1695 }
1696
1697 static void
1698 ptr_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1699 const struct vtn_decoration *dec, void *void_ptr)
1700 {
1701 struct vtn_pointer *ptr = void_ptr;
1702
1703 switch (dec->decoration) {
1704 case SpvDecorationNonUniformEXT:
1705 ptr->access |= ACCESS_NON_UNIFORM;
1706 break;
1707
1708 default:
1709 break;
1710 }
1711 }
1712
1713 static enum vtn_variable_mode
1714 vtn_storage_class_to_mode(struct vtn_builder *b,
1715 SpvStorageClass class,
1716 struct vtn_type *interface_type,
1717 nir_variable_mode *nir_mode_out)
1718 {
1719 enum vtn_variable_mode mode;
1720 nir_variable_mode nir_mode;
1721 switch (class) {
1722 case SpvStorageClassUniform:
1723 if (interface_type->block) {
1724 mode = vtn_variable_mode_ubo;
1725 nir_mode = nir_var_mem_ubo;
1726 } else if (interface_type->buffer_block) {
1727 mode = vtn_variable_mode_ssbo;
1728 nir_mode = nir_var_mem_ssbo;
1729 } else {
1730 /* Default-block uniforms, coming from gl_spirv */
1731 mode = vtn_variable_mode_uniform;
1732 nir_mode = nir_var_uniform;
1733 }
1734 break;
1735 case SpvStorageClassStorageBuffer:
1736 mode = vtn_variable_mode_ssbo;
1737 nir_mode = nir_var_mem_ssbo;
1738 break;
1739 case SpvStorageClassPhysicalStorageBufferEXT:
1740 mode = vtn_variable_mode_phys_ssbo;
1741 nir_mode = nir_var_mem_global;
1742 break;
1743 case SpvStorageClassUniformConstant:
1744 mode = vtn_variable_mode_uniform;
1745 nir_mode = nir_var_uniform;
1746 break;
1747 case SpvStorageClassPushConstant:
1748 mode = vtn_variable_mode_push_constant;
1749 nir_mode = nir_var_uniform;
1750 break;
1751 case SpvStorageClassInput:
1752 mode = vtn_variable_mode_input;
1753 nir_mode = nir_var_shader_in;
1754 break;
1755 case SpvStorageClassOutput:
1756 mode = vtn_variable_mode_output;
1757 nir_mode = nir_var_shader_out;
1758 break;
1759 case SpvStorageClassPrivate:
1760 mode = vtn_variable_mode_private;
1761 nir_mode = nir_var_shader_temp;
1762 break;
1763 case SpvStorageClassFunction:
1764 mode = vtn_variable_mode_function;
1765 nir_mode = nir_var_function_temp;
1766 break;
1767 case SpvStorageClassWorkgroup:
1768 mode = vtn_variable_mode_workgroup;
1769 nir_mode = nir_var_mem_shared;
1770 break;
1771 case SpvStorageClassAtomicCounter:
1772 mode = vtn_variable_mode_uniform;
1773 nir_mode = nir_var_uniform;
1774 break;
1775 case SpvStorageClassCrossWorkgroup:
1776 mode = vtn_variable_mode_cross_workgroup;
1777 nir_mode = nir_var_mem_global;
1778 break;
1779 case SpvStorageClassGeneric:
1780 default:
1781 vtn_fail("Unhandled variable storage class");
1782 }
1783
1784 if (nir_mode_out)
1785 *nir_mode_out = nir_mode;
1786
1787 return mode;
1788 }
1789
1790 nir_ssa_def *
1791 vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
1792 {
1793 if (vtn_pointer_uses_ssa_offset(b, ptr)) {
1794 /* This pointer needs to have a pointer type with actual storage */
1795 vtn_assert(ptr->ptr_type);
1796 vtn_assert(ptr->ptr_type->type);
1797
1798 if (!ptr->offset) {
1799 /* If we don't have an offset then we must be a pointer to the variable
1800 * itself.
1801 */
1802 vtn_assert(!ptr->offset && !ptr->block_index);
1803
1804 struct vtn_access_chain chain = {
1805 .length = 0,
1806 };
1807 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
1808 }
1809
1810 vtn_assert(ptr->offset);
1811 if (ptr->block_index) {
1812 vtn_assert(ptr->mode == vtn_variable_mode_ubo ||
1813 ptr->mode == vtn_variable_mode_ssbo);
1814 return nir_vec2(&b->nb, ptr->block_index, ptr->offset);
1815 } else {
1816 vtn_assert(ptr->mode == vtn_variable_mode_workgroup);
1817 return ptr->offset;
1818 }
1819 } else {
1820 if (vtn_pointer_is_external_block(b, ptr) &&
1821 vtn_type_contains_block(b, ptr->type) &&
1822 ptr->mode != vtn_variable_mode_phys_ssbo) {
1823 /* In this case, we're looking for a block index and not an actual
1824 * deref.
1825 *
1826 * For PhysicalStorageBufferEXT pointers, we don't have a block index
1827 * at all because we get the pointer directly from the client. This
1828 * assumes that there will never be a SSBO binding variable using the
1829 * PhysicalStorageBufferEXT storage class. This assumption appears
1830 * to be correct according to the Vulkan spec because the table,
1831 * "Shader Resource and Storage Class Correspondence," the only the
1832 * Uniform storage class with BufferBlock or the StorageBuffer
1833 * storage class with Block can be used.
1834 */
1835 if (!ptr->block_index) {
1836 /* If we don't have a block_index then we must be a pointer to the
1837 * variable itself.
1838 */
1839 vtn_assert(!ptr->deref);
1840
1841 struct vtn_access_chain chain = {
1842 .length = 0,
1843 };
1844 ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain);
1845 }
1846
1847 return ptr->block_index;
1848 } else {
1849 return &vtn_pointer_to_deref(b, ptr)->dest.ssa;
1850 }
1851 }
1852 }
1853
1854 struct vtn_pointer *
1855 vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa,
1856 struct vtn_type *ptr_type)
1857 {
1858 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
1859
1860 struct vtn_type *interface_type = ptr_type->deref;
1861 while (interface_type->base_type == vtn_base_type_array)
1862 interface_type = interface_type->array_element;
1863
1864 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
1865 nir_variable_mode nir_mode;
1866 ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
1867 interface_type, &nir_mode);
1868 ptr->type = ptr_type->deref;
1869 ptr->ptr_type = ptr_type;
1870
1871 if (b->wa_glslang_179) {
1872 /* To work around https://github.com/KhronosGroup/glslang/issues/179 we
1873 * need to whack the mode because it creates a function parameter with
1874 * the Function storage class even though it's a pointer to a sampler.
1875 * If we don't do this, then NIR won't get rid of the deref_cast for us.
1876 */
1877 if (ptr->mode == vtn_variable_mode_function &&
1878 (ptr->type->base_type == vtn_base_type_sampler ||
1879 ptr->type->base_type == vtn_base_type_sampled_image)) {
1880 ptr->mode = vtn_variable_mode_uniform;
1881 nir_mode = nir_var_uniform;
1882 }
1883 }
1884
1885 if (vtn_pointer_uses_ssa_offset(b, ptr)) {
1886 /* This pointer type needs to have actual storage */
1887 vtn_assert(ptr_type->type);
1888 if (ptr->mode == vtn_variable_mode_ubo ||
1889 ptr->mode == vtn_variable_mode_ssbo) {
1890 vtn_assert(ssa->num_components == 2);
1891 ptr->block_index = nir_channel(&b->nb, ssa, 0);
1892 ptr->offset = nir_channel(&b->nb, ssa, 1);
1893 } else {
1894 vtn_assert(ssa->num_components == 1);
1895 ptr->block_index = NULL;
1896 ptr->offset = ssa;
1897 }
1898 } else {
1899 const struct glsl_type *deref_type = ptr_type->deref->type;
1900 if (!vtn_pointer_is_external_block(b, ptr)) {
1901 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
1902 deref_type, 0);
1903 } else if (vtn_type_contains_block(b, ptr->type) &&
1904 ptr->mode != vtn_variable_mode_phys_ssbo) {
1905 /* This is a pointer to somewhere in an array of blocks, not a
1906 * pointer to somewhere inside the block. Set the block index
1907 * instead of making a cast.
1908 */
1909 ptr->block_index = ssa;
1910 } else {
1911 /* This is a pointer to something internal or a pointer inside a
1912 * block. It's just a regular cast.
1913 *
1914 * For PhysicalStorageBufferEXT pointers, we don't have a block index
1915 * at all because we get the pointer directly from the client. This
1916 * assumes that there will never be a SSBO binding variable using the
1917 * PhysicalStorageBufferEXT storage class. This assumption appears
1918 * to be correct according to the Vulkan spec because the table,
1919 * "Shader Resource and Storage Class Correspondence," the only the
1920 * Uniform storage class with BufferBlock or the StorageBuffer
1921 * storage class with Block can be used.
1922 */
1923 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
1924 ptr_type->deref->type,
1925 ptr_type->stride);
1926 ptr->deref->dest.ssa.num_components =
1927 glsl_get_vector_elements(ptr_type->type);
1928 ptr->deref->dest.ssa.bit_size = glsl_get_bit_size(ptr_type->type);
1929 }
1930 }
1931
1932 return ptr;
1933 }
1934
1935 static bool
1936 is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage)
1937 {
1938 if (var->patch || !glsl_type_is_array(var->type->type))
1939 return false;
1940
1941 if (var->mode == vtn_variable_mode_input) {
1942 return stage == MESA_SHADER_TESS_CTRL ||
1943 stage == MESA_SHADER_TESS_EVAL ||
1944 stage == MESA_SHADER_GEOMETRY;
1945 }
1946
1947 if (var->mode == vtn_variable_mode_output)
1948 return stage == MESA_SHADER_TESS_CTRL;
1949
1950 return false;
1951 }
1952
1953 static void
1954 assign_missing_member_locations(struct vtn_variable *var)
1955 {
1956 unsigned length =
1957 glsl_get_length(glsl_without_array(var->type->type));
1958 int location = var->base_location;
1959
1960 for (unsigned i = 0; i < length; i++) {
1961 /* From the Vulkan spec:
1962 *
1963 * “If the structure type is a Block but without a Location, then each
1964 * of its members must have a Location decoration.”
1965 *
1966 */
1967 if (var->type->block) {
1968 assert(var->base_location != -1 ||
1969 var->var->members[i].location != -1);
1970 }
1971
1972 /* From the Vulkan spec:
1973 *
1974 * “Any member with its own Location decoration is assigned that
1975 * location. Each remaining member is assigned the location after the
1976 * immediately preceding member in declaration order.”
1977 */
1978 if (var->var->members[i].location != -1)
1979 location = var->var->members[i].location;
1980 else
1981 var->var->members[i].location = location;
1982
1983 /* Below we use type instead of interface_type, because interface_type
1984 * is only available when it is a Block. This code also supports
1985 * input/outputs that are just structs
1986 */
1987 const struct glsl_type *member_type =
1988 glsl_get_struct_field(glsl_without_array(var->type->type), i);
1989
1990 location +=
1991 glsl_count_attribute_slots(member_type,
1992 false /* is_gl_vertex_input */);
1993 }
1994 }
1995
1996
1997 static void
1998 vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
1999 struct vtn_type *ptr_type, SpvStorageClass storage_class,
2000 nir_constant *initializer)
2001 {
2002 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
2003 struct vtn_type *type = ptr_type->deref;
2004
2005 struct vtn_type *without_array = type;
2006 while(glsl_type_is_array(without_array->type))
2007 without_array = without_array->array_element;
2008
2009 enum vtn_variable_mode mode;
2010 nir_variable_mode nir_mode;
2011 mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
2012
2013 switch (mode) {
2014 case vtn_variable_mode_ubo:
2015 /* There's no other way to get vtn_variable_mode_ubo */
2016 vtn_assert(without_array->block);
2017 b->shader->info.num_ubos++;
2018 break;
2019 case vtn_variable_mode_ssbo:
2020 if (storage_class == SpvStorageClassStorageBuffer &&
2021 !without_array->block) {
2022 if (b->variable_pointers) {
2023 vtn_fail("Variables in the StorageBuffer storage class must "
2024 "have a struct type with the Block decoration");
2025 } else {
2026 /* If variable pointers are not present, it's still malformed
2027 * SPIR-V but we can parse it and do the right thing anyway.
2028 * Since some of the 8-bit storage tests have bugs in this are,
2029 * just make it a warning for now.
2030 */
2031 vtn_warn("Variables in the StorageBuffer storage class must "
2032 "have a struct type with the Block decoration");
2033 }
2034 }
2035 b->shader->info.num_ssbos++;
2036 break;
2037 case vtn_variable_mode_uniform:
2038 if (glsl_type_is_image(without_array->type))
2039 b->shader->info.num_images++;
2040 else if (glsl_type_is_sampler(without_array->type))
2041 b->shader->info.num_textures++;
2042 break;
2043 case vtn_variable_mode_push_constant:
2044 b->shader->num_uniforms = vtn_type_block_size(b, type);
2045 break;
2046
2047 case vtn_variable_mode_phys_ssbo:
2048 vtn_fail("Cannot create a variable with the "
2049 "PhysicalStorageBufferEXT storage class");
2050 break;
2051
2052 default:
2053 /* No tallying is needed */
2054 break;
2055 }
2056
2057 struct vtn_variable *var = rzalloc(b, struct vtn_variable);
2058 var->type = type;
2059 var->mode = mode;
2060 var->base_location = -1;
2061
2062 vtn_assert(val->value_type == vtn_value_type_pointer);
2063 val->pointer = vtn_pointer_for_variable(b, var, ptr_type);
2064
2065 switch (var->mode) {
2066 case vtn_variable_mode_function:
2067 case vtn_variable_mode_private:
2068 case vtn_variable_mode_uniform:
2069 /* For these, we create the variable normally */
2070 var->var = rzalloc(b->shader, nir_variable);
2071 var->var->name = ralloc_strdup(var->var, val->name);
2072
2073 if (storage_class == SpvStorageClassAtomicCounter) {
2074 /* Need to tweak the nir type here as at vtn_handle_type we don't
2075 * have the access to storage_class, that is the one that points us
2076 * that is an atomic uint.
2077 */
2078 var->var->type = repair_atomic_type(var->type->type);
2079 } else {
2080 /* Private variables don't have any explicit layout but some layouts
2081 * may have leaked through due to type deduplication in the SPIR-V.
2082 */
2083 var->var->type = var->type->type;
2084 }
2085 var->var->data.mode = nir_mode;
2086 var->var->data.location = -1;
2087 var->var->interface_type = NULL;
2088 break;
2089
2090 case vtn_variable_mode_workgroup:
2091 if (b->options->lower_workgroup_access_to_offsets) {
2092 var->shared_location = -1;
2093 } else {
2094 /* Create the variable normally */
2095 var->var = rzalloc(b->shader, nir_variable);
2096 var->var->name = ralloc_strdup(var->var, val->name);
2097 /* Workgroup variables don't have any explicit layout but some
2098 * layouts may have leaked through due to type deduplication in the
2099 * SPIR-V.
2100 */
2101 var->var->type = var->type->type;
2102 var->var->data.mode = nir_var_mem_shared;
2103 }
2104 break;
2105
2106 case vtn_variable_mode_input:
2107 case vtn_variable_mode_output: {
2108 /* In order to know whether or not we're a per-vertex inout, we need
2109 * the patch qualifier. This means walking the variable decorations
2110 * early before we actually create any variables. Not a big deal.
2111 *
2112 * GLSLang really likes to place decorations in the most interior
2113 * thing it possibly can. In particular, if you have a struct, it
2114 * will place the patch decorations on the struct members. This
2115 * should be handled by the variable splitting below just fine.
2116 *
2117 * If you have an array-of-struct, things get even more weird as it
2118 * will place the patch decorations on the struct even though it's
2119 * inside an array and some of the members being patch and others not
2120 * makes no sense whatsoever. Since the only sensible thing is for
2121 * it to be all or nothing, we'll call it patch if any of the members
2122 * are declared patch.
2123 */
2124 var->patch = false;
2125 vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch);
2126 if (glsl_type_is_array(var->type->type) &&
2127 glsl_type_is_struct_or_ifc(without_array->type)) {
2128 vtn_foreach_decoration(b, vtn_value(b, without_array->id,
2129 vtn_value_type_type),
2130 var_is_patch_cb, &var->patch);
2131 }
2132
2133 /* For inputs and outputs, we immediately split structures. This
2134 * is for a couple of reasons. For one, builtins may all come in
2135 * a struct and we really want those split out into separate
2136 * variables. For another, interpolation qualifiers can be
2137 * applied to members of the top-level struct ane we need to be
2138 * able to preserve that information.
2139 */
2140
2141 struct vtn_type *per_vertex_type = var->type;
2142 if (is_per_vertex_inout(var, b->shader->info.stage)) {
2143 /* In Geometry shaders (and some tessellation), inputs come
2144 * in per-vertex arrays. However, some builtins come in
2145 * non-per-vertex, hence the need for the is_array check. In
2146 * any case, there are no non-builtin arrays allowed so this
2147 * check should be sufficient.
2148 */
2149 per_vertex_type = var->type->array_element;
2150 }
2151
2152 var->var = rzalloc(b->shader, nir_variable);
2153 var->var->name = ralloc_strdup(var->var, val->name);
2154 /* In Vulkan, shader I/O variables don't have any explicit layout but
2155 * some layouts may have leaked through due to type deduplication in
2156 * the SPIR-V. We do, however, keep the layouts in the variable's
2157 * interface_type because we need offsets for XFB arrays of blocks.
2158 */
2159 var->var->type = var->type->type;
2160 var->var->data.mode = nir_mode;
2161 var->var->data.patch = var->patch;
2162
2163 /* Figure out the interface block type. */
2164 struct vtn_type *iface_type = per_vertex_type;
2165 if (var->mode == vtn_variable_mode_output &&
2166 (b->shader->info.stage == MESA_SHADER_VERTEX ||
2167 b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
2168 b->shader->info.stage == MESA_SHADER_GEOMETRY)) {
2169 /* For vertex data outputs, we can end up with arrays of blocks for
2170 * transform feedback where each array element corresponds to a
2171 * different XFB output buffer.
2172 */
2173 while (iface_type->base_type == vtn_base_type_array)
2174 iface_type = iface_type->array_element;
2175 }
2176 if (iface_type->base_type == vtn_base_type_struct && iface_type->block)
2177 var->var->interface_type = iface_type->type;
2178
2179 if (per_vertex_type->base_type == vtn_base_type_struct &&
2180 per_vertex_type->block) {
2181 /* It's a struct. Set it up as per-member. */
2182 var->var->num_members = glsl_get_length(per_vertex_type->type);
2183 var->var->members = rzalloc_array(var->var, struct nir_variable_data,
2184 var->var->num_members);
2185
2186 for (unsigned i = 0; i < var->var->num_members; i++) {
2187 var->var->members[i].mode = nir_mode;
2188 var->var->members[i].patch = var->patch;
2189 var->var->members[i].location = -1;
2190 }
2191 }
2192
2193 /* For inputs and outputs, we need to grab locations and builtin
2194 * information from the per-vertex type.
2195 */
2196 vtn_foreach_decoration(b, vtn_value(b, per_vertex_type->id,
2197 vtn_value_type_type),
2198 var_decoration_cb, var);
2199 break;
2200 }
2201
2202 case vtn_variable_mode_ubo:
2203 case vtn_variable_mode_ssbo:
2204 case vtn_variable_mode_push_constant:
2205 case vtn_variable_mode_cross_workgroup:
2206 /* These don't need actual variables. */
2207 break;
2208
2209 case vtn_variable_mode_phys_ssbo:
2210 unreachable("Should have been caught before");
2211 }
2212
2213 if (initializer) {
2214 var->var->constant_initializer =
2215 nir_constant_clone(initializer, var->var);
2216 }
2217
2218 vtn_foreach_decoration(b, val, var_decoration_cb, var);
2219 vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer);
2220
2221 if ((var->mode == vtn_variable_mode_input ||
2222 var->mode == vtn_variable_mode_output) &&
2223 var->var->members) {
2224 assign_missing_member_locations(var);
2225 }
2226
2227 if (var->mode == vtn_variable_mode_uniform) {
2228 /* XXX: We still need the binding information in the nir_variable
2229 * for these. We should fix that.
2230 */
2231 var->var->data.binding = var->binding;
2232 var->var->data.explicit_binding = var->explicit_binding;
2233 var->var->data.descriptor_set = var->descriptor_set;
2234 var->var->data.index = var->input_attachment_index;
2235 var->var->data.offset = var->offset;
2236
2237 if (glsl_type_is_image(without_array->type))
2238 var->var->data.image.format = without_array->image_format;
2239 }
2240
2241 if (var->mode == vtn_variable_mode_function) {
2242 vtn_assert(var->var != NULL && var->var->members == NULL);
2243 nir_function_impl_add_variable(b->nb.impl, var->var);
2244 } else if (var->var) {
2245 nir_shader_add_variable(b->shader, var->var);
2246 } else {
2247 vtn_assert(vtn_pointer_is_external_block(b, val->pointer));
2248 }
2249 }
2250
2251 static void
2252 vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
2253 struct vtn_type *dst_type,
2254 struct vtn_type *src_type)
2255 {
2256 if (dst_type->id == src_type->id)
2257 return;
2258
2259 if (vtn_types_compatible(b, dst_type, src_type)) {
2260 /* Early versions of GLSLang would re-emit types unnecessarily and you
2261 * would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
2262 * mismatched source and destination types.
2263 *
2264 * https://github.com/KhronosGroup/glslang/issues/304
2265 * https://github.com/KhronosGroup/glslang/issues/307
2266 * https://bugs.freedesktop.org/show_bug.cgi?id=104338
2267 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
2268 */
2269 vtn_warn("Source and destination types of %s do not have the same "
2270 "ID (but are compatible): %u vs %u",
2271 spirv_op_to_string(opcode), dst_type->id, src_type->id);
2272 return;
2273 }
2274
2275 vtn_fail("Source and destination types of %s do not match: %s vs. %s",
2276 spirv_op_to_string(opcode),
2277 glsl_get_type_name(dst_type->type),
2278 glsl_get_type_name(src_type->type));
2279 }
2280
2281 static nir_ssa_def *
2282 nir_shrink_zero_pad_vec(nir_builder *b, nir_ssa_def *val,
2283 unsigned num_components)
2284 {
2285 if (val->num_components == num_components)
2286 return val;
2287
2288 nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS];
2289 for (unsigned i = 0; i < num_components; i++) {
2290 if (i < val->num_components)
2291 comps[i] = nir_channel(b, val, i);
2292 else
2293 comps[i] = nir_imm_intN_t(b, 0, val->bit_size);
2294 }
2295 return nir_vec(b, comps, num_components);
2296 }
2297
2298 static nir_ssa_def *
2299 nir_sloppy_bitcast(nir_builder *b, nir_ssa_def *val,
2300 const struct glsl_type *type)
2301 {
2302 const unsigned num_components = glsl_get_vector_elements(type);
2303 const unsigned bit_size = glsl_get_bit_size(type);
2304
2305 /* First, zero-pad to ensure that the value is big enough that when we
2306 * bit-cast it, we don't loose anything.
2307 */
2308 if (val->bit_size < bit_size) {
2309 const unsigned src_num_components_needed =
2310 vtn_align_u32(val->num_components, bit_size / val->bit_size);
2311 val = nir_shrink_zero_pad_vec(b, val, src_num_components_needed);
2312 }
2313
2314 val = nir_bitcast_vector(b, val, bit_size);
2315
2316 return nir_shrink_zero_pad_vec(b, val, num_components);
2317 }
2318
2319 void
2320 vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
2321 const uint32_t *w, unsigned count)
2322 {
2323 switch (opcode) {
2324 case SpvOpUndef: {
2325 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2326 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
2327 break;
2328 }
2329
2330 case SpvOpVariable: {
2331 struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2332
2333 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2334
2335 SpvStorageClass storage_class = w[3];
2336 nir_constant *initializer = NULL;
2337 if (count > 4)
2338 initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant;
2339
2340 vtn_create_variable(b, val, ptr_type, storage_class, initializer);
2341 break;
2342 }
2343
2344 case SpvOpAccessChain:
2345 case SpvOpPtrAccessChain:
2346 case SpvOpInBoundsAccessChain:
2347 case SpvOpInBoundsPtrAccessChain: {
2348 struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
2349 chain->ptr_as_array = (opcode == SpvOpPtrAccessChain || opcode == SpvOpInBoundsPtrAccessChain);
2350
2351 unsigned idx = 0;
2352 for (int i = 4; i < count; i++) {
2353 struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
2354 if (link_val->value_type == vtn_value_type_constant) {
2355 chain->link[idx].mode = vtn_access_mode_literal;
2356 switch (glsl_get_bit_size(link_val->type->type)) {
2357 case 8:
2358 chain->link[idx].id = link_val->constant->values[0].i8[0];
2359 break;
2360 case 16:
2361 chain->link[idx].id = link_val->constant->values[0].i16[0];
2362 break;
2363 case 32:
2364 chain->link[idx].id = link_val->constant->values[0].i32[0];
2365 break;
2366 case 64:
2367 chain->link[idx].id = link_val->constant->values[0].i64[0];
2368 break;
2369 default:
2370 vtn_fail("Invalid bit size");
2371 }
2372 } else {
2373 chain->link[idx].mode = vtn_access_mode_id;
2374 chain->link[idx].id = w[i];
2375
2376 }
2377 idx++;
2378 }
2379
2380 struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2381 struct vtn_value *base_val = vtn_untyped_value(b, w[3]);
2382 if (base_val->value_type == vtn_value_type_sampled_image) {
2383 /* This is rather insane. SPIR-V allows you to use OpSampledImage
2384 * to combine an array of images with a single sampler to get an
2385 * array of sampled images that all share the same sampler.
2386 * Fortunately, this means that we can more-or-less ignore the
2387 * sampler when crawling the access chain, but it does leave us
2388 * with this rather awkward little special-case.
2389 */
2390 struct vtn_value *val =
2391 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2392 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2393 val->sampled_image->type = base_val->sampled_image->type;
2394 val->sampled_image->image =
2395 vtn_pointer_dereference(b, base_val->sampled_image->image, chain);
2396 val->sampled_image->sampler = base_val->sampled_image->sampler;
2397 vtn_foreach_decoration(b, val, ptr_decoration_cb,
2398 val->sampled_image->image);
2399 vtn_foreach_decoration(b, val, ptr_decoration_cb,
2400 val->sampled_image->sampler);
2401 } else {
2402 vtn_assert(base_val->value_type == vtn_value_type_pointer);
2403 struct vtn_value *val =
2404 vtn_push_value(b, w[2], vtn_value_type_pointer);
2405 val->pointer = vtn_pointer_dereference(b, base_val->pointer, chain);
2406 val->pointer->ptr_type = ptr_type;
2407 vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer);
2408 }
2409 break;
2410 }
2411
2412 case SpvOpCopyMemory: {
2413 struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer);
2414 struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer);
2415
2416 vtn_assert_types_equal(b, opcode, dest->type->deref, src->type->deref);
2417
2418 vtn_variable_copy(b, dest->pointer, src->pointer);
2419 break;
2420 }
2421
2422 case SpvOpLoad: {
2423 struct vtn_type *res_type =
2424 vtn_value(b, w[1], vtn_value_type_type)->type;
2425 struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
2426 struct vtn_pointer *src = src_val->pointer;
2427
2428 vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
2429
2430 if (glsl_type_is_image(res_type->type) ||
2431 glsl_type_is_sampler(res_type->type)) {
2432 vtn_push_value(b, w[2], vtn_value_type_pointer)->pointer = src;
2433 return;
2434 }
2435
2436 vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src));
2437 break;
2438 }
2439
2440 case SpvOpStore: {
2441 struct vtn_value *dest_val = vtn_value(b, w[1], vtn_value_type_pointer);
2442 struct vtn_pointer *dest = dest_val->pointer;
2443 struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
2444
2445 /* OpStore requires us to actually have a storage type */
2446 vtn_fail_if(dest->type->type == NULL,
2447 "Invalid destination type for OpStore");
2448
2449 if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
2450 glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
2451 /* Early versions of GLSLang would use uint types for UBOs/SSBOs but
2452 * would then store them to a local variable as bool. Work around
2453 * the issue by doing an implicit conversion.
2454 *
2455 * https://github.com/KhronosGroup/glslang/issues/170
2456 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
2457 */
2458 vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
2459 "OpTypeBool. Doing an implicit conversion to work around "
2460 "the problem.");
2461 struct vtn_ssa_value *bool_ssa =
2462 vtn_create_ssa_value(b, dest->type->type);
2463 bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
2464 vtn_variable_store(b, bool_ssa, dest);
2465 break;
2466 }
2467
2468 vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
2469
2470 if (glsl_type_is_sampler(dest->type->type)) {
2471 if (b->wa_glslang_179) {
2472 vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy "
2473 "propagation to workaround the problem.");
2474 vtn_assert(dest->var->copy_prop_sampler == NULL);
2475 dest->var->copy_prop_sampler =
2476 vtn_value(b, w[2], vtn_value_type_pointer)->pointer;
2477 } else {
2478 vtn_fail("Vulkan does not allow OpStore of a sampler or image.");
2479 }
2480 break;
2481 }
2482
2483 struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
2484 vtn_variable_store(b, src, dest);
2485 break;
2486 }
2487
2488 case SpvOpArrayLength: {
2489 struct vtn_pointer *ptr =
2490 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2491 const uint32_t field = w[4];
2492
2493 vtn_fail_if(ptr->type->base_type != vtn_base_type_struct,
2494 "OpArrayLength must take a pointer to a structure type");
2495 vtn_fail_if(field != ptr->type->length - 1 ||
2496 ptr->type->members[field]->base_type != vtn_base_type_array,
2497 "OpArrayLength must reference the last memeber of the "
2498 "structure and that must be an array");
2499
2500 const uint32_t offset = ptr->type->offsets[field];
2501 const uint32_t stride = ptr->type->members[field]->stride;
2502
2503 if (!ptr->block_index) {
2504 struct vtn_access_chain chain = {
2505 .length = 0,
2506 };
2507 ptr = vtn_pointer_dereference(b, ptr, &chain);
2508 vtn_assert(ptr->block_index);
2509 }
2510
2511 nir_intrinsic_instr *instr =
2512 nir_intrinsic_instr_create(b->nb.shader,
2513 nir_intrinsic_get_buffer_size);
2514 instr->src[0] = nir_src_for_ssa(ptr->block_index);
2515 nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
2516 nir_builder_instr_insert(&b->nb, &instr->instr);
2517 nir_ssa_def *buf_size = &instr->dest.ssa;
2518
2519 /* array_length = max(buffer_size - offset, 0) / stride */
2520 nir_ssa_def *array_length =
2521 nir_idiv(&b->nb,
2522 nir_imax(&b->nb,
2523 nir_isub(&b->nb,
2524 buf_size,
2525 nir_imm_int(&b->nb, offset)),
2526 nir_imm_int(&b->nb, 0u)),
2527 nir_imm_int(&b->nb, stride));
2528
2529 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2530 val->ssa = vtn_create_ssa_value(b, glsl_uint_type());
2531 val->ssa->def = array_length;
2532 break;
2533 }
2534
2535 case SpvOpConvertPtrToU: {
2536 struct vtn_value *u_val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2537
2538 vtn_fail_if(u_val->type->base_type != vtn_base_type_vector &&
2539 u_val->type->base_type != vtn_base_type_scalar,
2540 "OpConvertPtrToU can only be used to cast to a vector or "
2541 "scalar type");
2542
2543 /* The pointer will be converted to an SSA value automatically */
2544 nir_ssa_def *ptr_ssa = vtn_ssa_value(b, w[3])->def;
2545
2546 u_val->ssa = vtn_create_ssa_value(b, u_val->type->type);
2547 u_val->ssa->def = nir_sloppy_bitcast(&b->nb, ptr_ssa, u_val->type->type);
2548 break;
2549 }
2550
2551 case SpvOpConvertUToPtr: {
2552 struct vtn_value *ptr_val =
2553 vtn_push_value(b, w[2], vtn_value_type_pointer);
2554 struct vtn_value *u_val = vtn_value(b, w[3], vtn_value_type_ssa);
2555
2556 vtn_fail_if(ptr_val->type->type == NULL,
2557 "OpConvertUToPtr can only be used on physical pointers");
2558
2559 vtn_fail_if(u_val->type->base_type != vtn_base_type_vector &&
2560 u_val->type->base_type != vtn_base_type_scalar,
2561 "OpConvertUToPtr can only be used to cast from a vector or "
2562 "scalar type");
2563
2564 nir_ssa_def *ptr_ssa = nir_sloppy_bitcast(&b->nb, u_val->ssa->def,
2565 ptr_val->type->type);
2566 ptr_val->pointer = vtn_pointer_from_ssa(b, ptr_ssa, ptr_val->type);
2567 break;
2568 }
2569
2570 case SpvOpCopyMemorySized:
2571 default:
2572 vtn_fail("Unhandled opcode");
2573 }
2574 }