167c3531fecae769cfb34f43ec9853775149b85c
[gem5.git] / src / cpu / checker / cpu_impl.hh
1 /*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Geoffrey Blake
42 */
43
44 #include <list>
45 #include <string>
46
47 #include "arch/isa_traits.hh"
48 #include "arch/vtophys.hh"
49 #include "base/refcnt.hh"
50 #include "config/the_isa.hh"
51 #include "cpu/base_dyn_inst.hh"
52 #include "cpu/exetrace.hh"
53 #include "cpu/simple_thread.hh"
54 #include "cpu/static_inst.hh"
55 #include "cpu/thread_context.hh"
56 #include "cpu/checker/cpu.hh"
57 #include "debug/Checker.hh"
58 #include "sim/full_system.hh"
59 #include "sim/sim_object.hh"
60 #include "sim/stats.hh"
61
62 using namespace std;
63 using namespace TheISA;
64
65 template <class Impl>
66 void
67 Checker<Impl>::advancePC(Fault fault)
68 {
69 if (fault != NoFault) {
70 curMacroStaticInst = StaticInst::nullStaticInstPtr;
71 fault->invoke(tc, curStaticInst);
72 predecoder.reset();
73 } else {
74 if (curStaticInst) {
75 if (curStaticInst->isLastMicroop())
76 curMacroStaticInst = StaticInst::nullStaticInstPtr;
77 TheISA::PCState pcState = thread->pcState();
78 TheISA::advancePC(pcState, curStaticInst);
79 thread->pcState(pcState);
80 DPRINTF(Checker, "Advancing PC to %s.\n", thread->pcState());
81 }
82 }
83 }
84 //////////////////////////////////////////////////
85
86 template <class Impl>
87 void
88 Checker<Impl>::handlePendingInt()
89 {
90 DPRINTF(Checker, "IRQ detected at PC: %s with %d insts in buffer\n",
91 thread->pcState(), instList.size());
92 DynInstPtr boundaryInst = NULL;
93 if (!instList.empty()) {
94 // Set the instructions as completed and verify as much as possible.
95 DynInstPtr inst;
96 typename std::list<DynInstPtr>::iterator itr;
97
98 for (itr = instList.begin(); itr != instList.end(); itr++) {
99 (*itr)->setCompleted();
100 }
101
102 inst = instList.front();
103 boundaryInst = instList.back();
104 verify(inst); // verify the instructions
105 inst = NULL;
106 }
107 if ((!boundaryInst && curMacroStaticInst &&
108 curStaticInst->isDelayedCommit() &&
109 !curStaticInst->isLastMicroop()) ||
110 (boundaryInst && boundaryInst->isDelayedCommit() &&
111 !boundaryInst->isLastMicroop())) {
112 panic("%lli: Trying to take an interrupt in middle of "
113 "a non-interuptable instruction!", curTick());
114 }
115 boundaryInst = NULL;
116 predecoder.reset();
117 curMacroStaticInst = StaticInst::nullStaticInstPtr;
118 }
119
120 template <class Impl>
121 void
122 Checker<Impl>::verify(DynInstPtr &completed_inst)
123 {
124 DynInstPtr inst;
125
126 // Make sure serializing instructions are actually
127 // seen as serializing to commit. instList should be
128 // empty in these cases.
129 if ((completed_inst->isSerializing() ||
130 completed_inst->isSerializeBefore()) &&
131 (!instList.empty() ?
132 (instList.front()->seqNum != completed_inst->seqNum) : 0)) {
133 panic("%lli: Instruction sn:%lli at PC %s is serializing before but is"
134 " entering instList with other instructions\n", curTick(),
135 completed_inst->seqNum, completed_inst->pcState());
136 }
137
138 // Either check this instruction, or add it to a list of
139 // instructions waiting to be checked. Instructions must be
140 // checked in program order, so if a store has committed yet not
141 // completed, there may be some instructions that are waiting
142 // behind it that have completed and must be checked.
143 if (!instList.empty()) {
144 if (youngestSN < completed_inst->seqNum) {
145 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
146 completed_inst->seqNum, completed_inst->pcState());
147 instList.push_back(completed_inst);
148 youngestSN = completed_inst->seqNum;
149 }
150
151 if (!instList.front()->isCompleted()) {
152 return;
153 } else {
154 inst = instList.front();
155 instList.pop_front();
156 }
157 } else {
158 if (!completed_inst->isCompleted()) {
159 if (youngestSN < completed_inst->seqNum) {
160 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
161 completed_inst->seqNum, completed_inst->pcState());
162 instList.push_back(completed_inst);
163 youngestSN = completed_inst->seqNum;
164 }
165 return;
166 } else {
167 if (youngestSN < completed_inst->seqNum) {
168 inst = completed_inst;
169 youngestSN = completed_inst->seqNum;
170 } else {
171 return;
172 }
173 }
174 }
175
176 // Make sure a serializing instruction is actually seen as
177 // serializing. instList should be empty here
178 if (inst->isSerializeAfter() && !instList.empty()) {
179 panic("%lli: Instruction sn:%lli at PC %s is serializing after but is"
180 " exiting instList with other instructions\n", curTick(),
181 completed_inst->seqNum, completed_inst->pcState());
182 }
183 unverifiedInst = inst;
184 inst = NULL;
185
186 // Try to check all instructions that are completed, ending if we
187 // run out of instructions to check or if an instruction is not
188 // yet completed.
189 while (1) {
190 DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%s.\n",
191 unverifiedInst->seqNum, unverifiedInst->pcState());
192 unverifiedReq = NULL;
193 unverifiedReq = unverifiedInst->reqToVerify;
194 unverifiedMemData = unverifiedInst->memData;
195 // Make sure results queue is empty
196 while (!result.empty()) {
197 result.pop();
198 }
199 numCycles++;
200
201 Fault fault = NoFault;
202
203 // maintain $r0 semantics
204 thread->setIntReg(ZeroReg, 0);
205 #if THE_ISA == ALPHA_ISA
206 thread->setFloatReg(ZeroReg, 0.0);
207 #endif
208
209 // Check if any recent PC changes match up with anything we
210 // expect to happen. This is mostly to check if traps or
211 // PC-based events have occurred in both the checker and CPU.
212 if (changedPC) {
213 DPRINTF(Checker, "Changed PC recently to %s\n",
214 thread->pcState());
215 if (willChangePC) {
216 if (newPCState == thread->pcState()) {
217 DPRINTF(Checker, "Changed PC matches expected PC\n");
218 } else {
219 warn("%lli: Changed PC does not match expected PC, "
220 "changed: %s, expected: %s",
221 curTick(), thread->pcState(), newPCState);
222 CheckerCPU::handleError();
223 }
224 willChangePC = false;
225 }
226 changedPC = false;
227 }
228 if (changedNextPC) {
229 DPRINTF(Checker, "Changed NextPC recently to %#x\n",
230 thread->nextInstAddr());
231 changedNextPC = false;
232 }
233
234 // Try to fetch the instruction
235 uint64_t fetchOffset = 0;
236 bool fetchDone = false;
237
238 while (!fetchDone) {
239 Addr fetch_PC = thread->instAddr();
240 fetch_PC = (fetch_PC & PCMask) + fetchOffset;
241
242 // If not in the middle of a macro instruction
243 if (!curMacroStaticInst) {
244 // set up memory request for instruction fetch
245 memReq = new Request(unverifiedInst->threadNumber, fetch_PC,
246 sizeof(MachInst),
247 0,
248 masterId,
249 fetch_PC, thread->contextId(),
250 unverifiedInst->threadNumber);
251 memReq->setVirt(0, fetch_PC, sizeof(MachInst),
252 Request::INST_FETCH, masterId, thread->instAddr());
253
254
255 fault = itb->translateFunctional(memReq, tc, BaseTLB::Execute);
256
257 if (fault != NoFault) {
258 if (unverifiedInst->getFault() == NoFault) {
259 // In this case the instruction was not a dummy
260 // instruction carrying an ITB fault. In the single
261 // threaded case the ITB should still be able to
262 // translate this instruction; in the SMT case it's
263 // possible that its ITB entry was kicked out.
264 warn("%lli: Instruction PC %s was not found in the "
265 "ITB!", curTick(), thread->pcState());
266 handleError(unverifiedInst);
267
268 // go to the next instruction
269 advancePC(NoFault);
270
271 // Give up on an ITB fault..
272 delete memReq;
273 unverifiedInst = NULL;
274 return;
275 } else {
276 // The instruction is carrying an ITB fault. Handle
277 // the fault and see if our results match the CPU on
278 // the next tick().
279 fault = unverifiedInst->getFault();
280 delete memReq;
281 break;
282 }
283 } else {
284 PacketPtr pkt = new Packet(memReq,
285 MemCmd::ReadReq,
286 Packet::Broadcast);
287
288 pkt->dataStatic(&machInst);
289 icachePort->sendFunctional(pkt);
290 machInst = gtoh(machInst);
291
292 delete memReq;
293 delete pkt;
294 }
295 }
296
297 if (fault == NoFault) {
298 TheISA::PCState pcState = thread->pcState();
299
300 if (isRomMicroPC(pcState.microPC())) {
301 fetchDone = true;
302 curStaticInst =
303 microcodeRom.fetchMicroop(pcState.microPC(), NULL);
304 } else if (!curMacroStaticInst) {
305 //We're not in the middle of a macro instruction
306 StaticInstPtr instPtr = NULL;
307
308 //Predecode, ie bundle up an ExtMachInst
309 predecoder.setTC(thread->getTC());
310 //If more fetch data is needed, pass it in.
311 Addr fetchPC = (pcState.instAddr() & PCMask) + fetchOffset;
312 predecoder.moreBytes(pcState, fetchPC, machInst);
313
314 //If an instruction is ready, decode it.
315 //Otherwise, we'll have to fetch beyond the
316 //MachInst at the current pc.
317 if (predecoder.extMachInstReady()) {
318 fetchDone = true;
319 ExtMachInst newMachInst =
320 predecoder.getExtMachInst(pcState);
321 thread->pcState(pcState);
322 instPtr = thread->decoder.decode(newMachInst,
323 pcState.instAddr());
324 #if THE_ISA != X86_ISA
325 machInst = newMachInst;
326 #endif
327 } else {
328 fetchDone = false;
329 fetchOffset += sizeof(TheISA::MachInst);
330 }
331
332 //If we decoded an instruction and it's microcoded,
333 //start pulling out micro ops
334 if (instPtr && instPtr->isMacroop()) {
335 curMacroStaticInst = instPtr;
336 curStaticInst =
337 instPtr->fetchMicroop(pcState.microPC());
338 } else {
339 curStaticInst = instPtr;
340 }
341 } else {
342 // Read the next micro op from the macro-op
343 curStaticInst =
344 curMacroStaticInst->fetchMicroop(pcState.microPC());
345 fetchDone = true;
346 }
347 }
348 }
349 // reset predecoder on Checker
350 predecoder.reset();
351
352 // Check Checker and CPU get same instruction, and record
353 // any faults the CPU may have had.
354 Fault unverifiedFault;
355 if (fault == NoFault) {
356 unverifiedFault = unverifiedInst->getFault();
357
358 // Checks that the instruction matches what we expected it to be.
359 // Checks both the machine instruction and the PC.
360 validateInst(unverifiedInst);
361 }
362
363 // keep an instruction count
364 numInst++;
365
366
367 // Either the instruction was a fault and we should process the fault,
368 // or we should just go ahead execute the instruction. This assumes
369 // that the instruction is properly marked as a fault.
370 if (fault == NoFault) {
371 // Execute Checker instruction and trace
372 if (!unverifiedInst->isUnverifiable()) {
373 Trace::InstRecord *traceData = tracer->getInstRecord(curTick(),
374 tc,
375 curStaticInst,
376 pcState(),
377 curMacroStaticInst);
378 fault = curStaticInst->execute(this, traceData);
379 if (traceData) {
380 traceData->dump();
381 delete traceData;
382 }
383 }
384
385 if (fault == NoFault && unverifiedFault == NoFault) {
386 thread->funcExeInst++;
387 // Checks to make sure instrution results are correct.
388 validateExecution(unverifiedInst);
389
390 if (curStaticInst->isLoad()) {
391 ++numLoad;
392 }
393 } else if (fault != NoFault && unverifiedFault == NoFault) {
394 panic("%lli: sn: %lli at PC: %s took a fault in checker "
395 "but not in driver CPU\n", curTick(),
396 unverifiedInst->seqNum, unverifiedInst->pcState());
397 } else if (fault == NoFault && unverifiedFault != NoFault) {
398 panic("%lli: sn: %lli at PC: %s took a fault in driver "
399 "CPU but not in checker\n", curTick(),
400 unverifiedInst->seqNum, unverifiedInst->pcState());
401 }
402 }
403
404 // Take any faults here
405 if (fault != NoFault) {
406 if (FullSystem) {
407 fault->invoke(tc, curStaticInst);
408 willChangePC = true;
409 newPCState = thread->pcState();
410 DPRINTF(Checker, "Fault, PC is now %s\n", newPCState);
411 curMacroStaticInst = StaticInst::nullStaticInstPtr;
412 }
413 } else {
414 advancePC(fault);
415 }
416
417 if (FullSystem) {
418 // @todo: Determine if these should happen only if the
419 // instruction hasn't faulted. In the SimpleCPU case this may
420 // not be true, but in the O3 or Ozone case this may be true.
421 Addr oldpc;
422 int count = 0;
423 do {
424 oldpc = thread->instAddr();
425 system->pcEventQueue.service(tc);
426 count++;
427 } while (oldpc != thread->instAddr());
428 if (count > 1) {
429 willChangePC = true;
430 newPCState = thread->pcState();
431 DPRINTF(Checker, "PC Event, PC is now %s\n", newPCState);
432 }
433 }
434
435 // @todo: Optionally can check all registers. (Or just those
436 // that have been modified).
437 validateState();
438
439 // Continue verifying instructions if there's another completed
440 // instruction waiting to be verified.
441 if (instList.empty()) {
442 break;
443 } else if (instList.front()->isCompleted()) {
444 unverifiedInst = NULL;
445 unverifiedInst = instList.front();
446 instList.pop_front();
447 } else {
448 break;
449 }
450 }
451 unverifiedInst = NULL;
452 }
453
454 template <class Impl>
455 void
456 Checker<Impl>::switchOut()
457 {
458 instList.clear();
459 }
460
461 template <class Impl>
462 void
463 Checker<Impl>::takeOverFrom(BaseCPU *oldCPU)
464 {
465 }
466
467 template <class Impl>
468 void
469 Checker<Impl>::validateInst(DynInstPtr &inst)
470 {
471 if (inst->instAddr() != thread->instAddr()) {
472 warn("%lli: PCs do not match! Inst: %s, checker: %s",
473 curTick(), inst->pcState(), thread->pcState());
474 if (changedPC) {
475 warn("%lli: Changed PCs recently, may not be an error",
476 curTick());
477 } else {
478 handleError(inst);
479 }
480 }
481
482
483 MachInst mi;
484 #if THE_ISA != X86_ISA
485 mi = static_cast<MachInst>(inst->staticInst->machInst);
486 #endif
487
488 if (mi != machInst) {
489 panic("%lli: Binary instructions do not match! Inst: %#x, "
490 "checker: %#x",
491 curTick(), mi, machInst);
492 handleError(inst);
493 }
494 }
495
496 template <class Impl>
497 void
498 Checker<Impl>::validateExecution(DynInstPtr &inst)
499 {
500 uint64_t checker_val;
501 uint64_t inst_val;
502 int idx = -1;
503 bool result_mismatch = false;
504
505 if (inst->isUnverifiable()) {
506 // Unverifiable instructions assume they were executed
507 // properly by the CPU. Grab the result from the
508 // instruction and write it to the register.
509 copyResult(inst, 0, idx);
510 } else if (inst->numDestRegs() > 0 && !result.empty()) {
511 DPRINTF(Checker, "Dest regs %d, number of checker dest regs %d\n",
512 inst->numDestRegs(), result.size());
513 for (int i = 0; i < inst->numDestRegs() && !result.empty(); i++) {
514 result.front().get(checker_val);
515 result.pop();
516 inst_val = 0;
517 inst->template popResult<uint64_t>(inst_val);
518 if (checker_val != inst_val) {
519 result_mismatch = true;
520 idx = i;
521 break;
522 }
523 }
524 } // Checker CPU checks all the saved results in the dyninst passed by
525 // the cpu model being checked against the saved results present in
526 // the static inst executed in the Checker. Sometimes the number
527 // of saved results differs between the dyninst and static inst, but
528 // this is ok and not a bug. May be worthwhile to try and correct this.
529
530 if (result_mismatch) {
531 warn("%lli: Instruction results do not match! (Values may not "
532 "actually be integers) Inst: %#x, checker: %#x",
533 curTick(), inst_val, checker_val);
534
535 // It's useful to verify load values from memory, but in MP
536 // systems the value obtained at execute may be different than
537 // the value obtained at completion. Similarly DMA can
538 // present the same problem on even UP systems. Thus there is
539 // the option to only warn on loads having a result error.
540 // The load/store queue in Detailed CPU can also cause problems
541 // if load/store forwarding is allowed.
542 if (inst->isLoad() && warnOnlyOnLoadError) {
543 copyResult(inst, inst_val, idx);
544 } else {
545 handleError(inst);
546 }
547 }
548
549 if (inst->nextInstAddr() != thread->nextInstAddr()) {
550 warn("%lli: Instruction next PCs do not match! Inst: %#x, "
551 "checker: %#x",
552 curTick(), inst->nextInstAddr(), thread->nextInstAddr());
553 handleError(inst);
554 }
555
556 // Checking side effect registers can be difficult if they are not
557 // checked simultaneously with the execution of the instruction.
558 // This is because other valid instructions may have modified
559 // these registers in the meantime, and their values are not
560 // stored within the DynInst.
561 while (!miscRegIdxs.empty()) {
562 int misc_reg_idx = miscRegIdxs.front();
563 miscRegIdxs.pop();
564
565 if (inst->tcBase()->readMiscRegNoEffect(misc_reg_idx) !=
566 thread->readMiscRegNoEffect(misc_reg_idx)) {
567 warn("%lli: Misc reg idx %i (side effect) does not match! "
568 "Inst: %#x, checker: %#x",
569 curTick(), misc_reg_idx,
570 inst->tcBase()->readMiscRegNoEffect(misc_reg_idx),
571 thread->readMiscRegNoEffect(misc_reg_idx));
572 handleError(inst);
573 }
574 }
575 }
576
577
578 // This function is weird, if it is called it means the Checker and
579 // O3 have diverged, so panic is called for now. It may be useful
580 // to resynch states and continue if the divergence is a false positive
581 template <class Impl>
582 void
583 Checker<Impl>::validateState()
584 {
585 if (updateThisCycle) {
586 // Change this back to warn if divergences end up being false positives
587 panic("%lli: Instruction PC %#x results didn't match up, copying all "
588 "registers from main CPU", curTick(), unverifiedInst->instAddr());
589
590 // Terribly convoluted way to make sure O3 model does not implode
591 bool inSyscall = unverifiedInst->thread->inSyscall;
592 unverifiedInst->thread->inSyscall = true;
593
594 // Heavy-weight copying of all registers
595 thread->copyArchRegs(unverifiedInst->tcBase());
596 unverifiedInst->thread->inSyscall = inSyscall;
597
598 // Set curStaticInst to unverifiedInst->staticInst
599 curStaticInst = unverifiedInst->staticInst;
600 // Also advance the PC. Hopefully no PC-based events happened.
601 advancePC(NoFault);
602 updateThisCycle = false;
603 }
604 }
605
606 template <class Impl>
607 void
608 Checker<Impl>::copyResult(DynInstPtr &inst, uint64_t mismatch_val,
609 int start_idx)
610 {
611 // We've already popped one dest off the queue,
612 // so do the fix-up then start with the next dest reg;
613 if (start_idx >= 0) {
614 RegIndex idx = inst->destRegIdx(start_idx);
615 if (idx < TheISA::FP_Base_DepTag) {
616 thread->setIntReg(idx, mismatch_val);
617 } else if (idx < TheISA::Ctrl_Base_DepTag) {
618 thread->setFloatRegBits(idx, mismatch_val);
619 } else if (idx < TheISA::Max_DepTag) {
620 thread->setMiscReg(idx - TheISA::Ctrl_Base_DepTag,
621 mismatch_val);
622 }
623 }
624 start_idx++;
625 uint64_t res = 0;
626 for (int i = start_idx; i < inst->numDestRegs(); i++) {
627 RegIndex idx = inst->destRegIdx(i);
628 inst->template popResult<uint64_t>(res);
629 if (idx < TheISA::FP_Base_DepTag) {
630 thread->setIntReg(idx, res);
631 } else if (idx < TheISA::Ctrl_Base_DepTag) {
632 thread->setFloatRegBits(idx, res);
633 } else if (idx < TheISA::Max_DepTag) {
634 // Try to get the proper misc register index for ARM here...
635 thread->setMiscReg(idx - TheISA::Ctrl_Base_DepTag, res);
636 } // else Register is out of range...
637 }
638 }
639
640 template <class Impl>
641 void
642 Checker<Impl>::dumpAndExit(DynInstPtr &inst)
643 {
644 cprintf("Error detected, instruction information:\n");
645 cprintf("PC:%s, nextPC:%#x\n[sn:%lli]\n[tid:%i]\n"
646 "Completed:%i\n",
647 inst->pcState(),
648 inst->nextInstAddr(),
649 inst->seqNum,
650 inst->threadNumber,
651 inst->isCompleted());
652 inst->dump();
653 CheckerCPU::dumpAndExit();
654 }
655
656 template <class Impl>
657 void
658 Checker<Impl>::dumpInsts()
659 {
660 int num = 0;
661
662 InstListIt inst_list_it = --(instList.end());
663
664 cprintf("Inst list size: %i\n", instList.size());
665
666 while (inst_list_it != instList.end())
667 {
668 cprintf("Instruction:%i\n",
669 num);
670
671 cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n"
672 "Completed:%i\n",
673 (*inst_list_it)->pcState(),
674 (*inst_list_it)->seqNum,
675 (*inst_list_it)->threadNumber,
676 (*inst_list_it)->isCompleted());
677
678 cprintf("\n");
679
680 inst_list_it--;
681 ++num;
682 }
683
684 }