cpu: Relax check on squashed non-speculative instructions
[gem5.git] / src / cpu / base.cc
1 /*
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 * Nathan Binkert
45 * Rick Strong
46 */
47
48 #include <iostream>
49 #include <sstream>
50 #include <string>
51
52 #include "arch/tlb.hh"
53 #include "base/loader/symtab.hh"
54 #include "base/cprintf.hh"
55 #include "base/misc.hh"
56 #include "base/output.hh"
57 #include "base/trace.hh"
58 #include "cpu/base.hh"
59 #include "cpu/checker/cpu.hh"
60 #include "cpu/cpuevent.hh"
61 #include "cpu/profile.hh"
62 #include "cpu/thread_context.hh"
63 #include "debug/SyscallVerbose.hh"
64 #include "params/BaseCPU.hh"
65 #include "sim/full_system.hh"
66 #include "sim/process.hh"
67 #include "sim/sim_events.hh"
68 #include "sim/sim_exit.hh"
69 #include "sim/system.hh"
70
71 // Hack
72 #include "sim/stat_control.hh"
73
74 using namespace std;
75
76 vector<BaseCPU *> BaseCPU::cpuList;
77
78 // This variable reflects the max number of threads in any CPU. Be
79 // careful to only use it once all the CPUs that you care about have
80 // been initialized
81 int maxThreadsPerCPU = 1;
82
83 CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
84 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
85 cpu(_cpu), _repeatEvent(true)
86 {
87 if (_interval)
88 cpu->schedule(this, curTick() + _interval);
89 }
90
91 void
92 CPUProgressEvent::process()
93 {
94 Counter temp = cpu->totalOps();
95 #ifndef NDEBUG
96 double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
97
98 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
99 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
100 ipc);
101 ipc = 0.0;
102 #else
103 cprintf("%lli: %s progress event, total committed:%i, progress insts "
104 "committed: %lli\n", curTick(), cpu->name(), temp,
105 temp - lastNumInst);
106 #endif
107 lastNumInst = temp;
108
109 if (_repeatEvent)
110 cpu->schedule(this, curTick() + _interval);
111 }
112
113 const char *
114 CPUProgressEvent::description() const
115 {
116 return "CPU Progress";
117 }
118
119 BaseCPU::BaseCPU(Params *p, bool is_checker)
120 : MemObject(p), instCnt(0), _cpuId(p->cpu_id),
121 _instMasterId(p->system->getMasterId(name() + ".inst")),
122 _dataMasterId(p->system->getMasterId(name() + ".data")),
123 _taskId(ContextSwitchTaskId::Unknown), _pid(Request::invldPid),
124 _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
125 interrupts(p->interrupts), profileEvent(NULL),
126 numThreads(p->numThreads), system(p->system)
127 {
128 // if Python did not provide a valid ID, do it here
129 if (_cpuId == -1 ) {
130 _cpuId = cpuList.size();
131 }
132
133 // add self to global list of CPUs
134 cpuList.push_back(this);
135
136 DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
137
138 if (numThreads > maxThreadsPerCPU)
139 maxThreadsPerCPU = numThreads;
140
141 // allocate per-thread instruction-based event queues
142 comInstEventQueue = new EventQueue *[numThreads];
143 for (ThreadID tid = 0; tid < numThreads; ++tid)
144 comInstEventQueue[tid] =
145 new EventQueue("instruction-based event queue");
146
147 //
148 // set up instruction-count-based termination events, if any
149 //
150 if (p->max_insts_any_thread != 0) {
151 const char *cause = "a thread reached the max instruction count";
152 for (ThreadID tid = 0; tid < numThreads; ++tid)
153 scheduleInstStop(tid, p->max_insts_any_thread, cause);
154 }
155
156 // Set up instruction-count-based termination events for SimPoints
157 // Typically, there are more than one action points.
158 // Simulation.py is responsible to take the necessary actions upon
159 // exitting the simulation loop.
160 if (!p->simpoint_start_insts.empty()) {
161 const char *cause = "simpoint starting point found";
162 for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
163 scheduleInstStop(0, p->simpoint_start_insts[i], cause);
164 }
165
166 if (p->max_insts_all_threads != 0) {
167 const char *cause = "all threads reached the max instruction count";
168
169 // allocate & initialize shared downcounter: each event will
170 // decrement this when triggered; simulation will terminate
171 // when counter reaches 0
172 int *counter = new int;
173 *counter = numThreads;
174 for (ThreadID tid = 0; tid < numThreads; ++tid) {
175 Event *event = new CountedExitEvent(cause, *counter);
176 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
177 }
178 }
179
180 // allocate per-thread load-based event queues
181 comLoadEventQueue = new EventQueue *[numThreads];
182 for (ThreadID tid = 0; tid < numThreads; ++tid)
183 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
184
185 //
186 // set up instruction-count-based termination events, if any
187 //
188 if (p->max_loads_any_thread != 0) {
189 const char *cause = "a thread reached the max load count";
190 for (ThreadID tid = 0; tid < numThreads; ++tid)
191 scheduleLoadStop(tid, p->max_loads_any_thread, cause);
192 }
193
194 if (p->max_loads_all_threads != 0) {
195 const char *cause = "all threads reached the max load count";
196 // allocate & initialize shared downcounter: each event will
197 // decrement this when triggered; simulation will terminate
198 // when counter reaches 0
199 int *counter = new int;
200 *counter = numThreads;
201 for (ThreadID tid = 0; tid < numThreads; ++tid) {
202 Event *event = new CountedExitEvent(cause, *counter);
203 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
204 }
205 }
206
207 functionTracingEnabled = false;
208 if (p->function_trace) {
209 const string fname = csprintf("ftrace.%s", name());
210 functionTraceStream = simout.find(fname);
211 if (!functionTraceStream)
212 functionTraceStream = simout.create(fname);
213
214 currentFunctionStart = currentFunctionEnd = 0;
215 functionEntryTick = p->function_trace_start;
216
217 if (p->function_trace_start == 0) {
218 functionTracingEnabled = true;
219 } else {
220 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
221 Event *event = new wrap(this, true);
222 schedule(event, p->function_trace_start);
223 }
224 }
225
226 // The interrupts should always be present unless this CPU is
227 // switched in later or in case it is a checker CPU
228 if (!params()->switched_out && !is_checker) {
229 if (interrupts) {
230 interrupts->setCPU(this);
231 } else {
232 fatal("CPU %s has no interrupt controller.\n"
233 "Ensure createInterruptController() is called.\n", name());
234 }
235 }
236
237 if (FullSystem) {
238 if (params()->profile)
239 profileEvent = new ProfileEvent(this, params()->profile);
240 }
241 tracer = params()->tracer;
242
243 if (params()->isa.size() != numThreads) {
244 fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
245 "of threads (%i).\n", params()->isa.size(), numThreads);
246 }
247 }
248
249 void
250 BaseCPU::enableFunctionTrace()
251 {
252 functionTracingEnabled = true;
253 }
254
255 BaseCPU::~BaseCPU()
256 {
257 delete profileEvent;
258 delete[] comLoadEventQueue;
259 delete[] comInstEventQueue;
260 }
261
262 void
263 BaseCPU::init()
264 {
265 if (!params()->switched_out) {
266 registerThreadContexts();
267
268 verifyMemoryMode();
269 }
270 }
271
272 void
273 BaseCPU::startup()
274 {
275 if (FullSystem) {
276 if (!params()->switched_out && profileEvent)
277 schedule(profileEvent, curTick());
278 }
279
280 if (params()->progress_interval) {
281 new CPUProgressEvent(this, params()->progress_interval);
282 }
283 }
284
285
286 void
287 BaseCPU::regStats()
288 {
289 using namespace Stats;
290
291 numCycles
292 .name(name() + ".numCycles")
293 .desc("number of cpu cycles simulated")
294 ;
295
296 numWorkItemsStarted
297 .name(name() + ".numWorkItemsStarted")
298 .desc("number of work items this cpu started")
299 ;
300
301 numWorkItemsCompleted
302 .name(name() + ".numWorkItemsCompleted")
303 .desc("number of work items this cpu completed")
304 ;
305
306 int size = threadContexts.size();
307 if (size > 1) {
308 for (int i = 0; i < size; ++i) {
309 stringstream namestr;
310 ccprintf(namestr, "%s.ctx%d", name(), i);
311 threadContexts[i]->regStats(namestr.str());
312 }
313 } else if (size == 1)
314 threadContexts[0]->regStats(name());
315 }
316
317 BaseMasterPort &
318 BaseCPU::getMasterPort(const string &if_name, PortID idx)
319 {
320 // Get the right port based on name. This applies to all the
321 // subclasses of the base CPU and relies on their implementation
322 // of getDataPort and getInstPort. In all cases there methods
323 // return a MasterPort pointer.
324 if (if_name == "dcache_port")
325 return getDataPort();
326 else if (if_name == "icache_port")
327 return getInstPort();
328 else
329 return MemObject::getMasterPort(if_name, idx);
330 }
331
332 void
333 BaseCPU::registerThreadContexts()
334 {
335 ThreadID size = threadContexts.size();
336 for (ThreadID tid = 0; tid < size; ++tid) {
337 ThreadContext *tc = threadContexts[tid];
338
339 /** This is so that contextId and cpuId match where there is a
340 * 1cpu:1context relationship. Otherwise, the order of registration
341 * could affect the assignment and cpu 1 could have context id 3, for
342 * example. We may even want to do something like this for SMT so that
343 * cpu 0 has the lowest thread contexts and cpu N has the highest, but
344 * I'll just do this for now
345 */
346 if (numThreads == 1)
347 tc->setContextId(system->registerThreadContext(tc, _cpuId));
348 else
349 tc->setContextId(system->registerThreadContext(tc));
350
351 if (!FullSystem)
352 tc->getProcessPtr()->assignThreadContext(tc->contextId());
353 }
354 }
355
356
357 int
358 BaseCPU::findContext(ThreadContext *tc)
359 {
360 ThreadID size = threadContexts.size();
361 for (ThreadID tid = 0; tid < size; ++tid) {
362 if (tc == threadContexts[tid])
363 return tid;
364 }
365 return 0;
366 }
367
368 void
369 BaseCPU::switchOut()
370 {
371 assert(!_switchedOut);
372 _switchedOut = true;
373 if (profileEvent && profileEvent->scheduled())
374 deschedule(profileEvent);
375
376 // Flush all TLBs in the CPU to avoid having stale translations if
377 // it gets switched in later.
378 flushTLBs();
379 }
380
381 void
382 BaseCPU::takeOverFrom(BaseCPU *oldCPU)
383 {
384 assert(threadContexts.size() == oldCPU->threadContexts.size());
385 assert(_cpuId == oldCPU->cpuId());
386 assert(_switchedOut);
387 assert(oldCPU != this);
388 _pid = oldCPU->getPid();
389 _taskId = oldCPU->taskId();
390 _switchedOut = false;
391
392 ThreadID size = threadContexts.size();
393 for (ThreadID i = 0; i < size; ++i) {
394 ThreadContext *newTC = threadContexts[i];
395 ThreadContext *oldTC = oldCPU->threadContexts[i];
396
397 newTC->takeOverFrom(oldTC);
398
399 CpuEvent::replaceThreadContext(oldTC, newTC);
400
401 assert(newTC->contextId() == oldTC->contextId());
402 assert(newTC->threadId() == oldTC->threadId());
403 system->replaceThreadContext(newTC, newTC->contextId());
404
405 /* This code no longer works since the zero register (e.g.,
406 * r31 on Alpha) doesn't necessarily contain zero at this
407 * point.
408 if (DTRACE(Context))
409 ThreadContext::compare(oldTC, newTC);
410 */
411
412 BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
413 BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
414 BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
415 BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
416
417 // Move over any table walker ports if they exist
418 if (new_itb_port) {
419 assert(!new_itb_port->isConnected());
420 assert(old_itb_port);
421 assert(old_itb_port->isConnected());
422 BaseSlavePort &slavePort = old_itb_port->getSlavePort();
423 old_itb_port->unbind();
424 new_itb_port->bind(slavePort);
425 }
426 if (new_dtb_port) {
427 assert(!new_dtb_port->isConnected());
428 assert(old_dtb_port);
429 assert(old_dtb_port->isConnected());
430 BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
431 old_dtb_port->unbind();
432 new_dtb_port->bind(slavePort);
433 }
434
435 // Checker whether or not we have to transfer CheckerCPU
436 // objects over in the switch
437 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
438 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
439 if (oldChecker && newChecker) {
440 BaseMasterPort *old_checker_itb_port =
441 oldChecker->getITBPtr()->getMasterPort();
442 BaseMasterPort *old_checker_dtb_port =
443 oldChecker->getDTBPtr()->getMasterPort();
444 BaseMasterPort *new_checker_itb_port =
445 newChecker->getITBPtr()->getMasterPort();
446 BaseMasterPort *new_checker_dtb_port =
447 newChecker->getDTBPtr()->getMasterPort();
448
449 // Move over any table walker ports if they exist for checker
450 if (new_checker_itb_port) {
451 assert(!new_checker_itb_port->isConnected());
452 assert(old_checker_itb_port);
453 assert(old_checker_itb_port->isConnected());
454 BaseSlavePort &slavePort =
455 old_checker_itb_port->getSlavePort();
456 old_checker_itb_port->unbind();
457 new_checker_itb_port->bind(slavePort);
458 }
459 if (new_checker_dtb_port) {
460 assert(!new_checker_dtb_port->isConnected());
461 assert(old_checker_dtb_port);
462 assert(old_checker_dtb_port->isConnected());
463 BaseSlavePort &slavePort =
464 old_checker_dtb_port->getSlavePort();
465 old_checker_dtb_port->unbind();
466 new_checker_dtb_port->bind(slavePort);
467 }
468 }
469 }
470
471 interrupts = oldCPU->interrupts;
472 interrupts->setCPU(this);
473 oldCPU->interrupts = NULL;
474
475 if (FullSystem) {
476 for (ThreadID i = 0; i < size; ++i)
477 threadContexts[i]->profileClear();
478
479 if (profileEvent)
480 schedule(profileEvent, curTick());
481 }
482
483 // All CPUs have an instruction and a data port, and the new CPU's
484 // ports are dangling while the old CPU has its ports connected
485 // already. Unbind the old CPU and then bind the ports of the one
486 // we are switching to.
487 assert(!getInstPort().isConnected());
488 assert(oldCPU->getInstPort().isConnected());
489 BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
490 oldCPU->getInstPort().unbind();
491 getInstPort().bind(inst_peer_port);
492
493 assert(!getDataPort().isConnected());
494 assert(oldCPU->getDataPort().isConnected());
495 BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
496 oldCPU->getDataPort().unbind();
497 getDataPort().bind(data_peer_port);
498 }
499
500 void
501 BaseCPU::flushTLBs()
502 {
503 for (ThreadID i = 0; i < threadContexts.size(); ++i) {
504 ThreadContext &tc(*threadContexts[i]);
505 CheckerCPU *checker(tc.getCheckerCpuPtr());
506
507 tc.getITBPtr()->flushAll();
508 tc.getDTBPtr()->flushAll();
509 if (checker) {
510 checker->getITBPtr()->flushAll();
511 checker->getDTBPtr()->flushAll();
512 }
513 }
514 }
515
516
517 BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
518 : cpu(_cpu), interval(_interval)
519 { }
520
521 void
522 BaseCPU::ProfileEvent::process()
523 {
524 ThreadID size = cpu->threadContexts.size();
525 for (ThreadID i = 0; i < size; ++i) {
526 ThreadContext *tc = cpu->threadContexts[i];
527 tc->profileSample();
528 }
529
530 cpu->schedule(this, curTick() + interval);
531 }
532
533 void
534 BaseCPU::serialize(std::ostream &os)
535 {
536 SERIALIZE_SCALAR(instCnt);
537
538 if (!_switchedOut) {
539 /* Unlike _pid, _taskId is not serialized, as they are dynamically
540 * assigned unique ids that are only meaningful for the duration of
541 * a specific run. We will need to serialize the entire taskMap in
542 * system. */
543 SERIALIZE_SCALAR(_pid);
544
545 interrupts->serialize(os);
546
547 // Serialize the threads, this is done by the CPU implementation.
548 for (ThreadID i = 0; i < numThreads; ++i) {
549 nameOut(os, csprintf("%s.xc.%i", name(), i));
550 serializeThread(os, i);
551 }
552 }
553 }
554
555 void
556 BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
557 {
558 UNSERIALIZE_SCALAR(instCnt);
559
560 if (!_switchedOut) {
561 UNSERIALIZE_SCALAR(_pid);
562 interrupts->unserialize(cp, section);
563
564 // Unserialize the threads, this is done by the CPU implementation.
565 for (ThreadID i = 0; i < numThreads; ++i)
566 unserializeThread(cp, csprintf("%s.xc.%i", section, i), i);
567 }
568 }
569
570 void
571 BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
572 {
573 const Tick now(comInstEventQueue[tid]->getCurTick());
574 Event *event(new LocalSimLoopExitEvent(cause, 0));
575
576 comInstEventQueue[tid]->schedule(event, now + insts);
577 }
578
579 void
580 BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
581 {
582 const Tick now(comLoadEventQueue[tid]->getCurTick());
583 Event *event(new LocalSimLoopExitEvent(cause, 0));
584
585 comLoadEventQueue[tid]->schedule(event, now + loads);
586 }
587
588
589 void
590 BaseCPU::traceFunctionsInternal(Addr pc)
591 {
592 if (!debugSymbolTable)
593 return;
594
595 // if pc enters different function, print new function symbol and
596 // update saved range. Otherwise do nothing.
597 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
598 string sym_str;
599 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
600 currentFunctionStart,
601 currentFunctionEnd);
602
603 if (!found) {
604 // no symbol found: use addr as label
605 sym_str = csprintf("0x%x", pc);
606 currentFunctionStart = pc;
607 currentFunctionEnd = pc + 1;
608 }
609
610 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
611 curTick() - functionEntryTick, curTick(), sym_str);
612 functionEntryTick = curTick();
613 }
614 }