10b8ce297d90d15d8bb4b2f3cf5445e15601a2be
[gem5.git] / src / cpu / base.cc
1 /*
2 * Copyright (c) 2011-2012,2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 * Nathan Binkert
45 * Rick Strong
46 */
47
48 #include "cpu/base.hh"
49
50 #include <iostream>
51 #include <sstream>
52 #include <string>
53
54 #include "arch/tlb.hh"
55 #include "base/cprintf.hh"
56 #include "base/loader/symtab.hh"
57 #include "base/misc.hh"
58 #include "base/output.hh"
59 #include "base/trace.hh"
60 #include "cpu/checker/cpu.hh"
61 #include "cpu/cpuevent.hh"
62 #include "cpu/profile.hh"
63 #include "cpu/thread_context.hh"
64 #include "debug/Mwait.hh"
65 #include "debug/SyscallVerbose.hh"
66 #include "mem/page_table.hh"
67 #include "params/BaseCPU.hh"
68 #include "sim/clocked_object.hh"
69 #include "sim/full_system.hh"
70 #include "sim/process.hh"
71 #include "sim/sim_events.hh"
72 #include "sim/sim_exit.hh"
73 #include "sim/system.hh"
74
75 // Hack
76 #include "sim/stat_control.hh"
77
78 using namespace std;
79
80 vector<BaseCPU *> BaseCPU::cpuList;
81
82 // This variable reflects the max number of threads in any CPU. Be
83 // careful to only use it once all the CPUs that you care about have
84 // been initialized
85 int maxThreadsPerCPU = 1;
86
87 CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
88 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
89 cpu(_cpu), _repeatEvent(true)
90 {
91 if (_interval)
92 cpu->schedule(this, curTick() + _interval);
93 }
94
95 void
96 CPUProgressEvent::process()
97 {
98 Counter temp = cpu->totalOps();
99
100 if (_repeatEvent)
101 cpu->schedule(this, curTick() + _interval);
102
103 if (cpu->switchedOut()) {
104 return;
105 }
106
107 #ifndef NDEBUG
108 double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
109
110 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
111 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
112 ipc);
113 ipc = 0.0;
114 #else
115 cprintf("%lli: %s progress event, total committed:%i, progress insts "
116 "committed: %lli\n", curTick(), cpu->name(), temp,
117 temp - lastNumInst);
118 #endif
119 lastNumInst = temp;
120 }
121
122 const char *
123 CPUProgressEvent::description() const
124 {
125 return "CPU Progress";
126 }
127
128 BaseCPU::BaseCPU(Params *p, bool is_checker)
129 : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
130 _instMasterId(p->system->getMasterId(name() + ".inst")),
131 _dataMasterId(p->system->getMasterId(name() + ".data")),
132 _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
133 _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
134 interrupts(p->interrupts), profileEvent(NULL),
135 numThreads(p->numThreads), system(p->system),
136 functionTraceStream(nullptr), currentFunctionStart(0),
137 currentFunctionEnd(0), functionEntryTick(0),
138 addressMonitor(p->numThreads)
139 {
140 // if Python did not provide a valid ID, do it here
141 if (_cpuId == -1 ) {
142 _cpuId = cpuList.size();
143 }
144
145 // add self to global list of CPUs
146 cpuList.push_back(this);
147
148 DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
149 _cpuId, _socketId);
150
151 if (numThreads > maxThreadsPerCPU)
152 maxThreadsPerCPU = numThreads;
153
154 // allocate per-thread instruction-based event queues
155 comInstEventQueue = new EventQueue *[numThreads];
156 for (ThreadID tid = 0; tid < numThreads; ++tid)
157 comInstEventQueue[tid] =
158 new EventQueue("instruction-based event queue");
159
160 //
161 // set up instruction-count-based termination events, if any
162 //
163 if (p->max_insts_any_thread != 0) {
164 const char *cause = "a thread reached the max instruction count";
165 for (ThreadID tid = 0; tid < numThreads; ++tid)
166 scheduleInstStop(tid, p->max_insts_any_thread, cause);
167 }
168
169 // Set up instruction-count-based termination events for SimPoints
170 // Typically, there are more than one action points.
171 // Simulation.py is responsible to take the necessary actions upon
172 // exitting the simulation loop.
173 if (!p->simpoint_start_insts.empty()) {
174 const char *cause = "simpoint starting point found";
175 for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
176 scheduleInstStop(0, p->simpoint_start_insts[i], cause);
177 }
178
179 if (p->max_insts_all_threads != 0) {
180 const char *cause = "all threads reached the max instruction count";
181
182 // allocate & initialize shared downcounter: each event will
183 // decrement this when triggered; simulation will terminate
184 // when counter reaches 0
185 int *counter = new int;
186 *counter = numThreads;
187 for (ThreadID tid = 0; tid < numThreads; ++tid) {
188 Event *event = new CountedExitEvent(cause, *counter);
189 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
190 }
191 }
192
193 // allocate per-thread load-based event queues
194 comLoadEventQueue = new EventQueue *[numThreads];
195 for (ThreadID tid = 0; tid < numThreads; ++tid)
196 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
197
198 //
199 // set up instruction-count-based termination events, if any
200 //
201 if (p->max_loads_any_thread != 0) {
202 const char *cause = "a thread reached the max load count";
203 for (ThreadID tid = 0; tid < numThreads; ++tid)
204 scheduleLoadStop(tid, p->max_loads_any_thread, cause);
205 }
206
207 if (p->max_loads_all_threads != 0) {
208 const char *cause = "all threads reached the max load count";
209 // allocate & initialize shared downcounter: each event will
210 // decrement this when triggered; simulation will terminate
211 // when counter reaches 0
212 int *counter = new int;
213 *counter = numThreads;
214 for (ThreadID tid = 0; tid < numThreads; ++tid) {
215 Event *event = new CountedExitEvent(cause, *counter);
216 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
217 }
218 }
219
220 functionTracingEnabled = false;
221 if (p->function_trace) {
222 const string fname = csprintf("ftrace.%s", name());
223 functionTraceStream = simout.findOrCreate(fname)->stream();
224
225 currentFunctionStart = currentFunctionEnd = 0;
226 functionEntryTick = p->function_trace_start;
227
228 if (p->function_trace_start == 0) {
229 functionTracingEnabled = true;
230 } else {
231 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
232 Event *event = new wrap(this, true);
233 schedule(event, p->function_trace_start);
234 }
235 }
236
237 // The interrupts should always be present unless this CPU is
238 // switched in later or in case it is a checker CPU
239 if (!params()->switched_out && !is_checker) {
240 fatal_if(interrupts.size() != numThreads,
241 "CPU %s has %i interrupt controllers, but is expecting one "
242 "per thread (%i)\n",
243 name(), interrupts.size(), numThreads);
244 for (ThreadID tid = 0; tid < numThreads; tid++)
245 interrupts[tid]->setCPU(this);
246 }
247
248 if (FullSystem) {
249 if (params()->profile)
250 profileEvent = new ProfileEvent(this, params()->profile);
251 }
252 tracer = params()->tracer;
253
254 if (params()->isa.size() != numThreads) {
255 fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
256 "of threads (%i).\n", params()->isa.size(), numThreads);
257 }
258 }
259
260 void
261 BaseCPU::enableFunctionTrace()
262 {
263 functionTracingEnabled = true;
264 }
265
266 BaseCPU::~BaseCPU()
267 {
268 delete profileEvent;
269 delete[] comLoadEventQueue;
270 delete[] comInstEventQueue;
271 }
272
273 void
274 BaseCPU::armMonitor(ThreadID tid, Addr address)
275 {
276 assert(tid < numThreads);
277 AddressMonitor &monitor = addressMonitor[tid];
278
279 monitor.armed = true;
280 monitor.vAddr = address;
281 monitor.pAddr = 0x0;
282 DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
283 }
284
285 bool
286 BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
287 {
288 assert(tid < numThreads);
289 AddressMonitor &monitor = addressMonitor[tid];
290
291 if (!monitor.gotWakeup) {
292 int block_size = cacheLineSize();
293 uint64_t mask = ~((uint64_t)(block_size - 1));
294
295 assert(pkt->req->hasPaddr());
296 monitor.pAddr = pkt->getAddr() & mask;
297 monitor.waiting = true;
298
299 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
300 "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
301 return true;
302 } else {
303 monitor.gotWakeup = false;
304 return false;
305 }
306 }
307
308 void
309 BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, TheISA::TLB *dtb)
310 {
311 assert(tid < numThreads);
312 AddressMonitor &monitor = addressMonitor[tid];
313
314 Request req;
315 Addr addr = monitor.vAddr;
316 int block_size = cacheLineSize();
317 uint64_t mask = ~((uint64_t)(block_size - 1));
318 int size = block_size;
319
320 //The address of the next line if it crosses a cache line boundary.
321 Addr secondAddr = roundDown(addr + size - 1, block_size);
322
323 if (secondAddr > addr)
324 size = secondAddr - addr;
325
326 req.setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
327
328 // translate to physical address
329 Fault fault = dtb->translateAtomic(&req, tc, BaseTLB::Read);
330 assert(fault == NoFault);
331
332 monitor.pAddr = req.getPaddr() & mask;
333 monitor.waiting = true;
334
335 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
336 tid, monitor.vAddr, monitor.pAddr);
337 }
338
339 void
340 BaseCPU::init()
341 {
342 if (!params()->switched_out) {
343 registerThreadContexts();
344
345 verifyMemoryMode();
346 }
347 }
348
349 void
350 BaseCPU::startup()
351 {
352 if (FullSystem) {
353 if (!params()->switched_out && profileEvent)
354 schedule(profileEvent, curTick());
355 }
356
357 if (params()->progress_interval) {
358 new CPUProgressEvent(this, params()->progress_interval);
359 }
360
361 // Assumption CPU start to operate instantaneously without any latency
362 if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
363 ClockedObject::pwrState(Enums::PwrState::ON);
364
365 }
366
367 ProbePoints::PMUUPtr
368 BaseCPU::pmuProbePoint(const char *name)
369 {
370 ProbePoints::PMUUPtr ptr;
371 ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
372
373 return ptr;
374 }
375
376 void
377 BaseCPU::regProbePoints()
378 {
379 ppCycles = pmuProbePoint("Cycles");
380
381 ppRetiredInsts = pmuProbePoint("RetiredInsts");
382 ppRetiredLoads = pmuProbePoint("RetiredLoads");
383 ppRetiredStores = pmuProbePoint("RetiredStores");
384 ppRetiredBranches = pmuProbePoint("RetiredBranches");
385 }
386
387 void
388 BaseCPU::probeInstCommit(const StaticInstPtr &inst)
389 {
390 if (!inst->isMicroop() || inst->isLastMicroop())
391 ppRetiredInsts->notify(1);
392
393
394 if (inst->isLoad())
395 ppRetiredLoads->notify(1);
396
397 if (inst->isStore())
398 ppRetiredStores->notify(1);
399
400 if (inst->isControl())
401 ppRetiredBranches->notify(1);
402 }
403
404 void
405 BaseCPU::regStats()
406 {
407 MemObject::regStats();
408
409 using namespace Stats;
410
411 numCycles
412 .name(name() + ".numCycles")
413 .desc("number of cpu cycles simulated")
414 ;
415
416 numWorkItemsStarted
417 .name(name() + ".numWorkItemsStarted")
418 .desc("number of work items this cpu started")
419 ;
420
421 numWorkItemsCompleted
422 .name(name() + ".numWorkItemsCompleted")
423 .desc("number of work items this cpu completed")
424 ;
425
426 int size = threadContexts.size();
427 if (size > 1) {
428 for (int i = 0; i < size; ++i) {
429 stringstream namestr;
430 ccprintf(namestr, "%s.ctx%d", name(), i);
431 threadContexts[i]->regStats(namestr.str());
432 }
433 } else if (size == 1)
434 threadContexts[0]->regStats(name());
435 }
436
437 BaseMasterPort &
438 BaseCPU::getMasterPort(const string &if_name, PortID idx)
439 {
440 // Get the right port based on name. This applies to all the
441 // subclasses of the base CPU and relies on their implementation
442 // of getDataPort and getInstPort. In all cases there methods
443 // return a MasterPort pointer.
444 if (if_name == "dcache_port")
445 return getDataPort();
446 else if (if_name == "icache_port")
447 return getInstPort();
448 else
449 return MemObject::getMasterPort(if_name, idx);
450 }
451
452 void
453 BaseCPU::registerThreadContexts()
454 {
455 assert(system->multiThread || numThreads == 1);
456
457 ThreadID size = threadContexts.size();
458 for (ThreadID tid = 0; tid < size; ++tid) {
459 ThreadContext *tc = threadContexts[tid];
460
461 if (system->multiThread) {
462 tc->setContextId(system->registerThreadContext(tc));
463 } else {
464 tc->setContextId(system->registerThreadContext(tc, _cpuId));
465 }
466
467 if (!FullSystem)
468 tc->getProcessPtr()->assignThreadContext(tc->contextId());
469 }
470 }
471
472
473 int
474 BaseCPU::findContext(ThreadContext *tc)
475 {
476 ThreadID size = threadContexts.size();
477 for (ThreadID tid = 0; tid < size; ++tid) {
478 if (tc == threadContexts[tid])
479 return tid;
480 }
481 return 0;
482 }
483
484 void
485 BaseCPU::activateContext(ThreadID thread_num)
486 {
487 // For any active thread running, update CPU power state to active (ON)
488 ClockedObject::pwrState(Enums::PwrState::ON);
489 }
490
491 void
492 BaseCPU::suspendContext(ThreadID thread_num)
493 {
494 // Check if all threads are suspended
495 for (auto t : threadContexts) {
496 if (t->status() != ThreadContext::Suspended) {
497 return;
498 }
499 }
500
501 // All CPU threads suspended, enter lower power state for the CPU
502 ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
503 }
504
505 void
506 BaseCPU::switchOut()
507 {
508 assert(!_switchedOut);
509 _switchedOut = true;
510 if (profileEvent && profileEvent->scheduled())
511 deschedule(profileEvent);
512
513 // Flush all TLBs in the CPU to avoid having stale translations if
514 // it gets switched in later.
515 flushTLBs();
516 }
517
518 void
519 BaseCPU::takeOverFrom(BaseCPU *oldCPU)
520 {
521 assert(threadContexts.size() == oldCPU->threadContexts.size());
522 assert(_cpuId == oldCPU->cpuId());
523 assert(_switchedOut);
524 assert(oldCPU != this);
525 _pid = oldCPU->getPid();
526 _taskId = oldCPU->taskId();
527 _switchedOut = false;
528
529 ThreadID size = threadContexts.size();
530 for (ThreadID i = 0; i < size; ++i) {
531 ThreadContext *newTC = threadContexts[i];
532 ThreadContext *oldTC = oldCPU->threadContexts[i];
533
534 newTC->takeOverFrom(oldTC);
535
536 CpuEvent::replaceThreadContext(oldTC, newTC);
537
538 assert(newTC->contextId() == oldTC->contextId());
539 assert(newTC->threadId() == oldTC->threadId());
540 system->replaceThreadContext(newTC, newTC->contextId());
541
542 /* This code no longer works since the zero register (e.g.,
543 * r31 on Alpha) doesn't necessarily contain zero at this
544 * point.
545 if (DTRACE(Context))
546 ThreadContext::compare(oldTC, newTC);
547 */
548
549 BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
550 BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
551 BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
552 BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
553
554 // Move over any table walker ports if they exist
555 if (new_itb_port) {
556 assert(!new_itb_port->isConnected());
557 assert(old_itb_port);
558 assert(old_itb_port->isConnected());
559 BaseSlavePort &slavePort = old_itb_port->getSlavePort();
560 old_itb_port->unbind();
561 new_itb_port->bind(slavePort);
562 }
563 if (new_dtb_port) {
564 assert(!new_dtb_port->isConnected());
565 assert(old_dtb_port);
566 assert(old_dtb_port->isConnected());
567 BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
568 old_dtb_port->unbind();
569 new_dtb_port->bind(slavePort);
570 }
571 newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
572 newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
573
574 // Checker whether or not we have to transfer CheckerCPU
575 // objects over in the switch
576 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
577 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
578 if (oldChecker && newChecker) {
579 BaseMasterPort *old_checker_itb_port =
580 oldChecker->getITBPtr()->getMasterPort();
581 BaseMasterPort *old_checker_dtb_port =
582 oldChecker->getDTBPtr()->getMasterPort();
583 BaseMasterPort *new_checker_itb_port =
584 newChecker->getITBPtr()->getMasterPort();
585 BaseMasterPort *new_checker_dtb_port =
586 newChecker->getDTBPtr()->getMasterPort();
587
588 newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
589 newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
590
591 // Move over any table walker ports if they exist for checker
592 if (new_checker_itb_port) {
593 assert(!new_checker_itb_port->isConnected());
594 assert(old_checker_itb_port);
595 assert(old_checker_itb_port->isConnected());
596 BaseSlavePort &slavePort =
597 old_checker_itb_port->getSlavePort();
598 old_checker_itb_port->unbind();
599 new_checker_itb_port->bind(slavePort);
600 }
601 if (new_checker_dtb_port) {
602 assert(!new_checker_dtb_port->isConnected());
603 assert(old_checker_dtb_port);
604 assert(old_checker_dtb_port->isConnected());
605 BaseSlavePort &slavePort =
606 old_checker_dtb_port->getSlavePort();
607 old_checker_dtb_port->unbind();
608 new_checker_dtb_port->bind(slavePort);
609 }
610 }
611 }
612
613 interrupts = oldCPU->interrupts;
614 for (ThreadID tid = 0; tid < numThreads; tid++) {
615 interrupts[tid]->setCPU(this);
616 }
617 oldCPU->interrupts.clear();
618
619 if (FullSystem) {
620 for (ThreadID i = 0; i < size; ++i)
621 threadContexts[i]->profileClear();
622
623 if (profileEvent)
624 schedule(profileEvent, curTick());
625 }
626
627 // All CPUs have an instruction and a data port, and the new CPU's
628 // ports are dangling while the old CPU has its ports connected
629 // already. Unbind the old CPU and then bind the ports of the one
630 // we are switching to.
631 assert(!getInstPort().isConnected());
632 assert(oldCPU->getInstPort().isConnected());
633 BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
634 oldCPU->getInstPort().unbind();
635 getInstPort().bind(inst_peer_port);
636
637 assert(!getDataPort().isConnected());
638 assert(oldCPU->getDataPort().isConnected());
639 BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
640 oldCPU->getDataPort().unbind();
641 getDataPort().bind(data_peer_port);
642 }
643
644 void
645 BaseCPU::flushTLBs()
646 {
647 for (ThreadID i = 0; i < threadContexts.size(); ++i) {
648 ThreadContext &tc(*threadContexts[i]);
649 CheckerCPU *checker(tc.getCheckerCpuPtr());
650
651 tc.getITBPtr()->flushAll();
652 tc.getDTBPtr()->flushAll();
653 if (checker) {
654 checker->getITBPtr()->flushAll();
655 checker->getDTBPtr()->flushAll();
656 }
657 }
658 }
659
660
661 BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
662 : cpu(_cpu), interval(_interval)
663 { }
664
665 void
666 BaseCPU::ProfileEvent::process()
667 {
668 ThreadID size = cpu->threadContexts.size();
669 for (ThreadID i = 0; i < size; ++i) {
670 ThreadContext *tc = cpu->threadContexts[i];
671 tc->profileSample();
672 }
673
674 cpu->schedule(this, curTick() + interval);
675 }
676
677 void
678 BaseCPU::serialize(CheckpointOut &cp) const
679 {
680 SERIALIZE_SCALAR(instCnt);
681
682 if (!_switchedOut) {
683 /* Unlike _pid, _taskId is not serialized, as they are dynamically
684 * assigned unique ids that are only meaningful for the duration of
685 * a specific run. We will need to serialize the entire taskMap in
686 * system. */
687 SERIALIZE_SCALAR(_pid);
688
689 // Serialize the threads, this is done by the CPU implementation.
690 for (ThreadID i = 0; i < numThreads; ++i) {
691 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
692 interrupts[i]->serialize(cp);
693 serializeThread(cp, i);
694 }
695 }
696 }
697
698 void
699 BaseCPU::unserialize(CheckpointIn &cp)
700 {
701 UNSERIALIZE_SCALAR(instCnt);
702
703 if (!_switchedOut) {
704 UNSERIALIZE_SCALAR(_pid);
705
706 // Unserialize the threads, this is done by the CPU implementation.
707 for (ThreadID i = 0; i < numThreads; ++i) {
708 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
709 interrupts[i]->unserialize(cp);
710 unserializeThread(cp, i);
711 }
712 }
713 }
714
715 void
716 BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
717 {
718 const Tick now(comInstEventQueue[tid]->getCurTick());
719 Event *event(new LocalSimLoopExitEvent(cause, 0));
720
721 comInstEventQueue[tid]->schedule(event, now + insts);
722 }
723
724 uint64_t
725 BaseCPU::getCurrentInstCount(ThreadID tid)
726 {
727 return Tick(comInstEventQueue[tid]->getCurTick());
728 }
729
730 AddressMonitor::AddressMonitor() {
731 armed = false;
732 waiting = false;
733 gotWakeup = false;
734 }
735
736 bool AddressMonitor::doMonitor(PacketPtr pkt) {
737 assert(pkt->req->hasPaddr());
738 if (armed && waiting) {
739 if (pAddr == pkt->getAddr()) {
740 DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
741 pkt->getAddr());
742 waiting = false;
743 return true;
744 }
745 }
746 return false;
747 }
748
749 void
750 BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
751 {
752 const Tick now(comLoadEventQueue[tid]->getCurTick());
753 Event *event(new LocalSimLoopExitEvent(cause, 0));
754
755 comLoadEventQueue[tid]->schedule(event, now + loads);
756 }
757
758
759 void
760 BaseCPU::traceFunctionsInternal(Addr pc)
761 {
762 if (!debugSymbolTable)
763 return;
764
765 // if pc enters different function, print new function symbol and
766 // update saved range. Otherwise do nothing.
767 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
768 string sym_str;
769 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
770 currentFunctionStart,
771 currentFunctionEnd);
772
773 if (!found) {
774 // no symbol found: use addr as label
775 sym_str = csprintf("0x%x", pc);
776 currentFunctionStart = pc;
777 currentFunctionEnd = pc + 1;
778 }
779
780 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
781 curTick() - functionEntryTick, curTick(), sym_str);
782 functionEntryTick = curTick();
783 }
784 }