X86: Recognize and handle the lock legacy prefix.
[gem5.git] / src / cpu / base.cc
1 /*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 * Nathan Binkert
30 */
31
32 #include <iostream>
33 #include <string>
34 #include <sstream>
35
36 #include "base/cprintf.hh"
37 #include "base/loader/symtab.hh"
38 #include "base/misc.hh"
39 #include "base/output.hh"
40 #include "base/trace.hh"
41 #include "cpu/base.hh"
42 #include "cpu/cpuevent.hh"
43 #include "cpu/thread_context.hh"
44 #include "cpu/profile.hh"
45 #include "params/BaseCPU.hh"
46 #include "sim/sim_exit.hh"
47 #include "sim/process.hh"
48 #include "sim/sim_events.hh"
49 #include "sim/system.hh"
50
51 // Hack
52 #include "sim/stat_control.hh"
53
54 using namespace std;
55
56 vector<BaseCPU *> BaseCPU::cpuList;
57
58 // This variable reflects the max number of threads in any CPU. Be
59 // careful to only use it once all the CPUs that you care about have
60 // been initialized
61 int maxThreadsPerCPU = 1;
62
63 CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
64 : Event(Event::Progress_Event_Pri), interval(ival), lastNumInst(0),
65 cpu(_cpu)
66 {
67 if (interval)
68 cpu->schedule(this, curTick + interval);
69 }
70
71 void
72 CPUProgressEvent::process()
73 {
74 Counter temp = cpu->totalInstructions();
75 #ifndef NDEBUG
76 double ipc = double(temp - lastNumInst) / (interval / cpu->ticks(1));
77
78 DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
79 cpu->name(), temp - lastNumInst, ipc);
80 ipc = 0.0;
81 #else
82 cprintf("%lli: %s progress event, instructions committed: %lli\n",
83 curTick, cpu->name(), temp - lastNumInst);
84 #endif
85 lastNumInst = temp;
86 cpu->schedule(this, curTick + interval);
87 }
88
89 const char *
90 CPUProgressEvent::description() const
91 {
92 return "CPU Progress";
93 }
94
95 #if FULL_SYSTEM
96 BaseCPU::BaseCPU(Params *p)
97 : MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id),
98 interrupts(p->interrupts),
99 number_of_threads(p->numThreads), system(p->system),
100 phase(p->phase)
101 #else
102 BaseCPU::BaseCPU(Params *p)
103 : MemObject(p), clock(p->clock), _cpuId(p->cpu_id),
104 number_of_threads(p->numThreads), system(p->system),
105 phase(p->phase)
106 #endif
107 {
108 // currentTick = curTick;
109
110 // if Python did not provide a valid ID, do it here
111 if (_cpuId == -1 ) {
112 _cpuId = cpuList.size();
113 }
114
115 // add self to global list of CPUs
116 cpuList.push_back(this);
117
118 DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
119
120 if (number_of_threads > maxThreadsPerCPU)
121 maxThreadsPerCPU = number_of_threads;
122
123 // allocate per-thread instruction-based event queues
124 comInstEventQueue = new EventQueue *[number_of_threads];
125 for (int i = 0; i < number_of_threads; ++i)
126 comInstEventQueue[i] = new EventQueue("instruction-based event queue");
127
128 //
129 // set up instruction-count-based termination events, if any
130 //
131 if (p->max_insts_any_thread != 0) {
132 const char *cause = "a thread reached the max instruction count";
133 for (int i = 0; i < number_of_threads; ++i) {
134 Event *event = new SimLoopExitEvent(cause, 0);
135 comInstEventQueue[i]->schedule(event, p->max_insts_any_thread);
136 }
137 }
138
139 if (p->max_insts_all_threads != 0) {
140 const char *cause = "all threads reached the max instruction count";
141
142 // allocate & initialize shared downcounter: each event will
143 // decrement this when triggered; simulation will terminate
144 // when counter reaches 0
145 int *counter = new int;
146 *counter = number_of_threads;
147 for (int i = 0; i < number_of_threads; ++i) {
148 Event *event = new CountedExitEvent(cause, *counter);
149 comInstEventQueue[i]->schedule(event, p->max_insts_any_thread);
150 }
151 }
152
153 // allocate per-thread load-based event queues
154 comLoadEventQueue = new EventQueue *[number_of_threads];
155 for (int i = 0; i < number_of_threads; ++i)
156 comLoadEventQueue[i] = new EventQueue("load-based event queue");
157
158 //
159 // set up instruction-count-based termination events, if any
160 //
161 if (p->max_loads_any_thread != 0) {
162 const char *cause = "a thread reached the max load count";
163 for (int i = 0; i < number_of_threads; ++i) {
164 Event *event = new SimLoopExitEvent(cause, 0);
165 comLoadEventQueue[i]->schedule(event, p->max_loads_any_thread);
166 }
167 }
168
169 if (p->max_loads_all_threads != 0) {
170 const char *cause = "all threads reached the max load count";
171 // allocate & initialize shared downcounter: each event will
172 // decrement this when triggered; simulation will terminate
173 // when counter reaches 0
174 int *counter = new int;
175 *counter = number_of_threads;
176 for (int i = 0; i < number_of_threads; ++i) {
177 Event *event = new CountedExitEvent(cause, *counter);
178 comLoadEventQueue[i]->schedule(event, p->max_loads_all_threads);
179 }
180 }
181
182 functionTracingEnabled = false;
183 if (p->function_trace) {
184 functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
185 currentFunctionStart = currentFunctionEnd = 0;
186 functionEntryTick = p->function_trace_start;
187
188 if (p->function_trace_start == 0) {
189 functionTracingEnabled = true;
190 } else {
191 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
192 Event *event = new wrap(this, true);
193 schedule(event, p->function_trace_start);
194 }
195 }
196 #if FULL_SYSTEM
197 interrupts->setCPU(this);
198
199 profileEvent = NULL;
200 if (params()->profile)
201 profileEvent = new ProfileEvent(this, params()->profile);
202 #endif
203 tracer = params()->tracer;
204 }
205
206 void
207 BaseCPU::enableFunctionTrace()
208 {
209 functionTracingEnabled = true;
210 }
211
212 BaseCPU::~BaseCPU()
213 {
214 }
215
216 void
217 BaseCPU::init()
218 {
219 if (!params()->defer_registration)
220 registerThreadContexts();
221 }
222
223 void
224 BaseCPU::startup()
225 {
226 #if FULL_SYSTEM
227 if (!params()->defer_registration && profileEvent)
228 schedule(profileEvent, curTick);
229 #endif
230
231 if (params()->progress_interval) {
232 Tick num_ticks = ticks(params()->progress_interval);
233 Event *event = new CPUProgressEvent(this, num_ticks);
234 schedule(event, curTick + num_ticks);
235 }
236 }
237
238
239 void
240 BaseCPU::regStats()
241 {
242 using namespace Stats;
243
244 numCycles
245 .name(name() + ".numCycles")
246 .desc("number of cpu cycles simulated")
247 ;
248
249 int size = threadContexts.size();
250 if (size > 1) {
251 for (int i = 0; i < size; ++i) {
252 stringstream namestr;
253 ccprintf(namestr, "%s.ctx%d", name(), i);
254 threadContexts[i]->regStats(namestr.str());
255 }
256 } else if (size == 1)
257 threadContexts[0]->regStats(name());
258
259 #if FULL_SYSTEM
260 #endif
261 }
262
263 Tick
264 BaseCPU::nextCycle()
265 {
266 Tick next_tick = curTick - phase + clock - 1;
267 next_tick -= (next_tick % clock);
268 next_tick += phase;
269 return next_tick;
270 }
271
272 Tick
273 BaseCPU::nextCycle(Tick begin_tick)
274 {
275 Tick next_tick = begin_tick;
276 if (next_tick % clock != 0)
277 next_tick = next_tick - (next_tick % clock) + clock;
278 next_tick += phase;
279
280 assert(next_tick >= curTick);
281 return next_tick;
282 }
283
284 void
285 BaseCPU::registerThreadContexts()
286 {
287 for (int i = 0; i < threadContexts.size(); ++i) {
288 ThreadContext *tc = threadContexts[i];
289
290 /** This is so that contextId and cpuId match where there is a
291 * 1cpu:1context relationship. Otherwise, the order of registration
292 * could affect the assignment and cpu 1 could have context id 3, for
293 * example. We may even want to do something like this for SMT so that
294 * cpu 0 has the lowest thread contexts and cpu N has the highest, but
295 * I'll just do this for now
296 */
297 if (number_of_threads == 1)
298 tc->setContextId(system->registerThreadContext(tc, _cpuId));
299 else
300 tc->setContextId(system->registerThreadContext(tc));
301 #if !FULL_SYSTEM
302 tc->getProcessPtr()->assignThreadContext(tc->contextId());
303 #endif
304 }
305 }
306
307
308 int
309 BaseCPU::findContext(ThreadContext *tc)
310 {
311 for (int i = 0; i < threadContexts.size(); ++i) {
312 if (tc == threadContexts[i])
313 return i;
314 }
315 return 0;
316 }
317
318 void
319 BaseCPU::switchOut()
320 {
321 // panic("This CPU doesn't support sampling!");
322 #if FULL_SYSTEM
323 if (profileEvent && profileEvent->scheduled())
324 deschedule(profileEvent);
325 #endif
326 }
327
328 void
329 BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc)
330 {
331 assert(threadContexts.size() == oldCPU->threadContexts.size());
332
333 _cpuId = oldCPU->cpuId();
334
335 for (int i = 0; i < threadContexts.size(); ++i) {
336 ThreadContext *newTC = threadContexts[i];
337 ThreadContext *oldTC = oldCPU->threadContexts[i];
338
339 newTC->takeOverFrom(oldTC);
340
341 CpuEvent::replaceThreadContext(oldTC, newTC);
342
343 assert(newTC->contextId() == oldTC->contextId());
344 assert(newTC->threadId() == oldTC->threadId());
345 system->replaceThreadContext(newTC, newTC->contextId());
346
347 /* This code no longer works since the zero register (e.g.,
348 * r31 on Alpha) doesn't necessarily contain zero at this
349 * point.
350 if (DTRACE(Context))
351 ThreadContext::compare(oldTC, newTC);
352 */
353 }
354
355 #if FULL_SYSTEM
356 interrupts = oldCPU->interrupts;
357 interrupts->setCPU(this);
358
359 for (int i = 0; i < threadContexts.size(); ++i)
360 threadContexts[i]->profileClear();
361
362 if (profileEvent)
363 schedule(profileEvent, curTick);
364 #endif
365
366 // Connect new CPU to old CPU's memory only if new CPU isn't
367 // connected to anything. Also connect old CPU's memory to new
368 // CPU.
369 if (!ic->isConnected()) {
370 Port *peer = oldCPU->getPort("icache_port")->getPeer();
371 ic->setPeer(peer);
372 peer->setPeer(ic);
373 }
374
375 if (!dc->isConnected()) {
376 Port *peer = oldCPU->getPort("dcache_port")->getPeer();
377 dc->setPeer(peer);
378 peer->setPeer(dc);
379 }
380 }
381
382
383 #if FULL_SYSTEM
384 BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
385 : cpu(_cpu), interval(_interval)
386 { }
387
388 void
389 BaseCPU::ProfileEvent::process()
390 {
391 for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
392 ThreadContext *tc = cpu->threadContexts[i];
393 tc->profileSample();
394 }
395
396 cpu->schedule(this, curTick + interval);
397 }
398
399 void
400 BaseCPU::serialize(std::ostream &os)
401 {
402 SERIALIZE_SCALAR(instCnt);
403 interrupts->serialize(os);
404 }
405
406 void
407 BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
408 {
409 UNSERIALIZE_SCALAR(instCnt);
410 interrupts->unserialize(cp, section);
411 }
412
413 #endif // FULL_SYSTEM
414
415 void
416 BaseCPU::traceFunctionsInternal(Addr pc)
417 {
418 if (!debugSymbolTable)
419 return;
420
421 // if pc enters different function, print new function symbol and
422 // update saved range. Otherwise do nothing.
423 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
424 string sym_str;
425 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
426 currentFunctionStart,
427 currentFunctionEnd);
428
429 if (!found) {
430 // no symbol found: use addr as label
431 sym_str = csprintf("0x%x", pc);
432 currentFunctionStart = pc;
433 currentFunctionEnd = pc + 1;
434 }
435
436 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
437 curTick - functionEntryTick, curTick, sym_str);
438 functionEntryTick = curTick;
439 }
440 }