3582e55cab402b657e60efa485a505435c86a5f3
[gem5.git] / src / cpu / inorder / cpu.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007 MIPS Technologies, Inc.
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Korey Sewell
41 *
42 */
43
44 #include <algorithm>
45
46 #include "arch/utility.hh"
47 #include "base/bigint.hh"
48 #include "config/the_isa.hh"
49 #include "cpu/inorder/resources/cache_unit.hh"
50 #include "cpu/inorder/resources/resource_list.hh"
51 #include "cpu/inorder/cpu.hh"
52 #include "cpu/inorder/first_stage.hh"
53 #include "cpu/inorder/inorder_dyn_inst.hh"
54 #include "cpu/inorder/pipeline_traits.hh"
55 #include "cpu/inorder/resource_pool.hh"
56 #include "cpu/inorder/thread_context.hh"
57 #include "cpu/inorder/thread_state.hh"
58 #include "cpu/activity.hh"
59 #include "cpu/base.hh"
60 #include "cpu/exetrace.hh"
61 #include "cpu/quiesce_event.hh"
62 #include "cpu/simple_thread.hh"
63 #include "cpu/thread_context.hh"
64 #include "debug/Activity.hh"
65 #include "debug/InOrderCPU.hh"
66 #include "debug/InOrderCachePort.hh"
67 #include "debug/Interrupt.hh"
68 #include "debug/Quiesce.hh"
69 #include "debug/RefCount.hh"
70 #include "debug/SkedCache.hh"
71 #include "params/InOrderCPU.hh"
72 #include "sim/full_system.hh"
73 #include "sim/process.hh"
74 #include "sim/stat_control.hh"
75 #include "sim/system.hh"
76
77 #if THE_ISA == ALPHA_ISA
78 #include "arch/alpha/osfpal.hh"
79 #endif
80
81 using namespace std;
82 using namespace TheISA;
83 using namespace ThePipeline;
84
85 InOrderCPU::CachePort::CachePort(CacheUnit *_cacheUnit,
86 const std::string& name) :
87 CpuPort(_cacheUnit->name() + name, _cacheUnit->cpu),
88 cacheUnit(_cacheUnit)
89 { }
90
91 bool
92 InOrderCPU::CachePort::recvTimingResp(Packet *pkt)
93 {
94 if (pkt->isError())
95 DPRINTF(InOrderCachePort, "Got error packet back for address: %x\n",
96 pkt->getAddr());
97 else
98 cacheUnit->processCacheCompletion(pkt);
99
100 return true;
101 }
102
103 void
104 InOrderCPU::CachePort::recvRetry()
105 {
106 cacheUnit->recvRetry();
107 }
108
109 InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
110 : Event(CPU_Tick_Pri), cpu(c)
111 { }
112
113
114 void
115 InOrderCPU::TickEvent::process()
116 {
117 cpu->tick();
118 }
119
120
121 const char *
122 InOrderCPU::TickEvent::description() const
123 {
124 return "InOrderCPU tick event";
125 }
126
127 InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
128 Fault fault, ThreadID _tid, DynInstPtr inst,
129 CPUEventPri event_pri)
130 : Event(event_pri), cpu(_cpu)
131 {
132 setEvent(e_type, fault, _tid, inst);
133 }
134
135
136 std::string InOrderCPU::eventNames[NumCPUEvents] =
137 {
138 "ActivateThread",
139 "ActivateNextReadyThread",
140 "DeactivateThread",
141 "HaltThread",
142 "SuspendThread",
143 "Trap",
144 "Syscall",
145 "SquashFromMemStall",
146 "UpdatePCs"
147 };
148
149 void
150 InOrderCPU::CPUEvent::process()
151 {
152 switch (cpuEventType)
153 {
154 case ActivateThread:
155 cpu->activateThread(tid);
156 cpu->resPool->activateThread(tid);
157 break;
158
159 case ActivateNextReadyThread:
160 cpu->activateNextReadyThread();
161 break;
162
163 case DeactivateThread:
164 cpu->deactivateThread(tid);
165 cpu->resPool->deactivateThread(tid);
166 break;
167
168 case HaltThread:
169 cpu->haltThread(tid);
170 cpu->resPool->deactivateThread(tid);
171 break;
172
173 case SuspendThread:
174 cpu->suspendThread(tid);
175 cpu->resPool->suspendThread(tid);
176 break;
177
178 case SquashFromMemStall:
179 cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
180 cpu->resPool->squashDueToMemStall(inst, inst->squashingStage,
181 inst->seqNum, tid);
182 break;
183
184 case Trap:
185 DPRINTF(InOrderCPU, "Trapping CPU\n");
186 cpu->trap(fault, tid, inst);
187 cpu->resPool->trap(fault, tid, inst);
188 cpu->trapPending[tid] = false;
189 break;
190
191 case Syscall:
192 cpu->syscall(inst->syscallNum, tid);
193 cpu->resPool->trap(fault, tid, inst);
194 break;
195
196 default:
197 fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
198 }
199
200 cpu->cpuEventRemoveList.push(this);
201 }
202
203
204
205 const char *
206 InOrderCPU::CPUEvent::description() const
207 {
208 return "InOrderCPU event";
209 }
210
211 void
212 InOrderCPU::CPUEvent::scheduleEvent(Cycles delay)
213 {
214 assert(!scheduled() || squashed());
215 cpu->reschedule(this, cpu->clockEdge(delay), true);
216 }
217
218 void
219 InOrderCPU::CPUEvent::unscheduleEvent()
220 {
221 if (scheduled())
222 squash();
223 }
224
225 InOrderCPU::InOrderCPU(Params *params)
226 : BaseCPU(params),
227 cpu_id(params->cpu_id),
228 coreType("default"),
229 _status(Idle),
230 tickEvent(this),
231 stageWidth(params->stageWidth),
232 resPool(new ResourcePool(this, params)),
233 isa(numThreads, NULL),
234 timeBuffer(2 , 2),
235 dataPort(resPool->getDataUnit(), ".dcache_port"),
236 instPort(resPool->getInstUnit(), ".icache_port"),
237 removeInstsThisCycle(false),
238 activityRec(params->name, NumStages, 10, params->activity),
239 system(params->system),
240 #ifdef DEBUG
241 cpuEventNum(0),
242 resReqCount(0),
243 #endif // DEBUG
244 drainCount(0),
245 deferRegistration(false/*params->deferRegistration*/),
246 stageTracing(params->stageTracing),
247 lastRunningCycle(0),
248 instsPerSwitch(0)
249 {
250 cpu_params = params;
251
252 // Resize for Multithreading CPUs
253 thread.resize(numThreads);
254
255 ThreadID active_threads = params->workload.size();
256 if (FullSystem) {
257 active_threads = 1;
258 } else {
259 active_threads = params->workload.size();
260
261 if (active_threads > MaxThreads) {
262 panic("Workload Size too large. Increase the 'MaxThreads'"
263 "in your InOrder implementation or "
264 "edit your workload size.");
265 }
266
267
268 if (active_threads > 1) {
269 threadModel = (InOrderCPU::ThreadModel) params->threadModel;
270
271 if (threadModel == SMT) {
272 DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
273 } else if (threadModel == SwitchOnCacheMiss) {
274 DPRINTF(InOrderCPU, "Setting Thread Model to "
275 "Switch On Cache Miss\n");
276 }
277
278 } else {
279 threadModel = Single;
280 }
281 }
282
283 for (ThreadID tid = 0; tid < numThreads; ++tid) {
284 isa[tid] = params->isa[tid];
285 pc[tid].set(0);
286 lastCommittedPC[tid].set(0);
287
288 if (FullSystem) {
289 // SMT is not supported in FS mode yet.
290 assert(numThreads == 1);
291 thread[tid] = new Thread(this, 0, NULL);
292 } else {
293 if (tid < (ThreadID)params->workload.size()) {
294 DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
295 tid, params->workload[tid]->progName());
296 thread[tid] =
297 new Thread(this, tid, params->workload[tid]);
298 } else {
299 //Allocate Empty thread so M5 can use later
300 //when scheduling threads to CPU
301 Process* dummy_proc = params->workload[0];
302 thread[tid] = new Thread(this, tid, dummy_proc);
303 }
304
305 // Eventually set this with parameters...
306 asid[tid] = tid;
307 }
308
309 // Setup the TC that will serve as the interface to the threads/CPU.
310 InOrderThreadContext *tc = new InOrderThreadContext;
311 tc->cpu = this;
312 tc->thread = thread[tid];
313
314 // Setup quiesce event.
315 this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc);
316
317 // Give the thread the TC.
318 thread[tid]->tc = tc;
319 thread[tid]->setFuncExeInst(0);
320 globalSeqNum[tid] = 1;
321
322 // Add the TC to the CPU's list of TC's.
323 this->threadContexts.push_back(tc);
324 }
325
326 // Initialize TimeBuffer Stage Queues
327 for (int stNum=0; stNum < NumStages - 1; stNum++) {
328 stageQueue[stNum] = new StageQueue(NumStages, NumStages);
329 stageQueue[stNum]->id(stNum);
330 }
331
332
333 // Set Up Pipeline Stages
334 for (int stNum=0; stNum < NumStages; stNum++) {
335 if (stNum == 0)
336 pipelineStage[stNum] = new FirstStage(params, stNum);
337 else
338 pipelineStage[stNum] = new PipelineStage(params, stNum);
339
340 pipelineStage[stNum]->setCPU(this);
341 pipelineStage[stNum]->setActiveThreads(&activeThreads);
342 pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
343
344 // Take Care of 1st/Nth stages
345 if (stNum > 0)
346 pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
347 if (stNum < NumStages - 1)
348 pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
349 }
350
351 // Initialize thread specific variables
352 for (ThreadID tid = 0; tid < numThreads; tid++) {
353 archRegDepMap[tid].setCPU(this);
354
355 nonSpecInstActive[tid] = false;
356 nonSpecSeqNum[tid] = 0;
357
358 squashSeqNum[tid] = MaxAddr;
359 lastSquashCycle[tid] = 0;
360
361 memset(intRegs[tid], 0, sizeof(intRegs[tid]));
362 memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
363 isa[tid]->clear();
364
365 // Define dummy instructions and resource requests to be used.
366 dummyInst[tid] = new InOrderDynInst(this,
367 thread[tid],
368 0,
369 tid,
370 asid[tid]);
371
372 dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
373
374
375 if (FullSystem) {
376 // Use this dummy inst to force squashing behind every instruction
377 // in pipeline
378 dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0);
379 dummyTrapInst[tid]->seqNum = 0;
380 dummyTrapInst[tid]->squashSeqNum = 0;
381 dummyTrapInst[tid]->setTid(tid);
382 }
383
384 trapPending[tid] = false;
385
386 }
387
388 // InOrderCPU always requires an interrupt controller.
389 if (!params->defer_registration && !interrupts) {
390 fatal("InOrderCPU %s has no interrupt controller.\n"
391 "Ensure createInterruptController() is called.\n", name());
392 }
393
394 dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
395 dummyReqInst->setSquashed();
396 dummyReqInst->resetInstCount();
397
398 dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
399 dummyBufferInst->setSquashed();
400 dummyBufferInst->resetInstCount();
401
402 endOfSkedIt = skedCache.end();
403 frontEndSked = createFrontEndSked();
404 faultSked = createFaultSked();
405
406 lastRunningCycle = curCycle();
407
408 lockAddr = 0;
409 lockFlag = false;
410
411 // Schedule First Tick Event, CPU will reschedule itself from here on out.
412 scheduleTickEvent(Cycles(0));
413 }
414
415 InOrderCPU::~InOrderCPU()
416 {
417 delete resPool;
418
419 SkedCacheIt sked_it = skedCache.begin();
420 SkedCacheIt sked_end = skedCache.end();
421
422 while (sked_it != sked_end) {
423 delete (*sked_it).second;
424 sked_it++;
425 }
426 skedCache.clear();
427 }
428
429 m5::hash_map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
430
431 RSkedPtr
432 InOrderCPU::createFrontEndSked()
433 {
434 RSkedPtr res_sked = new ResourceSked();
435 int stage_num = 0;
436 StageScheduler F(res_sked, stage_num++);
437 StageScheduler D(res_sked, stage_num++);
438
439 // FETCH
440 F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
441 F.needs(ICache, FetchUnit::InitiateFetch);
442
443 // DECODE
444 D.needs(ICache, FetchUnit::CompleteFetch);
445 D.needs(Decode, DecodeUnit::DecodeInst);
446 D.needs(BPred, BranchPredictor::PredictBranch);
447 D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
448
449
450 DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n");
451
452 return res_sked;
453 }
454
455 RSkedPtr
456 InOrderCPU::createFaultSked()
457 {
458 RSkedPtr res_sked = new ResourceSked();
459 StageScheduler W(res_sked, NumStages - 1);
460 W.needs(Grad, GraduationUnit::CheckFault);
461 DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n");
462 return res_sked;
463 }
464
465 RSkedPtr
466 InOrderCPU::createBackEndSked(DynInstPtr inst)
467 {
468 RSkedPtr res_sked = lookupSked(inst);
469 if (res_sked != NULL) {
470 DPRINTF(SkedCache, "Found %s in sked cache.\n",
471 inst->instName());
472 return res_sked;
473 } else {
474 res_sked = new ResourceSked();
475 }
476
477 int stage_num = ThePipeline::BackEndStartStage;
478 StageScheduler X(res_sked, stage_num++);
479 StageScheduler M(res_sked, stage_num++);
480 StageScheduler W(res_sked, stage_num++);
481
482 if (!inst->staticInst) {
483 warn_once("Static Instruction Object Not Set. Can't Create"
484 " Back End Schedule");
485 return NULL;
486 }
487
488 // EXECUTE
489 X.needs(RegManager, UseDefUnit::MarkDestRegs);
490 for (int idx=0; idx < inst->numSrcRegs(); idx++) {
491 if (!idx || !inst->isStore()) {
492 X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
493 }
494 }
495
496 //@todo: schedule non-spec insts to operate on this cycle
497 // as long as all previous insts are done
498 if ( inst->isNonSpeculative() ) {
499 // skip execution of non speculative insts until later
500 } else if ( inst->isMemRef() ) {
501 if ( inst->isLoad() ) {
502 X.needs(AGEN, AGENUnit::GenerateAddr);
503 }
504 } else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
505 X.needs(MDU, MultDivUnit::StartMultDiv);
506 } else {
507 X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
508 }
509
510 // MEMORY
511 if (!inst->isNonSpeculative()) {
512 if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
513 M.needs(MDU, MultDivUnit::EndMultDiv);
514 }
515
516 if ( inst->isLoad() ) {
517 M.needs(DCache, CacheUnit::InitiateReadData);
518 if (inst->splitInst)
519 M.needs(DCache, CacheUnit::InitSecondSplitRead);
520 } else if ( inst->isStore() ) {
521 for (int i = 1; i < inst->numSrcRegs(); i++ ) {
522 M.needs(RegManager, UseDefUnit::ReadSrcReg, i);
523 }
524 M.needs(AGEN, AGENUnit::GenerateAddr);
525 M.needs(DCache, CacheUnit::InitiateWriteData);
526 if (inst->splitInst)
527 M.needs(DCache, CacheUnit::InitSecondSplitWrite);
528 }
529 }
530
531 // WRITEBACK
532 if (!inst->isNonSpeculative()) {
533 if ( inst->isLoad() ) {
534 W.needs(DCache, CacheUnit::CompleteReadData);
535 if (inst->splitInst)
536 W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
537 } else if ( inst->isStore() ) {
538 W.needs(DCache, CacheUnit::CompleteWriteData);
539 if (inst->splitInst)
540 W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
541 }
542 } else {
543 // Finally, Execute Speculative Data
544 if (inst->isMemRef()) {
545 if (inst->isLoad()) {
546 W.needs(AGEN, AGENUnit::GenerateAddr);
547 W.needs(DCache, CacheUnit::InitiateReadData);
548 if (inst->splitInst)
549 W.needs(DCache, CacheUnit::InitSecondSplitRead);
550 W.needs(DCache, CacheUnit::CompleteReadData);
551 if (inst->splitInst)
552 W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
553 } else if (inst->isStore()) {
554 if ( inst->numSrcRegs() >= 2 ) {
555 W.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
556 }
557 W.needs(AGEN, AGENUnit::GenerateAddr);
558 W.needs(DCache, CacheUnit::InitiateWriteData);
559 if (inst->splitInst)
560 W.needs(DCache, CacheUnit::InitSecondSplitWrite);
561 W.needs(DCache, CacheUnit::CompleteWriteData);
562 if (inst->splitInst)
563 W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
564 }
565 } else {
566 W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
567 }
568 }
569
570 W.needs(Grad, GraduationUnit::CheckFault);
571
572 for (int idx=0; idx < inst->numDestRegs(); idx++) {
573 W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
574 }
575
576 if (inst->isControl())
577 W.needs(BPred, BranchPredictor::UpdatePredictor);
578
579 W.needs(Grad, GraduationUnit::GraduateInst);
580
581 // Insert Back Schedule into our cache of
582 // resource schedules
583 addToSkedCache(inst, res_sked);
584
585 DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
586 inst->instName(), inst->getMachInst());
587 res_sked->print();
588
589 return res_sked;
590 }
591
592 void
593 InOrderCPU::regStats()
594 {
595 /* Register the Resource Pool's stats here.*/
596 resPool->regStats();
597
598 /* Register for each Pipeline Stage */
599 for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
600 pipelineStage[stage_num]->regStats();
601 }
602
603 /* Register any of the InOrderCPU's stats here.*/
604 instsPerCtxtSwitch
605 .name(name() + ".instsPerContextSwitch")
606 .desc("Instructions Committed Per Context Switch")
607 .prereq(instsPerCtxtSwitch);
608
609 numCtxtSwitches
610 .name(name() + ".contextSwitches")
611 .desc("Number of context switches");
612
613 comLoads
614 .name(name() + ".comLoads")
615 .desc("Number of Load instructions committed");
616
617 comStores
618 .name(name() + ".comStores")
619 .desc("Number of Store instructions committed");
620
621 comBranches
622 .name(name() + ".comBranches")
623 .desc("Number of Branches instructions committed");
624
625 comNops
626 .name(name() + ".comNops")
627 .desc("Number of Nop instructions committed");
628
629 comNonSpec
630 .name(name() + ".comNonSpec")
631 .desc("Number of Non-Speculative instructions committed");
632
633 comInts
634 .name(name() + ".comInts")
635 .desc("Number of Integer instructions committed");
636
637 comFloats
638 .name(name() + ".comFloats")
639 .desc("Number of Floating Point instructions committed");
640
641 timesIdled
642 .name(name() + ".timesIdled")
643 .desc("Number of times that the entire CPU went into an idle state and"
644 " unscheduled itself")
645 .prereq(timesIdled);
646
647 idleCycles
648 .name(name() + ".idleCycles")
649 .desc("Number of cycles cpu's stages were not processed");
650
651 runCycles
652 .name(name() + ".runCycles")
653 .desc("Number of cycles cpu stages are processed.");
654
655 activity
656 .name(name() + ".activity")
657 .desc("Percentage of cycles cpu is active")
658 .precision(6);
659 activity = (runCycles / numCycles) * 100;
660
661 threadCycles
662 .init(numThreads)
663 .name(name() + ".threadCycles")
664 .desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
665
666 smtCycles
667 .name(name() + ".smtCycles")
668 .desc("Total number of cycles that the CPU was in SMT-mode");
669
670 committedInsts
671 .init(numThreads)
672 .name(name() + ".committedInsts")
673 .desc("Number of Instructions committed (Per-Thread)");
674
675 committedOps
676 .init(numThreads)
677 .name(name() + ".committedOps")
678 .desc("Number of Ops committed (Per-Thread)");
679
680 smtCommittedInsts
681 .init(numThreads)
682 .name(name() + ".smtCommittedInsts")
683 .desc("Number of SMT Instructions committed (Per-Thread)");
684
685 totalCommittedInsts
686 .name(name() + ".committedInsts_total")
687 .desc("Number of Instructions committed (Total)");
688
689 cpi
690 .name(name() + ".cpi")
691 .desc("CPI: Cycles Per Instruction (Per-Thread)")
692 .precision(6);
693 cpi = numCycles / committedInsts;
694
695 smtCpi
696 .name(name() + ".smt_cpi")
697 .desc("CPI: Total SMT-CPI")
698 .precision(6);
699 smtCpi = smtCycles / smtCommittedInsts;
700
701 totalCpi
702 .name(name() + ".cpi_total")
703 .desc("CPI: Total CPI of All Threads")
704 .precision(6);
705 totalCpi = numCycles / totalCommittedInsts;
706
707 ipc
708 .name(name() + ".ipc")
709 .desc("IPC: Instructions Per Cycle (Per-Thread)")
710 .precision(6);
711 ipc = committedInsts / numCycles;
712
713 smtIpc
714 .name(name() + ".smt_ipc")
715 .desc("IPC: Total SMT-IPC")
716 .precision(6);
717 smtIpc = smtCommittedInsts / smtCycles;
718
719 totalIpc
720 .name(name() + ".ipc_total")
721 .desc("IPC: Total IPC of All Threads")
722 .precision(6);
723 totalIpc = totalCommittedInsts / numCycles;
724
725 BaseCPU::regStats();
726 }
727
728
729 void
730 InOrderCPU::tick()
731 {
732 DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
733
734 ++numCycles;
735
736 checkForInterrupts();
737
738 bool pipes_idle = true;
739 //Tick each of the stages
740 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
741 pipelineStage[stNum]->tick();
742
743 pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
744 }
745
746 if (pipes_idle)
747 idleCycles++;
748 else
749 runCycles++;
750
751 // Now advance the time buffers one tick
752 timeBuffer.advance();
753 for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
754 stageQueue[sqNum]->advance();
755 }
756 activityRec.advance();
757
758 // Any squashed events, or insts then remove them now
759 cleanUpRemovedEvents();
760 cleanUpRemovedInsts();
761
762 // Re-schedule CPU for this cycle
763 if (!tickEvent.scheduled()) {
764 if (_status == SwitchedOut) {
765 // increment stat
766 lastRunningCycle = curCycle();
767 } else if (!activityRec.active()) {
768 DPRINTF(InOrderCPU, "sleeping CPU.\n");
769 lastRunningCycle = curCycle();
770 timesIdled++;
771 } else {
772 //Tick next_tick = curTick() + cycles(1);
773 //tickEvent.schedule(next_tick);
774 schedule(&tickEvent, clockEdge(Cycles(1)));
775 DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
776 clockEdge(Cycles(1)));
777 }
778 }
779
780 tickThreadStats();
781 updateThreadPriority();
782 }
783
784
785 void
786 InOrderCPU::init()
787 {
788 BaseCPU::init();
789
790 if (!params()->defer_registration &&
791 system->getMemoryMode() != Enums::timing) {
792 fatal("The in-order CPU requires the memory system to be in "
793 "'timing' mode.\n");
794 }
795
796 for (ThreadID tid = 0; tid < numThreads; ++tid) {
797 // Set noSquashFromTC so that the CPU doesn't squash when initially
798 // setting up registers.
799 thread[tid]->noSquashFromTC = true;
800 // Initialise the ThreadContext's memory proxies
801 thread[tid]->initMemProxies(thread[tid]->getTC());
802 }
803
804 if (FullSystem && !params()->defer_registration) {
805 for (ThreadID tid = 0; tid < numThreads; tid++) {
806 ThreadContext *src_tc = threadContexts[tid];
807 TheISA::initCPU(src_tc, src_tc->contextId());
808 }
809 }
810
811 // Clear noSquashFromTC.
812 for (ThreadID tid = 0; tid < numThreads; ++tid)
813 thread[tid]->noSquashFromTC = false;
814
815 // Call Initializiation Routine for Resource Pool
816 resPool->init();
817 }
818
819 Fault
820 InOrderCPU::hwrei(ThreadID tid)
821 {
822 #if THE_ISA == ALPHA_ISA
823 // Need to clear the lock flag upon returning from an interrupt.
824 setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid);
825
826 thread[tid]->kernelStats->hwrei();
827 // FIXME: XXX check for interrupts? XXX
828 #endif
829
830 return NoFault;
831 }
832
833
834 bool
835 InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
836 {
837 #if THE_ISA == ALPHA_ISA
838 if (this->thread[tid]->kernelStats)
839 this->thread[tid]->kernelStats->callpal(palFunc,
840 this->threadContexts[tid]);
841
842 switch (palFunc) {
843 case PAL::halt:
844 halt();
845 if (--System::numSystemsRunning == 0)
846 exitSimLoop("all cpus halted");
847 break;
848
849 case PAL::bpt:
850 case PAL::bugchk:
851 if (this->system->breakpoint())
852 return false;
853 break;
854 }
855 #endif
856 return true;
857 }
858
859 void
860 InOrderCPU::checkForInterrupts()
861 {
862 for (int i = 0; i < threadContexts.size(); i++) {
863 ThreadContext *tc = threadContexts[i];
864
865 if (interrupts->checkInterrupts(tc)) {
866 Fault interrupt = interrupts->getInterrupt(tc);
867
868 if (interrupt != NoFault) {
869 DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n",
870 tc->threadId());
871
872 ThreadID tid = tc->threadId();
873 interrupts->updateIntrInfo(tc);
874
875 // Squash from Last Stage in Pipeline
876 unsigned last_stage = NumStages - 1;
877 dummyTrapInst[tid]->squashingStage = last_stage;
878 pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid],
879 tid);
880
881 // By default, setupSquash will always squash from stage + 1
882 pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid],
883 tid);
884
885 // Schedule Squash Through-out Resource Pool
886 resPool->scheduleEvent(
887 (InOrderCPU::CPUEventType)ResourcePool::SquashAll,
888 dummyTrapInst[tid], Cycles(0));
889
890 // Finally, Setup Trap to happen at end of cycle
891 trapContext(interrupt, tid, dummyTrapInst[tid]);
892 }
893 }
894 }
895 }
896
897 Fault
898 InOrderCPU::getInterrupts()
899 {
900 // Check if there are any outstanding interrupts
901 return interrupts->getInterrupt(threadContexts[0]);
902 }
903
904 void
905 InOrderCPU::processInterrupts(Fault interrupt)
906 {
907 // Check for interrupts here. For now can copy the code that
908 // exists within isa_fullsys_traits.hh. Also assume that thread 0
909 // is the one that handles the interrupts.
910 // @todo: Possibly consolidate the interrupt checking code.
911 // @todo: Allow other threads to handle interrupts.
912
913 assert(interrupt != NoFault);
914 interrupts->updateIntrInfo(threadContexts[0]);
915
916 DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
917
918 // Note: Context ID ok here? Impl. of FS mode needs to revisit this
919 trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
920 }
921
922 void
923 InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst,
924 Cycles delay)
925 {
926 scheduleCpuEvent(Trap, fault, tid, inst, delay);
927 trapPending[tid] = true;
928 }
929
930 void
931 InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst)
932 {
933 fault->invoke(tcBase(tid), inst->staticInst);
934 removePipelineStalls(tid);
935 }
936
937 void
938 InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid,
939 Cycles delay)
940 {
941 scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
942 }
943
944
945 void
946 InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
947 ThreadID tid)
948 {
949 DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
950
951 // Squash all instructions in each stage including
952 // instruction that caused the squash (seq_num - 1)
953 // NOTE: The stage bandwidth needs to be cleared so thats why
954 // the stalling instruction is squashed as well. The stalled
955 // instruction is previously placed in another intermediate buffer
956 // while it's stall is being handled.
957 InstSeqNum squash_seq_num = seq_num - 1;
958
959 for (int stNum=stage_num; stNum >= 0 ; stNum--) {
960 pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
961 }
962 }
963
964 void
965 InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
966 ThreadID tid, DynInstPtr inst,
967 Cycles delay, CPUEventPri event_pri)
968 {
969 CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
970 event_pri);
971
972 Tick sked_tick = clockEdge(delay);
973 DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
974 eventNames[c_event], curTick() + delay, tid);
975 schedule(cpu_event, sked_tick);
976
977 // Broadcast event to the Resource Pool
978 // Need to reset tid just in case this is a dummy instruction
979 inst->setTid(tid);
980 // @todo: Is this really right? Should the delay not be passed on?
981 resPool->scheduleEvent(c_event, inst, Cycles(0), 0, tid);
982 }
983
984 bool
985 InOrderCPU::isThreadActive(ThreadID tid)
986 {
987 list<ThreadID>::iterator isActive =
988 std::find(activeThreads.begin(), activeThreads.end(), tid);
989
990 return (isActive != activeThreads.end());
991 }
992
993 bool
994 InOrderCPU::isThreadReady(ThreadID tid)
995 {
996 list<ThreadID>::iterator isReady =
997 std::find(readyThreads.begin(), readyThreads.end(), tid);
998
999 return (isReady != readyThreads.end());
1000 }
1001
1002 bool
1003 InOrderCPU::isThreadSuspended(ThreadID tid)
1004 {
1005 list<ThreadID>::iterator isSuspended =
1006 std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
1007
1008 return (isSuspended != suspendedThreads.end());
1009 }
1010
1011 void
1012 InOrderCPU::activateNextReadyThread()
1013 {
1014 if (readyThreads.size() >= 1) {
1015 ThreadID ready_tid = readyThreads.front();
1016
1017 // Activate in Pipeline
1018 activateThread(ready_tid);
1019
1020 // Activate in Resource Pool
1021 resPool->activateThread(ready_tid);
1022
1023 list<ThreadID>::iterator ready_it =
1024 std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
1025 readyThreads.erase(ready_it);
1026 } else {
1027 DPRINTF(InOrderCPU,
1028 "Attempting to activate new thread, but No Ready Threads to"
1029 "activate.\n");
1030 DPRINTF(InOrderCPU,
1031 "Unable to switch to next active thread.\n");
1032 }
1033 }
1034
1035 void
1036 InOrderCPU::activateThread(ThreadID tid)
1037 {
1038 if (isThreadSuspended(tid)) {
1039 DPRINTF(InOrderCPU,
1040 "Removing [tid:%i] from suspended threads list.\n", tid);
1041
1042 list<ThreadID>::iterator susp_it =
1043 std::find(suspendedThreads.begin(), suspendedThreads.end(),
1044 tid);
1045 suspendedThreads.erase(susp_it);
1046 }
1047
1048 if (threadModel == SwitchOnCacheMiss &&
1049 numActiveThreads() == 1) {
1050 DPRINTF(InOrderCPU,
1051 "Ignoring activation of [tid:%i], since [tid:%i] is "
1052 "already running.\n", tid, activeThreadId());
1053
1054 DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
1055 tid);
1056
1057 readyThreads.push_back(tid);
1058
1059 } else if (!isThreadActive(tid)) {
1060 DPRINTF(InOrderCPU,
1061 "Adding [tid:%i] to active threads list.\n", tid);
1062 activeThreads.push_back(tid);
1063
1064 activateThreadInPipeline(tid);
1065
1066 thread[tid]->lastActivate = curTick();
1067
1068 tcBase(tid)->setStatus(ThreadContext::Active);
1069
1070 wakeCPU();
1071
1072 numCtxtSwitches++;
1073 }
1074 }
1075
1076 void
1077 InOrderCPU::activateThreadInPipeline(ThreadID tid)
1078 {
1079 for (int stNum=0; stNum < NumStages; stNum++) {
1080 pipelineStage[stNum]->activateThread(tid);
1081 }
1082 }
1083
1084 void
1085 InOrderCPU::deactivateContext(ThreadID tid, Cycles delay)
1086 {
1087 DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
1088
1089 scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
1090
1091 // Be sure to signal that there's some activity so the CPU doesn't
1092 // deschedule itself.
1093 activityRec.activity();
1094
1095 _status = Running;
1096 }
1097
1098 void
1099 InOrderCPU::deactivateThread(ThreadID tid)
1100 {
1101 DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
1102
1103 if (isThreadActive(tid)) {
1104 DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
1105 tid);
1106 list<ThreadID>::iterator thread_it =
1107 std::find(activeThreads.begin(), activeThreads.end(), tid);
1108
1109 removePipelineStalls(*thread_it);
1110
1111 activeThreads.erase(thread_it);
1112
1113 // Ideally, this should be triggered from the
1114 // suspendContext/Thread functions
1115 tcBase(tid)->setStatus(ThreadContext::Suspended);
1116 }
1117
1118 assert(!isThreadActive(tid));
1119 }
1120
1121 void
1122 InOrderCPU::removePipelineStalls(ThreadID tid)
1123 {
1124 DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
1125 tid);
1126
1127 for (int stNum = 0; stNum < NumStages ; stNum++) {
1128 pipelineStage[stNum]->removeStalls(tid);
1129 }
1130
1131 }
1132
1133 void
1134 InOrderCPU::updateThreadPriority()
1135 {
1136 if (activeThreads.size() > 1)
1137 {
1138 //DEFAULT TO ROUND ROBIN SCHEME
1139 //e.g. Move highest priority to end of thread list
1140 list<ThreadID>::iterator list_begin = activeThreads.begin();
1141
1142 unsigned high_thread = *list_begin;
1143
1144 activeThreads.erase(list_begin);
1145
1146 activeThreads.push_back(high_thread);
1147 }
1148 }
1149
1150 inline void
1151 InOrderCPU::tickThreadStats()
1152 {
1153 /** Keep track of cycles that each thread is active */
1154 list<ThreadID>::iterator thread_it = activeThreads.begin();
1155 while (thread_it != activeThreads.end()) {
1156 threadCycles[*thread_it]++;
1157 thread_it++;
1158 }
1159
1160 // Keep track of cycles where SMT is active
1161 if (activeThreads.size() > 1) {
1162 smtCycles++;
1163 }
1164 }
1165
1166 void
1167 InOrderCPU::activateContext(ThreadID tid, Cycles delay)
1168 {
1169 DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
1170
1171
1172 scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
1173
1174 // Be sure to signal that there's some activity so the CPU doesn't
1175 // deschedule itself.
1176 activityRec.activity();
1177
1178 _status = Running;
1179 }
1180
1181 void
1182 InOrderCPU::activateNextReadyContext(Cycles delay)
1183 {
1184 DPRINTF(InOrderCPU,"Activating next ready thread\n");
1185
1186 scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
1187 delay, ActivateNextReadyThread_Pri);
1188
1189 // Be sure to signal that there's some activity so the CPU doesn't
1190 // deschedule itself.
1191 activityRec.activity();
1192
1193 _status = Running;
1194 }
1195
1196 void
1197 InOrderCPU::haltContext(ThreadID tid)
1198 {
1199 DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
1200
1201 scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid]);
1202
1203 activityRec.activity();
1204 }
1205
1206 void
1207 InOrderCPU::haltThread(ThreadID tid)
1208 {
1209 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
1210 deactivateThread(tid);
1211 squashThreadInPipeline(tid);
1212 haltedThreads.push_back(tid);
1213
1214 tcBase(tid)->setStatus(ThreadContext::Halted);
1215
1216 if (threadModel == SwitchOnCacheMiss) {
1217 activateNextReadyContext();
1218 }
1219 }
1220
1221 void
1222 InOrderCPU::suspendContext(ThreadID tid)
1223 {
1224 scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid]);
1225 }
1226
1227 void
1228 InOrderCPU::suspendThread(ThreadID tid)
1229 {
1230 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
1231 tid);
1232 deactivateThread(tid);
1233 suspendedThreads.push_back(tid);
1234 thread[tid]->lastSuspend = curTick();
1235
1236 tcBase(tid)->setStatus(ThreadContext::Suspended);
1237 }
1238
1239 void
1240 InOrderCPU::squashThreadInPipeline(ThreadID tid)
1241 {
1242 //Squash all instructions in each stage
1243 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
1244 pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
1245 }
1246 }
1247
1248 PipelineStage*
1249 InOrderCPU::getPipeStage(int stage_num)
1250 {
1251 return pipelineStage[stage_num];
1252 }
1253
1254
1255 RegIndex
1256 InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegType &reg_type, ThreadID tid)
1257 {
1258 if (reg_idx < FP_Base_DepTag) {
1259 reg_type = IntType;
1260 return isa[tid]->flattenIntIndex(reg_idx);
1261 } else if (reg_idx < Ctrl_Base_DepTag) {
1262 reg_type = FloatType;
1263 reg_idx -= FP_Base_DepTag;
1264 return isa[tid]->flattenFloatIndex(reg_idx);
1265 } else {
1266 reg_type = MiscType;
1267 return reg_idx - TheISA::Ctrl_Base_DepTag;
1268 }
1269 }
1270
1271 uint64_t
1272 InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid)
1273 {
1274 DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n",
1275 tid, reg_idx, intRegs[tid][reg_idx]);
1276
1277 return intRegs[tid][reg_idx];
1278 }
1279
1280 FloatReg
1281 InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid)
1282 {
1283 DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
1284 tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
1285
1286 return floatRegs.f[tid][reg_idx];
1287 }
1288
1289 FloatRegBits
1290 InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid)
1291 {
1292 DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
1293 tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
1294
1295 return floatRegs.i[tid][reg_idx];
1296 }
1297
1298 void
1299 InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid)
1300 {
1301 if (reg_idx == TheISA::ZeroReg) {
1302 DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg "
1303 "(Int. Reg %i) to %x\n", tid, reg_idx, val);
1304 return;
1305 } else {
1306 DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n",
1307 tid, reg_idx, val);
1308
1309 intRegs[tid][reg_idx] = val;
1310 }
1311 }
1312
1313
1314 void
1315 InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid)
1316 {
1317 floatRegs.f[tid][reg_idx] = val;
1318 DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
1319 "%x, %08f\n",
1320 tid, reg_idx,
1321 floatRegs.i[tid][reg_idx],
1322 floatRegs.f[tid][reg_idx]);
1323 }
1324
1325
1326 void
1327 InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid)
1328 {
1329 floatRegs.i[tid][reg_idx] = val;
1330 DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
1331 "%x, %08f\n",
1332 tid, reg_idx,
1333 floatRegs.i[tid][reg_idx],
1334 floatRegs.f[tid][reg_idx]);
1335 }
1336
1337 uint64_t
1338 InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
1339 {
1340 // If Default value is set, then retrieve target thread
1341 if (tid == InvalidThreadID) {
1342 tid = TheISA::getTargetThread(tcBase(tid));
1343 }
1344
1345 if (reg_idx < FP_Base_DepTag) {
1346 // Integer Register File
1347 return readIntReg(reg_idx, tid);
1348 } else if (reg_idx < Ctrl_Base_DepTag) {
1349 // Float Register File
1350 reg_idx -= FP_Base_DepTag;
1351 return readFloatRegBits(reg_idx, tid);
1352 } else {
1353 reg_idx -= Ctrl_Base_DepTag;
1354 return readMiscReg(reg_idx, tid); // Misc. Register File
1355 }
1356 }
1357 void
1358 InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
1359 ThreadID tid)
1360 {
1361 // If Default value is set, then retrieve target thread
1362 if (tid == InvalidThreadID) {
1363 tid = TheISA::getTargetThread(tcBase(tid));
1364 }
1365
1366 if (reg_idx < FP_Base_DepTag) { // Integer Register File
1367 setIntReg(reg_idx, val, tid);
1368 } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File
1369 reg_idx -= FP_Base_DepTag;
1370 setFloatRegBits(reg_idx, val, tid);
1371 } else {
1372 reg_idx -= Ctrl_Base_DepTag;
1373 setMiscReg(reg_idx, val, tid); // Misc. Register File
1374 }
1375 }
1376
1377 MiscReg
1378 InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
1379 {
1380 return isa[tid]->readMiscRegNoEffect(misc_reg);
1381 }
1382
1383 MiscReg
1384 InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
1385 {
1386 return isa[tid]->readMiscReg(misc_reg, tcBase(tid));
1387 }
1388
1389 void
1390 InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
1391 {
1392 isa[tid]->setMiscRegNoEffect(misc_reg, val);
1393 }
1394
1395 void
1396 InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
1397 {
1398 isa[tid]->setMiscReg(misc_reg, val, tcBase(tid));
1399 }
1400
1401
1402 InOrderCPU::ListIt
1403 InOrderCPU::addInst(DynInstPtr inst)
1404 {
1405 ThreadID tid = inst->readTid();
1406
1407 instList[tid].push_back(inst);
1408
1409 return --(instList[tid].end());
1410 }
1411
1412 InOrderCPU::ListIt
1413 InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid)
1414 {
1415 ListIt it = instList[tid].begin();
1416 ListIt end = instList[tid].end();
1417
1418 while (it != end) {
1419 if ((*it)->seqNum == seq_num)
1420 return it;
1421 else if ((*it)->seqNum > seq_num)
1422 break;
1423
1424 it++;
1425 }
1426
1427 return instList[tid].end();
1428 }
1429
1430 void
1431 InOrderCPU::updateContextSwitchStats()
1432 {
1433 // Set Average Stat Here, then reset to 0
1434 instsPerCtxtSwitch = instsPerSwitch;
1435 instsPerSwitch = 0;
1436 }
1437
1438
1439 void
1440 InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
1441 {
1442 // Set the nextPC to be fetched if this is the last instruction
1443 // committed
1444 // ========
1445 // This contributes to the precise state of the CPU
1446 // which can be used when restoring a thread to the CPU after after any
1447 // type of context switching activity (fork, exception, etc.)
1448 TheISA::PCState comm_pc = inst->pcState();
1449 lastCommittedPC[tid] = comm_pc;
1450 TheISA::advancePC(comm_pc, inst->staticInst);
1451 pcState(comm_pc, tid);
1452
1453 //@todo: may be unnecessary with new-ISA-specific branch handling code
1454 if (inst->isControl()) {
1455 thread[tid]->lastGradIsBranch = true;
1456 thread[tid]->lastBranchPC = inst->pcState();
1457 TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
1458 } else {
1459 thread[tid]->lastGradIsBranch = false;
1460 }
1461
1462
1463 // Finalize Trace Data For Instruction
1464 if (inst->traceData) {
1465 //inst->traceData->setCycle(curTick());
1466 inst->traceData->setFetchSeq(inst->seqNum);
1467 //inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
1468 inst->traceData->dump();
1469 delete inst->traceData;
1470 inst->traceData = NULL;
1471 }
1472
1473 // Increment active thread's instruction count
1474 instsPerSwitch++;
1475
1476 // Increment thread-state's instruction count
1477 thread[tid]->numInst++;
1478 thread[tid]->numOp++;
1479
1480 // Increment thread-state's instruction stats
1481 thread[tid]->numInsts++;
1482 thread[tid]->numOps++;
1483
1484 // Count committed insts per thread stats
1485 if (!inst->isMicroop() || inst->isLastMicroop()) {
1486 committedInsts[tid]++;
1487
1488 // Count total insts committed stat
1489 totalCommittedInsts++;
1490 }
1491
1492 committedOps[tid]++;
1493
1494 // Count SMT-committed insts per thread stat
1495 if (numActiveThreads() > 1) {
1496 if (!inst->isMicroop() || inst->isLastMicroop())
1497 smtCommittedInsts[tid]++;
1498 }
1499
1500 // Instruction-Mix Stats
1501 if (inst->isLoad()) {
1502 comLoads++;
1503 } else if (inst->isStore()) {
1504 comStores++;
1505 } else if (inst->isControl()) {
1506 comBranches++;
1507 } else if (inst->isNop()) {
1508 comNops++;
1509 } else if (inst->isNonSpeculative()) {
1510 comNonSpec++;
1511 } else if (inst->isInteger()) {
1512 comInts++;
1513 } else if (inst->isFloating()) {
1514 comFloats++;
1515 }
1516
1517 // Check for instruction-count-based events.
1518 comInstEventQueue[tid]->serviceEvents(thread[tid]->numOp);
1519
1520 // Finally, remove instruction from CPU
1521 removeInst(inst);
1522 }
1523
1524 // currently unused function, but substitute repetitive code w/this function
1525 // call
1526 void
1527 InOrderCPU::addToRemoveList(DynInstPtr inst)
1528 {
1529 removeInstsThisCycle = true;
1530 if (!inst->isRemoveList()) {
1531 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1532 "[sn:%lli] to remove list\n",
1533 inst->threadNumber, inst->pcState(), inst->seqNum);
1534 inst->setRemoveList();
1535 removeList.push(inst->getInstListIt());
1536 } else {
1537 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1538 "[sn:%lli], already remove list\n",
1539 inst->threadNumber, inst->pcState(), inst->seqNum);
1540 }
1541
1542 }
1543
1544 void
1545 InOrderCPU::removeInst(DynInstPtr inst)
1546 {
1547 DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
1548 "[sn:%lli]\n",
1549 inst->threadNumber, inst->pcState(), inst->seqNum);
1550
1551 removeInstsThisCycle = true;
1552
1553 // Remove the instruction.
1554 if (!inst->isRemoveList()) {
1555 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1556 "[sn:%lli] to remove list\n",
1557 inst->threadNumber, inst->pcState(), inst->seqNum);
1558 inst->setRemoveList();
1559 removeList.push(inst->getInstListIt());
1560 } else {
1561 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1562 "[sn:%lli], already on remove list\n",
1563 inst->threadNumber, inst->pcState(), inst->seqNum);
1564 }
1565
1566 }
1567
1568 void
1569 InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
1570 {
1571 //assert(!instList[tid].empty());
1572
1573 removeInstsThisCycle = true;
1574
1575 ListIt inst_iter = instList[tid].end();
1576
1577 inst_iter--;
1578
1579 DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
1580 "list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
1581 tid, seq_num, (*inst_iter)->seqNum);
1582
1583 while ((*inst_iter)->seqNum > seq_num) {
1584
1585 bool break_loop = (inst_iter == instList[tid].begin());
1586
1587 squashInstIt(inst_iter, tid);
1588
1589 inst_iter--;
1590
1591 if (break_loop)
1592 break;
1593 }
1594 }
1595
1596
1597 inline void
1598 InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid)
1599 {
1600 DynInstPtr inst = (*inst_it);
1601 if (inst->threadNumber == tid) {
1602 DPRINTF(InOrderCPU, "Squashing instruction, "
1603 "[tid:%i] [sn:%lli] PC %s\n",
1604 inst->threadNumber,
1605 inst->seqNum,
1606 inst->pcState());
1607
1608 inst->setSquashed();
1609 archRegDepMap[tid].remove(inst);
1610
1611 if (!inst->isRemoveList()) {
1612 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1613 "[sn:%lli] to remove list\n",
1614 inst->threadNumber, inst->pcState(),
1615 inst->seqNum);
1616 inst->setRemoveList();
1617 removeList.push(inst_it);
1618 } else {
1619 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
1620 " PC %s [sn:%lli], already on remove list\n",
1621 inst->threadNumber, inst->pcState(),
1622 inst->seqNum);
1623 }
1624
1625 }
1626
1627 }
1628
1629
1630 void
1631 InOrderCPU::cleanUpRemovedInsts()
1632 {
1633 while (!removeList.empty()) {
1634 DPRINTF(InOrderCPU, "Removing instruction, "
1635 "[tid:%i] [sn:%lli] PC %s\n",
1636 (*removeList.front())->threadNumber,
1637 (*removeList.front())->seqNum,
1638 (*removeList.front())->pcState());
1639
1640 DynInstPtr inst = *removeList.front();
1641 ThreadID tid = inst->threadNumber;
1642
1643 // Remove From Register Dependency Map, If Necessary
1644 // archRegDepMap[tid].remove(inst);
1645
1646 // Clear if Non-Speculative
1647 if (inst->staticInst &&
1648 inst->seqNum == nonSpecSeqNum[tid] &&
1649 nonSpecInstActive[tid] == true) {
1650 nonSpecInstActive[tid] = false;
1651 }
1652
1653 inst->onInstList = false;
1654
1655 instList[tid].erase(removeList.front());
1656
1657 removeList.pop();
1658 }
1659
1660 removeInstsThisCycle = false;
1661 }
1662
1663 void
1664 InOrderCPU::cleanUpRemovedEvents()
1665 {
1666 while (!cpuEventRemoveList.empty()) {
1667 Event *cpu_event = cpuEventRemoveList.front();
1668 cpuEventRemoveList.pop();
1669 delete cpu_event;
1670 }
1671 }
1672
1673
1674 void
1675 InOrderCPU::dumpInsts()
1676 {
1677 int num = 0;
1678
1679 ListIt inst_list_it = instList[0].begin();
1680
1681 cprintf("Dumping Instruction List\n");
1682
1683 while (inst_list_it != instList[0].end()) {
1684 cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
1685 "Squashed:%i\n\n",
1686 num, (*inst_list_it)->pcState(),
1687 (*inst_list_it)->threadNumber,
1688 (*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
1689 (*inst_list_it)->isSquashed());
1690 inst_list_it++;
1691 ++num;
1692 }
1693 }
1694
1695 void
1696 InOrderCPU::wakeCPU()
1697 {
1698 if (/*activityRec.active() || */tickEvent.scheduled()) {
1699 DPRINTF(Activity, "CPU already running.\n");
1700 return;
1701 }
1702
1703 DPRINTF(Activity, "Waking up CPU\n");
1704
1705 Tick extra_cycles = curCycle() - lastRunningCycle;
1706 if (extra_cycles != 0)
1707 --extra_cycles;
1708
1709 idleCycles += extra_cycles;
1710 for (int stage_num = 0; stage_num < NumStages; stage_num++) {
1711 pipelineStage[stage_num]->idleCycles += extra_cycles;
1712 }
1713
1714 numCycles += extra_cycles;
1715
1716 schedule(&tickEvent, nextCycle());
1717 }
1718
1719 // Lots of copied full system code...place into BaseCPU class?
1720 void
1721 InOrderCPU::wakeup()
1722 {
1723 if (thread[0]->status() != ThreadContext::Suspended)
1724 return;
1725
1726 wakeCPU();
1727
1728 DPRINTF(Quiesce, "Suspended Processor woken\n");
1729 threadContexts[0]->activate();
1730 }
1731
1732 void
1733 InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst,
1734 Cycles delay)
1735 {
1736 // Syscall must be non-speculative, so squash from last stage
1737 unsigned squash_stage = NumStages - 1;
1738 inst->setSquashInfo(squash_stage);
1739
1740 // Squash In Pipeline Stage
1741 pipelineStage[squash_stage]->setupSquash(inst, tid);
1742
1743 // Schedule Squash Through-out Resource Pool
1744 resPool->scheduleEvent(
1745 (InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst,
1746 Cycles(0));
1747 scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri);
1748 }
1749
1750 void
1751 InOrderCPU::syscall(int64_t callnum, ThreadID tid)
1752 {
1753 DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
1754
1755 DPRINTF(Activity,"Activity: syscall() called.\n");
1756
1757 // Temporarily increase this by one to account for the syscall
1758 // instruction.
1759 ++(this->thread[tid]->funcExeInst);
1760
1761 // Execute the actual syscall.
1762 this->thread[tid]->syscall(callnum);
1763
1764 // Decrease funcExeInst by one as the normal commit will handle
1765 // incrementing it.
1766 --(this->thread[tid]->funcExeInst);
1767
1768 // Clear Non-Speculative Block Variable
1769 nonSpecInstActive[tid] = false;
1770 }
1771
1772 TheISA::TLB*
1773 InOrderCPU::getITBPtr()
1774 {
1775 CacheUnit *itb_res = resPool->getInstUnit();
1776 return itb_res->tlb();
1777 }
1778
1779
1780 TheISA::TLB*
1781 InOrderCPU::getDTBPtr()
1782 {
1783 return resPool->getDataUnit()->tlb();
1784 }
1785
1786 TheISA::Decoder *
1787 InOrderCPU::getDecoderPtr(unsigned tid)
1788 {
1789 return resPool->getInstUnit()->decoder[tid];
1790 }
1791
1792 Fault
1793 InOrderCPU::read(DynInstPtr inst, Addr addr,
1794 uint8_t *data, unsigned size, unsigned flags)
1795 {
1796 return resPool->getDataUnit()->read(inst, addr, data, size, flags);
1797 }
1798
1799 Fault
1800 InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
1801 Addr addr, unsigned flags, uint64_t *write_res)
1802 {
1803 return resPool->getDataUnit()->write(inst, data, size, addr, flags,
1804 write_res);
1805 }