fbfea6f8cefc3eeca462b3ba3848467b212dc535
[mesa.git] / src / compiler / spirv / vtn_variables.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "spirv_info.h"
30 #include "nir_deref.h"
31
32 static struct vtn_access_chain *
33 vtn_access_chain_create(struct vtn_builder *b, unsigned length)
34 {
35 struct vtn_access_chain *chain;
36
37 /* Subtract 1 from the length since there's already one built in */
38 size_t size = sizeof(*chain) +
39 (MAX2(length, 1) - 1) * sizeof(chain->link[0]);
40 chain = rzalloc_size(b, size);
41 chain->length = length;
42
43 return chain;
44 }
45
46 static struct vtn_access_chain *
47 vtn_access_chain_extend(struct vtn_builder *b, struct vtn_access_chain *old,
48 unsigned new_ids)
49 {
50 struct vtn_access_chain *chain;
51
52 unsigned old_len = old ? old->length : 0;
53 chain = vtn_access_chain_create(b, old_len + new_ids);
54
55 for (unsigned i = 0; i < old_len; i++)
56 chain->link[i] = old->link[i];
57
58 return chain;
59 }
60
61 static bool
62 vtn_pointer_uses_ssa_offset(struct vtn_builder *b,
63 struct vtn_pointer *ptr)
64 {
65 return ptr->mode == vtn_variable_mode_ubo ||
66 ptr->mode == vtn_variable_mode_ssbo ||
67 ptr->mode == vtn_variable_mode_push_constant ||
68 (ptr->mode == vtn_variable_mode_workgroup &&
69 b->options->lower_workgroup_access_to_offsets);
70 }
71
72 static bool
73 vtn_pointer_is_external_block(struct vtn_builder *b,
74 struct vtn_pointer *ptr)
75 {
76 return ptr->mode == vtn_variable_mode_ssbo ||
77 ptr->mode == vtn_variable_mode_ubo ||
78 ptr->mode == vtn_variable_mode_push_constant ||
79 (ptr->mode == vtn_variable_mode_workgroup &&
80 b->options->lower_workgroup_access_to_offsets);
81 }
82
83 /* Dereference the given base pointer by the access chain */
84 static struct vtn_pointer *
85 vtn_access_chain_pointer_dereference(struct vtn_builder *b,
86 struct vtn_pointer *base,
87 struct vtn_access_chain *deref_chain)
88 {
89 struct vtn_access_chain *chain =
90 vtn_access_chain_extend(b, base->chain, deref_chain->length);
91 struct vtn_type *type = base->type;
92
93 /* OpPtrAccessChain is only allowed on things which support variable
94 * pointers. For everything else, the client is expected to just pass us
95 * the right access chain.
96 */
97 vtn_assert(!deref_chain->ptr_as_array);
98
99 unsigned start = base->chain ? base->chain->length : 0;
100 for (unsigned i = 0; i < deref_chain->length; i++) {
101 chain->link[start + i] = deref_chain->link[i];
102
103 if (glsl_type_is_struct(type->type)) {
104 vtn_assert(deref_chain->link[i].mode == vtn_access_mode_literal);
105 type = type->members[deref_chain->link[i].id];
106 } else {
107 type = type->array_element;
108 }
109 }
110
111 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
112 ptr->mode = base->mode;
113 ptr->type = type;
114 ptr->var = base->var;
115 ptr->deref = base->deref;
116 ptr->chain = chain;
117
118 return ptr;
119 }
120
121 static nir_ssa_def *
122 vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
123 unsigned stride)
124 {
125 vtn_assert(stride > 0);
126 if (link.mode == vtn_access_mode_literal) {
127 return nir_imm_int(&b->nb, link.id * stride);
128 } else if (stride == 1) {
129 nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def;
130 if (ssa->bit_size != 32)
131 ssa = nir_u2u32(&b->nb, ssa);
132 return ssa;
133 } else {
134 nir_ssa_def *src0 = vtn_ssa_value(b, link.id)->def;
135 if (src0->bit_size != 32)
136 src0 = nir_u2u32(&b->nb, src0);
137 return nir_imul(&b->nb, src0, nir_imm_int(&b->nb, stride));
138 }
139 }
140
141 static nir_ssa_def *
142 vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
143 nir_ssa_def *desc_array_index)
144 {
145 if (!desc_array_index) {
146 vtn_assert(glsl_type_is_struct(var->type->type));
147 desc_array_index = nir_imm_int(&b->nb, 0);
148 }
149
150 nir_intrinsic_instr *instr =
151 nir_intrinsic_instr_create(b->nb.shader,
152 nir_intrinsic_vulkan_resource_index);
153 instr->src[0] = nir_src_for_ssa(desc_array_index);
154 nir_intrinsic_set_desc_set(instr, var->descriptor_set);
155 nir_intrinsic_set_binding(instr, var->binding);
156
157 nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
158 nir_builder_instr_insert(&b->nb, &instr->instr);
159
160 return &instr->dest.ssa;
161 }
162
163 static nir_ssa_def *
164 vtn_resource_reindex(struct vtn_builder *b, nir_ssa_def *base_index,
165 nir_ssa_def *offset_index)
166 {
167 nir_intrinsic_instr *instr =
168 nir_intrinsic_instr_create(b->nb.shader,
169 nir_intrinsic_vulkan_resource_reindex);
170 instr->src[0] = nir_src_for_ssa(base_index);
171 instr->src[1] = nir_src_for_ssa(offset_index);
172
173 nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
174 nir_builder_instr_insert(&b->nb, &instr->instr);
175
176 return &instr->dest.ssa;
177 }
178
179 static struct vtn_pointer *
180 vtn_ssa_offset_pointer_dereference(struct vtn_builder *b,
181 struct vtn_pointer *base,
182 struct vtn_access_chain *deref_chain)
183 {
184 nir_ssa_def *block_index = base->block_index;
185 nir_ssa_def *offset = base->offset;
186 struct vtn_type *type = base->type;
187
188 unsigned idx = 0;
189 if (base->mode == vtn_variable_mode_ubo ||
190 base->mode == vtn_variable_mode_ssbo) {
191 if (!block_index) {
192 vtn_assert(base->var && base->type);
193 nir_ssa_def *desc_arr_idx;
194 if (glsl_type_is_array(type->type)) {
195 if (deref_chain->length >= 1) {
196 desc_arr_idx =
197 vtn_access_link_as_ssa(b, deref_chain->link[0], 1);
198 idx++;
199 /* This consumes a level of type */
200 type = type->array_element;
201 } else {
202 /* This is annoying. We've been asked for a pointer to the
203 * array of UBOs/SSBOs and not a specifc buffer. Return a
204 * pointer with a descriptor index of 0 and we'll have to do
205 * a reindex later to adjust it to the right thing.
206 */
207 desc_arr_idx = nir_imm_int(&b->nb, 0);
208 }
209 } else if (deref_chain->ptr_as_array) {
210 /* You can't have a zero-length OpPtrAccessChain */
211 vtn_assert(deref_chain->length >= 1);
212 desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1);
213 } else {
214 /* We have a regular non-array SSBO. */
215 desc_arr_idx = NULL;
216 }
217 block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
218 } else if (deref_chain->ptr_as_array &&
219 type->base_type == vtn_base_type_struct && type->block) {
220 /* We are doing an OpPtrAccessChain on a pointer to a struct that is
221 * decorated block. This is an interesting corner in the SPIR-V
222 * spec. One interpretation would be that they client is clearly
223 * trying to treat that block as if it's an implicit array of blocks
224 * repeated in the buffer. However, the SPIR-V spec for the
225 * OpPtrAccessChain says:
226 *
227 * "Base is treated as the address of the first element of an
228 * array, and the Element element’s address is computed to be the
229 * base for the Indexes, as per OpAccessChain."
230 *
231 * Taken literally, that would mean that your struct type is supposed
232 * to be treated as an array of such a struct and, since it's
233 * decorated block, that means an array of blocks which corresponds
234 * to an array descriptor. Therefore, we need to do a reindex
235 * operation to add the index from the first link in the access chain
236 * to the index we recieved.
237 *
238 * The downside to this interpretation (there always is one) is that
239 * this might be somewhat surprising behavior to apps if they expect
240 * the implicit array behavior described above.
241 */
242 vtn_assert(deref_chain->length >= 1);
243 nir_ssa_def *offset_index =
244 vtn_access_link_as_ssa(b, deref_chain->link[0], 1);
245 idx++;
246
247 block_index = vtn_resource_reindex(b, block_index, offset_index);
248 }
249 }
250
251 if (!offset) {
252 if (base->mode == vtn_variable_mode_workgroup) {
253 /* SLM doesn't need nor have a block index */
254 vtn_assert(!block_index);
255
256 /* We need the variable for the base offset */
257 vtn_assert(base->var);
258
259 /* We need ptr_type for size and alignment */
260 vtn_assert(base->ptr_type);
261
262 /* Assign location on first use so that we don't end up bloating SLM
263 * address space for variables which are never statically used.
264 */
265 if (base->var->shared_location < 0) {
266 vtn_assert(base->ptr_type->length > 0 && base->ptr_type->align > 0);
267 b->shader->num_shared = vtn_align_u32(b->shader->num_shared,
268 base->ptr_type->align);
269 base->var->shared_location = b->shader->num_shared;
270 b->shader->num_shared += base->ptr_type->length;
271 }
272
273 offset = nir_imm_int(&b->nb, base->var->shared_location);
274 } else if (base->mode == vtn_variable_mode_push_constant) {
275 /* Push constants neither need nor have a block index */
276 vtn_assert(!block_index);
277
278 /* Start off with at the start of the push constant block. */
279 offset = nir_imm_int(&b->nb, 0);
280 } else {
281 /* The code above should have ensured a block_index when needed. */
282 vtn_assert(block_index);
283
284 /* Start off with at the start of the buffer. */
285 offset = nir_imm_int(&b->nb, 0);
286 }
287 }
288
289 if (deref_chain->ptr_as_array && idx == 0) {
290 /* We need ptr_type for the stride */
291 vtn_assert(base->ptr_type);
292
293 /* We need at least one element in the chain */
294 vtn_assert(deref_chain->length >= 1);
295
296 nir_ssa_def *elem_offset =
297 vtn_access_link_as_ssa(b, deref_chain->link[idx],
298 base->ptr_type->stride);
299 offset = nir_iadd(&b->nb, offset, elem_offset);
300 idx++;
301 }
302
303 for (; idx < deref_chain->length; idx++) {
304 switch (glsl_get_base_type(type->type)) {
305 case GLSL_TYPE_UINT:
306 case GLSL_TYPE_INT:
307 case GLSL_TYPE_UINT16:
308 case GLSL_TYPE_INT16:
309 case GLSL_TYPE_UINT8:
310 case GLSL_TYPE_INT8:
311 case GLSL_TYPE_UINT64:
312 case GLSL_TYPE_INT64:
313 case GLSL_TYPE_FLOAT:
314 case GLSL_TYPE_FLOAT16:
315 case GLSL_TYPE_DOUBLE:
316 case GLSL_TYPE_BOOL:
317 case GLSL_TYPE_ARRAY: {
318 nir_ssa_def *elem_offset =
319 vtn_access_link_as_ssa(b, deref_chain->link[idx], type->stride);
320 offset = nir_iadd(&b->nb, offset, elem_offset);
321 type = type->array_element;
322 break;
323 }
324
325 case GLSL_TYPE_STRUCT: {
326 vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
327 unsigned member = deref_chain->link[idx].id;
328 nir_ssa_def *mem_offset = nir_imm_int(&b->nb, type->offsets[member]);
329 offset = nir_iadd(&b->nb, offset, mem_offset);
330 type = type->members[member];
331 break;
332 }
333
334 default:
335 vtn_fail("Invalid type for deref");
336 }
337 }
338
339 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
340 ptr->mode = base->mode;
341 ptr->type = type;
342 ptr->block_index = block_index;
343 ptr->offset = offset;
344
345 return ptr;
346 }
347
348 /* Dereference the given base pointer by the access chain */
349 static struct vtn_pointer *
350 vtn_pointer_dereference(struct vtn_builder *b,
351 struct vtn_pointer *base,
352 struct vtn_access_chain *deref_chain)
353 {
354 if (vtn_pointer_uses_ssa_offset(b, base)) {
355 return vtn_ssa_offset_pointer_dereference(b, base, deref_chain);
356 } else {
357 return vtn_access_chain_pointer_dereference(b, base, deref_chain);
358 }
359 }
360
361 struct vtn_pointer *
362 vtn_pointer_for_variable(struct vtn_builder *b,
363 struct vtn_variable *var, struct vtn_type *ptr_type)
364 {
365 struct vtn_pointer *pointer = rzalloc(b, struct vtn_pointer);
366
367 pointer->mode = var->mode;
368 pointer->type = var->type;
369 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
370 vtn_assert(ptr_type->deref->type == var->type->type);
371 pointer->ptr_type = ptr_type;
372 pointer->var = var;
373
374 return pointer;
375 }
376
377 /* Returns an atomic_uint type based on the original uint type. The returned
378 * type will be equivalent to the original one but will have an atomic_uint
379 * type as leaf instead of an uint.
380 *
381 * Manages uint scalars, arrays, and arrays of arrays of any nested depth.
382 */
383 static const struct glsl_type *
384 repair_atomic_type(const struct glsl_type *type)
385 {
386 assert(glsl_get_base_type(glsl_without_array(type)) == GLSL_TYPE_UINT);
387 assert(glsl_type_is_scalar(glsl_without_array(type)));
388
389 if (glsl_type_is_array(type)) {
390 const struct glsl_type *atomic =
391 repair_atomic_type(glsl_get_array_element(type));
392
393 return glsl_array_type(atomic, glsl_get_length(type));
394 } else {
395 return glsl_atomic_uint_type();
396 }
397 }
398
399 nir_deref_instr *
400 vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
401 {
402 /* Do on-the-fly copy propagation for samplers. */
403 if (ptr->var && ptr->var->copy_prop_sampler)
404 return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler);
405
406 nir_deref_instr *tail;
407 if (ptr->deref) {
408 tail = ptr->deref;
409 } else {
410 assert(ptr->var && ptr->var->var);
411 tail = nir_build_deref_var(&b->nb, ptr->var->var);
412 }
413
414 /* Raw variable access */
415 if (!ptr->chain)
416 return tail;
417
418 struct vtn_access_chain *chain = ptr->chain;
419 vtn_assert(chain);
420
421 for (unsigned i = 0; i < chain->length; i++) {
422 if (glsl_type_is_struct(tail->type)) {
423 vtn_assert(chain->link[i].mode == vtn_access_mode_literal);
424 unsigned idx = chain->link[i].id;
425 tail = nir_build_deref_struct(&b->nb, tail, idx);
426 } else {
427 nir_ssa_def *index;
428 if (chain->link[i].mode == vtn_access_mode_literal) {
429 index = nir_imm_int(&b->nb, chain->link[i].id);
430 } else {
431 vtn_assert(chain->link[i].mode == vtn_access_mode_id);
432 index = vtn_ssa_value(b, chain->link[i].id)->def;
433 }
434 tail = nir_build_deref_array(&b->nb, tail, index);
435 }
436 }
437
438 return tail;
439 }
440
441 static void
442 _vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref,
443 struct vtn_ssa_value *inout)
444 {
445 if (glsl_type_is_vector_or_scalar(deref->type)) {
446 if (load) {
447 inout->def = nir_load_deref(&b->nb, deref);
448 } else {
449 nir_store_deref(&b->nb, deref, inout->def, ~0);
450 }
451 } else if (glsl_type_is_array(deref->type) ||
452 glsl_type_is_matrix(deref->type)) {
453 unsigned elems = glsl_get_length(deref->type);
454 for (unsigned i = 0; i < elems; i++) {
455 nir_deref_instr *child =
456 nir_build_deref_array(&b->nb, deref, nir_imm_int(&b->nb, i));
457 _vtn_local_load_store(b, load, child, inout->elems[i]);
458 }
459 } else {
460 vtn_assert(glsl_type_is_struct(deref->type));
461 unsigned elems = glsl_get_length(deref->type);
462 for (unsigned i = 0; i < elems; i++) {
463 nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i);
464 _vtn_local_load_store(b, load, child, inout->elems[i]);
465 }
466 }
467 }
468
469 nir_deref_instr *
470 vtn_nir_deref(struct vtn_builder *b, uint32_t id)
471 {
472 struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer;
473 return vtn_pointer_to_deref(b, ptr);
474 }
475
476 /*
477 * Gets the NIR-level deref tail, which may have as a child an array deref
478 * selecting which component due to OpAccessChain supporting per-component
479 * indexing in SPIR-V.
480 */
481 static nir_deref_instr *
482 get_deref_tail(nir_deref_instr *deref)
483 {
484 if (deref->deref_type != nir_deref_type_array)
485 return deref;
486
487 nir_deref_instr *parent =
488 nir_instr_as_deref(deref->parent.ssa->parent_instr);
489
490 if (glsl_type_is_vector(parent->type))
491 return parent;
492 else
493 return deref;
494 }
495
496 struct vtn_ssa_value *
497 vtn_local_load(struct vtn_builder *b, nir_deref_instr *src)
498 {
499 nir_deref_instr *src_tail = get_deref_tail(src);
500 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
501 _vtn_local_load_store(b, true, src_tail, val);
502
503 if (src_tail != src) {
504 val->type = src->type;
505 nir_const_value *const_index = nir_src_as_const_value(src->arr.index);
506 if (const_index)
507 val->def = vtn_vector_extract(b, val->def, const_index->u32[0]);
508 else
509 val->def = vtn_vector_extract_dynamic(b, val->def, src->arr.index.ssa);
510 }
511
512 return val;
513 }
514
515 void
516 vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
517 nir_deref_instr *dest)
518 {
519 nir_deref_instr *dest_tail = get_deref_tail(dest);
520
521 if (dest_tail != dest) {
522 struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
523 _vtn_local_load_store(b, true, dest_tail, val);
524
525 nir_const_value *const_index = nir_src_as_const_value(dest->arr.index);
526 if (const_index)
527 val->def = vtn_vector_insert(b, val->def, src->def,
528 const_index->u32[0]);
529 else
530 val->def = vtn_vector_insert_dynamic(b, val->def, src->def,
531 dest->arr.index.ssa);
532 _vtn_local_load_store(b, false, dest_tail, val);
533 } else {
534 _vtn_local_load_store(b, false, dest_tail, src);
535 }
536 }
537
538 nir_ssa_def *
539 vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr,
540 nir_ssa_def **index_out)
541 {
542 assert(vtn_pointer_uses_ssa_offset(b, ptr));
543 if (!ptr->offset) {
544 struct vtn_access_chain chain = {
545 .length = 0,
546 };
547 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
548 }
549 *index_out = ptr->block_index;
550 return ptr->offset;
551 }
552
553 /* Tries to compute the size of an interface block based on the strides and
554 * offsets that are provided to us in the SPIR-V source.
555 */
556 static unsigned
557 vtn_type_block_size(struct vtn_builder *b, struct vtn_type *type)
558 {
559 enum glsl_base_type base_type = glsl_get_base_type(type->type);
560 switch (base_type) {
561 case GLSL_TYPE_UINT:
562 case GLSL_TYPE_INT:
563 case GLSL_TYPE_UINT16:
564 case GLSL_TYPE_INT16:
565 case GLSL_TYPE_UINT8:
566 case GLSL_TYPE_INT8:
567 case GLSL_TYPE_UINT64:
568 case GLSL_TYPE_INT64:
569 case GLSL_TYPE_FLOAT:
570 case GLSL_TYPE_FLOAT16:
571 case GLSL_TYPE_BOOL:
572 case GLSL_TYPE_DOUBLE: {
573 unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) :
574 glsl_get_matrix_columns(type->type);
575 if (cols > 1) {
576 vtn_assert(type->stride > 0);
577 return type->stride * cols;
578 } else {
579 unsigned type_size = glsl_get_bit_size(type->type) / 8;
580 return glsl_get_vector_elements(type->type) * type_size;
581 }
582 }
583
584 case GLSL_TYPE_STRUCT:
585 case GLSL_TYPE_INTERFACE: {
586 unsigned size = 0;
587 unsigned num_fields = glsl_get_length(type->type);
588 for (unsigned f = 0; f < num_fields; f++) {
589 unsigned field_end = type->offsets[f] +
590 vtn_type_block_size(b, type->members[f]);
591 size = MAX2(size, field_end);
592 }
593 return size;
594 }
595
596 case GLSL_TYPE_ARRAY:
597 vtn_assert(type->stride > 0);
598 vtn_assert(glsl_get_length(type->type) > 0);
599 return type->stride * glsl_get_length(type->type);
600
601 default:
602 vtn_fail("Invalid block type");
603 return 0;
604 }
605 }
606
607 static void
608 _vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load,
609 nir_ssa_def *index, nir_ssa_def *offset,
610 unsigned access_offset, unsigned access_size,
611 struct vtn_ssa_value **inout, const struct glsl_type *type)
612 {
613 nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op);
614 instr->num_components = glsl_get_vector_elements(type);
615
616 int src = 0;
617 if (!load) {
618 nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1);
619 instr->src[src++] = nir_src_for_ssa((*inout)->def);
620 }
621
622 if (op == nir_intrinsic_load_push_constant) {
623 nir_intrinsic_set_base(instr, access_offset);
624 nir_intrinsic_set_range(instr, access_size);
625 }
626
627 if (index)
628 instr->src[src++] = nir_src_for_ssa(index);
629
630 if (op == nir_intrinsic_load_push_constant) {
631 /* We need to subtract the offset from where the intrinsic will load the
632 * data. */
633 instr->src[src++] =
634 nir_src_for_ssa(nir_isub(&b->nb, offset,
635 nir_imm_int(&b->nb, access_offset)));
636 } else {
637 instr->src[src++] = nir_src_for_ssa(offset);
638 }
639
640 if (load) {
641 nir_ssa_dest_init(&instr->instr, &instr->dest,
642 instr->num_components,
643 glsl_get_bit_size(type), NULL);
644 (*inout)->def = &instr->dest.ssa;
645 }
646
647 nir_builder_instr_insert(&b->nb, &instr->instr);
648
649 if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL)
650 (*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0));
651 }
652
653 static void
654 _vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load,
655 nir_ssa_def *index, nir_ssa_def *offset,
656 unsigned access_offset, unsigned access_size,
657 struct vtn_type *type, struct vtn_ssa_value **inout)
658 {
659 if (load && *inout == NULL)
660 *inout = vtn_create_ssa_value(b, type->type);
661
662 enum glsl_base_type base_type = glsl_get_base_type(type->type);
663 switch (base_type) {
664 case GLSL_TYPE_UINT:
665 case GLSL_TYPE_INT:
666 case GLSL_TYPE_UINT16:
667 case GLSL_TYPE_INT16:
668 case GLSL_TYPE_UINT8:
669 case GLSL_TYPE_INT8:
670 case GLSL_TYPE_UINT64:
671 case GLSL_TYPE_INT64:
672 case GLSL_TYPE_FLOAT:
673 case GLSL_TYPE_FLOAT16:
674 case GLSL_TYPE_DOUBLE:
675 case GLSL_TYPE_BOOL:
676 /* This is where things get interesting. At this point, we've hit
677 * a vector, a scalar, or a matrix.
678 */
679 if (glsl_type_is_matrix(type->type)) {
680 /* Loading the whole matrix */
681 struct vtn_ssa_value *transpose;
682 unsigned num_ops, vec_width, col_stride;
683 if (type->row_major) {
684 num_ops = glsl_get_vector_elements(type->type);
685 vec_width = glsl_get_matrix_columns(type->type);
686 col_stride = type->array_element->stride;
687 if (load) {
688 const struct glsl_type *transpose_type =
689 glsl_matrix_type(base_type, vec_width, num_ops);
690 *inout = vtn_create_ssa_value(b, transpose_type);
691 } else {
692 transpose = vtn_ssa_transpose(b, *inout);
693 inout = &transpose;
694 }
695 } else {
696 num_ops = glsl_get_matrix_columns(type->type);
697 vec_width = glsl_get_vector_elements(type->type);
698 col_stride = type->stride;
699 }
700
701 for (unsigned i = 0; i < num_ops; i++) {
702 nir_ssa_def *elem_offset =
703 nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * col_stride));
704 _vtn_load_store_tail(b, op, load, index, elem_offset,
705 access_offset, access_size,
706 &(*inout)->elems[i],
707 glsl_vector_type(base_type, vec_width));
708 }
709
710 if (load && type->row_major)
711 *inout = vtn_ssa_transpose(b, *inout);
712 } else {
713 unsigned elems = glsl_get_vector_elements(type->type);
714 unsigned type_size = glsl_get_bit_size(type->type) / 8;
715 if (elems == 1 || type->stride == type_size) {
716 /* This is a tightly-packed normal scalar or vector load */
717 vtn_assert(glsl_type_is_vector_or_scalar(type->type));
718 _vtn_load_store_tail(b, op, load, index, offset,
719 access_offset, access_size,
720 inout, type->type);
721 } else {
722 /* This is a strided load. We have to load N things separately.
723 * This is the single column of a row-major matrix case.
724 */
725 vtn_assert(type->stride > type_size);
726 vtn_assert(type->stride % type_size == 0);
727
728 nir_ssa_def *per_comp[4];
729 for (unsigned i = 0; i < elems; i++) {
730 nir_ssa_def *elem_offset =
731 nir_iadd(&b->nb, offset,
732 nir_imm_int(&b->nb, i * type->stride));
733 struct vtn_ssa_value *comp, temp_val;
734 if (!load) {
735 temp_val.def = nir_channel(&b->nb, (*inout)->def, i);
736 temp_val.type = glsl_scalar_type(base_type);
737 }
738 comp = &temp_val;
739 _vtn_load_store_tail(b, op, load, index, elem_offset,
740 access_offset, access_size,
741 &comp, glsl_scalar_type(base_type));
742 per_comp[i] = comp->def;
743 }
744
745 if (load) {
746 if (*inout == NULL)
747 *inout = vtn_create_ssa_value(b, type->type);
748 (*inout)->def = nir_vec(&b->nb, per_comp, elems);
749 }
750 }
751 }
752 return;
753
754 case GLSL_TYPE_ARRAY: {
755 unsigned elems = glsl_get_length(type->type);
756 for (unsigned i = 0; i < elems; i++) {
757 nir_ssa_def *elem_off =
758 nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride));
759 _vtn_block_load_store(b, op, load, index, elem_off,
760 access_offset, access_size,
761 type->array_element, &(*inout)->elems[i]);
762 }
763 return;
764 }
765
766 case GLSL_TYPE_STRUCT: {
767 unsigned elems = glsl_get_length(type->type);
768 for (unsigned i = 0; i < elems; i++) {
769 nir_ssa_def *elem_off =
770 nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i]));
771 _vtn_block_load_store(b, op, load, index, elem_off,
772 access_offset, access_size,
773 type->members[i], &(*inout)->elems[i]);
774 }
775 return;
776 }
777
778 default:
779 vtn_fail("Invalid block member type");
780 }
781 }
782
783 static struct vtn_ssa_value *
784 vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src)
785 {
786 nir_intrinsic_op op;
787 unsigned access_offset = 0, access_size = 0;
788 switch (src->mode) {
789 case vtn_variable_mode_ubo:
790 op = nir_intrinsic_load_ubo;
791 break;
792 case vtn_variable_mode_ssbo:
793 op = nir_intrinsic_load_ssbo;
794 break;
795 case vtn_variable_mode_push_constant:
796 op = nir_intrinsic_load_push_constant;
797 access_size = b->shader->num_uniforms;
798 break;
799 case vtn_variable_mode_workgroup:
800 op = nir_intrinsic_load_shared;
801 break;
802 default:
803 vtn_fail("Invalid block variable mode");
804 }
805
806 nir_ssa_def *offset, *index = NULL;
807 offset = vtn_pointer_to_offset(b, src, &index);
808
809 struct vtn_ssa_value *value = NULL;
810 _vtn_block_load_store(b, op, true, index, offset,
811 access_offset, access_size,
812 src->type, &value);
813 return value;
814 }
815
816 static void
817 vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src,
818 struct vtn_pointer *dst)
819 {
820 nir_intrinsic_op op;
821 switch (dst->mode) {
822 case vtn_variable_mode_ssbo:
823 op = nir_intrinsic_store_ssbo;
824 break;
825 case vtn_variable_mode_workgroup:
826 op = nir_intrinsic_store_shared;
827 break;
828 default:
829 vtn_fail("Invalid block variable mode");
830 }
831
832 nir_ssa_def *offset, *index = NULL;
833 offset = vtn_pointer_to_offset(b, dst, &index);
834
835 _vtn_block_load_store(b, op, false, index, offset,
836 0, 0, dst->type, &src);
837 }
838
839 static void
840 _vtn_variable_load_store(struct vtn_builder *b, bool load,
841 struct vtn_pointer *ptr,
842 struct vtn_ssa_value **inout)
843 {
844 enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
845 switch (base_type) {
846 case GLSL_TYPE_UINT:
847 case GLSL_TYPE_INT:
848 case GLSL_TYPE_UINT16:
849 case GLSL_TYPE_INT16:
850 case GLSL_TYPE_UINT8:
851 case GLSL_TYPE_INT8:
852 case GLSL_TYPE_UINT64:
853 case GLSL_TYPE_INT64:
854 case GLSL_TYPE_FLOAT:
855 case GLSL_TYPE_FLOAT16:
856 case GLSL_TYPE_BOOL:
857 case GLSL_TYPE_DOUBLE:
858 /* At this point, we have a scalar, vector, or matrix so we know that
859 * there cannot be any structure splitting still in the way. By
860 * stopping at the matrix level rather than the vector level, we
861 * ensure that matrices get loaded in the optimal way even if they
862 * are storred row-major in a UBO.
863 */
864 if (load) {
865 *inout = vtn_local_load(b, vtn_pointer_to_deref(b, ptr));
866 } else {
867 vtn_local_store(b, *inout, vtn_pointer_to_deref(b, ptr));
868 }
869 return;
870
871 case GLSL_TYPE_ARRAY:
872 case GLSL_TYPE_STRUCT: {
873 unsigned elems = glsl_get_length(ptr->type->type);
874 if (load) {
875 vtn_assert(*inout == NULL);
876 *inout = rzalloc(b, struct vtn_ssa_value);
877 (*inout)->type = ptr->type->type;
878 (*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems);
879 }
880
881 struct vtn_access_chain chain = {
882 .length = 1,
883 .link = {
884 { .mode = vtn_access_mode_literal, },
885 }
886 };
887 for (unsigned i = 0; i < elems; i++) {
888 chain.link[0].id = i;
889 struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
890 _vtn_variable_load_store(b, load, elem, &(*inout)->elems[i]);
891 }
892 return;
893 }
894
895 default:
896 vtn_fail("Invalid access chain type");
897 }
898 }
899
900 struct vtn_ssa_value *
901 vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src)
902 {
903 if (vtn_pointer_is_external_block(b, src)) {
904 return vtn_block_load(b, src);
905 } else {
906 struct vtn_ssa_value *val = NULL;
907 _vtn_variable_load_store(b, true, src, &val);
908 return val;
909 }
910 }
911
912 void
913 vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
914 struct vtn_pointer *dest)
915 {
916 if (vtn_pointer_is_external_block(b, dest)) {
917 vtn_assert(dest->mode == vtn_variable_mode_ssbo ||
918 dest->mode == vtn_variable_mode_workgroup);
919 vtn_block_store(b, src, dest);
920 } else {
921 _vtn_variable_load_store(b, false, dest, &src);
922 }
923 }
924
925 static void
926 _vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
927 struct vtn_pointer *src)
928 {
929 vtn_assert(src->type->type == dest->type->type);
930 enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
931 switch (base_type) {
932 case GLSL_TYPE_UINT:
933 case GLSL_TYPE_INT:
934 case GLSL_TYPE_UINT16:
935 case GLSL_TYPE_INT16:
936 case GLSL_TYPE_UINT8:
937 case GLSL_TYPE_INT8:
938 case GLSL_TYPE_UINT64:
939 case GLSL_TYPE_INT64:
940 case GLSL_TYPE_FLOAT:
941 case GLSL_TYPE_FLOAT16:
942 case GLSL_TYPE_DOUBLE:
943 case GLSL_TYPE_BOOL:
944 /* At this point, we have a scalar, vector, or matrix so we know that
945 * there cannot be any structure splitting still in the way. By
946 * stopping at the matrix level rather than the vector level, we
947 * ensure that matrices get loaded in the optimal way even if they
948 * are storred row-major in a UBO.
949 */
950 vtn_variable_store(b, vtn_variable_load(b, src), dest);
951 return;
952
953 case GLSL_TYPE_ARRAY:
954 case GLSL_TYPE_STRUCT: {
955 struct vtn_access_chain chain = {
956 .length = 1,
957 .link = {
958 { .mode = vtn_access_mode_literal, },
959 }
960 };
961 unsigned elems = glsl_get_length(src->type->type);
962 for (unsigned i = 0; i < elems; i++) {
963 chain.link[0].id = i;
964 struct vtn_pointer *src_elem =
965 vtn_pointer_dereference(b, src, &chain);
966 struct vtn_pointer *dest_elem =
967 vtn_pointer_dereference(b, dest, &chain);
968
969 _vtn_variable_copy(b, dest_elem, src_elem);
970 }
971 return;
972 }
973
974 default:
975 vtn_fail("Invalid access chain type");
976 }
977 }
978
979 static void
980 vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
981 struct vtn_pointer *src)
982 {
983 /* TODO: At some point, we should add a special-case for when we can
984 * just emit a copy_var intrinsic.
985 */
986 _vtn_variable_copy(b, dest, src);
987 }
988
989 static void
990 set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
991 {
992 vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in);
993 *mode = nir_var_system_value;
994 }
995
996 static void
997 vtn_get_builtin_location(struct vtn_builder *b,
998 SpvBuiltIn builtin, int *location,
999 nir_variable_mode *mode)
1000 {
1001 switch (builtin) {
1002 case SpvBuiltInPosition:
1003 *location = VARYING_SLOT_POS;
1004 break;
1005 case SpvBuiltInPointSize:
1006 *location = VARYING_SLOT_PSIZ;
1007 break;
1008 case SpvBuiltInClipDistance:
1009 *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */
1010 break;
1011 case SpvBuiltInCullDistance:
1012 *location = VARYING_SLOT_CULL_DIST0;
1013 break;
1014 case SpvBuiltInVertexIndex:
1015 *location = SYSTEM_VALUE_VERTEX_ID;
1016 set_mode_system_value(b, mode);
1017 break;
1018 case SpvBuiltInVertexId:
1019 /* Vulkan defines VertexID to be zero-based and reserves the new
1020 * builtin keyword VertexIndex to indicate the non-zero-based value.
1021 */
1022 *location = SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
1023 set_mode_system_value(b, mode);
1024 break;
1025 case SpvBuiltInInstanceIndex:
1026 *location = SYSTEM_VALUE_INSTANCE_INDEX;
1027 set_mode_system_value(b, mode);
1028 break;
1029 case SpvBuiltInInstanceId:
1030 *location = SYSTEM_VALUE_INSTANCE_ID;
1031 set_mode_system_value(b, mode);
1032 break;
1033 case SpvBuiltInPrimitiveId:
1034 if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
1035 vtn_assert(*mode == nir_var_shader_in);
1036 *location = VARYING_SLOT_PRIMITIVE_ID;
1037 } else if (*mode == nir_var_shader_out) {
1038 *location = VARYING_SLOT_PRIMITIVE_ID;
1039 } else {
1040 *location = SYSTEM_VALUE_PRIMITIVE_ID;
1041 set_mode_system_value(b, mode);
1042 }
1043 break;
1044 case SpvBuiltInInvocationId:
1045 *location = SYSTEM_VALUE_INVOCATION_ID;
1046 set_mode_system_value(b, mode);
1047 break;
1048 case SpvBuiltInLayer:
1049 *location = VARYING_SLOT_LAYER;
1050 if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
1051 *mode = nir_var_shader_in;
1052 else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
1053 *mode = nir_var_shader_out;
1054 else if (b->options && b->options->caps.shader_viewport_index_layer &&
1055 (b->shader->info.stage == MESA_SHADER_VERTEX ||
1056 b->shader->info.stage == MESA_SHADER_TESS_EVAL))
1057 *mode = nir_var_shader_out;
1058 else
1059 vtn_fail("invalid stage for SpvBuiltInLayer");
1060 break;
1061 case SpvBuiltInViewportIndex:
1062 *location = VARYING_SLOT_VIEWPORT;
1063 if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
1064 *mode = nir_var_shader_out;
1065 else if (b->options && b->options->caps.shader_viewport_index_layer &&
1066 (b->shader->info.stage == MESA_SHADER_VERTEX ||
1067 b->shader->info.stage == MESA_SHADER_TESS_EVAL))
1068 *mode = nir_var_shader_out;
1069 else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
1070 *mode = nir_var_shader_in;
1071 else
1072 vtn_fail("invalid stage for SpvBuiltInViewportIndex");
1073 break;
1074 case SpvBuiltInTessLevelOuter:
1075 *location = VARYING_SLOT_TESS_LEVEL_OUTER;
1076 break;
1077 case SpvBuiltInTessLevelInner:
1078 *location = VARYING_SLOT_TESS_LEVEL_INNER;
1079 break;
1080 case SpvBuiltInTessCoord:
1081 *location = SYSTEM_VALUE_TESS_COORD;
1082 set_mode_system_value(b, mode);
1083 break;
1084 case SpvBuiltInPatchVertices:
1085 *location = SYSTEM_VALUE_VERTICES_IN;
1086 set_mode_system_value(b, mode);
1087 break;
1088 case SpvBuiltInFragCoord:
1089 *location = VARYING_SLOT_POS;
1090 vtn_assert(*mode == nir_var_shader_in);
1091 break;
1092 case SpvBuiltInPointCoord:
1093 *location = VARYING_SLOT_PNTC;
1094 vtn_assert(*mode == nir_var_shader_in);
1095 break;
1096 case SpvBuiltInFrontFacing:
1097 *location = SYSTEM_VALUE_FRONT_FACE;
1098 set_mode_system_value(b, mode);
1099 break;
1100 case SpvBuiltInSampleId:
1101 *location = SYSTEM_VALUE_SAMPLE_ID;
1102 set_mode_system_value(b, mode);
1103 break;
1104 case SpvBuiltInSamplePosition:
1105 *location = SYSTEM_VALUE_SAMPLE_POS;
1106 set_mode_system_value(b, mode);
1107 break;
1108 case SpvBuiltInSampleMask:
1109 if (*mode == nir_var_shader_out) {
1110 *location = FRAG_RESULT_SAMPLE_MASK;
1111 } else {
1112 *location = SYSTEM_VALUE_SAMPLE_MASK_IN;
1113 set_mode_system_value(b, mode);
1114 }
1115 break;
1116 case SpvBuiltInFragDepth:
1117 *location = FRAG_RESULT_DEPTH;
1118 vtn_assert(*mode == nir_var_shader_out);
1119 break;
1120 case SpvBuiltInHelperInvocation:
1121 *location = SYSTEM_VALUE_HELPER_INVOCATION;
1122 set_mode_system_value(b, mode);
1123 break;
1124 case SpvBuiltInNumWorkgroups:
1125 *location = SYSTEM_VALUE_NUM_WORK_GROUPS;
1126 set_mode_system_value(b, mode);
1127 break;
1128 case SpvBuiltInWorkgroupSize:
1129 *location = SYSTEM_VALUE_LOCAL_GROUP_SIZE;
1130 set_mode_system_value(b, mode);
1131 break;
1132 case SpvBuiltInWorkgroupId:
1133 *location = SYSTEM_VALUE_WORK_GROUP_ID;
1134 set_mode_system_value(b, mode);
1135 break;
1136 case SpvBuiltInLocalInvocationId:
1137 *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
1138 set_mode_system_value(b, mode);
1139 break;
1140 case SpvBuiltInLocalInvocationIndex:
1141 *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
1142 set_mode_system_value(b, mode);
1143 break;
1144 case SpvBuiltInGlobalInvocationId:
1145 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
1146 set_mode_system_value(b, mode);
1147 break;
1148 case SpvBuiltInBaseVertex:
1149 /* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same
1150 * semantic as SPIR-V BaseVertex (SYSTEM_VALUE_FIRST_VERTEX).
1151 */
1152 *location = SYSTEM_VALUE_FIRST_VERTEX;
1153 set_mode_system_value(b, mode);
1154 break;
1155 case SpvBuiltInBaseInstance:
1156 *location = SYSTEM_VALUE_BASE_INSTANCE;
1157 set_mode_system_value(b, mode);
1158 break;
1159 case SpvBuiltInDrawIndex:
1160 *location = SYSTEM_VALUE_DRAW_ID;
1161 set_mode_system_value(b, mode);
1162 break;
1163 case SpvBuiltInSubgroupSize:
1164 *location = SYSTEM_VALUE_SUBGROUP_SIZE;
1165 set_mode_system_value(b, mode);
1166 break;
1167 case SpvBuiltInSubgroupId:
1168 *location = SYSTEM_VALUE_SUBGROUP_ID;
1169 set_mode_system_value(b, mode);
1170 break;
1171 case SpvBuiltInSubgroupLocalInvocationId:
1172 *location = SYSTEM_VALUE_SUBGROUP_INVOCATION;
1173 set_mode_system_value(b, mode);
1174 break;
1175 case SpvBuiltInNumSubgroups:
1176 *location = SYSTEM_VALUE_NUM_SUBGROUPS;
1177 set_mode_system_value(b, mode);
1178 break;
1179 case SpvBuiltInDeviceIndex:
1180 *location = SYSTEM_VALUE_DEVICE_INDEX;
1181 set_mode_system_value(b, mode);
1182 break;
1183 case SpvBuiltInViewIndex:
1184 *location = SYSTEM_VALUE_VIEW_INDEX;
1185 set_mode_system_value(b, mode);
1186 break;
1187 case SpvBuiltInSubgroupEqMask:
1188 *location = SYSTEM_VALUE_SUBGROUP_EQ_MASK,
1189 set_mode_system_value(b, mode);
1190 break;
1191 case SpvBuiltInSubgroupGeMask:
1192 *location = SYSTEM_VALUE_SUBGROUP_GE_MASK,
1193 set_mode_system_value(b, mode);
1194 break;
1195 case SpvBuiltInSubgroupGtMask:
1196 *location = SYSTEM_VALUE_SUBGROUP_GT_MASK,
1197 set_mode_system_value(b, mode);
1198 break;
1199 case SpvBuiltInSubgroupLeMask:
1200 *location = SYSTEM_VALUE_SUBGROUP_LE_MASK,
1201 set_mode_system_value(b, mode);
1202 break;
1203 case SpvBuiltInSubgroupLtMask:
1204 *location = SYSTEM_VALUE_SUBGROUP_LT_MASK,
1205 set_mode_system_value(b, mode);
1206 break;
1207 case SpvBuiltInFragStencilRefEXT:
1208 *location = FRAG_RESULT_STENCIL;
1209 vtn_assert(*mode == nir_var_shader_out);
1210 break;
1211 case SpvBuiltInWorkDim:
1212 *location = SYSTEM_VALUE_WORK_DIM;
1213 set_mode_system_value(b, mode);
1214 break;
1215 case SpvBuiltInGlobalSize:
1216 *location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE;
1217 set_mode_system_value(b, mode);
1218 break;
1219 default:
1220 vtn_fail("unsupported builtin: %u", builtin);
1221 }
1222 }
1223
1224 static void
1225 apply_var_decoration(struct vtn_builder *b,
1226 struct nir_variable_data *var_data,
1227 const struct vtn_decoration *dec)
1228 {
1229 switch (dec->decoration) {
1230 case SpvDecorationRelaxedPrecision:
1231 break; /* FIXME: Do nothing with this for now. */
1232 case SpvDecorationNoPerspective:
1233 var_data->interpolation = INTERP_MODE_NOPERSPECTIVE;
1234 break;
1235 case SpvDecorationFlat:
1236 var_data->interpolation = INTERP_MODE_FLAT;
1237 break;
1238 case SpvDecorationCentroid:
1239 var_data->centroid = true;
1240 break;
1241 case SpvDecorationSample:
1242 var_data->sample = true;
1243 break;
1244 case SpvDecorationInvariant:
1245 var_data->invariant = true;
1246 break;
1247 case SpvDecorationConstant:
1248 var_data->read_only = true;
1249 break;
1250 case SpvDecorationNonReadable:
1251 var_data->image.write_only = true;
1252 break;
1253 case SpvDecorationNonWritable:
1254 var_data->read_only = true;
1255 var_data->image.read_only = true;
1256 break;
1257 case SpvDecorationRestrict:
1258 var_data->image.restrict_flag = true;
1259 break;
1260 case SpvDecorationVolatile:
1261 var_data->image._volatile = true;
1262 break;
1263 case SpvDecorationCoherent:
1264 var_data->image.coherent = true;
1265 break;
1266 case SpvDecorationComponent:
1267 var_data->location_frac = dec->literals[0];
1268 break;
1269 case SpvDecorationIndex:
1270 var_data->index = dec->literals[0];
1271 break;
1272 case SpvDecorationBuiltIn: {
1273 SpvBuiltIn builtin = dec->literals[0];
1274
1275 nir_variable_mode mode = var_data->mode;
1276 vtn_get_builtin_location(b, builtin, &var_data->location, &mode);
1277 var_data->mode = mode;
1278
1279 switch (builtin) {
1280 case SpvBuiltInTessLevelOuter:
1281 case SpvBuiltInTessLevelInner:
1282 var_data->compact = true;
1283 break;
1284 case SpvBuiltInFragCoord:
1285 var_data->pixel_center_integer = b->pixel_center_integer;
1286 /* fallthrough */
1287 case SpvBuiltInSamplePosition:
1288 var_data->origin_upper_left = b->origin_upper_left;
1289 break;
1290 default:
1291 break;
1292 }
1293 }
1294
1295 case SpvDecorationSpecId:
1296 case SpvDecorationRowMajor:
1297 case SpvDecorationColMajor:
1298 case SpvDecorationMatrixStride:
1299 case SpvDecorationAliased:
1300 case SpvDecorationUniform:
1301 case SpvDecorationStream:
1302 case SpvDecorationOffset:
1303 case SpvDecorationLinkageAttributes:
1304 break; /* Do nothing with these here */
1305
1306 case SpvDecorationPatch:
1307 var_data->patch = true;
1308 break;
1309
1310 case SpvDecorationLocation:
1311 vtn_fail("Handled above");
1312
1313 case SpvDecorationBlock:
1314 case SpvDecorationBufferBlock:
1315 case SpvDecorationArrayStride:
1316 case SpvDecorationGLSLShared:
1317 case SpvDecorationGLSLPacked:
1318 break; /* These can apply to a type but we don't care about them */
1319
1320 case SpvDecorationBinding:
1321 case SpvDecorationDescriptorSet:
1322 case SpvDecorationNoContraction:
1323 case SpvDecorationInputAttachmentIndex:
1324 vtn_warn("Decoration not allowed for variable or structure member: %s",
1325 spirv_decoration_to_string(dec->decoration));
1326 break;
1327
1328 case SpvDecorationXfbBuffer:
1329 case SpvDecorationXfbStride:
1330 vtn_warn("Vulkan does not have transform feedback: %s",
1331 spirv_decoration_to_string(dec->decoration));
1332 break;
1333
1334 case SpvDecorationCPacked:
1335 case SpvDecorationSaturatedConversion:
1336 case SpvDecorationFuncParamAttr:
1337 case SpvDecorationFPRoundingMode:
1338 case SpvDecorationFPFastMathMode:
1339 case SpvDecorationAlignment:
1340 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1341 spirv_decoration_to_string(dec->decoration));
1342 break;
1343
1344 default:
1345 vtn_fail("Unhandled decoration");
1346 }
1347 }
1348
1349 static void
1350 var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1351 const struct vtn_decoration *dec, void *out_is_patch)
1352 {
1353 if (dec->decoration == SpvDecorationPatch) {
1354 *((bool *) out_is_patch) = true;
1355 }
1356 }
1357
1358 static void
1359 var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1360 const struct vtn_decoration *dec, void *void_var)
1361 {
1362 struct vtn_variable *vtn_var = void_var;
1363
1364 /* Handle decorations that apply to a vtn_variable as a whole */
1365 switch (dec->decoration) {
1366 case SpvDecorationBinding:
1367 vtn_var->binding = dec->literals[0];
1368 vtn_var->explicit_binding = true;
1369 return;
1370 case SpvDecorationDescriptorSet:
1371 vtn_var->descriptor_set = dec->literals[0];
1372 return;
1373 case SpvDecorationInputAttachmentIndex:
1374 vtn_var->input_attachment_index = dec->literals[0];
1375 return;
1376 case SpvDecorationPatch:
1377 vtn_var->patch = true;
1378 break;
1379 case SpvDecorationOffset:
1380 vtn_var->offset = dec->literals[0];
1381 break;
1382 default:
1383 break;
1384 }
1385
1386 if (val->value_type == vtn_value_type_pointer) {
1387 assert(val->pointer->var == void_var);
1388 assert(val->pointer->chain == NULL);
1389 assert(member == -1);
1390 } else {
1391 assert(val->value_type == vtn_value_type_type);
1392 }
1393
1394 /* Location is odd. If applied to a split structure, we have to walk the
1395 * whole thing and accumulate the location. It's easier to handle as a
1396 * special case.
1397 */
1398 if (dec->decoration == SpvDecorationLocation) {
1399 unsigned location = dec->literals[0];
1400 bool is_vertex_input = false;
1401 if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
1402 vtn_var->mode == vtn_variable_mode_output) {
1403 location += FRAG_RESULT_DATA0;
1404 } else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
1405 vtn_var->mode == vtn_variable_mode_input) {
1406 is_vertex_input = true;
1407 location += VERT_ATTRIB_GENERIC0;
1408 } else if (vtn_var->mode == vtn_variable_mode_input ||
1409 vtn_var->mode == vtn_variable_mode_output) {
1410 location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0;
1411 } else if (vtn_var->mode != vtn_variable_mode_uniform) {
1412 vtn_warn("Location must be on input, output, uniform, sampler or "
1413 "image variable");
1414 return;
1415 }
1416
1417 if (vtn_var->var->num_members == 0) {
1418 /* This handles the member and lone variable cases */
1419 vtn_var->var->data.location = location;
1420 } else {
1421 /* This handles the structure member case */
1422 assert(vtn_var->var->members);
1423 for (unsigned i = 0; i < vtn_var->var->num_members; i++) {
1424 vtn_var->var->members[i].location = location;
1425 const struct glsl_type *member_type =
1426 glsl_get_struct_field(vtn_var->var->interface_type, i);
1427 location += glsl_count_attribute_slots(member_type,
1428 is_vertex_input);
1429 }
1430 }
1431 return;
1432 } else {
1433 if (vtn_var->var) {
1434 if (vtn_var->var->num_members == 0) {
1435 assert(member == -1);
1436 apply_var_decoration(b, &vtn_var->var->data, dec);
1437 } else if (member >= 0) {
1438 /* Member decorations must come from a type */
1439 assert(val->value_type == vtn_value_type_type);
1440 apply_var_decoration(b, &vtn_var->var->members[member], dec);
1441 } else {
1442 unsigned length =
1443 glsl_get_length(glsl_without_array(vtn_var->type->type));
1444 for (unsigned i = 0; i < length; i++)
1445 apply_var_decoration(b, &vtn_var->var->members[i], dec);
1446 }
1447 } else {
1448 /* A few variables, those with external storage, have no actual
1449 * nir_variables associated with them. Fortunately, all decorations
1450 * we care about for those variables are on the type only.
1451 */
1452 vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
1453 vtn_var->mode == vtn_variable_mode_ssbo ||
1454 vtn_var->mode == vtn_variable_mode_push_constant ||
1455 (vtn_var->mode == vtn_variable_mode_workgroup &&
1456 b->options->lower_workgroup_access_to_offsets));
1457 }
1458 }
1459 }
1460
1461 static enum vtn_variable_mode
1462 vtn_storage_class_to_mode(struct vtn_builder *b,
1463 SpvStorageClass class,
1464 struct vtn_type *interface_type,
1465 nir_variable_mode *nir_mode_out)
1466 {
1467 enum vtn_variable_mode mode;
1468 nir_variable_mode nir_mode;
1469 switch (class) {
1470 case SpvStorageClassUniform:
1471 if (interface_type->block) {
1472 mode = vtn_variable_mode_ubo;
1473 nir_mode = 0;
1474 } else if (interface_type->buffer_block) {
1475 mode = vtn_variable_mode_ssbo;
1476 nir_mode = 0;
1477 } else {
1478 /* Default-block uniforms, coming from gl_spirv */
1479 mode = vtn_variable_mode_uniform;
1480 nir_mode = nir_var_uniform;
1481 }
1482 break;
1483 case SpvStorageClassStorageBuffer:
1484 mode = vtn_variable_mode_ssbo;
1485 nir_mode = 0;
1486 break;
1487 case SpvStorageClassUniformConstant:
1488 mode = vtn_variable_mode_uniform;
1489 nir_mode = nir_var_uniform;
1490 break;
1491 case SpvStorageClassPushConstant:
1492 mode = vtn_variable_mode_push_constant;
1493 nir_mode = nir_var_uniform;
1494 break;
1495 case SpvStorageClassInput:
1496 mode = vtn_variable_mode_input;
1497 nir_mode = nir_var_shader_in;
1498 break;
1499 case SpvStorageClassOutput:
1500 mode = vtn_variable_mode_output;
1501 nir_mode = nir_var_shader_out;
1502 break;
1503 case SpvStorageClassPrivate:
1504 mode = vtn_variable_mode_global;
1505 nir_mode = nir_var_global;
1506 break;
1507 case SpvStorageClassFunction:
1508 mode = vtn_variable_mode_local;
1509 nir_mode = nir_var_local;
1510 break;
1511 case SpvStorageClassWorkgroup:
1512 mode = vtn_variable_mode_workgroup;
1513 nir_mode = nir_var_shared;
1514 break;
1515 case SpvStorageClassAtomicCounter:
1516 mode = vtn_variable_mode_uniform;
1517 nir_mode = nir_var_uniform;
1518 break;
1519 case SpvStorageClassCrossWorkgroup:
1520 case SpvStorageClassGeneric:
1521 default:
1522 vtn_fail("Unhandled variable storage class");
1523 }
1524
1525 if (nir_mode_out)
1526 *nir_mode_out = nir_mode;
1527
1528 return mode;
1529 }
1530
1531 nir_ssa_def *
1532 vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
1533 {
1534 if (vtn_pointer_uses_ssa_offset(b, ptr)) {
1535 /* This pointer needs to have a pointer type with actual storage */
1536 vtn_assert(ptr->ptr_type);
1537 vtn_assert(ptr->ptr_type->type);
1538
1539 if (!ptr->offset) {
1540 /* If we don't have an offset then we must be a pointer to the variable
1541 * itself.
1542 */
1543 vtn_assert(!ptr->offset && !ptr->block_index);
1544
1545 struct vtn_access_chain chain = {
1546 .length = 0,
1547 };
1548 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
1549 }
1550
1551 vtn_assert(ptr->offset);
1552 if (ptr->block_index) {
1553 vtn_assert(ptr->mode == vtn_variable_mode_ubo ||
1554 ptr->mode == vtn_variable_mode_ssbo);
1555 return nir_vec2(&b->nb, ptr->block_index, ptr->offset);
1556 } else {
1557 vtn_assert(ptr->mode == vtn_variable_mode_workgroup);
1558 return ptr->offset;
1559 }
1560 } else {
1561 return &vtn_pointer_to_deref(b, ptr)->dest.ssa;
1562 }
1563 }
1564
1565 struct vtn_pointer *
1566 vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa,
1567 struct vtn_type *ptr_type)
1568 {
1569 vtn_assert(ssa->num_components <= 2 && ssa->bit_size == 32);
1570 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
1571
1572 struct vtn_type *interface_type = ptr_type->deref;
1573 while (interface_type->base_type == vtn_base_type_array)
1574 interface_type = interface_type->array_element;
1575
1576 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
1577 nir_variable_mode nir_mode;
1578 ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
1579 interface_type, &nir_mode);
1580 ptr->type = ptr_type->deref;
1581 ptr->ptr_type = ptr_type;
1582
1583 if (ptr->mode == vtn_variable_mode_ubo ||
1584 ptr->mode == vtn_variable_mode_ssbo) {
1585 /* This pointer type needs to have actual storage */
1586 vtn_assert(ptr_type->type);
1587 vtn_assert(ssa->num_components == 2);
1588 ptr->block_index = nir_channel(&b->nb, ssa, 0);
1589 ptr->offset = nir_channel(&b->nb, ssa, 1);
1590 } else if (ptr->mode == vtn_variable_mode_workgroup ||
1591 ptr->mode == vtn_variable_mode_push_constant) {
1592 /* This pointer type needs to have actual storage */
1593 vtn_assert(ptr_type->type);
1594 vtn_assert(ssa->num_components == 1);
1595 ptr->block_index = NULL;
1596 ptr->offset = ssa;
1597 } else {
1598 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
1599 ptr_type->deref->type);
1600 }
1601
1602 return ptr;
1603 }
1604
1605 static bool
1606 is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage)
1607 {
1608 if (var->patch || !glsl_type_is_array(var->type->type))
1609 return false;
1610
1611 if (var->mode == vtn_variable_mode_input) {
1612 return stage == MESA_SHADER_TESS_CTRL ||
1613 stage == MESA_SHADER_TESS_EVAL ||
1614 stage == MESA_SHADER_GEOMETRY;
1615 }
1616
1617 if (var->mode == vtn_variable_mode_output)
1618 return stage == MESA_SHADER_TESS_CTRL;
1619
1620 return false;
1621 }
1622
1623 static void
1624 vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
1625 struct vtn_type *ptr_type, SpvStorageClass storage_class,
1626 nir_constant *initializer)
1627 {
1628 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
1629 struct vtn_type *type = ptr_type->deref;
1630
1631 struct vtn_type *without_array = type;
1632 while(glsl_type_is_array(without_array->type))
1633 without_array = without_array->array_element;
1634
1635 enum vtn_variable_mode mode;
1636 nir_variable_mode nir_mode;
1637 mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
1638
1639 switch (mode) {
1640 case vtn_variable_mode_ubo:
1641 b->shader->info.num_ubos++;
1642 break;
1643 case vtn_variable_mode_ssbo:
1644 b->shader->info.num_ssbos++;
1645 break;
1646 case vtn_variable_mode_uniform:
1647 if (glsl_type_is_image(without_array->type))
1648 b->shader->info.num_images++;
1649 else if (glsl_type_is_sampler(without_array->type))
1650 b->shader->info.num_textures++;
1651 break;
1652 case vtn_variable_mode_push_constant:
1653 b->shader->num_uniforms = vtn_type_block_size(b, type);
1654 break;
1655 default:
1656 /* No tallying is needed */
1657 break;
1658 }
1659
1660 struct vtn_variable *var = rzalloc(b, struct vtn_variable);
1661 var->type = type;
1662 var->mode = mode;
1663
1664 vtn_assert(val->value_type == vtn_value_type_pointer);
1665 val->pointer = vtn_pointer_for_variable(b, var, ptr_type);
1666
1667 switch (var->mode) {
1668 case vtn_variable_mode_local:
1669 case vtn_variable_mode_global:
1670 case vtn_variable_mode_uniform:
1671 /* For these, we create the variable normally */
1672 var->var = rzalloc(b->shader, nir_variable);
1673 var->var->name = ralloc_strdup(var->var, val->name);
1674
1675 /* Need to tweak the nir type here as at vtn_handle_type we don't have
1676 * the access to storage_class, that is the one that points us that is
1677 * an atomic uint.
1678 */
1679 if (storage_class == SpvStorageClassAtomicCounter) {
1680 var->var->type = repair_atomic_type(var->type->type);
1681 } else {
1682 var->var->type = var->type->type;
1683 }
1684 var->var->data.mode = nir_mode;
1685 var->var->data.location = -1;
1686 var->var->interface_type = NULL;
1687 break;
1688
1689 case vtn_variable_mode_workgroup:
1690 if (b->options->lower_workgroup_access_to_offsets) {
1691 var->shared_location = -1;
1692 } else {
1693 /* Create the variable normally */
1694 var->var = rzalloc(b->shader, nir_variable);
1695 var->var->name = ralloc_strdup(var->var, val->name);
1696 var->var->type = var->type->type;
1697 var->var->data.mode = nir_var_shared;
1698 }
1699 break;
1700
1701 case vtn_variable_mode_input:
1702 case vtn_variable_mode_output: {
1703 /* In order to know whether or not we're a per-vertex inout, we need
1704 * the patch qualifier. This means walking the variable decorations
1705 * early before we actually create any variables. Not a big deal.
1706 *
1707 * GLSLang really likes to place decorations in the most interior
1708 * thing it possibly can. In particular, if you have a struct, it
1709 * will place the patch decorations on the struct members. This
1710 * should be handled by the variable splitting below just fine.
1711 *
1712 * If you have an array-of-struct, things get even more weird as it
1713 * will place the patch decorations on the struct even though it's
1714 * inside an array and some of the members being patch and others not
1715 * makes no sense whatsoever. Since the only sensible thing is for
1716 * it to be all or nothing, we'll call it patch if any of the members
1717 * are declared patch.
1718 */
1719 var->patch = false;
1720 vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch);
1721 if (glsl_type_is_array(var->type->type) &&
1722 glsl_type_is_struct(without_array->type)) {
1723 vtn_foreach_decoration(b, vtn_value(b, without_array->id,
1724 vtn_value_type_type),
1725 var_is_patch_cb, &var->patch);
1726 }
1727
1728 /* For inputs and outputs, we immediately split structures. This
1729 * is for a couple of reasons. For one, builtins may all come in
1730 * a struct and we really want those split out into separate
1731 * variables. For another, interpolation qualifiers can be
1732 * applied to members of the top-level struct ane we need to be
1733 * able to preserve that information.
1734 */
1735
1736 struct vtn_type *interface_type = var->type;
1737 if (is_per_vertex_inout(var, b->shader->info.stage)) {
1738 /* In Geometry shaders (and some tessellation), inputs come
1739 * in per-vertex arrays. However, some builtins come in
1740 * non-per-vertex, hence the need for the is_array check. In
1741 * any case, there are no non-builtin arrays allowed so this
1742 * check should be sufficient.
1743 */
1744 interface_type = var->type->array_element;
1745 }
1746
1747 var->var = rzalloc(b->shader, nir_variable);
1748 var->var->name = ralloc_strdup(var->var, val->name);
1749 var->var->type = var->type->type;
1750 var->var->interface_type = interface_type->type;
1751 var->var->data.mode = nir_mode;
1752 var->var->data.patch = var->patch;
1753
1754 if (glsl_type_is_struct(interface_type->type)) {
1755 /* It's a struct. Set it up as per-member. */
1756 var->var->num_members = glsl_get_length(interface_type->type);
1757 var->var->members = rzalloc_array(var->var, struct nir_variable_data,
1758 var->var->num_members);
1759
1760 for (unsigned i = 0; i < var->var->num_members; i++) {
1761 var->var->members[i].mode = nir_mode;
1762 var->var->members[i].patch = var->patch;
1763 }
1764 }
1765
1766 /* For inputs and outputs, we need to grab locations and builtin
1767 * information from the interface type.
1768 */
1769 vtn_foreach_decoration(b, vtn_value(b, interface_type->id,
1770 vtn_value_type_type),
1771 var_decoration_cb, var);
1772 break;
1773 }
1774
1775 case vtn_variable_mode_ubo:
1776 case vtn_variable_mode_ssbo:
1777 case vtn_variable_mode_push_constant:
1778 /* These don't need actual variables. */
1779 break;
1780 }
1781
1782 if (initializer) {
1783 var->var->constant_initializer =
1784 nir_constant_clone(initializer, var->var);
1785 }
1786
1787 vtn_foreach_decoration(b, val, var_decoration_cb, var);
1788
1789 if (var->mode == vtn_variable_mode_uniform) {
1790 /* XXX: We still need the binding information in the nir_variable
1791 * for these. We should fix that.
1792 */
1793 var->var->data.binding = var->binding;
1794 var->var->data.explicit_binding = var->explicit_binding;
1795 var->var->data.descriptor_set = var->descriptor_set;
1796 var->var->data.index = var->input_attachment_index;
1797 var->var->data.offset = var->offset;
1798
1799 if (glsl_type_is_image(without_array->type))
1800 var->var->data.image.format = without_array->image_format;
1801 }
1802
1803 if (var->mode == vtn_variable_mode_local) {
1804 vtn_assert(var->var != NULL && var->var->members == NULL);
1805 nir_function_impl_add_variable(b->nb.impl, var->var);
1806 } else if (var->var) {
1807 nir_shader_add_variable(b->shader, var->var);
1808 } else {
1809 vtn_assert(vtn_pointer_is_external_block(b, val->pointer));
1810 }
1811 }
1812
1813 static void
1814 vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
1815 struct vtn_type *dst_type,
1816 struct vtn_type *src_type)
1817 {
1818 if (dst_type->id == src_type->id)
1819 return;
1820
1821 if (vtn_types_compatible(b, dst_type, src_type)) {
1822 /* Early versions of GLSLang would re-emit types unnecessarily and you
1823 * would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
1824 * mismatched source and destination types.
1825 *
1826 * https://github.com/KhronosGroup/glslang/issues/304
1827 * https://github.com/KhronosGroup/glslang/issues/307
1828 * https://bugs.freedesktop.org/show_bug.cgi?id=104338
1829 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
1830 */
1831 vtn_warn("Source and destination types of %s do not have the same "
1832 "ID (but are compatible): %u vs %u",
1833 spirv_op_to_string(opcode), dst_type->id, src_type->id);
1834 return;
1835 }
1836
1837 vtn_fail("Source and destination types of %s do not match: %s vs. %s",
1838 spirv_op_to_string(opcode),
1839 glsl_get_type_name(dst_type->type),
1840 glsl_get_type_name(src_type->type));
1841 }
1842
1843 void
1844 vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
1845 const uint32_t *w, unsigned count)
1846 {
1847 switch (opcode) {
1848 case SpvOpUndef: {
1849 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
1850 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
1851 break;
1852 }
1853
1854 case SpvOpVariable: {
1855 struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1856
1857 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
1858
1859 SpvStorageClass storage_class = w[3];
1860 nir_constant *initializer = NULL;
1861 if (count > 4)
1862 initializer = vtn_value(b, w[4], vtn_value_type_constant)->constant;
1863
1864 vtn_create_variable(b, val, ptr_type, storage_class, initializer);
1865 break;
1866 }
1867
1868 case SpvOpAccessChain:
1869 case SpvOpPtrAccessChain:
1870 case SpvOpInBoundsAccessChain: {
1871 struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
1872 chain->ptr_as_array = (opcode == SpvOpPtrAccessChain);
1873
1874 unsigned idx = 0;
1875 for (int i = 4; i < count; i++) {
1876 struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
1877 if (link_val->value_type == vtn_value_type_constant) {
1878 chain->link[idx].mode = vtn_access_mode_literal;
1879 chain->link[idx].id = link_val->constant->values[0].u32[0];
1880 } else {
1881 chain->link[idx].mode = vtn_access_mode_id;
1882 chain->link[idx].id = w[i];
1883
1884 }
1885 idx++;
1886 }
1887
1888 struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1889 struct vtn_value *base_val = vtn_untyped_value(b, w[3]);
1890 if (base_val->value_type == vtn_value_type_sampled_image) {
1891 /* This is rather insane. SPIR-V allows you to use OpSampledImage
1892 * to combine an array of images with a single sampler to get an
1893 * array of sampled images that all share the same sampler.
1894 * Fortunately, this means that we can more-or-less ignore the
1895 * sampler when crawling the access chain, but it does leave us
1896 * with this rather awkward little special-case.
1897 */
1898 struct vtn_value *val =
1899 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1900 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1901 val->sampled_image->type = base_val->sampled_image->type;
1902 val->sampled_image->image =
1903 vtn_pointer_dereference(b, base_val->sampled_image->image, chain);
1904 val->sampled_image->sampler = base_val->sampled_image->sampler;
1905 } else {
1906 vtn_assert(base_val->value_type == vtn_value_type_pointer);
1907 struct vtn_value *val =
1908 vtn_push_value(b, w[2], vtn_value_type_pointer);
1909 val->pointer = vtn_pointer_dereference(b, base_val->pointer, chain);
1910 val->pointer->ptr_type = ptr_type;
1911 }
1912 break;
1913 }
1914
1915 case SpvOpCopyMemory: {
1916 struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer);
1917 struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer);
1918
1919 vtn_assert_types_equal(b, opcode, dest->type->deref, src->type->deref);
1920
1921 vtn_variable_copy(b, dest->pointer, src->pointer);
1922 break;
1923 }
1924
1925 case SpvOpLoad: {
1926 struct vtn_type *res_type =
1927 vtn_value(b, w[1], vtn_value_type_type)->type;
1928 struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
1929 struct vtn_pointer *src = src_val->pointer;
1930
1931 vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
1932
1933 if (glsl_type_is_image(res_type->type) ||
1934 glsl_type_is_sampler(res_type->type)) {
1935 vtn_push_value(b, w[2], vtn_value_type_pointer)->pointer = src;
1936 return;
1937 }
1938
1939 vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src));
1940 break;
1941 }
1942
1943 case SpvOpStore: {
1944 struct vtn_value *dest_val = vtn_value(b, w[1], vtn_value_type_pointer);
1945 struct vtn_pointer *dest = dest_val->pointer;
1946 struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
1947
1948 /* OpStore requires us to actually have a storage type */
1949 vtn_fail_if(dest->type->type == NULL,
1950 "Invalid destination type for OpStore");
1951
1952 if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
1953 glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
1954 /* Early versions of GLSLang would use uint types for UBOs/SSBOs but
1955 * would then store them to a local variable as bool. Work around
1956 * the issue by doing an implicit conversion.
1957 *
1958 * https://github.com/KhronosGroup/glslang/issues/170
1959 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
1960 */
1961 vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
1962 "OpTypeBool. Doing an implicit conversion to work around "
1963 "the problem.");
1964 struct vtn_ssa_value *bool_ssa =
1965 vtn_create_ssa_value(b, dest->type->type);
1966 bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
1967 vtn_variable_store(b, bool_ssa, dest);
1968 break;
1969 }
1970
1971 vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
1972
1973 if (glsl_type_is_sampler(dest->type->type)) {
1974 vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy "
1975 "propagation to workaround the problem.");
1976 vtn_assert(dest->var->copy_prop_sampler == NULL);
1977 dest->var->copy_prop_sampler =
1978 vtn_value(b, w[2], vtn_value_type_pointer)->pointer;
1979 break;
1980 }
1981
1982 struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
1983 vtn_variable_store(b, src, dest);
1984 break;
1985 }
1986
1987 case SpvOpArrayLength: {
1988 struct vtn_pointer *ptr =
1989 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1990
1991 const uint32_t offset = ptr->var->type->offsets[w[4]];
1992 const uint32_t stride = ptr->var->type->members[w[4]]->stride;
1993
1994 if (!ptr->block_index) {
1995 struct vtn_access_chain chain = {
1996 .length = 0,
1997 };
1998 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
1999 vtn_assert(ptr->block_index);
2000 }
2001
2002 nir_intrinsic_instr *instr =
2003 nir_intrinsic_instr_create(b->nb.shader,
2004 nir_intrinsic_get_buffer_size);
2005 instr->src[0] = nir_src_for_ssa(ptr->block_index);
2006 nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
2007 nir_builder_instr_insert(&b->nb, &instr->instr);
2008 nir_ssa_def *buf_size = &instr->dest.ssa;
2009
2010 /* array_length = max(buffer_size - offset, 0) / stride */
2011 nir_ssa_def *array_length =
2012 nir_idiv(&b->nb,
2013 nir_imax(&b->nb,
2014 nir_isub(&b->nb,
2015 buf_size,
2016 nir_imm_int(&b->nb, offset)),
2017 nir_imm_int(&b->nb, 0u)),
2018 nir_imm_int(&b->nb, stride));
2019
2020 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2021 val->ssa = vtn_create_ssa_value(b, glsl_uint_type());
2022 val->ssa->def = array_length;
2023 break;
2024 }
2025
2026 case SpvOpCopyMemorySized:
2027 default:
2028 vtn_fail("Unhandled opcode");
2029 }
2030 }