arch: cpu: Rename *FloatRegBits* to *FloatReg*.
[gem5.git] / src / cpu / checker / cpu_impl.hh
1 /*
2 * Copyright (c) 2011, 2016 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Geoffrey Blake
43 */
44
45 #ifndef __CPU_CHECKER_CPU_IMPL_HH__
46 #define __CPU_CHECKER_CPU_IMPL_HH__
47
48 #include <list>
49 #include <string>
50
51 #include "arch/isa_traits.hh"
52 #include "arch/vtophys.hh"
53 #include "base/refcnt.hh"
54 #include "config/the_isa.hh"
55 #include "cpu/base_dyn_inst.hh"
56 #include "cpu/exetrace.hh"
57 #include "cpu/reg_class.hh"
58 #include "cpu/simple_thread.hh"
59 #include "cpu/static_inst.hh"
60 #include "cpu/thread_context.hh"
61 #include "cpu/checker/cpu.hh"
62 #include "debug/Checker.hh"
63 #include "sim/full_system.hh"
64 #include "sim/sim_object.hh"
65 #include "sim/stats.hh"
66
67 using namespace std;
68 using namespace TheISA;
69
70 template <class Impl>
71 void
72 Checker<Impl>::advancePC(const Fault &fault)
73 {
74 if (fault != NoFault) {
75 curMacroStaticInst = StaticInst::nullStaticInstPtr;
76 fault->invoke(tc, curStaticInst);
77 thread->decoder.reset();
78 } else {
79 if (curStaticInst) {
80 if (curStaticInst->isLastMicroop())
81 curMacroStaticInst = StaticInst::nullStaticInstPtr;
82 TheISA::PCState pcState = thread->pcState();
83 TheISA::advancePC(pcState, curStaticInst);
84 thread->pcState(pcState);
85 DPRINTF(Checker, "Advancing PC to %s.\n", thread->pcState());
86 }
87 }
88 }
89 //////////////////////////////////////////////////
90
91 template <class Impl>
92 void
93 Checker<Impl>::handlePendingInt()
94 {
95 DPRINTF(Checker, "IRQ detected at PC: %s with %d insts in buffer\n",
96 thread->pcState(), instList.size());
97 DynInstPtr boundaryInst = NULL;
98 if (!instList.empty()) {
99 // Set the instructions as completed and verify as much as possible.
100 DynInstPtr inst;
101 typename std::list<DynInstPtr>::iterator itr;
102
103 for (itr = instList.begin(); itr != instList.end(); itr++) {
104 (*itr)->setCompleted();
105 }
106
107 inst = instList.front();
108 boundaryInst = instList.back();
109 verify(inst); // verify the instructions
110 inst = NULL;
111 }
112 if ((!boundaryInst && curMacroStaticInst &&
113 curStaticInst->isDelayedCommit() &&
114 !curStaticInst->isLastMicroop()) ||
115 (boundaryInst && boundaryInst->isDelayedCommit() &&
116 !boundaryInst->isLastMicroop())) {
117 panic("%lli: Trying to take an interrupt in middle of "
118 "a non-interuptable instruction!", curTick());
119 }
120 boundaryInst = NULL;
121 thread->decoder.reset();
122 curMacroStaticInst = StaticInst::nullStaticInstPtr;
123 }
124
125 template <class Impl>
126 void
127 Checker<Impl>::verify(const DynInstPtr &completed_inst)
128 {
129 DynInstPtr inst;
130
131 // Make sure serializing instructions are actually
132 // seen as serializing to commit. instList should be
133 // empty in these cases.
134 if ((completed_inst->isSerializing() ||
135 completed_inst->isSerializeBefore()) &&
136 (!instList.empty() ?
137 (instList.front()->seqNum != completed_inst->seqNum) : 0)) {
138 panic("%lli: Instruction sn:%lli at PC %s is serializing before but is"
139 " entering instList with other instructions\n", curTick(),
140 completed_inst->seqNum, completed_inst->pcState());
141 }
142
143 // Either check this instruction, or add it to a list of
144 // instructions waiting to be checked. Instructions must be
145 // checked in program order, so if a store has committed yet not
146 // completed, there may be some instructions that are waiting
147 // behind it that have completed and must be checked.
148 if (!instList.empty()) {
149 if (youngestSN < completed_inst->seqNum) {
150 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
151 completed_inst->seqNum, completed_inst->pcState());
152 instList.push_back(completed_inst);
153 youngestSN = completed_inst->seqNum;
154 }
155
156 if (!instList.front()->isCompleted()) {
157 return;
158 } else {
159 inst = instList.front();
160 instList.pop_front();
161 }
162 } else {
163 if (!completed_inst->isCompleted()) {
164 if (youngestSN < completed_inst->seqNum) {
165 DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
166 completed_inst->seqNum, completed_inst->pcState());
167 instList.push_back(completed_inst);
168 youngestSN = completed_inst->seqNum;
169 }
170 return;
171 } else {
172 if (youngestSN < completed_inst->seqNum) {
173 inst = completed_inst;
174 youngestSN = completed_inst->seqNum;
175 } else {
176 return;
177 }
178 }
179 }
180
181 // Make sure a serializing instruction is actually seen as
182 // serializing. instList should be empty here
183 if (inst->isSerializeAfter() && !instList.empty()) {
184 panic("%lli: Instruction sn:%lli at PC %s is serializing after but is"
185 " exiting instList with other instructions\n", curTick(),
186 completed_inst->seqNum, completed_inst->pcState());
187 }
188 unverifiedInst = inst;
189 inst = NULL;
190
191 // Try to check all instructions that are completed, ending if we
192 // run out of instructions to check or if an instruction is not
193 // yet completed.
194 while (1) {
195 DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%s.\n",
196 unverifiedInst->seqNum, unverifiedInst->pcState());
197 unverifiedReq = NULL;
198 unverifiedReq = unverifiedInst->reqToVerify;
199 unverifiedMemData = unverifiedInst->memData;
200 // Make sure results queue is empty
201 while (!result.empty()) {
202 result.pop();
203 }
204 numCycles++;
205
206 Fault fault = NoFault;
207
208 // maintain $r0 semantics
209 thread->setIntReg(ZeroReg, 0);
210 #if THE_ISA == ALPHA_ISA
211 thread->setFloatReg(ZeroReg, 0);
212 #endif
213
214 // Check if any recent PC changes match up with anything we
215 // expect to happen. This is mostly to check if traps or
216 // PC-based events have occurred in both the checker and CPU.
217 if (changedPC) {
218 DPRINTF(Checker, "Changed PC recently to %s\n",
219 thread->pcState());
220 if (willChangePC) {
221 if (newPCState == thread->pcState()) {
222 DPRINTF(Checker, "Changed PC matches expected PC\n");
223 } else {
224 warn("%lli: Changed PC does not match expected PC, "
225 "changed: %s, expected: %s",
226 curTick(), thread->pcState(), newPCState);
227 CheckerCPU::handleError();
228 }
229 willChangePC = false;
230 }
231 changedPC = false;
232 }
233
234 // Try to fetch the instruction
235 uint64_t fetchOffset = 0;
236 bool fetchDone = false;
237
238 while (!fetchDone) {
239 Addr fetch_PC = thread->instAddr();
240 fetch_PC = (fetch_PC & PCMask) + fetchOffset;
241
242 MachInst machInst;
243
244 // If not in the middle of a macro instruction
245 if (!curMacroStaticInst) {
246 // set up memory request for instruction fetch
247 auto mem_req = std::make_shared<Request>(
248 unverifiedInst->threadNumber, fetch_PC,
249 sizeof(MachInst), 0, masterId, fetch_PC,
250 thread->contextId());
251
252 mem_req->setVirt(0, fetch_PC, sizeof(MachInst),
253 Request::INST_FETCH, masterId,
254 thread->instAddr());
255
256 fault = itb->translateFunctional(
257 mem_req, tc, BaseTLB::Execute);
258
259 if (fault != NoFault) {
260 if (unverifiedInst->getFault() == NoFault) {
261 // In this case the instruction was not a dummy
262 // instruction carrying an ITB fault. In the single
263 // threaded case the ITB should still be able to
264 // translate this instruction; in the SMT case it's
265 // possible that its ITB entry was kicked out.
266 warn("%lli: Instruction PC %s was not found in the "
267 "ITB!", curTick(), thread->pcState());
268 handleError(unverifiedInst);
269
270 // go to the next instruction
271 advancePC(NoFault);
272
273 // Give up on an ITB fault..
274 unverifiedInst = NULL;
275 return;
276 } else {
277 // The instruction is carrying an ITB fault. Handle
278 // the fault and see if our results match the CPU on
279 // the next tick().
280 fault = unverifiedInst->getFault();
281 break;
282 }
283 } else {
284 PacketPtr pkt = new Packet(mem_req, MemCmd::ReadReq);
285
286 pkt->dataStatic(&machInst);
287 icachePort->sendFunctional(pkt);
288 machInst = gtoh(machInst);
289
290 delete pkt;
291 }
292 }
293
294 if (fault == NoFault) {
295 TheISA::PCState pcState = thread->pcState();
296
297 if (isRomMicroPC(pcState.microPC())) {
298 fetchDone = true;
299 curStaticInst =
300 microcodeRom.fetchMicroop(pcState.microPC(), NULL);
301 } else if (!curMacroStaticInst) {
302 //We're not in the middle of a macro instruction
303 StaticInstPtr instPtr = nullptr;
304
305 //Predecode, ie bundle up an ExtMachInst
306 //If more fetch data is needed, pass it in.
307 Addr fetchPC = (pcState.instAddr() & PCMask) + fetchOffset;
308 thread->decoder.moreBytes(pcState, fetchPC, machInst);
309
310 //If an instruction is ready, decode it.
311 //Otherwise, we'll have to fetch beyond the
312 //MachInst at the current pc.
313 if (thread->decoder.instReady()) {
314 fetchDone = true;
315 instPtr = thread->decoder.decode(pcState);
316 thread->pcState(pcState);
317 } else {
318 fetchDone = false;
319 fetchOffset += sizeof(TheISA::MachInst);
320 }
321
322 //If we decoded an instruction and it's microcoded,
323 //start pulling out micro ops
324 if (instPtr && instPtr->isMacroop()) {
325 curMacroStaticInst = instPtr;
326 curStaticInst =
327 instPtr->fetchMicroop(pcState.microPC());
328 } else {
329 curStaticInst = instPtr;
330 }
331 } else {
332 // Read the next micro op from the macro-op
333 curStaticInst =
334 curMacroStaticInst->fetchMicroop(pcState.microPC());
335 fetchDone = true;
336 }
337 }
338 }
339 // reset decoder on Checker
340 thread->decoder.reset();
341
342 // Check Checker and CPU get same instruction, and record
343 // any faults the CPU may have had.
344 Fault unverifiedFault;
345 if (fault == NoFault) {
346 unverifiedFault = unverifiedInst->getFault();
347
348 // Checks that the instruction matches what we expected it to be.
349 // Checks both the machine instruction and the PC.
350 validateInst(unverifiedInst);
351 }
352
353 // keep an instruction count
354 numInst++;
355
356
357 // Either the instruction was a fault and we should process the fault,
358 // or we should just go ahead execute the instruction. This assumes
359 // that the instruction is properly marked as a fault.
360 if (fault == NoFault) {
361 // Execute Checker instruction and trace
362 if (!unverifiedInst->isUnverifiable()) {
363 Trace::InstRecord *traceData = tracer->getInstRecord(curTick(),
364 tc,
365 curStaticInst,
366 pcState(),
367 curMacroStaticInst);
368 fault = curStaticInst->execute(this, traceData);
369 if (traceData) {
370 traceData->dump();
371 delete traceData;
372 }
373 }
374
375 if (fault == NoFault && unverifiedFault == NoFault) {
376 thread->funcExeInst++;
377 // Checks to make sure instrution results are correct.
378 validateExecution(unverifiedInst);
379
380 if (curStaticInst->isLoad()) {
381 ++numLoad;
382 }
383 } else if (fault != NoFault && unverifiedFault == NoFault) {
384 panic("%lli: sn: %lli at PC: %s took a fault in checker "
385 "but not in driver CPU\n", curTick(),
386 unverifiedInst->seqNum, unverifiedInst->pcState());
387 } else if (fault == NoFault && unverifiedFault != NoFault) {
388 panic("%lli: sn: %lli at PC: %s took a fault in driver "
389 "CPU but not in checker\n", curTick(),
390 unverifiedInst->seqNum, unverifiedInst->pcState());
391 }
392 }
393
394 // Take any faults here
395 if (fault != NoFault) {
396 if (FullSystem) {
397 fault->invoke(tc, curStaticInst);
398 willChangePC = true;
399 newPCState = thread->pcState();
400 DPRINTF(Checker, "Fault, PC is now %s\n", newPCState);
401 curMacroStaticInst = StaticInst::nullStaticInstPtr;
402 }
403 } else {
404 advancePC(fault);
405 }
406
407 if (FullSystem) {
408 // @todo: Determine if these should happen only if the
409 // instruction hasn't faulted. In the SimpleCPU case this may
410 // not be true, but in the O3 case this may be true.
411 Addr oldpc;
412 int count = 0;
413 do {
414 oldpc = thread->instAddr();
415 system->pcEventQueue.service(tc);
416 count++;
417 } while (oldpc != thread->instAddr());
418 if (count > 1) {
419 willChangePC = true;
420 newPCState = thread->pcState();
421 DPRINTF(Checker, "PC Event, PC is now %s\n", newPCState);
422 }
423 }
424
425 // @todo: Optionally can check all registers. (Or just those
426 // that have been modified).
427 validateState();
428
429 // Continue verifying instructions if there's another completed
430 // instruction waiting to be verified.
431 if (instList.empty()) {
432 break;
433 } else if (instList.front()->isCompleted()) {
434 unverifiedInst = NULL;
435 unverifiedInst = instList.front();
436 instList.pop_front();
437 } else {
438 break;
439 }
440 }
441 unverifiedInst = NULL;
442 }
443
444 template <class Impl>
445 void
446 Checker<Impl>::switchOut()
447 {
448 instList.clear();
449 }
450
451 template <class Impl>
452 void
453 Checker<Impl>::takeOverFrom(BaseCPU *oldCPU)
454 {
455 }
456
457 template <class Impl>
458 void
459 Checker<Impl>::validateInst(const DynInstPtr &inst)
460 {
461 if (inst->instAddr() != thread->instAddr()) {
462 warn("%lli: PCs do not match! Inst: %s, checker: %s",
463 curTick(), inst->pcState(), thread->pcState());
464 if (changedPC) {
465 warn("%lli: Changed PCs recently, may not be an error",
466 curTick());
467 } else {
468 handleError(inst);
469 }
470 }
471
472 if (curStaticInst != inst->staticInst) {
473 warn("%lli: StaticInstPtrs don't match. (%s, %s).\n", curTick(),
474 curStaticInst->getName(), inst->staticInst->getName());
475 }
476 }
477
478 template <class Impl>
479 void
480 Checker<Impl>::validateExecution(const DynInstPtr &inst)
481 {
482 InstResult checker_val;
483 InstResult inst_val;
484 int idx = -1;
485 bool result_mismatch = false;
486 bool scalar_mismatch = false;
487 bool vector_mismatch = false;
488
489 if (inst->isUnverifiable()) {
490 // Unverifiable instructions assume they were executed
491 // properly by the CPU. Grab the result from the
492 // instruction and write it to the register.
493 copyResult(inst, InstResult(0ul, InstResult::ResultType::Scalar), idx);
494 } else if (inst->numDestRegs() > 0 && !result.empty()) {
495 DPRINTF(Checker, "Dest regs %d, number of checker dest regs %d\n",
496 inst->numDestRegs(), result.size());
497 for (int i = 0; i < inst->numDestRegs() && !result.empty(); i++) {
498 checker_val = result.front();
499 result.pop();
500 inst_val = inst->popResult(
501 InstResult(0ul, InstResult::ResultType::Scalar));
502 if (checker_val != inst_val) {
503 result_mismatch = true;
504 idx = i;
505 scalar_mismatch = checker_val.isScalar();
506 vector_mismatch = checker_val.isVector();
507 panic_if(!(scalar_mismatch || vector_mismatch),
508 "Unknown type of result\n");
509 }
510 }
511 } // Checker CPU checks all the saved results in the dyninst passed by
512 // the cpu model being checked against the saved results present in
513 // the static inst executed in the Checker. Sometimes the number
514 // of saved results differs between the dyninst and static inst, but
515 // this is ok and not a bug. May be worthwhile to try and correct this.
516
517 if (result_mismatch) {
518 if (scalar_mismatch) {
519 warn("%lli: Instruction results (%i) do not match! (Values may"
520 " not actually be integers) Inst: %#x, checker: %#x",
521 curTick(), idx, inst_val.asIntegerNoAssert(),
522 checker_val.asInteger());
523 }
524
525 // It's useful to verify load values from memory, but in MP
526 // systems the value obtained at execute may be different than
527 // the value obtained at completion. Similarly DMA can
528 // present the same problem on even UP systems. Thus there is
529 // the option to only warn on loads having a result error.
530 // The load/store queue in Detailed CPU can also cause problems
531 // if load/store forwarding is allowed.
532 if (inst->isLoad() && warnOnlyOnLoadError) {
533 copyResult(inst, inst_val, idx);
534 } else {
535 handleError(inst);
536 }
537 }
538
539 if (inst->nextInstAddr() != thread->nextInstAddr()) {
540 warn("%lli: Instruction next PCs do not match! Inst: %#x, "
541 "checker: %#x",
542 curTick(), inst->nextInstAddr(), thread->nextInstAddr());
543 handleError(inst);
544 }
545
546 // Checking side effect registers can be difficult if they are not
547 // checked simultaneously with the execution of the instruction.
548 // This is because other valid instructions may have modified
549 // these registers in the meantime, and their values are not
550 // stored within the DynInst.
551 while (!miscRegIdxs.empty()) {
552 int misc_reg_idx = miscRegIdxs.front();
553 miscRegIdxs.pop();
554
555 if (inst->tcBase()->readMiscRegNoEffect(misc_reg_idx) !=
556 thread->readMiscRegNoEffect(misc_reg_idx)) {
557 warn("%lli: Misc reg idx %i (side effect) does not match! "
558 "Inst: %#x, checker: %#x",
559 curTick(), misc_reg_idx,
560 inst->tcBase()->readMiscRegNoEffect(misc_reg_idx),
561 thread->readMiscRegNoEffect(misc_reg_idx));
562 handleError(inst);
563 }
564 }
565 }
566
567
568 // This function is weird, if it is called it means the Checker and
569 // O3 have diverged, so panic is called for now. It may be useful
570 // to resynch states and continue if the divergence is a false positive
571 template <class Impl>
572 void
573 Checker<Impl>::validateState()
574 {
575 if (updateThisCycle) {
576 // Change this back to warn if divergences end up being false positives
577 panic("%lli: Instruction PC %#x results didn't match up, copying all "
578 "registers from main CPU", curTick(), unverifiedInst->instAddr());
579
580 // Terribly convoluted way to make sure O3 model does not implode
581 bool no_squash_from_TC = unverifiedInst->thread->noSquashFromTC;
582 unverifiedInst->thread->noSquashFromTC = true;
583
584 // Heavy-weight copying of all registers
585 thread->copyArchRegs(unverifiedInst->tcBase());
586 unverifiedInst->thread->noSquashFromTC = no_squash_from_TC;
587
588 // Set curStaticInst to unverifiedInst->staticInst
589 curStaticInst = unverifiedInst->staticInst;
590 // Also advance the PC. Hopefully no PC-based events happened.
591 advancePC(NoFault);
592 updateThisCycle = false;
593 }
594 }
595
596 template <class Impl>
597 void
598 Checker<Impl>::copyResult(const DynInstPtr &inst,
599 const InstResult& mismatch_val, int start_idx)
600 {
601 // We've already popped one dest off the queue,
602 // so do the fix-up then start with the next dest reg;
603 if (start_idx >= 0) {
604 const RegId& idx = inst->destRegIdx(start_idx);
605 switch (idx.classValue()) {
606 case IntRegClass:
607 panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
608 thread->setIntReg(idx.index(), mismatch_val.asInteger());
609 break;
610 case FloatRegClass:
611 panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
612 thread->setFloatReg(idx.index(), mismatch_val.asInteger());
613 break;
614 case VecRegClass:
615 panic_if(!mismatch_val.isVector(), "Unexpected type of result");
616 thread->setVecReg(idx, mismatch_val.asVector());
617 break;
618 case VecElemClass:
619 panic_if(!mismatch_val.isVecElem(),
620 "Unexpected type of result");
621 thread->setVecElem(idx, mismatch_val.asVectorElem());
622 break;
623 case CCRegClass:
624 panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
625 thread->setCCReg(idx.index(), mismatch_val.asInteger());
626 break;
627 case MiscRegClass:
628 panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
629 thread->setMiscReg(idx.index(), mismatch_val.asInteger());
630 break;
631 default:
632 panic("Unknown register class: %d", (int)idx.classValue());
633 }
634 }
635 start_idx++;
636 InstResult res;
637 for (int i = start_idx; i < inst->numDestRegs(); i++) {
638 const RegId& idx = inst->destRegIdx(i);
639 res = inst->popResult();
640 switch (idx.classValue()) {
641 case IntRegClass:
642 panic_if(!res.isScalar(), "Unexpected type of result");
643 thread->setIntReg(idx.index(), res.asInteger());
644 break;
645 case FloatRegClass:
646 panic_if(!res.isScalar(), "Unexpected type of result");
647 thread->setFloatReg(idx.index(), res.asInteger());
648 break;
649 case VecRegClass:
650 panic_if(!res.isVector(), "Unexpected type of result");
651 thread->setVecReg(idx, res.asVector());
652 break;
653 case VecElemClass:
654 panic_if(!res.isVecElem(), "Unexpected type of result");
655 thread->setVecElem(idx, res.asVectorElem());
656 break;
657 case CCRegClass:
658 panic_if(!res.isScalar(), "Unexpected type of result");
659 thread->setCCReg(idx.index(), res.asInteger());
660 break;
661 case MiscRegClass:
662 panic_if(res.isValid(), "MiscReg expecting invalid result");
663 // Try to get the proper misc register index for ARM here...
664 thread->setMiscReg(idx.index(), 0);
665 break;
666 // else Register is out of range...
667 default:
668 panic("Unknown register class: %d", (int)idx.classValue());
669 }
670 }
671 }
672
673 template <class Impl>
674 void
675 Checker<Impl>::dumpAndExit(const DynInstPtr &inst)
676 {
677 cprintf("Error detected, instruction information:\n");
678 cprintf("PC:%s, nextPC:%#x\n[sn:%lli]\n[tid:%i]\n"
679 "Completed:%i\n",
680 inst->pcState(),
681 inst->nextInstAddr(),
682 inst->seqNum,
683 inst->threadNumber,
684 inst->isCompleted());
685 inst->dump();
686 CheckerCPU::dumpAndExit();
687 }
688
689 template <class Impl>
690 void
691 Checker<Impl>::dumpInsts()
692 {
693 int num = 0;
694
695 InstListIt inst_list_it = --(instList.end());
696
697 cprintf("Inst list size: %i\n", instList.size());
698
699 while (inst_list_it != instList.end())
700 {
701 cprintf("Instruction:%i\n",
702 num);
703
704 cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n"
705 "Completed:%i\n",
706 (*inst_list_it)->pcState(),
707 (*inst_list_it)->seqNum,
708 (*inst_list_it)->threadNumber,
709 (*inst_list_it)->isCompleted());
710
711 cprintf("\n");
712
713 inst_list_it--;
714 ++num;
715 }
716
717 }
718
719 #endif//__CPU_CHECKER_CPU_IMPL_HH__