sim: Refactor the serialization base class
[gem5.git] / src / cpu / base.cc
1 /*
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 * Nathan Binkert
45 * Rick Strong
46 */
47
48 #include <iostream>
49 #include <sstream>
50 #include <string>
51
52 #include "arch/tlb.hh"
53 #include "base/loader/symtab.hh"
54 #include "base/cprintf.hh"
55 #include "base/misc.hh"
56 #include "base/output.hh"
57 #include "base/trace.hh"
58 #include "cpu/checker/cpu.hh"
59 #include "cpu/base.hh"
60 #include "cpu/cpuevent.hh"
61 #include "cpu/profile.hh"
62 #include "cpu/thread_context.hh"
63 #include "debug/Mwait.hh"
64 #include "debug/SyscallVerbose.hh"
65 #include "mem/page_table.hh"
66 #include "params/BaseCPU.hh"
67 #include "sim/full_system.hh"
68 #include "sim/process.hh"
69 #include "sim/sim_events.hh"
70 #include "sim/sim_exit.hh"
71 #include "sim/system.hh"
72
73 // Hack
74 #include "sim/stat_control.hh"
75
76 using namespace std;
77
78 vector<BaseCPU *> BaseCPU::cpuList;
79
80 // This variable reflects the max number of threads in any CPU. Be
81 // careful to only use it once all the CPUs that you care about have
82 // been initialized
83 int maxThreadsPerCPU = 1;
84
85 CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
86 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
87 cpu(_cpu), _repeatEvent(true)
88 {
89 if (_interval)
90 cpu->schedule(this, curTick() + _interval);
91 }
92
93 void
94 CPUProgressEvent::process()
95 {
96 Counter temp = cpu->totalOps();
97
98 if (_repeatEvent)
99 cpu->schedule(this, curTick() + _interval);
100
101 if(cpu->switchedOut()) {
102 return;
103 }
104
105 #ifndef NDEBUG
106 double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
107
108 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
109 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
110 ipc);
111 ipc = 0.0;
112 #else
113 cprintf("%lli: %s progress event, total committed:%i, progress insts "
114 "committed: %lli\n", curTick(), cpu->name(), temp,
115 temp - lastNumInst);
116 #endif
117 lastNumInst = temp;
118 }
119
120 const char *
121 CPUProgressEvent::description() const
122 {
123 return "CPU Progress";
124 }
125
126 BaseCPU::BaseCPU(Params *p, bool is_checker)
127 : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
128 _instMasterId(p->system->getMasterId(name() + ".inst")),
129 _dataMasterId(p->system->getMasterId(name() + ".data")),
130 _taskId(ContextSwitchTaskId::Unknown), _pid(Request::invldPid),
131 _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
132 interrupts(p->interrupts), profileEvent(NULL),
133 numThreads(p->numThreads), system(p->system),
134 functionTraceStream(nullptr), currentFunctionStart(0),
135 currentFunctionEnd(0), functionEntryTick(0),
136 addressMonitor()
137 {
138 // if Python did not provide a valid ID, do it here
139 if (_cpuId == -1 ) {
140 _cpuId = cpuList.size();
141 }
142
143 // add self to global list of CPUs
144 cpuList.push_back(this);
145
146 DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
147 _cpuId, _socketId);
148
149 if (numThreads > maxThreadsPerCPU)
150 maxThreadsPerCPU = numThreads;
151
152 // allocate per-thread instruction-based event queues
153 comInstEventQueue = new EventQueue *[numThreads];
154 for (ThreadID tid = 0; tid < numThreads; ++tid)
155 comInstEventQueue[tid] =
156 new EventQueue("instruction-based event queue");
157
158 //
159 // set up instruction-count-based termination events, if any
160 //
161 if (p->max_insts_any_thread != 0) {
162 const char *cause = "a thread reached the max instruction count";
163 for (ThreadID tid = 0; tid < numThreads; ++tid)
164 scheduleInstStop(tid, p->max_insts_any_thread, cause);
165 }
166
167 // Set up instruction-count-based termination events for SimPoints
168 // Typically, there are more than one action points.
169 // Simulation.py is responsible to take the necessary actions upon
170 // exitting the simulation loop.
171 if (!p->simpoint_start_insts.empty()) {
172 const char *cause = "simpoint starting point found";
173 for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
174 scheduleInstStop(0, p->simpoint_start_insts[i], cause);
175 }
176
177 if (p->max_insts_all_threads != 0) {
178 const char *cause = "all threads reached the max instruction count";
179
180 // allocate & initialize shared downcounter: each event will
181 // decrement this when triggered; simulation will terminate
182 // when counter reaches 0
183 int *counter = new int;
184 *counter = numThreads;
185 for (ThreadID tid = 0; tid < numThreads; ++tid) {
186 Event *event = new CountedExitEvent(cause, *counter);
187 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
188 }
189 }
190
191 // allocate per-thread load-based event queues
192 comLoadEventQueue = new EventQueue *[numThreads];
193 for (ThreadID tid = 0; tid < numThreads; ++tid)
194 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
195
196 //
197 // set up instruction-count-based termination events, if any
198 //
199 if (p->max_loads_any_thread != 0) {
200 const char *cause = "a thread reached the max load count";
201 for (ThreadID tid = 0; tid < numThreads; ++tid)
202 scheduleLoadStop(tid, p->max_loads_any_thread, cause);
203 }
204
205 if (p->max_loads_all_threads != 0) {
206 const char *cause = "all threads reached the max load count";
207 // allocate & initialize shared downcounter: each event will
208 // decrement this when triggered; simulation will terminate
209 // when counter reaches 0
210 int *counter = new int;
211 *counter = numThreads;
212 for (ThreadID tid = 0; tid < numThreads; ++tid) {
213 Event *event = new CountedExitEvent(cause, *counter);
214 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
215 }
216 }
217
218 functionTracingEnabled = false;
219 if (p->function_trace) {
220 const string fname = csprintf("ftrace.%s", name());
221 functionTraceStream = simout.find(fname);
222 if (!functionTraceStream)
223 functionTraceStream = simout.create(fname);
224
225 currentFunctionStart = currentFunctionEnd = 0;
226 functionEntryTick = p->function_trace_start;
227
228 if (p->function_trace_start == 0) {
229 functionTracingEnabled = true;
230 } else {
231 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
232 Event *event = new wrap(this, true);
233 schedule(event, p->function_trace_start);
234 }
235 }
236
237 // The interrupts should always be present unless this CPU is
238 // switched in later or in case it is a checker CPU
239 if (!params()->switched_out && !is_checker) {
240 if (interrupts) {
241 interrupts->setCPU(this);
242 } else {
243 fatal("CPU %s has no interrupt controller.\n"
244 "Ensure createInterruptController() is called.\n", name());
245 }
246 }
247
248 if (FullSystem) {
249 if (params()->profile)
250 profileEvent = new ProfileEvent(this, params()->profile);
251 }
252 tracer = params()->tracer;
253
254 if (params()->isa.size() != numThreads) {
255 fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
256 "of threads (%i).\n", params()->isa.size(), numThreads);
257 }
258 }
259
260 void
261 BaseCPU::enableFunctionTrace()
262 {
263 functionTracingEnabled = true;
264 }
265
266 BaseCPU::~BaseCPU()
267 {
268 delete profileEvent;
269 delete[] comLoadEventQueue;
270 delete[] comInstEventQueue;
271 }
272
273 void
274 BaseCPU::armMonitor(Addr address)
275 {
276 addressMonitor.armed = true;
277 addressMonitor.vAddr = address;
278 addressMonitor.pAddr = 0x0;
279 DPRINTF(Mwait,"Armed monitor (vAddr=0x%lx)\n", address);
280 }
281
282 bool
283 BaseCPU::mwait(PacketPtr pkt)
284 {
285 if(addressMonitor.gotWakeup == false) {
286 int block_size = cacheLineSize();
287 uint64_t mask = ~((uint64_t)(block_size - 1));
288
289 assert(pkt->req->hasPaddr());
290 addressMonitor.pAddr = pkt->getAddr() & mask;
291 addressMonitor.waiting = true;
292
293 DPRINTF(Mwait,"mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
294 addressMonitor.vAddr, addressMonitor.pAddr);
295 return true;
296 } else {
297 addressMonitor.gotWakeup = false;
298 return false;
299 }
300 }
301
302 void
303 BaseCPU::mwaitAtomic(ThreadContext *tc, TheISA::TLB *dtb)
304 {
305 Request req;
306 Addr addr = addressMonitor.vAddr;
307 int block_size = cacheLineSize();
308 uint64_t mask = ~((uint64_t)(block_size - 1));
309 int size = block_size;
310
311 //The address of the next line if it crosses a cache line boundary.
312 Addr secondAddr = roundDown(addr + size - 1, block_size);
313
314 if (secondAddr > addr)
315 size = secondAddr - addr;
316
317 req.setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
318
319 // translate to physical address
320 Fault fault = dtb->translateAtomic(&req, tc, BaseTLB::Read);
321 assert(fault == NoFault);
322
323 addressMonitor.pAddr = req.getPaddr() & mask;
324 addressMonitor.waiting = true;
325
326 DPRINTF(Mwait,"mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
327 addressMonitor.vAddr, addressMonitor.pAddr);
328 }
329
330 void
331 BaseCPU::init()
332 {
333 if (!params()->switched_out) {
334 registerThreadContexts();
335
336 verifyMemoryMode();
337 }
338 }
339
340 void
341 BaseCPU::startup()
342 {
343 if (FullSystem) {
344 if (!params()->switched_out && profileEvent)
345 schedule(profileEvent, curTick());
346 }
347
348 if (params()->progress_interval) {
349 new CPUProgressEvent(this, params()->progress_interval);
350 }
351 }
352
353 ProbePoints::PMUUPtr
354 BaseCPU::pmuProbePoint(const char *name)
355 {
356 ProbePoints::PMUUPtr ptr;
357 ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
358
359 return ptr;
360 }
361
362 void
363 BaseCPU::regProbePoints()
364 {
365 ppCycles = pmuProbePoint("Cycles");
366
367 ppRetiredInsts = pmuProbePoint("RetiredInsts");
368 ppRetiredLoads = pmuProbePoint("RetiredLoads");
369 ppRetiredStores = pmuProbePoint("RetiredStores");
370 ppRetiredBranches = pmuProbePoint("RetiredBranches");
371 }
372
373 void
374 BaseCPU::probeInstCommit(const StaticInstPtr &inst)
375 {
376 if (!inst->isMicroop() || inst->isLastMicroop())
377 ppRetiredInsts->notify(1);
378
379
380 if (inst->isLoad())
381 ppRetiredLoads->notify(1);
382
383 if (inst->isStore())
384 ppRetiredStores->notify(1);
385
386 if (inst->isControl())
387 ppRetiredBranches->notify(1);
388 }
389
390 void
391 BaseCPU::regStats()
392 {
393 using namespace Stats;
394
395 numCycles
396 .name(name() + ".numCycles")
397 .desc("number of cpu cycles simulated")
398 ;
399
400 numWorkItemsStarted
401 .name(name() + ".numWorkItemsStarted")
402 .desc("number of work items this cpu started")
403 ;
404
405 numWorkItemsCompleted
406 .name(name() + ".numWorkItemsCompleted")
407 .desc("number of work items this cpu completed")
408 ;
409
410 int size = threadContexts.size();
411 if (size > 1) {
412 for (int i = 0; i < size; ++i) {
413 stringstream namestr;
414 ccprintf(namestr, "%s.ctx%d", name(), i);
415 threadContexts[i]->regStats(namestr.str());
416 }
417 } else if (size == 1)
418 threadContexts[0]->regStats(name());
419 }
420
421 BaseMasterPort &
422 BaseCPU::getMasterPort(const string &if_name, PortID idx)
423 {
424 // Get the right port based on name. This applies to all the
425 // subclasses of the base CPU and relies on their implementation
426 // of getDataPort and getInstPort. In all cases there methods
427 // return a MasterPort pointer.
428 if (if_name == "dcache_port")
429 return getDataPort();
430 else if (if_name == "icache_port")
431 return getInstPort();
432 else
433 return MemObject::getMasterPort(if_name, idx);
434 }
435
436 void
437 BaseCPU::registerThreadContexts()
438 {
439 ThreadID size = threadContexts.size();
440 for (ThreadID tid = 0; tid < size; ++tid) {
441 ThreadContext *tc = threadContexts[tid];
442
443 /** This is so that contextId and cpuId match where there is a
444 * 1cpu:1context relationship. Otherwise, the order of registration
445 * could affect the assignment and cpu 1 could have context id 3, for
446 * example. We may even want to do something like this for SMT so that
447 * cpu 0 has the lowest thread contexts and cpu N has the highest, but
448 * I'll just do this for now
449 */
450 if (numThreads == 1)
451 tc->setContextId(system->registerThreadContext(tc, _cpuId));
452 else
453 tc->setContextId(system->registerThreadContext(tc));
454
455 if (!FullSystem)
456 tc->getProcessPtr()->assignThreadContext(tc->contextId());
457 }
458 }
459
460
461 int
462 BaseCPU::findContext(ThreadContext *tc)
463 {
464 ThreadID size = threadContexts.size();
465 for (ThreadID tid = 0; tid < size; ++tid) {
466 if (tc == threadContexts[tid])
467 return tid;
468 }
469 return 0;
470 }
471
472 void
473 BaseCPU::switchOut()
474 {
475 assert(!_switchedOut);
476 _switchedOut = true;
477 if (profileEvent && profileEvent->scheduled())
478 deschedule(profileEvent);
479
480 // Flush all TLBs in the CPU to avoid having stale translations if
481 // it gets switched in later.
482 flushTLBs();
483 }
484
485 void
486 BaseCPU::takeOverFrom(BaseCPU *oldCPU)
487 {
488 assert(threadContexts.size() == oldCPU->threadContexts.size());
489 assert(_cpuId == oldCPU->cpuId());
490 assert(_switchedOut);
491 assert(oldCPU != this);
492 _pid = oldCPU->getPid();
493 _taskId = oldCPU->taskId();
494 _switchedOut = false;
495
496 ThreadID size = threadContexts.size();
497 for (ThreadID i = 0; i < size; ++i) {
498 ThreadContext *newTC = threadContexts[i];
499 ThreadContext *oldTC = oldCPU->threadContexts[i];
500
501 newTC->takeOverFrom(oldTC);
502
503 CpuEvent::replaceThreadContext(oldTC, newTC);
504
505 assert(newTC->contextId() == oldTC->contextId());
506 assert(newTC->threadId() == oldTC->threadId());
507 system->replaceThreadContext(newTC, newTC->contextId());
508
509 /* This code no longer works since the zero register (e.g.,
510 * r31 on Alpha) doesn't necessarily contain zero at this
511 * point.
512 if (DTRACE(Context))
513 ThreadContext::compare(oldTC, newTC);
514 */
515
516 BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
517 BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
518 BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
519 BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
520
521 // Move over any table walker ports if they exist
522 if (new_itb_port) {
523 assert(!new_itb_port->isConnected());
524 assert(old_itb_port);
525 assert(old_itb_port->isConnected());
526 BaseSlavePort &slavePort = old_itb_port->getSlavePort();
527 old_itb_port->unbind();
528 new_itb_port->bind(slavePort);
529 }
530 if (new_dtb_port) {
531 assert(!new_dtb_port->isConnected());
532 assert(old_dtb_port);
533 assert(old_dtb_port->isConnected());
534 BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
535 old_dtb_port->unbind();
536 new_dtb_port->bind(slavePort);
537 }
538 newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
539 newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
540
541 // Checker whether or not we have to transfer CheckerCPU
542 // objects over in the switch
543 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
544 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
545 if (oldChecker && newChecker) {
546 BaseMasterPort *old_checker_itb_port =
547 oldChecker->getITBPtr()->getMasterPort();
548 BaseMasterPort *old_checker_dtb_port =
549 oldChecker->getDTBPtr()->getMasterPort();
550 BaseMasterPort *new_checker_itb_port =
551 newChecker->getITBPtr()->getMasterPort();
552 BaseMasterPort *new_checker_dtb_port =
553 newChecker->getDTBPtr()->getMasterPort();
554
555 newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
556 newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
557
558 // Move over any table walker ports if they exist for checker
559 if (new_checker_itb_port) {
560 assert(!new_checker_itb_port->isConnected());
561 assert(old_checker_itb_port);
562 assert(old_checker_itb_port->isConnected());
563 BaseSlavePort &slavePort =
564 old_checker_itb_port->getSlavePort();
565 old_checker_itb_port->unbind();
566 new_checker_itb_port->bind(slavePort);
567 }
568 if (new_checker_dtb_port) {
569 assert(!new_checker_dtb_port->isConnected());
570 assert(old_checker_dtb_port);
571 assert(old_checker_dtb_port->isConnected());
572 BaseSlavePort &slavePort =
573 old_checker_dtb_port->getSlavePort();
574 old_checker_dtb_port->unbind();
575 new_checker_dtb_port->bind(slavePort);
576 }
577 }
578 }
579
580 interrupts = oldCPU->interrupts;
581 interrupts->setCPU(this);
582 oldCPU->interrupts = NULL;
583
584 if (FullSystem) {
585 for (ThreadID i = 0; i < size; ++i)
586 threadContexts[i]->profileClear();
587
588 if (profileEvent)
589 schedule(profileEvent, curTick());
590 }
591
592 // All CPUs have an instruction and a data port, and the new CPU's
593 // ports are dangling while the old CPU has its ports connected
594 // already. Unbind the old CPU and then bind the ports of the one
595 // we are switching to.
596 assert(!getInstPort().isConnected());
597 assert(oldCPU->getInstPort().isConnected());
598 BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
599 oldCPU->getInstPort().unbind();
600 getInstPort().bind(inst_peer_port);
601
602 assert(!getDataPort().isConnected());
603 assert(oldCPU->getDataPort().isConnected());
604 BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
605 oldCPU->getDataPort().unbind();
606 getDataPort().bind(data_peer_port);
607 }
608
609 void
610 BaseCPU::flushTLBs()
611 {
612 for (ThreadID i = 0; i < threadContexts.size(); ++i) {
613 ThreadContext &tc(*threadContexts[i]);
614 CheckerCPU *checker(tc.getCheckerCpuPtr());
615
616 tc.getITBPtr()->flushAll();
617 tc.getDTBPtr()->flushAll();
618 if (checker) {
619 checker->getITBPtr()->flushAll();
620 checker->getDTBPtr()->flushAll();
621 }
622 }
623 }
624
625
626 BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
627 : cpu(_cpu), interval(_interval)
628 { }
629
630 void
631 BaseCPU::ProfileEvent::process()
632 {
633 ThreadID size = cpu->threadContexts.size();
634 for (ThreadID i = 0; i < size; ++i) {
635 ThreadContext *tc = cpu->threadContexts[i];
636 tc->profileSample();
637 }
638
639 cpu->schedule(this, curTick() + interval);
640 }
641
642 void
643 BaseCPU::serialize(CheckpointOut &cp) const
644 {
645 SERIALIZE_SCALAR(instCnt);
646
647 if (!_switchedOut) {
648 /* Unlike _pid, _taskId is not serialized, as they are dynamically
649 * assigned unique ids that are only meaningful for the duration of
650 * a specific run. We will need to serialize the entire taskMap in
651 * system. */
652 SERIALIZE_SCALAR(_pid);
653
654 interrupts->serialize(cp);
655
656 // Serialize the threads, this is done by the CPU implementation.
657 for (ThreadID i = 0; i < numThreads; ++i) {
658 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
659 serializeThread(cp, i);
660 }
661 }
662 }
663
664 void
665 BaseCPU::unserialize(CheckpointIn &cp)
666 {
667 UNSERIALIZE_SCALAR(instCnt);
668
669 if (!_switchedOut) {
670 UNSERIALIZE_SCALAR(_pid);
671 interrupts->unserialize(cp);
672
673 // Unserialize the threads, this is done by the CPU implementation.
674 for (ThreadID i = 0; i < numThreads; ++i) {
675 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
676 unserializeThread(cp, i);
677 }
678 }
679 }
680
681 void
682 BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
683 {
684 const Tick now(comInstEventQueue[tid]->getCurTick());
685 Event *event(new LocalSimLoopExitEvent(cause, 0));
686
687 comInstEventQueue[tid]->schedule(event, now + insts);
688 }
689
690 AddressMonitor::AddressMonitor() {
691 armed = false;
692 waiting = false;
693 gotWakeup = false;
694 }
695
696 bool AddressMonitor::doMonitor(PacketPtr pkt) {
697 assert(pkt->req->hasPaddr());
698 if(armed && waiting) {
699 if(pAddr == pkt->getAddr()) {
700 DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
701 pkt->getAddr());
702 waiting = false;
703 return true;
704 }
705 }
706 return false;
707 }
708
709 void
710 BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
711 {
712 const Tick now(comLoadEventQueue[tid]->getCurTick());
713 Event *event(new LocalSimLoopExitEvent(cause, 0));
714
715 comLoadEventQueue[tid]->schedule(event, now + loads);
716 }
717
718
719 void
720 BaseCPU::traceFunctionsInternal(Addr pc)
721 {
722 if (!debugSymbolTable)
723 return;
724
725 // if pc enters different function, print new function symbol and
726 // update saved range. Otherwise do nothing.
727 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
728 string sym_str;
729 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
730 currentFunctionStart,
731 currentFunctionEnd);
732
733 if (!found) {
734 // no symbol found: use addr as label
735 sym_str = csprintf("0x%x", pc);
736 currentFunctionStart = pc;
737 currentFunctionEnd = pc + 1;
738 }
739
740 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
741 curTick() - functionEntryTick, curTick(), sym_str);
742 functionEntryTick = curTick();
743 }
744 }