893b0e06b845153d2b649598b594a78db48ea9eb
[gem5.git] / src / cpu / base.cc
1 /*
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Nathan Binkert
43 * Rick Strong
44 */
45
46 #include <iostream>
47 #include <sstream>
48 #include <string>
49
50 #include "arch/tlb.hh"
51 #include "base/loader/symtab.hh"
52 #include "base/cprintf.hh"
53 #include "base/misc.hh"
54 #include "base/output.hh"
55 #include "base/trace.hh"
56 #include "cpu/base.hh"
57 #include "cpu/checker/cpu.hh"
58 #include "cpu/cpuevent.hh"
59 #include "cpu/profile.hh"
60 #include "cpu/thread_context.hh"
61 #include "debug/SyscallVerbose.hh"
62 #include "params/BaseCPU.hh"
63 #include "sim/full_system.hh"
64 #include "sim/process.hh"
65 #include "sim/sim_events.hh"
66 #include "sim/sim_exit.hh"
67 #include "sim/system.hh"
68
69 // Hack
70 #include "sim/stat_control.hh"
71
72 using namespace std;
73
74 vector<BaseCPU *> BaseCPU::cpuList;
75
76 // This variable reflects the max number of threads in any CPU. Be
77 // careful to only use it once all the CPUs that you care about have
78 // been initialized
79 int maxThreadsPerCPU = 1;
80
81 CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
82 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
83 cpu(_cpu), _repeatEvent(true)
84 {
85 if (_interval)
86 cpu->schedule(this, curTick() + _interval);
87 }
88
89 void
90 CPUProgressEvent::process()
91 {
92 Counter temp = cpu->totalOps();
93 #ifndef NDEBUG
94 double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1));
95
96 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
97 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
98 ipc);
99 ipc = 0.0;
100 #else
101 cprintf("%lli: %s progress event, total committed:%i, progress insts "
102 "committed: %lli\n", curTick(), cpu->name(), temp,
103 temp - lastNumInst);
104 #endif
105 lastNumInst = temp;
106
107 if (_repeatEvent)
108 cpu->schedule(this, curTick() + _interval);
109 }
110
111 const char *
112 CPUProgressEvent::description() const
113 {
114 return "CPU Progress";
115 }
116
117 BaseCPU::BaseCPU(Params *p, bool is_checker)
118 : MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id),
119 _instMasterId(p->system->getMasterId(name() + ".inst")),
120 _dataMasterId(p->system->getMasterId(name() + ".data")),
121 interrupts(p->interrupts),
122 numThreads(p->numThreads), system(p->system),
123 phase(p->phase)
124 {
125 // currentTick = curTick();
126
127 // if Python did not provide a valid ID, do it here
128 if (_cpuId == -1 ) {
129 _cpuId = cpuList.size();
130 }
131
132 // add self to global list of CPUs
133 cpuList.push_back(this);
134
135 DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
136
137 if (numThreads > maxThreadsPerCPU)
138 maxThreadsPerCPU = numThreads;
139
140 // allocate per-thread instruction-based event queues
141 comInstEventQueue = new EventQueue *[numThreads];
142 for (ThreadID tid = 0; tid < numThreads; ++tid)
143 comInstEventQueue[tid] =
144 new EventQueue("instruction-based event queue");
145
146 //
147 // set up instruction-count-based termination events, if any
148 //
149 if (p->max_insts_any_thread != 0) {
150 const char *cause = "a thread reached the max instruction count";
151 for (ThreadID tid = 0; tid < numThreads; ++tid) {
152 Event *event = new SimLoopExitEvent(cause, 0);
153 comInstEventQueue[tid]->schedule(event, p->max_insts_any_thread);
154 }
155 }
156
157 if (p->max_insts_all_threads != 0) {
158 const char *cause = "all threads reached the max instruction count";
159
160 // allocate & initialize shared downcounter: each event will
161 // decrement this when triggered; simulation will terminate
162 // when counter reaches 0
163 int *counter = new int;
164 *counter = numThreads;
165 for (ThreadID tid = 0; tid < numThreads; ++tid) {
166 Event *event = new CountedExitEvent(cause, *counter);
167 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
168 }
169 }
170
171 // allocate per-thread load-based event queues
172 comLoadEventQueue = new EventQueue *[numThreads];
173 for (ThreadID tid = 0; tid < numThreads; ++tid)
174 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
175
176 //
177 // set up instruction-count-based termination events, if any
178 //
179 if (p->max_loads_any_thread != 0) {
180 const char *cause = "a thread reached the max load count";
181 for (ThreadID tid = 0; tid < numThreads; ++tid) {
182 Event *event = new SimLoopExitEvent(cause, 0);
183 comLoadEventQueue[tid]->schedule(event, p->max_loads_any_thread);
184 }
185 }
186
187 if (p->max_loads_all_threads != 0) {
188 const char *cause = "all threads reached the max load count";
189 // allocate & initialize shared downcounter: each event will
190 // decrement this when triggered; simulation will terminate
191 // when counter reaches 0
192 int *counter = new int;
193 *counter = numThreads;
194 for (ThreadID tid = 0; tid < numThreads; ++tid) {
195 Event *event = new CountedExitEvent(cause, *counter);
196 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
197 }
198 }
199
200 functionTracingEnabled = false;
201 if (p->function_trace) {
202 const string fname = csprintf("ftrace.%s", name());
203 functionTraceStream = simout.find(fname);
204 if (!functionTraceStream)
205 functionTraceStream = simout.create(fname);
206
207 currentFunctionStart = currentFunctionEnd = 0;
208 functionEntryTick = p->function_trace_start;
209
210 if (p->function_trace_start == 0) {
211 functionTracingEnabled = true;
212 } else {
213 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
214 Event *event = new wrap(this, true);
215 schedule(event, p->function_trace_start);
216 }
217 }
218
219 // The interrupts should always be present unless this CPU is
220 // switched in later or in case it is a checker CPU
221 if (!params()->defer_registration && !is_checker) {
222 if (interrupts) {
223 interrupts->setCPU(this);
224 } else {
225 fatal("CPU %s has no interrupt controller.\n"
226 "Ensure createInterruptController() is called.\n", name());
227 }
228 }
229
230 if (FullSystem) {
231 profileEvent = NULL;
232 if (params()->profile)
233 profileEvent = new ProfileEvent(this, params()->profile);
234 }
235 tracer = params()->tracer;
236 }
237
238 void
239 BaseCPU::enableFunctionTrace()
240 {
241 functionTracingEnabled = true;
242 }
243
244 BaseCPU::~BaseCPU()
245 {
246 delete profileEvent;
247 delete[] comLoadEventQueue;
248 delete[] comInstEventQueue;
249 }
250
251 void
252 BaseCPU::init()
253 {
254 if (!params()->defer_registration)
255 registerThreadContexts();
256 }
257
258 void
259 BaseCPU::startup()
260 {
261 if (FullSystem) {
262 if (!params()->defer_registration && profileEvent)
263 schedule(profileEvent, curTick());
264 }
265
266 if (params()->progress_interval) {
267 Tick num_ticks = ticks(params()->progress_interval);
268
269 new CPUProgressEvent(this, num_ticks);
270 }
271 }
272
273
274 void
275 BaseCPU::regStats()
276 {
277 using namespace Stats;
278
279 numCycles
280 .name(name() + ".numCycles")
281 .desc("number of cpu cycles simulated")
282 ;
283
284 numWorkItemsStarted
285 .name(name() + ".numWorkItemsStarted")
286 .desc("number of work items this cpu started")
287 ;
288
289 numWorkItemsCompleted
290 .name(name() + ".numWorkItemsCompleted")
291 .desc("number of work items this cpu completed")
292 ;
293
294 int size = threadContexts.size();
295 if (size > 1) {
296 for (int i = 0; i < size; ++i) {
297 stringstream namestr;
298 ccprintf(namestr, "%s.ctx%d", name(), i);
299 threadContexts[i]->regStats(namestr.str());
300 }
301 } else if (size == 1)
302 threadContexts[0]->regStats(name());
303 }
304
305 MasterPort &
306 BaseCPU::getMasterPort(const string &if_name, int idx)
307 {
308 // Get the right port based on name. This applies to all the
309 // subclasses of the base CPU and relies on their implementation
310 // of getDataPort and getInstPort. In all cases there methods
311 // return a CpuPort pointer.
312 if (if_name == "dcache_port")
313 return getDataPort();
314 else if (if_name == "icache_port")
315 return getInstPort();
316 else
317 return MemObject::getMasterPort(if_name, idx);
318 }
319
320 Tick
321 BaseCPU::nextCycle()
322 {
323 Tick next_tick = curTick() - phase + clock - 1;
324 next_tick -= (next_tick % clock);
325 next_tick += phase;
326 return next_tick;
327 }
328
329 Tick
330 BaseCPU::nextCycle(Tick begin_tick)
331 {
332 Tick next_tick = begin_tick;
333 if (next_tick % clock != 0)
334 next_tick = next_tick - (next_tick % clock) + clock;
335 next_tick += phase;
336
337 assert(next_tick >= curTick());
338 return next_tick;
339 }
340
341 void
342 BaseCPU::registerThreadContexts()
343 {
344 ThreadID size = threadContexts.size();
345 for (ThreadID tid = 0; tid < size; ++tid) {
346 ThreadContext *tc = threadContexts[tid];
347
348 /** This is so that contextId and cpuId match where there is a
349 * 1cpu:1context relationship. Otherwise, the order of registration
350 * could affect the assignment and cpu 1 could have context id 3, for
351 * example. We may even want to do something like this for SMT so that
352 * cpu 0 has the lowest thread contexts and cpu N has the highest, but
353 * I'll just do this for now
354 */
355 if (numThreads == 1)
356 tc->setContextId(system->registerThreadContext(tc, _cpuId));
357 else
358 tc->setContextId(system->registerThreadContext(tc));
359
360 if (!FullSystem)
361 tc->getProcessPtr()->assignThreadContext(tc->contextId());
362 }
363 }
364
365
366 int
367 BaseCPU::findContext(ThreadContext *tc)
368 {
369 ThreadID size = threadContexts.size();
370 for (ThreadID tid = 0; tid < size; ++tid) {
371 if (tc == threadContexts[tid])
372 return tid;
373 }
374 return 0;
375 }
376
377 void
378 BaseCPU::switchOut()
379 {
380 if (profileEvent && profileEvent->scheduled())
381 deschedule(profileEvent);
382 }
383
384 void
385 BaseCPU::takeOverFrom(BaseCPU *oldCPU)
386 {
387 assert(threadContexts.size() == oldCPU->threadContexts.size());
388 assert(_cpuId == oldCPU->cpuId());
389
390 ThreadID size = threadContexts.size();
391 for (ThreadID i = 0; i < size; ++i) {
392 ThreadContext *newTC = threadContexts[i];
393 ThreadContext *oldTC = oldCPU->threadContexts[i];
394
395 newTC->takeOverFrom(oldTC);
396
397 CpuEvent::replaceThreadContext(oldTC, newTC);
398
399 assert(newTC->contextId() == oldTC->contextId());
400 assert(newTC->threadId() == oldTC->threadId());
401 system->replaceThreadContext(newTC, newTC->contextId());
402
403 /* This code no longer works since the zero register (e.g.,
404 * r31 on Alpha) doesn't necessarily contain zero at this
405 * point.
406 if (DTRACE(Context))
407 ThreadContext::compare(oldTC, newTC);
408 */
409
410 MasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
411 MasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
412 MasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
413 MasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
414
415 // Move over any table walker ports if they exist
416 if (new_itb_port && !new_itb_port->isConnected()) {
417 assert(old_itb_port);
418 SlavePort &slavePort = old_itb_port->getSlavePort();
419 new_itb_port->bind(slavePort);
420 old_itb_port->unBind();
421 }
422 if (new_dtb_port && !new_dtb_port->isConnected()) {
423 assert(old_dtb_port);
424 SlavePort &slavePort = old_dtb_port->getSlavePort();
425 new_dtb_port->bind(slavePort);
426 old_dtb_port->unBind();
427 }
428
429 // Checker whether or not we have to transfer CheckerCPU
430 // objects over in the switch
431 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
432 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
433 if (oldChecker && newChecker) {
434 MasterPort *old_checker_itb_port =
435 oldChecker->getITBPtr()->getMasterPort();
436 MasterPort *old_checker_dtb_port =
437 oldChecker->getDTBPtr()->getMasterPort();
438 MasterPort *new_checker_itb_port =
439 newChecker->getITBPtr()->getMasterPort();
440 MasterPort *new_checker_dtb_port =
441 newChecker->getDTBPtr()->getMasterPort();
442
443 // Move over any table walker ports if they exist for checker
444 if (new_checker_itb_port && !new_checker_itb_port->isConnected()) {
445 assert(old_checker_itb_port);
446 SlavePort &slavePort = old_checker_itb_port->getSlavePort();;
447 new_checker_itb_port->bind(slavePort);
448 old_checker_itb_port->unBind();
449 }
450 if (new_checker_dtb_port && !new_checker_dtb_port->isConnected()) {
451 assert(old_checker_dtb_port);
452 SlavePort &slavePort = old_checker_dtb_port->getSlavePort();;
453 new_checker_dtb_port->bind(slavePort);
454 old_checker_dtb_port->unBind();
455 }
456 }
457 }
458
459 interrupts = oldCPU->interrupts;
460 interrupts->setCPU(this);
461 oldCPU->interrupts = NULL;
462
463 if (FullSystem) {
464 for (ThreadID i = 0; i < size; ++i)
465 threadContexts[i]->profileClear();
466
467 if (profileEvent)
468 schedule(profileEvent, curTick());
469 }
470
471 // Connect new CPU to old CPU's memory only if new CPU isn't
472 // connected to anything. Also connect old CPU's memory to new
473 // CPU.
474 if (!getInstPort().isConnected()) {
475 getInstPort().bind(oldCPU->getInstPort().getSlavePort());
476 oldCPU->getInstPort().unBind();
477 }
478
479 if (!getDataPort().isConnected()) {
480 getDataPort().bind(oldCPU->getDataPort().getSlavePort());
481 oldCPU->getDataPort().unBind();
482 }
483 }
484
485
486 BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
487 : cpu(_cpu), interval(_interval)
488 { }
489
490 void
491 BaseCPU::ProfileEvent::process()
492 {
493 ThreadID size = cpu->threadContexts.size();
494 for (ThreadID i = 0; i < size; ++i) {
495 ThreadContext *tc = cpu->threadContexts[i];
496 tc->profileSample();
497 }
498
499 cpu->schedule(this, curTick() + interval);
500 }
501
502 void
503 BaseCPU::serialize(std::ostream &os)
504 {
505 SERIALIZE_SCALAR(instCnt);
506 interrupts->serialize(os);
507 }
508
509 void
510 BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
511 {
512 UNSERIALIZE_SCALAR(instCnt);
513 interrupts->unserialize(cp, section);
514 }
515
516 void
517 BaseCPU::traceFunctionsInternal(Addr pc)
518 {
519 if (!debugSymbolTable)
520 return;
521
522 // if pc enters different function, print new function symbol and
523 // update saved range. Otherwise do nothing.
524 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
525 string sym_str;
526 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
527 currentFunctionStart,
528 currentFunctionEnd);
529
530 if (!found) {
531 // no symbol found: use addr as label
532 sym_str = csprintf("0x%x", pc);
533 currentFunctionStart = pc;
534 currentFunctionEnd = pc + 1;
535 }
536
537 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
538 curTick() - functionEntryTick, curTick(), sym_str);
539 functionEntryTick = curTick();
540 }
541 }
542
543 bool
544 BaseCPU::CpuPort::recvTimingResp(PacketPtr pkt)
545 {
546 panic("BaseCPU doesn't expect recvTiming!\n");
547 return true;
548 }
549
550 void
551 BaseCPU::CpuPort::recvRetry()
552 {
553 panic("BaseCPU doesn't expect recvRetry!\n");
554 }
555
556 void
557 BaseCPU::CpuPort::recvFunctionalSnoop(PacketPtr pkt)
558 {
559 // No internal storage to update (in the general case). A CPU with
560 // internal storage, e.g. an LSQ that should be part of the
561 // coherent memory has to check against stored data.
562 }