cpu: o3: combine if with same condition
[gem5.git] / src / cpu / base_dyn_inst.hh
1 /*
2 * Copyright (c) 2011,2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * Copyright (c) 2009 The University of Edinburgh
17 * All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions are
21 * met: redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer;
23 * redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution;
26 * neither the name of the copyright holders nor the names of its
27 * contributors may be used to endorse or promote products derived from
28 * this software without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Authors: Kevin Lim
43 * Timothy M. Jones
44 */
45
46 #ifndef __CPU_BASE_DYN_INST_HH__
47 #define __CPU_BASE_DYN_INST_HH__
48
49 #include <bitset>
50 #include <list>
51 #include <string>
52 #include <queue>
53
54 #include "arch/generic/tlb.hh"
55 #include "arch/utility.hh"
56 #include "base/trace.hh"
57 #include "config/the_isa.hh"
58 #include "cpu/checker/cpu.hh"
59 #include "cpu/o3/comm.hh"
60 #include "cpu/exec_context.hh"
61 #include "cpu/exetrace.hh"
62 #include "cpu/inst_seq.hh"
63 #include "cpu/op_class.hh"
64 #include "cpu/static_inst.hh"
65 #include "cpu/translation.hh"
66 #include "mem/packet.hh"
67 #include "sim/byteswap.hh"
68 #include "sim/system.hh"
69
70 /**
71 * @file
72 * Defines a dynamic instruction context.
73 */
74
75 template <class Impl>
76 class BaseDynInst : public ExecContext, public RefCounted
77 {
78 public:
79 // Typedef for the CPU.
80 typedef typename Impl::CPUType ImplCPU;
81 typedef typename ImplCPU::ImplState ImplState;
82
83 // Logical register index type.
84 typedef TheISA::RegIndex RegIndex;
85
86 // The DynInstPtr type.
87 typedef typename Impl::DynInstPtr DynInstPtr;
88 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
89
90 // The list of instructions iterator type.
91 typedef typename std::list<DynInstPtr>::iterator ListIt;
92
93 enum {
94 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
95 MaxInstDestRegs = TheISA::MaxInstDestRegs /// Max dest regs
96 };
97
98 union Result {
99 uint64_t integer;
100 double dbl;
101 void set(uint64_t i) { integer = i; }
102 void set(double d) { dbl = d; }
103 void get(uint64_t& i) { i = integer; }
104 void get(double& d) { d = dbl; }
105 };
106
107 protected:
108 enum Status {
109 IqEntry, /// Instruction is in the IQ
110 RobEntry, /// Instruction is in the ROB
111 LsqEntry, /// Instruction is in the LSQ
112 Completed, /// Instruction has completed
113 ResultReady, /// Instruction has its result
114 CanIssue, /// Instruction can issue and execute
115 Issued, /// Instruction has issued
116 Executed, /// Instruction has executed
117 CanCommit, /// Instruction can commit
118 AtCommit, /// Instruction has reached commit
119 Committed, /// Instruction has committed
120 Squashed, /// Instruction is squashed
121 SquashedInIQ, /// Instruction is squashed in the IQ
122 SquashedInLSQ, /// Instruction is squashed in the LSQ
123 SquashedInROB, /// Instruction is squashed in the ROB
124 RecoverInst, /// Is a recover instruction
125 BlockingInst, /// Is a blocking instruction
126 ThreadsyncWait, /// Is a thread synchronization instruction
127 SerializeBefore, /// Needs to serialize on
128 /// instructions ahead of it
129 SerializeAfter, /// Needs to serialize instructions behind it
130 SerializeHandled, /// Serialization has been handled
131 NumStatus
132 };
133
134 enum Flags {
135 TranslationStarted,
136 TranslationCompleted,
137 PossibleLoadViolation,
138 HitExternalSnoop,
139 EffAddrValid,
140 RecordResult,
141 Predicate,
142 PredTaken,
143 /** Whether or not the effective address calculation is completed.
144 * @todo: Consider if this is necessary or not.
145 */
146 EACalcDone,
147 IsUncacheable,
148 ReqMade,
149 MemOpDone,
150 MaxFlags
151 };
152
153 public:
154 /** The sequence number of the instruction. */
155 InstSeqNum seqNum;
156
157 /** The StaticInst used by this BaseDynInst. */
158 const StaticInstPtr staticInst;
159
160 /** Pointer to the Impl's CPU object. */
161 ImplCPU *cpu;
162
163 BaseCPU *getCpuPtr() { return cpu; }
164
165 /** Pointer to the thread state. */
166 ImplState *thread;
167
168 /** The kind of fault this instruction has generated. */
169 Fault fault;
170
171 /** InstRecord that tracks this instructions. */
172 Trace::InstRecord *traceData;
173
174 protected:
175 /** The result of the instruction; assumes an instruction can have many
176 * destination registers.
177 */
178 std::queue<Result> instResult;
179
180 /** PC state for this instruction. */
181 TheISA::PCState pc;
182
183 /* An amalgamation of a lot of boolean values into one */
184 std::bitset<MaxFlags> instFlags;
185
186 /** The status of this BaseDynInst. Several bits can be set. */
187 std::bitset<NumStatus> status;
188
189 /** Whether or not the source register is ready.
190 * @todo: Not sure this should be here vs the derived class.
191 */
192 std::bitset<MaxInstSrcRegs> _readySrcRegIdx;
193
194 public:
195 /** The thread this instruction is from. */
196 ThreadID threadNumber;
197
198 /** Iterator pointing to this BaseDynInst in the list of all insts. */
199 ListIt instListIt;
200
201 ////////////////////// Branch Data ///////////////
202 /** Predicted PC state after this instruction. */
203 TheISA::PCState predPC;
204
205 /** The Macroop if one exists */
206 const StaticInstPtr macroop;
207
208 /** How many source registers are ready. */
209 uint8_t readyRegs;
210
211 public:
212 /////////////////////// Load Store Data //////////////////////
213 /** The effective virtual address (lds & stores only). */
214 Addr effAddr;
215
216 /** The effective physical address. */
217 Addr physEffAddr;
218
219 /** The memory request flags (from translation). */
220 unsigned memReqFlags;
221
222 /** data address space ID, for loads & stores. */
223 short asid;
224
225 /** The size of the request */
226 uint8_t effSize;
227
228 /** Pointer to the data for the memory access. */
229 uint8_t *memData;
230
231 /** Load queue index. */
232 int16_t lqIdx;
233
234 /** Store queue index. */
235 int16_t sqIdx;
236
237
238 /////////////////////// TLB Miss //////////////////////
239 /**
240 * Saved memory requests (needed when the DTB address translation is
241 * delayed due to a hw page table walk).
242 */
243 RequestPtr savedReq;
244 RequestPtr savedSreqLow;
245 RequestPtr savedSreqHigh;
246
247 /////////////////////// Checker //////////////////////
248 // Need a copy of main request pointer to verify on writes.
249 RequestPtr reqToVerify;
250
251 private:
252 /** Instruction effective address.
253 * @todo: Consider if this is necessary or not.
254 */
255 Addr instEffAddr;
256
257 protected:
258 /** Flattened register index of the destination registers of this
259 * instruction.
260 */
261 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
262
263 /** Physical register index of the destination registers of this
264 * instruction.
265 */
266 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
267
268 /** Physical register index of the source registers of this
269 * instruction.
270 */
271 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
272
273 /** Physical register index of the previous producers of the
274 * architected destinations.
275 */
276 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
277
278
279 public:
280 /** Records changes to result? */
281 void recordResult(bool f) { instFlags[RecordResult] = f; }
282
283 /** Is the effective virtual address valid. */
284 bool effAddrValid() const { return instFlags[EffAddrValid]; }
285
286 /** Whether or not the memory operation is done. */
287 bool memOpDone() const { return instFlags[MemOpDone]; }
288 void memOpDone(bool f) { instFlags[MemOpDone] = f; }
289
290
291 ////////////////////////////////////////////
292 //
293 // INSTRUCTION EXECUTION
294 //
295 ////////////////////////////////////////////
296
297 void demapPage(Addr vaddr, uint64_t asn)
298 {
299 cpu->demapPage(vaddr, asn);
300 }
301 void demapInstPage(Addr vaddr, uint64_t asn)
302 {
303 cpu->demapPage(vaddr, asn);
304 }
305 void demapDataPage(Addr vaddr, uint64_t asn)
306 {
307 cpu->demapPage(vaddr, asn);
308 }
309
310 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
311
312 Fault writeMem(uint8_t *data, unsigned size,
313 Addr addr, unsigned flags, uint64_t *res);
314
315 /** Splits a request in two if it crosses a dcache block. */
316 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
317 RequestPtr &sreqHigh);
318
319 /** Initiate a DTB address translation. */
320 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
321 RequestPtr sreqHigh, uint64_t *res,
322 BaseTLB::Mode mode);
323
324 /** Finish a DTB address translation. */
325 void finishTranslation(WholeTranslationState *state);
326
327 /** True if the DTB address translation has started. */
328 bool translationStarted() const { return instFlags[TranslationStarted]; }
329 void translationStarted(bool f) { instFlags[TranslationStarted] = f; }
330
331 /** True if the DTB address translation has completed. */
332 bool translationCompleted() const { return instFlags[TranslationCompleted]; }
333 void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }
334
335 /** True if this address was found to match a previous load and they issued
336 * out of order. If that happend, then it's only a problem if an incoming
337 * snoop invalidate modifies the line, in which case we need to squash.
338 * If nothing modified the line the order doesn't matter.
339 */
340 bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
341 void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }
342
343 /** True if the address hit a external snoop while sitting in the LSQ.
344 * If this is true and a older instruction sees it, this instruction must
345 * reexecute
346 */
347 bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
348 void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }
349
350 /**
351 * Returns true if the DTB address translation is being delayed due to a hw
352 * page table walk.
353 */
354 bool isTranslationDelayed() const
355 {
356 return (translationStarted() && !translationCompleted());
357 }
358
359 public:
360 #ifdef DEBUG
361 void dumpSNList();
362 #endif
363
364 /** Returns the physical register index of the i'th destination
365 * register.
366 */
367 PhysRegIndex renamedDestRegIdx(int idx) const
368 {
369 return _destRegIdx[idx];
370 }
371
372 /** Returns the physical register index of the i'th source register. */
373 PhysRegIndex renamedSrcRegIdx(int idx) const
374 {
375 assert(TheISA::MaxInstSrcRegs > idx);
376 return _srcRegIdx[idx];
377 }
378
379 /** Returns the flattened register index of the i'th destination
380 * register.
381 */
382 TheISA::RegIndex flattenedDestRegIdx(int idx) const
383 {
384 return _flatDestRegIdx[idx];
385 }
386
387 /** Returns the physical register index of the previous physical register
388 * that remapped to the same logical register index.
389 */
390 PhysRegIndex prevDestRegIdx(int idx) const
391 {
392 return _prevDestRegIdx[idx];
393 }
394
395 /** Renames a destination register to a physical register. Also records
396 * the previous physical register that the logical register mapped to.
397 */
398 void renameDestReg(int idx,
399 PhysRegIndex renamed_dest,
400 PhysRegIndex previous_rename)
401 {
402 _destRegIdx[idx] = renamed_dest;
403 _prevDestRegIdx[idx] = previous_rename;
404 }
405
406 /** Renames a source logical register to the physical register which
407 * has/will produce that logical register's result.
408 * @todo: add in whether or not the source register is ready.
409 */
410 void renameSrcReg(int idx, PhysRegIndex renamed_src)
411 {
412 _srcRegIdx[idx] = renamed_src;
413 }
414
415 /** Flattens a destination architectural register index into a logical
416 * index.
417 */
418 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
419 {
420 _flatDestRegIdx[idx] = flattened_dest;
421 }
422 /** BaseDynInst constructor given a binary instruction.
423 * @param staticInst A StaticInstPtr to the underlying instruction.
424 * @param pc The PC state for the instruction.
425 * @param predPC The predicted next PC state for the instruction.
426 * @param seq_num The sequence number of the instruction.
427 * @param cpu Pointer to the instruction's CPU.
428 */
429 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
430 TheISA::PCState pc, TheISA::PCState predPC,
431 InstSeqNum seq_num, ImplCPU *cpu);
432
433 /** BaseDynInst constructor given a StaticInst pointer.
434 * @param _staticInst The StaticInst for this BaseDynInst.
435 */
436 BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);
437
438 /** BaseDynInst destructor. */
439 ~BaseDynInst();
440
441 private:
442 /** Function to initialize variables in the constructors. */
443 void initVars();
444
445 public:
446 /** Dumps out contents of this BaseDynInst. */
447 void dump();
448
449 /** Dumps out contents of this BaseDynInst into given string. */
450 void dump(std::string &outstring);
451
452 /** Read this CPU's ID. */
453 int cpuId() const { return cpu->cpuId(); }
454
455 /** Read this CPU's Socket ID. */
456 uint32_t socketId() const { return cpu->socketId(); }
457
458 /** Read this CPU's data requestor ID */
459 MasterID masterId() const { return cpu->dataMasterId(); }
460
461 /** Read this context's system-wide ID **/
462 int contextId() const { return thread->contextId(); }
463
464 /** Returns the fault type. */
465 Fault getFault() const { return fault; }
466
467 /** Checks whether or not this instruction has had its branch target
468 * calculated yet. For now it is not utilized and is hacked to be
469 * always false.
470 * @todo: Actually use this instruction.
471 */
472 bool doneTargCalc() { return false; }
473
474 /** Set the predicted target of this current instruction. */
475 void setPredTarg(const TheISA::PCState &_predPC)
476 {
477 predPC = _predPC;
478 }
479
480 const TheISA::PCState &readPredTarg() { return predPC; }
481
482 /** Returns the predicted PC immediately after the branch. */
483 Addr predInstAddr() { return predPC.instAddr(); }
484
485 /** Returns the predicted PC two instructions after the branch */
486 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
487
488 /** Returns the predicted micro PC after the branch */
489 Addr predMicroPC() { return predPC.microPC(); }
490
491 /** Returns whether the instruction was predicted taken or not. */
492 bool readPredTaken()
493 {
494 return instFlags[PredTaken];
495 }
496
497 void setPredTaken(bool predicted_taken)
498 {
499 instFlags[PredTaken] = predicted_taken;
500 }
501
502 /** Returns whether the instruction mispredicted. */
503 bool mispredicted()
504 {
505 TheISA::PCState tempPC = pc;
506 TheISA::advancePC(tempPC, staticInst);
507 return !(tempPC == predPC);
508 }
509
510 //
511 // Instruction types. Forward checks to StaticInst object.
512 //
513 bool isNop() const { return staticInst->isNop(); }
514 bool isMemRef() const { return staticInst->isMemRef(); }
515 bool isLoad() const { return staticInst->isLoad(); }
516 bool isStore() const { return staticInst->isStore(); }
517 bool isStoreConditional() const
518 { return staticInst->isStoreConditional(); }
519 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
520 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
521 bool isInteger() const { return staticInst->isInteger(); }
522 bool isFloating() const { return staticInst->isFloating(); }
523 bool isControl() const { return staticInst->isControl(); }
524 bool isCall() const { return staticInst->isCall(); }
525 bool isReturn() const { return staticInst->isReturn(); }
526 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
527 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
528 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
529 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
530 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
531 bool isThreadSync() const { return staticInst->isThreadSync(); }
532 bool isSerializing() const { return staticInst->isSerializing(); }
533 bool isSerializeBefore() const
534 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
535 bool isSerializeAfter() const
536 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
537 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
538 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
539 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
540 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
541 bool isQuiesce() const { return staticInst->isQuiesce(); }
542 bool isIprAccess() const { return staticInst->isIprAccess(); }
543 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
544 bool isSyscall() const { return staticInst->isSyscall(); }
545 bool isMacroop() const { return staticInst->isMacroop(); }
546 bool isMicroop() const { return staticInst->isMicroop(); }
547 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
548 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
549 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
550 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
551
552 /** Temporarily sets this instruction as a serialize before instruction. */
553 void setSerializeBefore() { status.set(SerializeBefore); }
554
555 /** Clears the serializeBefore part of this instruction. */
556 void clearSerializeBefore() { status.reset(SerializeBefore); }
557
558 /** Checks if this serializeBefore is only temporarily set. */
559 bool isTempSerializeBefore() { return status[SerializeBefore]; }
560
561 /** Temporarily sets this instruction as a serialize after instruction. */
562 void setSerializeAfter() { status.set(SerializeAfter); }
563
564 /** Clears the serializeAfter part of this instruction.*/
565 void clearSerializeAfter() { status.reset(SerializeAfter); }
566
567 /** Checks if this serializeAfter is only temporarily set. */
568 bool isTempSerializeAfter() { return status[SerializeAfter]; }
569
570 /** Sets the serialization part of this instruction as handled. */
571 void setSerializeHandled() { status.set(SerializeHandled); }
572
573 /** Checks if the serialization part of this instruction has been
574 * handled. This does not apply to the temporary serializing
575 * state; it only applies to this instruction's own permanent
576 * serializing state.
577 */
578 bool isSerializeHandled() { return status[SerializeHandled]; }
579
580 /** Returns the opclass of this instruction. */
581 OpClass opClass() const { return staticInst->opClass(); }
582
583 /** Returns the branch target address. */
584 TheISA::PCState branchTarget() const
585 { return staticInst->branchTarget(pc); }
586
587 /** Returns the number of source registers. */
588 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
589
590 /** Returns the number of destination registers. */
591 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
592
593 // the following are used to track physical register usage
594 // for machines with separate int & FP reg files
595 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
596 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
597 int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }
598
599 /** Returns the logical register index of the i'th destination register. */
600 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
601
602 /** Returns the logical register index of the i'th source register. */
603 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
604
605 /** Pops a result off the instResult queue */
606 template <class T>
607 void popResult(T& t)
608 {
609 if (!instResult.empty()) {
610 instResult.front().get(t);
611 instResult.pop();
612 }
613 }
614
615 /** Read the most recent result stored by this instruction */
616 template <class T>
617 void readResult(T& t)
618 {
619 instResult.back().get(t);
620 }
621
622 /** Pushes a result onto the instResult queue */
623 template <class T>
624 void setResult(T t)
625 {
626 if (instFlags[RecordResult]) {
627 Result instRes;
628 instRes.set(t);
629 instResult.push(instRes);
630 }
631 }
632
633 /** Records an integer register being set to a value. */
634 void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
635 {
636 setResult<uint64_t>(val);
637 }
638
639 /** Records a CC register being set to a value. */
640 void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
641 {
642 setResult<uint64_t>(val);
643 }
644
645 /** Records an fp register being set to a value. */
646 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
647 {
648 setResult<double>(val);
649 }
650
651 /** Records an fp register being set to an integer value. */
652 void setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
653 {
654 setResult<uint64_t>(val);
655 }
656
657 /** Records that one of the source registers is ready. */
658 void markSrcRegReady();
659
660 /** Marks a specific register as ready. */
661 void markSrcRegReady(RegIndex src_idx);
662
663 /** Returns if a source register is ready. */
664 bool isReadySrcRegIdx(int idx) const
665 {
666 return this->_readySrcRegIdx[idx];
667 }
668
669 /** Sets this instruction as completed. */
670 void setCompleted() { status.set(Completed); }
671
672 /** Returns whether or not this instruction is completed. */
673 bool isCompleted() const { return status[Completed]; }
674
675 /** Marks the result as ready. */
676 void setResultReady() { status.set(ResultReady); }
677
678 /** Returns whether or not the result is ready. */
679 bool isResultReady() const { return status[ResultReady]; }
680
681 /** Sets this instruction as ready to issue. */
682 void setCanIssue() { status.set(CanIssue); }
683
684 /** Returns whether or not this instruction is ready to issue. */
685 bool readyToIssue() const { return status[CanIssue]; }
686
687 /** Clears this instruction being able to issue. */
688 void clearCanIssue() { status.reset(CanIssue); }
689
690 /** Sets this instruction as issued from the IQ. */
691 void setIssued() { status.set(Issued); }
692
693 /** Returns whether or not this instruction has issued. */
694 bool isIssued() const { return status[Issued]; }
695
696 /** Clears this instruction as being issued. */
697 void clearIssued() { status.reset(Issued); }
698
699 /** Sets this instruction as executed. */
700 void setExecuted() { status.set(Executed); }
701
702 /** Returns whether or not this instruction has executed. */
703 bool isExecuted() const { return status[Executed]; }
704
705 /** Sets this instruction as ready to commit. */
706 void setCanCommit() { status.set(CanCommit); }
707
708 /** Clears this instruction as being ready to commit. */
709 void clearCanCommit() { status.reset(CanCommit); }
710
711 /** Returns whether or not this instruction is ready to commit. */
712 bool readyToCommit() const { return status[CanCommit]; }
713
714 void setAtCommit() { status.set(AtCommit); }
715
716 bool isAtCommit() { return status[AtCommit]; }
717
718 /** Sets this instruction as committed. */
719 void setCommitted() { status.set(Committed); }
720
721 /** Returns whether or not this instruction is committed. */
722 bool isCommitted() const { return status[Committed]; }
723
724 /** Sets this instruction as squashed. */
725 void setSquashed() { status.set(Squashed); }
726
727 /** Returns whether or not this instruction is squashed. */
728 bool isSquashed() const { return status[Squashed]; }
729
730 //Instruction Queue Entry
731 //-----------------------
732 /** Sets this instruction as a entry the IQ. */
733 void setInIQ() { status.set(IqEntry); }
734
735 /** Sets this instruction as a entry the IQ. */
736 void clearInIQ() { status.reset(IqEntry); }
737
738 /** Returns whether or not this instruction has issued. */
739 bool isInIQ() const { return status[IqEntry]; }
740
741 /** Sets this instruction as squashed in the IQ. */
742 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
743
744 /** Returns whether or not this instruction is squashed in the IQ. */
745 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
746
747
748 //Load / Store Queue Functions
749 //-----------------------
750 /** Sets this instruction as a entry the LSQ. */
751 void setInLSQ() { status.set(LsqEntry); }
752
753 /** Sets this instruction as a entry the LSQ. */
754 void removeInLSQ() { status.reset(LsqEntry); }
755
756 /** Returns whether or not this instruction is in the LSQ. */
757 bool isInLSQ() const { return status[LsqEntry]; }
758
759 /** Sets this instruction as squashed in the LSQ. */
760 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
761
762 /** Returns whether or not this instruction is squashed in the LSQ. */
763 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
764
765
766 //Reorder Buffer Functions
767 //-----------------------
768 /** Sets this instruction as a entry the ROB. */
769 void setInROB() { status.set(RobEntry); }
770
771 /** Sets this instruction as a entry the ROB. */
772 void clearInROB() { status.reset(RobEntry); }
773
774 /** Returns whether or not this instruction is in the ROB. */
775 bool isInROB() const { return status[RobEntry]; }
776
777 /** Sets this instruction as squashed in the ROB. */
778 void setSquashedInROB() { status.set(SquashedInROB); }
779
780 /** Returns whether or not this instruction is squashed in the ROB. */
781 bool isSquashedInROB() const { return status[SquashedInROB]; }
782
783 /** Read the PC state of this instruction. */
784 TheISA::PCState pcState() const { return pc; }
785
786 /** Set the PC state of this instruction. */
787 void pcState(const TheISA::PCState &val) { pc = val; }
788
789 /** Read the PC of this instruction. */
790 const Addr instAddr() const { return pc.instAddr(); }
791
792 /** Read the PC of the next instruction. */
793 const Addr nextInstAddr() const { return pc.nextInstAddr(); }
794
795 /**Read the micro PC of this instruction. */
796 const Addr microPC() const { return pc.microPC(); }
797
798 bool readPredicate()
799 {
800 return instFlags[Predicate];
801 }
802
803 void setPredicate(bool val)
804 {
805 instFlags[Predicate] = val;
806
807 if (traceData) {
808 traceData->setPredicate(val);
809 }
810 }
811
812 /** Sets the ASID. */
813 void setASID(short addr_space_id) { asid = addr_space_id; }
814
815 /** Sets the thread id. */
816 void setTid(ThreadID tid) { threadNumber = tid; }
817
818 /** Sets the pointer to the thread state. */
819 void setThreadState(ImplState *state) { thread = state; }
820
821 /** Returns the thread context. */
822 ThreadContext *tcBase() { return thread->getTC(); }
823
824 public:
825 /** Sets the effective address. */
826 void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }
827
828 /** Returns the effective address. */
829 Addr getEA() const { return instEffAddr; }
830
831 /** Returns whether or not the eff. addr. calculation has been completed. */
832 bool doneEACalc() { return instFlags[EACalcDone]; }
833
834 /** Returns whether or not the eff. addr. source registers are ready. */
835 bool eaSrcsReady();
836
837 /** Is this instruction's memory access uncacheable. */
838 bool uncacheable() { return instFlags[IsUncacheable]; }
839
840 /** Has this instruction generated a memory request. */
841 bool hasRequest() { return instFlags[ReqMade]; }
842
843 /** Returns iterator to this instruction in the list of all insts. */
844 ListIt &getInstListIt() { return instListIt; }
845
846 /** Sets iterator for this instruction in the list of all insts. */
847 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
848
849 public:
850 /** Returns the number of consecutive store conditional failures. */
851 unsigned int readStCondFailures() const
852 { return thread->storeCondFailures; }
853
854 /** Sets the number of consecutive store conditional failures. */
855 void setStCondFailures(unsigned int sc_failures)
856 { thread->storeCondFailures = sc_failures; }
857
858 public:
859 // monitor/mwait funtions
860 void armMonitor(Addr address) { cpu->armMonitor(address); }
861 bool mwait(PacketPtr pkt) { return cpu->mwait(pkt); }
862 void mwaitAtomic(ThreadContext *tc)
863 { return cpu->mwaitAtomic(tc, cpu->dtb); }
864 AddressMonitor *getAddrMonitor() { return cpu->getCpuAddrMonitor(); }
865 };
866
867 template<class Impl>
868 Fault
869 BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
870 unsigned size, unsigned flags)
871 {
872 instFlags[ReqMade] = true;
873 Request *req = NULL;
874 Request *sreqLow = NULL;
875 Request *sreqHigh = NULL;
876
877 if (instFlags[ReqMade] && translationStarted()) {
878 req = savedReq;
879 sreqLow = savedSreqLow;
880 sreqHigh = savedSreqHigh;
881 } else {
882 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
883 thread->contextId(), threadNumber);
884
885 req->taskId(cpu->taskId());
886
887 // Only split the request if the ISA supports unaligned accesses.
888 if (TheISA::HasUnalignedMemAcc) {
889 splitRequest(req, sreqLow, sreqHigh);
890 }
891 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
892 }
893
894 if (translationCompleted()) {
895 if (fault == NoFault) {
896 effAddr = req->getVaddr();
897 effSize = size;
898 instFlags[EffAddrValid] = true;
899
900 if (cpu->checker) {
901 if (reqToVerify != NULL) {
902 delete reqToVerify;
903 }
904 reqToVerify = new Request(*req);
905 }
906 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
907 } else {
908 // Commit will have to clean up whatever happened. Set this
909 // instruction as executed.
910 this->setExecuted();
911 }
912
913 if (fault != NoFault) {
914 // Return a fixed value to keep simulation deterministic even
915 // along misspeculated paths.
916 if (data)
917 bzero(data, size);
918 }
919 }
920
921 if (traceData)
922 traceData->setMem(addr, size, flags);
923
924 return fault;
925 }
926
927 template<class Impl>
928 Fault
929 BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
930 Addr addr, unsigned flags, uint64_t *res)
931 {
932 if (traceData)
933 traceData->setMem(addr, size, flags);
934
935 instFlags[ReqMade] = true;
936 Request *req = NULL;
937 Request *sreqLow = NULL;
938 Request *sreqHigh = NULL;
939
940 if (instFlags[ReqMade] && translationStarted()) {
941 req = savedReq;
942 sreqLow = savedSreqLow;
943 sreqHigh = savedSreqHigh;
944 } else {
945 req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
946 thread->contextId(), threadNumber);
947
948 req->taskId(cpu->taskId());
949
950 // Only split the request if the ISA supports unaligned accesses.
951 if (TheISA::HasUnalignedMemAcc) {
952 splitRequest(req, sreqLow, sreqHigh);
953 }
954 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
955 }
956
957 if (fault == NoFault && translationCompleted()) {
958 effAddr = req->getVaddr();
959 effSize = size;
960 instFlags[EffAddrValid] = true;
961
962 if (cpu->checker) {
963 if (reqToVerify != NULL) {
964 delete reqToVerify;
965 }
966 reqToVerify = new Request(*req);
967 }
968 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
969 }
970
971 return fault;
972 }
973
974 template<class Impl>
975 inline void
976 BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
977 RequestPtr &sreqHigh)
978 {
979 // Check to see if the request crosses the next level block boundary.
980 unsigned block_size = cpu->cacheLineSize();
981 Addr addr = req->getVaddr();
982 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
983 assert(split_addr <= addr || split_addr - addr < block_size);
984
985 // Spans two blocks.
986 if (split_addr > addr) {
987 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
988 }
989 }
990
991 template<class Impl>
992 inline void
993 BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
994 RequestPtr sreqHigh, uint64_t *res,
995 BaseTLB::Mode mode)
996 {
997 translationStarted(true);
998
999 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
1000 WholeTranslationState *state =
1001 new WholeTranslationState(req, NULL, res, mode);
1002
1003 // One translation if the request isn't split.
1004 DataTranslation<BaseDynInstPtr> *trans =
1005 new DataTranslation<BaseDynInstPtr>(this, state);
1006
1007 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1008
1009 if (!translationCompleted()) {
1010 // The translation isn't yet complete, so we can't possibly have a
1011 // fault. Overwrite any existing fault we might have from a previous
1012 // execution of this instruction (e.g. an uncachable load that
1013 // couldn't execute because it wasn't at the head of the ROB).
1014 fault = NoFault;
1015
1016 // Save memory requests.
1017 savedReq = state->mainReq;
1018 savedSreqLow = state->sreqLow;
1019 savedSreqHigh = state->sreqHigh;
1020 }
1021 } else {
1022 WholeTranslationState *state =
1023 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1024
1025 // Two translations when the request is split.
1026 DataTranslation<BaseDynInstPtr> *stransLow =
1027 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1028 DataTranslation<BaseDynInstPtr> *stransHigh =
1029 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1030
1031 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1032 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1033
1034 if (!translationCompleted()) {
1035 // The translation isn't yet complete, so we can't possibly have a
1036 // fault. Overwrite any existing fault we might have from a previous
1037 // execution of this instruction (e.g. an uncachable load that
1038 // couldn't execute because it wasn't at the head of the ROB).
1039 fault = NoFault;
1040
1041 // Save memory requests.
1042 savedReq = state->mainReq;
1043 savedSreqLow = state->sreqLow;
1044 savedSreqHigh = state->sreqHigh;
1045 }
1046 }
1047 }
1048
1049 template<class Impl>
1050 inline void
1051 BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1052 {
1053 fault = state->getFault();
1054
1055 instFlags[IsUncacheable] = state->isUncacheable();
1056
1057 if (fault == NoFault) {
1058 physEffAddr = state->getPaddr();
1059 memReqFlags = state->getFlags();
1060
1061 if (state->mainReq->isCondSwap()) {
1062 assert(state->res);
1063 state->mainReq->setExtraData(*state->res);
1064 }
1065
1066 } else {
1067 state->deleteReqs();
1068 }
1069 delete state;
1070
1071 translationCompleted(true);
1072 }
1073
1074 #endif // __CPU_BASE_DYN_INST_HH__