Merge with head, hopefully the last time for this batch.
[gem5.git] / src / cpu / base_dyn_inst.hh
1 /*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * Copyright (c) 2009 The University of Edinburgh
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Timothy M. Jones
43 */
44
45 #ifndef __CPU_BASE_DYN_INST_HH__
46 #define __CPU_BASE_DYN_INST_HH__
47
48 #include <bitset>
49 #include <list>
50 #include <string>
51 #include <queue>
52
53 #include "arch/faults.hh"
54 #include "arch/utility.hh"
55 #include "base/fast_alloc.hh"
56 #include "base/trace.hh"
57 #include "config/the_isa.hh"
58 #include "config/use_checker.hh"
59 #include "cpu/o3/comm.hh"
60 #include "cpu/exetrace.hh"
61 #include "cpu/inst_seq.hh"
62 #include "cpu/op_class.hh"
63 #include "cpu/static_inst.hh"
64 #include "cpu/translation.hh"
65 #include "mem/packet.hh"
66 #include "sim/byteswap.hh"
67 #include "sim/system.hh"
68 #include "sim/tlb.hh"
69
70 /**
71 * @file
72 * Defines a dynamic instruction context.
73 */
74
75 template <class Impl>
76 class BaseDynInst : public FastAlloc, public RefCounted
77 {
78 public:
79 // Typedef for the CPU.
80 typedef typename Impl::CPUType ImplCPU;
81 typedef typename ImplCPU::ImplState ImplState;
82
83 // Logical register index type.
84 typedef TheISA::RegIndex RegIndex;
85 // Integer register type.
86 typedef TheISA::IntReg IntReg;
87 // Floating point register type.
88 typedef TheISA::FloatReg FloatReg;
89
90 // The DynInstPtr type.
91 typedef typename Impl::DynInstPtr DynInstPtr;
92 typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;
93
94 // The list of instructions iterator type.
95 typedef typename std::list<DynInstPtr>::iterator ListIt;
96
97 enum {
98 MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
99 MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
100 };
101
102 /** The StaticInst used by this BaseDynInst. */
103 StaticInstPtr staticInst;
104 StaticInstPtr macroop;
105
106 ////////////////////////////////////////////
107 //
108 // INSTRUCTION EXECUTION
109 //
110 ////////////////////////////////////////////
111 /** InstRecord that tracks this instructions. */
112 Trace::InstRecord *traceData;
113
114 void demapPage(Addr vaddr, uint64_t asn)
115 {
116 cpu->demapPage(vaddr, asn);
117 }
118 void demapInstPage(Addr vaddr, uint64_t asn)
119 {
120 cpu->demapPage(vaddr, asn);
121 }
122 void demapDataPage(Addr vaddr, uint64_t asn)
123 {
124 cpu->demapPage(vaddr, asn);
125 }
126
127 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
128
129 Fault writeMem(uint8_t *data, unsigned size,
130 Addr addr, unsigned flags, uint64_t *res);
131
132 /** Splits a request in two if it crosses a dcache block. */
133 void splitRequest(RequestPtr req, RequestPtr &sreqLow,
134 RequestPtr &sreqHigh);
135
136 /** Initiate a DTB address translation. */
137 void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
138 RequestPtr sreqHigh, uint64_t *res,
139 BaseTLB::Mode mode);
140
141 /** Finish a DTB address translation. */
142 void finishTranslation(WholeTranslationState *state);
143
144 /** True if the DTB address translation has started. */
145 bool translationStarted;
146
147 /** True if the DTB address translation has completed. */
148 bool translationCompleted;
149
150 /** True if this address was found to match a previous load and they issued
151 * out of order. If that happend, then it's only a problem if an incoming
152 * snoop invalidate modifies the line, in which case we need to squash.
153 * If nothing modified the line the order doesn't matter.
154 */
155 bool possibleLoadViolation;
156
157 /** True if the address hit a external snoop while sitting in the LSQ.
158 * If this is true and a older instruction sees it, this instruction must
159 * reexecute
160 */
161 bool hitExternalSnoop;
162
163 /**
164 * Returns true if the DTB address translation is being delayed due to a hw
165 * page table walk.
166 */
167 bool isTranslationDelayed() const
168 {
169 return (translationStarted && !translationCompleted);
170 }
171
172 /**
173 * Saved memory requests (needed when the DTB address translation is
174 * delayed due to a hw page table walk).
175 */
176 RequestPtr savedReq;
177 RequestPtr savedSreqLow;
178 RequestPtr savedSreqHigh;
179
180 #if USE_CHECKER
181 // Need a copy of main request pointer to verify on writes.
182 RequestPtr reqToVerify;
183 #endif //USE_CHECKER
184
185 /** @todo: Consider making this private. */
186 public:
187 /** The sequence number of the instruction. */
188 InstSeqNum seqNum;
189
190 enum Status {
191 IqEntry, /// Instruction is in the IQ
192 RobEntry, /// Instruction is in the ROB
193 LsqEntry, /// Instruction is in the LSQ
194 Completed, /// Instruction has completed
195 ResultReady, /// Instruction has its result
196 CanIssue, /// Instruction can issue and execute
197 Issued, /// Instruction has issued
198 Executed, /// Instruction has executed
199 CanCommit, /// Instruction can commit
200 AtCommit, /// Instruction has reached commit
201 Committed, /// Instruction has committed
202 Squashed, /// Instruction is squashed
203 SquashedInIQ, /// Instruction is squashed in the IQ
204 SquashedInLSQ, /// Instruction is squashed in the LSQ
205 SquashedInROB, /// Instruction is squashed in the ROB
206 RecoverInst, /// Is a recover instruction
207 BlockingInst, /// Is a blocking instruction
208 ThreadsyncWait, /// Is a thread synchronization instruction
209 SerializeBefore, /// Needs to serialize on
210 /// instructions ahead of it
211 SerializeAfter, /// Needs to serialize instructions behind it
212 SerializeHandled, /// Serialization has been handled
213 NumStatus
214 };
215
216 /** The status of this BaseDynInst. Several bits can be set. */
217 std::bitset<NumStatus> status;
218
219 /** The thread this instruction is from. */
220 ThreadID threadNumber;
221
222 /** data address space ID, for loads & stores. */
223 short asid;
224
225 /** How many source registers are ready. */
226 unsigned readyRegs;
227
228 /** Pointer to the Impl's CPU object. */
229 ImplCPU *cpu;
230
231 /** Pointer to the thread state. */
232 ImplState *thread;
233
234 /** The kind of fault this instruction has generated. */
235 Fault fault;
236
237 /** Pointer to the data for the memory access. */
238 uint8_t *memData;
239
240 /** The effective virtual address (lds & stores only). */
241 Addr effAddr;
242
243 /** The size of the request */
244 Addr effSize;
245
246 /** Is the effective virtual address valid. */
247 bool effAddrValid;
248
249 /** The effective physical address. */
250 Addr physEffAddr;
251
252 /** The memory request flags (from translation). */
253 unsigned memReqFlags;
254
255 union Result {
256 uint64_t integer;
257 double dbl;
258 void set(uint64_t i) { integer = i; }
259 void set(double d) { dbl = d; }
260 void get(uint64_t& i) { i = integer; }
261 void get(double& d) { d = dbl; }
262 };
263
264 /** The result of the instruction; assumes an instruction can have many
265 * destination registers.
266 */
267 std::queue<Result> instResult;
268
269 /** Records changes to result? */
270 bool recordResult;
271
272 /** Did this instruction execute, or is it predicated false */
273 bool predicate;
274
275 protected:
276 /** PC state for this instruction. */
277 TheISA::PCState pc;
278
279 /** Predicted PC state after this instruction. */
280 TheISA::PCState predPC;
281
282 /** If this is a branch that was predicted taken */
283 bool predTaken;
284
285 public:
286
287 #ifdef DEBUG
288 void dumpSNList();
289 #endif
290
291 /** Whether or not the source register is ready.
292 * @todo: Not sure this should be here vs the derived class.
293 */
294 bool _readySrcRegIdx[MaxInstSrcRegs];
295
296 protected:
297 /** Flattened register index of the destination registers of this
298 * instruction.
299 */
300 TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
301
302 /** Flattened register index of the source registers of this
303 * instruction.
304 */
305 TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
306
307 /** Physical register index of the destination registers of this
308 * instruction.
309 */
310 PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
311
312 /** Physical register index of the source registers of this
313 * instruction.
314 */
315 PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
316
317 /** Physical register index of the previous producers of the
318 * architected destinations.
319 */
320 PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
321
322 public:
323
324 /** Returns the physical register index of the i'th destination
325 * register.
326 */
327 PhysRegIndex renamedDestRegIdx(int idx) const
328 {
329 return _destRegIdx[idx];
330 }
331
332 /** Returns the physical register index of the i'th source register. */
333 PhysRegIndex renamedSrcRegIdx(int idx) const
334 {
335 return _srcRegIdx[idx];
336 }
337
338 /** Returns the flattened register index of the i'th destination
339 * register.
340 */
341 TheISA::RegIndex flattenedDestRegIdx(int idx) const
342 {
343 return _flatDestRegIdx[idx];
344 }
345
346 /** Returns the flattened register index of the i'th source register */
347 TheISA::RegIndex flattenedSrcRegIdx(int idx) const
348 {
349 return _flatSrcRegIdx[idx];
350 }
351
352 /** Returns the physical register index of the previous physical register
353 * that remapped to the same logical register index.
354 */
355 PhysRegIndex prevDestRegIdx(int idx) const
356 {
357 return _prevDestRegIdx[idx];
358 }
359
360 /** Renames a destination register to a physical register. Also records
361 * the previous physical register that the logical register mapped to.
362 */
363 void renameDestReg(int idx,
364 PhysRegIndex renamed_dest,
365 PhysRegIndex previous_rename)
366 {
367 _destRegIdx[idx] = renamed_dest;
368 _prevDestRegIdx[idx] = previous_rename;
369 }
370
371 /** Renames a source logical register to the physical register which
372 * has/will produce that logical register's result.
373 * @todo: add in whether or not the source register is ready.
374 */
375 void renameSrcReg(int idx, PhysRegIndex renamed_src)
376 {
377 _srcRegIdx[idx] = renamed_src;
378 }
379
380 /** Flattens a source architectural register index into a logical index.
381 */
382 void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
383 {
384 _flatSrcRegIdx[idx] = flattened_src;
385 }
386
387 /** Flattens a destination architectural register index into a logical
388 * index.
389 */
390 void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
391 {
392 _flatDestRegIdx[idx] = flattened_dest;
393 }
394 /** BaseDynInst constructor given a binary instruction.
395 * @param staticInst A StaticInstPtr to the underlying instruction.
396 * @param pc The PC state for the instruction.
397 * @param predPC The predicted next PC state for the instruction.
398 * @param seq_num The sequence number of the instruction.
399 * @param cpu Pointer to the instruction's CPU.
400 */
401 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop,
402 TheISA::PCState pc, TheISA::PCState predPC,
403 InstSeqNum seq_num, ImplCPU *cpu);
404
405 /** BaseDynInst constructor given a StaticInst pointer.
406 * @param _staticInst The StaticInst for this BaseDynInst.
407 */
408 BaseDynInst(StaticInstPtr staticInst, StaticInstPtr macroop);
409
410 /** BaseDynInst destructor. */
411 ~BaseDynInst();
412
413 private:
414 /** Function to initialize variables in the constructors. */
415 void initVars();
416
417 public:
418 /** Dumps out contents of this BaseDynInst. */
419 void dump();
420
421 /** Dumps out contents of this BaseDynInst into given string. */
422 void dump(std::string &outstring);
423
424 /** Read this CPU's ID. */
425 int cpuId() { return cpu->cpuId(); }
426
427 /** Read this context's system-wide ID **/
428 int contextId() { return thread->contextId(); }
429
430 /** Returns the fault type. */
431 Fault getFault() { return fault; }
432
433 /** Checks whether or not this instruction has had its branch target
434 * calculated yet. For now it is not utilized and is hacked to be
435 * always false.
436 * @todo: Actually use this instruction.
437 */
438 bool doneTargCalc() { return false; }
439
440 /** Set the predicted target of this current instruction. */
441 void setPredTarg(const TheISA::PCState &_predPC)
442 {
443 predPC = _predPC;
444 }
445
446 const TheISA::PCState &readPredTarg() { return predPC; }
447
448 /** Returns the predicted PC immediately after the branch. */
449 Addr predInstAddr() { return predPC.instAddr(); }
450
451 /** Returns the predicted PC two instructions after the branch */
452 Addr predNextInstAddr() { return predPC.nextInstAddr(); }
453
454 /** Returns the predicted micro PC after the branch */
455 Addr predMicroPC() { return predPC.microPC(); }
456
457 /** Returns whether the instruction was predicted taken or not. */
458 bool readPredTaken()
459 {
460 return predTaken;
461 }
462
463 void setPredTaken(bool predicted_taken)
464 {
465 predTaken = predicted_taken;
466 }
467
468 /** Returns whether the instruction mispredicted. */
469 bool mispredicted()
470 {
471 TheISA::PCState tempPC = pc;
472 TheISA::advancePC(tempPC, staticInst);
473 return !(tempPC == predPC);
474 }
475
476 //
477 // Instruction types. Forward checks to StaticInst object.
478 //
479 bool isNop() const { return staticInst->isNop(); }
480 bool isMemRef() const { return staticInst->isMemRef(); }
481 bool isLoad() const { return staticInst->isLoad(); }
482 bool isStore() const { return staticInst->isStore(); }
483 bool isStoreConditional() const
484 { return staticInst->isStoreConditional(); }
485 bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
486 bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
487 bool isInteger() const { return staticInst->isInteger(); }
488 bool isFloating() const { return staticInst->isFloating(); }
489 bool isControl() const { return staticInst->isControl(); }
490 bool isCall() const { return staticInst->isCall(); }
491 bool isReturn() const { return staticInst->isReturn(); }
492 bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
493 bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
494 bool isCondCtrl() const { return staticInst->isCondCtrl(); }
495 bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
496 bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
497 bool isThreadSync() const { return staticInst->isThreadSync(); }
498 bool isSerializing() const { return staticInst->isSerializing(); }
499 bool isSerializeBefore() const
500 { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
501 bool isSerializeAfter() const
502 { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
503 bool isSquashAfter() const { return staticInst->isSquashAfter(); }
504 bool isMemBarrier() const { return staticInst->isMemBarrier(); }
505 bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
506 bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
507 bool isQuiesce() const { return staticInst->isQuiesce(); }
508 bool isIprAccess() const { return staticInst->isIprAccess(); }
509 bool isUnverifiable() const { return staticInst->isUnverifiable(); }
510 bool isSyscall() const { return staticInst->isSyscall(); }
511 bool isMacroop() const { return staticInst->isMacroop(); }
512 bool isMicroop() const { return staticInst->isMicroop(); }
513 bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
514 bool isLastMicroop() const { return staticInst->isLastMicroop(); }
515 bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
516 bool isMicroBranch() const { return staticInst->isMicroBranch(); }
517
518 /** Temporarily sets this instruction as a serialize before instruction. */
519 void setSerializeBefore() { status.set(SerializeBefore); }
520
521 /** Clears the serializeBefore part of this instruction. */
522 void clearSerializeBefore() { status.reset(SerializeBefore); }
523
524 /** Checks if this serializeBefore is only temporarily set. */
525 bool isTempSerializeBefore() { return status[SerializeBefore]; }
526
527 /** Temporarily sets this instruction as a serialize after instruction. */
528 void setSerializeAfter() { status.set(SerializeAfter); }
529
530 /** Clears the serializeAfter part of this instruction.*/
531 void clearSerializeAfter() { status.reset(SerializeAfter); }
532
533 /** Checks if this serializeAfter is only temporarily set. */
534 bool isTempSerializeAfter() { return status[SerializeAfter]; }
535
536 /** Sets the serialization part of this instruction as handled. */
537 void setSerializeHandled() { status.set(SerializeHandled); }
538
539 /** Checks if the serialization part of this instruction has been
540 * handled. This does not apply to the temporary serializing
541 * state; it only applies to this instruction's own permanent
542 * serializing state.
543 */
544 bool isSerializeHandled() { return status[SerializeHandled]; }
545
546 /** Returns the opclass of this instruction. */
547 OpClass opClass() const { return staticInst->opClass(); }
548
549 /** Returns the branch target address. */
550 TheISA::PCState branchTarget() const
551 { return staticInst->branchTarget(pc); }
552
553 /** Returns the number of source registers. */
554 int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
555
556 /** Returns the number of destination registers. */
557 int8_t numDestRegs() const { return staticInst->numDestRegs(); }
558
559 // the following are used to track physical register usage
560 // for machines with separate int & FP reg files
561 int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
562 int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
563
564 /** Returns the logical register index of the i'th destination register. */
565 RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
566
567 /** Returns the logical register index of the i'th source register. */
568 RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
569
570 /** Pops a result off the instResult queue */
571 template <class T>
572 void popResult(T& t)
573 {
574 if (!instResult.empty()) {
575 instResult.front().get(t);
576 instResult.pop();
577 }
578 }
579
580 /** Read the most recent result stored by this instruction */
581 template <class T>
582 void readResult(T& t)
583 {
584 instResult.back().get(t);
585 }
586
587 /** Pushes a result onto the instResult queue */
588 template <class T>
589 void setResult(T t)
590 {
591 if (recordResult) {
592 Result instRes;
593 instRes.set(t);
594 instResult.push(instRes);
595 }
596 }
597
598 /** Records an integer register being set to a value. */
599 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
600 {
601 setResult<uint64_t>(val);
602 }
603
604 /** Records an fp register being set to a value. */
605 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
606 int width)
607 {
608 if (width == 32 || width == 64) {
609 setResult<double>(val);
610 } else {
611 panic("Unsupported width!");
612 }
613 }
614
615 /** Records an fp register being set to a value. */
616 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
617 {
618 setResult<double>(val);
619 }
620
621 /** Records an fp register being set to an integer value. */
622 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
623 int width)
624 {
625 setResult<uint64_t>(val);
626 }
627
628 /** Records an fp register being set to an integer value. */
629 void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
630 {
631 setResult<uint64_t>(val);
632 }
633
634 /** Records that one of the source registers is ready. */
635 void markSrcRegReady();
636
637 /** Marks a specific register as ready. */
638 void markSrcRegReady(RegIndex src_idx);
639
640 /** Returns if a source register is ready. */
641 bool isReadySrcRegIdx(int idx) const
642 {
643 return this->_readySrcRegIdx[idx];
644 }
645
646 /** Sets this instruction as completed. */
647 void setCompleted() { status.set(Completed); }
648
649 /** Returns whether or not this instruction is completed. */
650 bool isCompleted() const { return status[Completed]; }
651
652 /** Marks the result as ready. */
653 void setResultReady() { status.set(ResultReady); }
654
655 /** Returns whether or not the result is ready. */
656 bool isResultReady() const { return status[ResultReady]; }
657
658 /** Sets this instruction as ready to issue. */
659 void setCanIssue() { status.set(CanIssue); }
660
661 /** Returns whether or not this instruction is ready to issue. */
662 bool readyToIssue() const { return status[CanIssue]; }
663
664 /** Clears this instruction being able to issue. */
665 void clearCanIssue() { status.reset(CanIssue); }
666
667 /** Sets this instruction as issued from the IQ. */
668 void setIssued() { status.set(Issued); }
669
670 /** Returns whether or not this instruction has issued. */
671 bool isIssued() const { return status[Issued]; }
672
673 /** Clears this instruction as being issued. */
674 void clearIssued() { status.reset(Issued); }
675
676 /** Sets this instruction as executed. */
677 void setExecuted() { status.set(Executed); }
678
679 /** Returns whether or not this instruction has executed. */
680 bool isExecuted() const { return status[Executed]; }
681
682 /** Sets this instruction as ready to commit. */
683 void setCanCommit() { status.set(CanCommit); }
684
685 /** Clears this instruction as being ready to commit. */
686 void clearCanCommit() { status.reset(CanCommit); }
687
688 /** Returns whether or not this instruction is ready to commit. */
689 bool readyToCommit() const { return status[CanCommit]; }
690
691 void setAtCommit() { status.set(AtCommit); }
692
693 bool isAtCommit() { return status[AtCommit]; }
694
695 /** Sets this instruction as committed. */
696 void setCommitted() { status.set(Committed); }
697
698 /** Returns whether or not this instruction is committed. */
699 bool isCommitted() const { return status[Committed]; }
700
701 /** Sets this instruction as squashed. */
702 void setSquashed() { status.set(Squashed); }
703
704 /** Returns whether or not this instruction is squashed. */
705 bool isSquashed() const { return status[Squashed]; }
706
707 //Instruction Queue Entry
708 //-----------------------
709 /** Sets this instruction as a entry the IQ. */
710 void setInIQ() { status.set(IqEntry); }
711
712 /** Sets this instruction as a entry the IQ. */
713 void clearInIQ() { status.reset(IqEntry); }
714
715 /** Returns whether or not this instruction has issued. */
716 bool isInIQ() const { return status[IqEntry]; }
717
718 /** Sets this instruction as squashed in the IQ. */
719 void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
720
721 /** Returns whether or not this instruction is squashed in the IQ. */
722 bool isSquashedInIQ() const { return status[SquashedInIQ]; }
723
724
725 //Load / Store Queue Functions
726 //-----------------------
727 /** Sets this instruction as a entry the LSQ. */
728 void setInLSQ() { status.set(LsqEntry); }
729
730 /** Sets this instruction as a entry the LSQ. */
731 void removeInLSQ() { status.reset(LsqEntry); }
732
733 /** Returns whether or not this instruction is in the LSQ. */
734 bool isInLSQ() const { return status[LsqEntry]; }
735
736 /** Sets this instruction as squashed in the LSQ. */
737 void setSquashedInLSQ() { status.set(SquashedInLSQ);}
738
739 /** Returns whether or not this instruction is squashed in the LSQ. */
740 bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
741
742
743 //Reorder Buffer Functions
744 //-----------------------
745 /** Sets this instruction as a entry the ROB. */
746 void setInROB() { status.set(RobEntry); }
747
748 /** Sets this instruction as a entry the ROB. */
749 void clearInROB() { status.reset(RobEntry); }
750
751 /** Returns whether or not this instruction is in the ROB. */
752 bool isInROB() const { return status[RobEntry]; }
753
754 /** Sets this instruction as squashed in the ROB. */
755 void setSquashedInROB() { status.set(SquashedInROB); }
756
757 /** Returns whether or not this instruction is squashed in the ROB. */
758 bool isSquashedInROB() const { return status[SquashedInROB]; }
759
760 /** Read the PC state of this instruction. */
761 const TheISA::PCState pcState() const { return pc; }
762
763 /** Set the PC state of this instruction. */
764 const void pcState(const TheISA::PCState &val) { pc = val; }
765
766 /** Read the PC of this instruction. */
767 const Addr instAddr() const { return pc.instAddr(); }
768
769 /** Read the PC of the next instruction. */
770 const Addr nextInstAddr() const { return pc.nextInstAddr(); }
771
772 /**Read the micro PC of this instruction. */
773 const Addr microPC() const { return pc.microPC(); }
774
775 bool readPredicate()
776 {
777 return predicate;
778 }
779
780 void setPredicate(bool val)
781 {
782 predicate = val;
783
784 if (traceData) {
785 traceData->setPredicate(val);
786 }
787 }
788
789 /** Sets the ASID. */
790 void setASID(short addr_space_id) { asid = addr_space_id; }
791
792 /** Sets the thread id. */
793 void setTid(ThreadID tid) { threadNumber = tid; }
794
795 /** Sets the pointer to the thread state. */
796 void setThreadState(ImplState *state) { thread = state; }
797
798 /** Returns the thread context. */
799 ThreadContext *tcBase() { return thread->getTC(); }
800
801 private:
802 /** Instruction effective address.
803 * @todo: Consider if this is necessary or not.
804 */
805 Addr instEffAddr;
806
807 /** Whether or not the effective address calculation is completed.
808 * @todo: Consider if this is necessary or not.
809 */
810 bool eaCalcDone;
811
812 /** Is this instruction's memory access uncacheable. */
813 bool isUncacheable;
814
815 /** Has this instruction generated a memory request. */
816 bool reqMade;
817
818 public:
819 /** Sets the effective address. */
820 void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
821
822 /** Returns the effective address. */
823 const Addr &getEA() const { return instEffAddr; }
824
825 /** Returns whether or not the eff. addr. calculation has been completed. */
826 bool doneEACalc() { return eaCalcDone; }
827
828 /** Returns whether or not the eff. addr. source registers are ready. */
829 bool eaSrcsReady();
830
831 /** Whether or not the memory operation is done. */
832 bool memOpDone;
833
834 /** Is this instruction's memory access uncacheable. */
835 bool uncacheable() { return isUncacheable; }
836
837 /** Has this instruction generated a memory request. */
838 bool hasRequest() { return reqMade; }
839
840 public:
841 /** Load queue index. */
842 int16_t lqIdx;
843
844 /** Store queue index. */
845 int16_t sqIdx;
846
847 /** Iterator pointing to this BaseDynInst in the list of all insts. */
848 ListIt instListIt;
849
850 /** Returns iterator to this instruction in the list of all insts. */
851 ListIt &getInstListIt() { return instListIt; }
852
853 /** Sets iterator for this instruction in the list of all insts. */
854 void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
855
856 public:
857 /** Returns the number of consecutive store conditional failures. */
858 unsigned readStCondFailures()
859 { return thread->storeCondFailures; }
860
861 /** Sets the number of consecutive store conditional failures. */
862 void setStCondFailures(unsigned sc_failures)
863 { thread->storeCondFailures = sc_failures; }
864 };
865
866 template<class Impl>
867 Fault
868 BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
869 unsigned size, unsigned flags)
870 {
871 reqMade = true;
872 Request *req = NULL;
873 Request *sreqLow = NULL;
874 Request *sreqHigh = NULL;
875
876 if (reqMade && translationStarted) {
877 req = savedReq;
878 sreqLow = savedSreqLow;
879 sreqHigh = savedSreqHigh;
880 } else {
881 req = new Request(asid, addr, size, flags, this->pc.instAddr(),
882 thread->contextId(), threadNumber);
883
884 // Only split the request if the ISA supports unaligned accesses.
885 if (TheISA::HasUnalignedMemAcc) {
886 splitRequest(req, sreqLow, sreqHigh);
887 }
888 initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
889 }
890
891 if (translationCompleted) {
892 if (fault == NoFault) {
893 effAddr = req->getVaddr();
894 effSize = size;
895 effAddrValid = true;
896 #if USE_CHECKER
897 if (reqToVerify != NULL) {
898 delete reqToVerify;
899 }
900 reqToVerify = new Request(*req);
901 #endif //USE_CHECKER
902 fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
903 } else {
904 // Commit will have to clean up whatever happened. Set this
905 // instruction as executed.
906 this->setExecuted();
907 }
908
909 if (fault != NoFault) {
910 // Return a fixed value to keep simulation deterministic even
911 // along misspeculated paths.
912 if (data)
913 bzero(data, size);
914 }
915 }
916
917 if (traceData) {
918 traceData->setAddr(addr);
919 }
920
921 return fault;
922 }
923
924 template<class Impl>
925 Fault
926 BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
927 Addr addr, unsigned flags, uint64_t *res)
928 {
929 if (traceData) {
930 traceData->setAddr(addr);
931 }
932
933 reqMade = true;
934 Request *req = NULL;
935 Request *sreqLow = NULL;
936 Request *sreqHigh = NULL;
937
938 if (reqMade && translationStarted) {
939 req = savedReq;
940 sreqLow = savedSreqLow;
941 sreqHigh = savedSreqHigh;
942 } else {
943 req = new Request(asid, addr, size, flags, this->pc.instAddr(),
944 thread->contextId(), threadNumber);
945
946 // Only split the request if the ISA supports unaligned accesses.
947 if (TheISA::HasUnalignedMemAcc) {
948 splitRequest(req, sreqLow, sreqHigh);
949 }
950 initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
951 }
952
953 if (fault == NoFault && translationCompleted) {
954 effAddr = req->getVaddr();
955 effSize = size;
956 effAddrValid = true;
957 #if USE_CHECKER
958 if (reqToVerify != NULL) {
959 delete reqToVerify;
960 }
961 reqToVerify = new Request(*req);
962 #endif // USE_CHECKER
963 fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
964 }
965
966 return fault;
967 }
968
969 template<class Impl>
970 inline void
971 BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
972 RequestPtr &sreqHigh)
973 {
974 // Check to see if the request crosses the next level block boundary.
975 unsigned block_size = cpu->getDcachePort()->peerBlockSize();
976 Addr addr = req->getVaddr();
977 Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
978 assert(split_addr <= addr || split_addr - addr < block_size);
979
980 // Spans two blocks.
981 if (split_addr > addr) {
982 req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
983 }
984 }
985
986 template<class Impl>
987 inline void
988 BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
989 RequestPtr sreqHigh, uint64_t *res,
990 BaseTLB::Mode mode)
991 {
992 translationStarted = true;
993
994 if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
995 WholeTranslationState *state =
996 new WholeTranslationState(req, NULL, res, mode);
997
998 // One translation if the request isn't split.
999 DataTranslation<BaseDynInstPtr> *trans =
1000 new DataTranslation<BaseDynInstPtr>(this, state);
1001 cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
1002 if (!translationCompleted) {
1003 // Save memory requests.
1004 savedReq = state->mainReq;
1005 savedSreqLow = state->sreqLow;
1006 savedSreqHigh = state->sreqHigh;
1007 }
1008 } else {
1009 WholeTranslationState *state =
1010 new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
1011
1012 // Two translations when the request is split.
1013 DataTranslation<BaseDynInstPtr> *stransLow =
1014 new DataTranslation<BaseDynInstPtr>(this, state, 0);
1015 DataTranslation<BaseDynInstPtr> *stransHigh =
1016 new DataTranslation<BaseDynInstPtr>(this, state, 1);
1017
1018 cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
1019 cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
1020 if (!translationCompleted) {
1021 // Save memory requests.
1022 savedReq = state->mainReq;
1023 savedSreqLow = state->sreqLow;
1024 savedSreqHigh = state->sreqHigh;
1025 }
1026 }
1027 }
1028
1029 template<class Impl>
1030 inline void
1031 BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
1032 {
1033 fault = state->getFault();
1034
1035 if (state->isUncacheable())
1036 isUncacheable = true;
1037
1038 if (fault == NoFault) {
1039 physEffAddr = state->getPaddr();
1040 memReqFlags = state->getFlags();
1041
1042 if (state->mainReq->isCondSwap()) {
1043 assert(state->res);
1044 state->mainReq->setExtraData(*state->res);
1045 }
1046
1047 } else {
1048 state->deleteReqs();
1049 }
1050 delete state;
1051
1052 translationCompleted = true;
1053 }
1054
1055 #endif // __CPU_BASE_DYN_INST_HH__