CPU: Check that the interrupt controller is created when needed
[gem5.git] / src / cpu / inorder / cpu.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007 MIPS Technologies, Inc.
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Korey Sewell
41 *
42 */
43
44 #include <algorithm>
45
46 #include "arch/utility.hh"
47 #include "base/bigint.hh"
48 #include "config/the_isa.hh"
49 #include "cpu/inorder/resources/cache_unit.hh"
50 #include "cpu/inorder/resources/resource_list.hh"
51 #include "cpu/inorder/cpu.hh"
52 #include "cpu/inorder/first_stage.hh"
53 #include "cpu/inorder/inorder_dyn_inst.hh"
54 #include "cpu/inorder/pipeline_traits.hh"
55 #include "cpu/inorder/resource_pool.hh"
56 #include "cpu/inorder/thread_context.hh"
57 #include "cpu/inorder/thread_state.hh"
58 #include "cpu/activity.hh"
59 #include "cpu/base.hh"
60 #include "cpu/exetrace.hh"
61 #include "cpu/quiesce_event.hh"
62 #include "cpu/simple_thread.hh"
63 #include "cpu/thread_context.hh"
64 #include "debug/Activity.hh"
65 #include "debug/InOrderCPU.hh"
66 #include "debug/InOrderCachePort.hh"
67 #include "debug/Interrupt.hh"
68 #include "debug/Quiesce.hh"
69 #include "debug/RefCount.hh"
70 #include "debug/SkedCache.hh"
71 #include "params/InOrderCPU.hh"
72 #include "sim/full_system.hh"
73 #include "sim/process.hh"
74 #include "sim/stat_control.hh"
75 #include "sim/system.hh"
76
77 #if THE_ISA == ALPHA_ISA
78 #include "arch/alpha/osfpal.hh"
79 #endif
80
81 using namespace std;
82 using namespace TheISA;
83 using namespace ThePipeline;
84
85 InOrderCPU::CachePort::CachePort(CacheUnit *_cacheUnit) :
86 CpuPort(_cacheUnit->name() + "-cache-port", _cacheUnit->cpu),
87 cacheUnit(_cacheUnit)
88 { }
89
90 bool
91 InOrderCPU::CachePort::recvTiming(Packet *pkt)
92 {
93 if (pkt->isError())
94 DPRINTF(InOrderCachePort, "Got error packet back for address: %x\n",
95 pkt->getAddr());
96 else if (pkt->isResponse())
97 cacheUnit->processCacheCompletion(pkt);
98 else {
99 //@note: depending on consistency model, update here
100 DPRINTF(InOrderCachePort, "Received snoop pkt %x,Ignoring\n",
101 pkt->getAddr());
102 }
103
104 return true;
105 }
106
107 void
108 InOrderCPU::CachePort::recvRetry()
109 {
110 cacheUnit->recvRetry();
111 }
112
113 InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
114 : Event(CPU_Tick_Pri), cpu(c)
115 { }
116
117
118 void
119 InOrderCPU::TickEvent::process()
120 {
121 cpu->tick();
122 }
123
124
125 const char *
126 InOrderCPU::TickEvent::description() const
127 {
128 return "InOrderCPU tick event";
129 }
130
131 InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
132 Fault fault, ThreadID _tid, DynInstPtr inst,
133 CPUEventPri event_pri)
134 : Event(event_pri), cpu(_cpu)
135 {
136 setEvent(e_type, fault, _tid, inst);
137 }
138
139
140 std::string InOrderCPU::eventNames[NumCPUEvents] =
141 {
142 "ActivateThread",
143 "ActivateNextReadyThread",
144 "DeactivateThread",
145 "HaltThread",
146 "SuspendThread",
147 "Trap",
148 "Syscall",
149 "SquashFromMemStall",
150 "UpdatePCs"
151 };
152
153 void
154 InOrderCPU::CPUEvent::process()
155 {
156 switch (cpuEventType)
157 {
158 case ActivateThread:
159 cpu->activateThread(tid);
160 cpu->resPool->activateThread(tid);
161 break;
162
163 case ActivateNextReadyThread:
164 cpu->activateNextReadyThread();
165 break;
166
167 case DeactivateThread:
168 cpu->deactivateThread(tid);
169 cpu->resPool->deactivateThread(tid);
170 break;
171
172 case HaltThread:
173 cpu->haltThread(tid);
174 cpu->resPool->deactivateThread(tid);
175 break;
176
177 case SuspendThread:
178 cpu->suspendThread(tid);
179 cpu->resPool->suspendThread(tid);
180 break;
181
182 case SquashFromMemStall:
183 cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
184 cpu->resPool->squashDueToMemStall(inst, inst->squashingStage,
185 inst->seqNum, tid);
186 break;
187
188 case Trap:
189 DPRINTF(InOrderCPU, "Trapping CPU\n");
190 cpu->trap(fault, tid, inst);
191 cpu->resPool->trap(fault, tid, inst);
192 cpu->trapPending[tid] = false;
193 break;
194
195 case Syscall:
196 cpu->syscall(inst->syscallNum, tid);
197 cpu->resPool->trap(fault, tid, inst);
198 break;
199
200 default:
201 fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
202 }
203
204 cpu->cpuEventRemoveList.push(this);
205 }
206
207
208
209 const char *
210 InOrderCPU::CPUEvent::description() const
211 {
212 return "InOrderCPU event";
213 }
214
215 void
216 InOrderCPU::CPUEvent::scheduleEvent(int delay)
217 {
218 assert(!scheduled() || squashed());
219 cpu->reschedule(this, cpu->nextCycle(curTick() + cpu->ticks(delay)), true);
220 }
221
222 void
223 InOrderCPU::CPUEvent::unscheduleEvent()
224 {
225 if (scheduled())
226 squash();
227 }
228
229 InOrderCPU::InOrderCPU(Params *params)
230 : BaseCPU(params),
231 cpu_id(params->cpu_id),
232 coreType("default"),
233 _status(Idle),
234 tickEvent(this),
235 stageWidth(params->stageWidth),
236 resPool(new ResourcePool(this, params)),
237 timeBuffer(2 , 2),
238 dataPort(resPool->getDataUnit()),
239 instPort(resPool->getInstUnit()),
240 removeInstsThisCycle(false),
241 activityRec(params->name, NumStages, 10, params->activity),
242 system(params->system),
243 #ifdef DEBUG
244 cpuEventNum(0),
245 resReqCount(0),
246 #endif // DEBUG
247 drainCount(0),
248 deferRegistration(false/*params->deferRegistration*/),
249 stageTracing(params->stageTracing),
250 lastRunningCycle(0),
251 instsPerSwitch(0)
252 {
253 cpu_params = params;
254
255 // Resize for Multithreading CPUs
256 thread.resize(numThreads);
257
258 ThreadID active_threads = params->workload.size();
259 if (FullSystem) {
260 active_threads = 1;
261 } else {
262 active_threads = params->workload.size();
263
264 if (active_threads > MaxThreads) {
265 panic("Workload Size too large. Increase the 'MaxThreads'"
266 "in your InOrder implementation or "
267 "edit your workload size.");
268 }
269
270
271 if (active_threads > 1) {
272 threadModel = (InOrderCPU::ThreadModel) params->threadModel;
273
274 if (threadModel == SMT) {
275 DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
276 } else if (threadModel == SwitchOnCacheMiss) {
277 DPRINTF(InOrderCPU, "Setting Thread Model to "
278 "Switch On Cache Miss\n");
279 }
280
281 } else {
282 threadModel = Single;
283 }
284 }
285
286 for (ThreadID tid = 0; tid < numThreads; ++tid) {
287 pc[tid].set(0);
288 lastCommittedPC[tid].set(0);
289
290 if (FullSystem) {
291 // SMT is not supported in FS mode yet.
292 assert(numThreads == 1);
293 thread[tid] = new Thread(this, 0, NULL);
294 } else {
295 if (tid < (ThreadID)params->workload.size()) {
296 DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
297 tid, params->workload[tid]->prog_fname);
298 thread[tid] =
299 new Thread(this, tid, params->workload[tid]);
300 } else {
301 //Allocate Empty thread so M5 can use later
302 //when scheduling threads to CPU
303 Process* dummy_proc = params->workload[0];
304 thread[tid] = new Thread(this, tid, dummy_proc);
305 }
306
307 // Eventually set this with parameters...
308 asid[tid] = tid;
309 }
310
311 // Setup the TC that will serve as the interface to the threads/CPU.
312 InOrderThreadContext *tc = new InOrderThreadContext;
313 tc->cpu = this;
314 tc->thread = thread[tid];
315
316 // Setup quiesce event.
317 this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc);
318
319 // Give the thread the TC.
320 thread[tid]->tc = tc;
321 thread[tid]->setFuncExeInst(0);
322 globalSeqNum[tid] = 1;
323
324 // Add the TC to the CPU's list of TC's.
325 this->threadContexts.push_back(tc);
326 }
327
328 // Initialize TimeBuffer Stage Queues
329 for (int stNum=0; stNum < NumStages - 1; stNum++) {
330 stageQueue[stNum] = new StageQueue(NumStages, NumStages);
331 stageQueue[stNum]->id(stNum);
332 }
333
334
335 // Set Up Pipeline Stages
336 for (int stNum=0; stNum < NumStages; stNum++) {
337 if (stNum == 0)
338 pipelineStage[stNum] = new FirstStage(params, stNum);
339 else
340 pipelineStage[stNum] = new PipelineStage(params, stNum);
341
342 pipelineStage[stNum]->setCPU(this);
343 pipelineStage[stNum]->setActiveThreads(&activeThreads);
344 pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
345
346 // Take Care of 1st/Nth stages
347 if (stNum > 0)
348 pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
349 if (stNum < NumStages - 1)
350 pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
351 }
352
353 // Initialize thread specific variables
354 for (ThreadID tid = 0; tid < numThreads; tid++) {
355 archRegDepMap[tid].setCPU(this);
356
357 nonSpecInstActive[tid] = false;
358 nonSpecSeqNum[tid] = 0;
359
360 squashSeqNum[tid] = MaxAddr;
361 lastSquashCycle[tid] = 0;
362
363 memset(intRegs[tid], 0, sizeof(intRegs[tid]));
364 memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
365 isa[tid].clear();
366
367 // Define dummy instructions and resource requests to be used.
368 dummyInst[tid] = new InOrderDynInst(this,
369 thread[tid],
370 0,
371 tid,
372 asid[tid]);
373
374 dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
375
376
377 if (FullSystem) {
378 // Use this dummy inst to force squashing behind every instruction
379 // in pipeline
380 dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0);
381 dummyTrapInst[tid]->seqNum = 0;
382 dummyTrapInst[tid]->squashSeqNum = 0;
383 dummyTrapInst[tid]->setTid(tid);
384 }
385
386 trapPending[tid] = false;
387
388 }
389
390 // InOrderCPU always requires an interrupt controller.
391 if (!params->defer_registration && !interrupts) {
392 fatal("InOrderCPU %s has no interrupt controller.\n"
393 "Ensure createInterruptController() is called.\n", name());
394 }
395
396 dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
397 dummyReqInst->setSquashed();
398 dummyReqInst->resetInstCount();
399
400 dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
401 dummyBufferInst->setSquashed();
402 dummyBufferInst->resetInstCount();
403
404 endOfSkedIt = skedCache.end();
405 frontEndSked = createFrontEndSked();
406 faultSked = createFaultSked();
407
408 lastRunningCycle = curTick();
409
410 lockAddr = 0;
411 lockFlag = false;
412
413 // Schedule First Tick Event, CPU will reschedule itself from here on out.
414 scheduleTickEvent(0);
415 }
416
417 InOrderCPU::~InOrderCPU()
418 {
419 delete resPool;
420
421 SkedCacheIt sked_it = skedCache.begin();
422 SkedCacheIt sked_end = skedCache.end();
423
424 while (sked_it != sked_end) {
425 delete (*sked_it).second;
426 sked_it++;
427 }
428 skedCache.clear();
429 }
430
431 m5::hash_map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
432
433 RSkedPtr
434 InOrderCPU::createFrontEndSked()
435 {
436 RSkedPtr res_sked = new ResourceSked();
437 int stage_num = 0;
438 StageScheduler F(res_sked, stage_num++);
439 StageScheduler D(res_sked, stage_num++);
440
441 // FETCH
442 F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
443 F.needs(ICache, FetchUnit::InitiateFetch);
444
445 // DECODE
446 D.needs(ICache, FetchUnit::CompleteFetch);
447 D.needs(Decode, DecodeUnit::DecodeInst);
448 D.needs(BPred, BranchPredictor::PredictBranch);
449 D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
450
451
452 DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n");
453
454 return res_sked;
455 }
456
457 RSkedPtr
458 InOrderCPU::createFaultSked()
459 {
460 RSkedPtr res_sked = new ResourceSked();
461 StageScheduler W(res_sked, NumStages - 1);
462 W.needs(Grad, GraduationUnit::CheckFault);
463 DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n");
464 return res_sked;
465 }
466
467 RSkedPtr
468 InOrderCPU::createBackEndSked(DynInstPtr inst)
469 {
470 RSkedPtr res_sked = lookupSked(inst);
471 if (res_sked != NULL) {
472 DPRINTF(SkedCache, "Found %s in sked cache.\n",
473 inst->instName());
474 return res_sked;
475 } else {
476 res_sked = new ResourceSked();
477 }
478
479 int stage_num = ThePipeline::BackEndStartStage;
480 StageScheduler X(res_sked, stage_num++);
481 StageScheduler M(res_sked, stage_num++);
482 StageScheduler W(res_sked, stage_num++);
483
484 if (!inst->staticInst) {
485 warn_once("Static Instruction Object Not Set. Can't Create"
486 " Back End Schedule");
487 return NULL;
488 }
489
490 // EXECUTE
491 X.needs(RegManager, UseDefUnit::MarkDestRegs);
492 for (int idx=0; idx < inst->numSrcRegs(); idx++) {
493 if (!idx || !inst->isStore()) {
494 X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
495 }
496 }
497
498 //@todo: schedule non-spec insts to operate on this cycle
499 // as long as all previous insts are done
500 if ( inst->isNonSpeculative() ) {
501 // skip execution of non speculative insts until later
502 } else if ( inst->isMemRef() ) {
503 if ( inst->isLoad() ) {
504 X.needs(AGEN, AGENUnit::GenerateAddr);
505 }
506 } else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
507 X.needs(MDU, MultDivUnit::StartMultDiv);
508 } else {
509 X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
510 }
511
512 // MEMORY
513 if (!inst->isNonSpeculative()) {
514 if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
515 M.needs(MDU, MultDivUnit::EndMultDiv);
516 }
517
518 if ( inst->isLoad() ) {
519 M.needs(DCache, CacheUnit::InitiateReadData);
520 if (inst->splitInst)
521 M.needs(DCache, CacheUnit::InitSecondSplitRead);
522 } else if ( inst->isStore() ) {
523 for (int i = 1; i < inst->numSrcRegs(); i++ ) {
524 M.needs(RegManager, UseDefUnit::ReadSrcReg, i);
525 }
526 M.needs(AGEN, AGENUnit::GenerateAddr);
527 M.needs(DCache, CacheUnit::InitiateWriteData);
528 if (inst->splitInst)
529 M.needs(DCache, CacheUnit::InitSecondSplitWrite);
530 }
531 }
532
533 // WRITEBACK
534 if (!inst->isNonSpeculative()) {
535 if ( inst->isLoad() ) {
536 W.needs(DCache, CacheUnit::CompleteReadData);
537 if (inst->splitInst)
538 W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
539 } else if ( inst->isStore() ) {
540 W.needs(DCache, CacheUnit::CompleteWriteData);
541 if (inst->splitInst)
542 W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
543 }
544 } else {
545 // Finally, Execute Speculative Data
546 if (inst->isMemRef()) {
547 if (inst->isLoad()) {
548 W.needs(AGEN, AGENUnit::GenerateAddr);
549 W.needs(DCache, CacheUnit::InitiateReadData);
550 if (inst->splitInst)
551 W.needs(DCache, CacheUnit::InitSecondSplitRead);
552 W.needs(DCache, CacheUnit::CompleteReadData);
553 if (inst->splitInst)
554 W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
555 } else if (inst->isStore()) {
556 if ( inst->numSrcRegs() >= 2 ) {
557 W.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
558 }
559 W.needs(AGEN, AGENUnit::GenerateAddr);
560 W.needs(DCache, CacheUnit::InitiateWriteData);
561 if (inst->splitInst)
562 W.needs(DCache, CacheUnit::InitSecondSplitWrite);
563 W.needs(DCache, CacheUnit::CompleteWriteData);
564 if (inst->splitInst)
565 W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
566 }
567 } else {
568 W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
569 }
570 }
571
572 W.needs(Grad, GraduationUnit::CheckFault);
573
574 for (int idx=0; idx < inst->numDestRegs(); idx++) {
575 W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
576 }
577
578 if (inst->isControl())
579 W.needs(BPred, BranchPredictor::UpdatePredictor);
580
581 W.needs(Grad, GraduationUnit::GraduateInst);
582
583 // Insert Back Schedule into our cache of
584 // resource schedules
585 addToSkedCache(inst, res_sked);
586
587 DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
588 inst->instName(), inst->getMachInst());
589 res_sked->print();
590
591 return res_sked;
592 }
593
594 void
595 InOrderCPU::regStats()
596 {
597 /* Register the Resource Pool's stats here.*/
598 resPool->regStats();
599
600 /* Register for each Pipeline Stage */
601 for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
602 pipelineStage[stage_num]->regStats();
603 }
604
605 /* Register any of the InOrderCPU's stats here.*/
606 instsPerCtxtSwitch
607 .name(name() + ".instsPerContextSwitch")
608 .desc("Instructions Committed Per Context Switch")
609 .prereq(instsPerCtxtSwitch);
610
611 numCtxtSwitches
612 .name(name() + ".contextSwitches")
613 .desc("Number of context switches");
614
615 comLoads
616 .name(name() + ".comLoads")
617 .desc("Number of Load instructions committed");
618
619 comStores
620 .name(name() + ".comStores")
621 .desc("Number of Store instructions committed");
622
623 comBranches
624 .name(name() + ".comBranches")
625 .desc("Number of Branches instructions committed");
626
627 comNops
628 .name(name() + ".comNops")
629 .desc("Number of Nop instructions committed");
630
631 comNonSpec
632 .name(name() + ".comNonSpec")
633 .desc("Number of Non-Speculative instructions committed");
634
635 comInts
636 .name(name() + ".comInts")
637 .desc("Number of Integer instructions committed");
638
639 comFloats
640 .name(name() + ".comFloats")
641 .desc("Number of Floating Point instructions committed");
642
643 timesIdled
644 .name(name() + ".timesIdled")
645 .desc("Number of times that the entire CPU went into an idle state and"
646 " unscheduled itself")
647 .prereq(timesIdled);
648
649 idleCycles
650 .name(name() + ".idleCycles")
651 .desc("Number of cycles cpu's stages were not processed");
652
653 runCycles
654 .name(name() + ".runCycles")
655 .desc("Number of cycles cpu stages are processed.");
656
657 activity
658 .name(name() + ".activity")
659 .desc("Percentage of cycles cpu is active")
660 .precision(6);
661 activity = (runCycles / numCycles) * 100;
662
663 threadCycles
664 .init(numThreads)
665 .name(name() + ".threadCycles")
666 .desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
667
668 smtCycles
669 .name(name() + ".smtCycles")
670 .desc("Total number of cycles that the CPU was in SMT-mode");
671
672 committedInsts
673 .init(numThreads)
674 .name(name() + ".committedInsts")
675 .desc("Number of Instructions committed (Per-Thread)");
676
677 committedOps
678 .init(numThreads)
679 .name(name() + ".committedOps")
680 .desc("Number of Ops committed (Per-Thread)");
681
682 smtCommittedInsts
683 .init(numThreads)
684 .name(name() + ".smtCommittedInsts")
685 .desc("Number of SMT Instructions committed (Per-Thread)");
686
687 totalCommittedInsts
688 .name(name() + ".committedInsts_total")
689 .desc("Number of Instructions committed (Total)");
690
691 cpi
692 .name(name() + ".cpi")
693 .desc("CPI: Cycles Per Instruction (Per-Thread)")
694 .precision(6);
695 cpi = numCycles / committedInsts;
696
697 smtCpi
698 .name(name() + ".smt_cpi")
699 .desc("CPI: Total SMT-CPI")
700 .precision(6);
701 smtCpi = smtCycles / smtCommittedInsts;
702
703 totalCpi
704 .name(name() + ".cpi_total")
705 .desc("CPI: Total CPI of All Threads")
706 .precision(6);
707 totalCpi = numCycles / totalCommittedInsts;
708
709 ipc
710 .name(name() + ".ipc")
711 .desc("IPC: Instructions Per Cycle (Per-Thread)")
712 .precision(6);
713 ipc = committedInsts / numCycles;
714
715 smtIpc
716 .name(name() + ".smt_ipc")
717 .desc("IPC: Total SMT-IPC")
718 .precision(6);
719 smtIpc = smtCommittedInsts / smtCycles;
720
721 totalIpc
722 .name(name() + ".ipc_total")
723 .desc("IPC: Total IPC of All Threads")
724 .precision(6);
725 totalIpc = totalCommittedInsts / numCycles;
726
727 BaseCPU::regStats();
728 }
729
730
731 void
732 InOrderCPU::tick()
733 {
734 DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
735
736 ++numCycles;
737
738 checkForInterrupts();
739
740 bool pipes_idle = true;
741 //Tick each of the stages
742 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
743 pipelineStage[stNum]->tick();
744
745 pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
746 }
747
748 if (pipes_idle)
749 idleCycles++;
750 else
751 runCycles++;
752
753 // Now advance the time buffers one tick
754 timeBuffer.advance();
755 for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
756 stageQueue[sqNum]->advance();
757 }
758 activityRec.advance();
759
760 // Any squashed events, or insts then remove them now
761 cleanUpRemovedEvents();
762 cleanUpRemovedInsts();
763
764 // Re-schedule CPU for this cycle
765 if (!tickEvent.scheduled()) {
766 if (_status == SwitchedOut) {
767 // increment stat
768 lastRunningCycle = curTick();
769 } else if (!activityRec.active()) {
770 DPRINTF(InOrderCPU, "sleeping CPU.\n");
771 lastRunningCycle = curTick();
772 timesIdled++;
773 } else {
774 //Tick next_tick = curTick() + cycles(1);
775 //tickEvent.schedule(next_tick);
776 schedule(&tickEvent, nextCycle(curTick() + 1));
777 DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
778 nextCycle(curTick() + 1));
779 }
780 }
781
782 tickThreadStats();
783 updateThreadPriority();
784 }
785
786
787 void
788 InOrderCPU::init()
789 {
790 if (!deferRegistration) {
791 registerThreadContexts();
792 }
793
794 // Set inSyscall so that the CPU doesn't squash when initially
795 // setting up registers.
796 for (ThreadID tid = 0; tid < numThreads; ++tid)
797 thread[tid]->inSyscall = true;
798
799 if (FullSystem) {
800 for (ThreadID tid = 0; tid < numThreads; tid++) {
801 ThreadContext *src_tc = threadContexts[tid];
802 TheISA::initCPU(src_tc, src_tc->contextId());
803 // Initialise the ThreadContext's memory proxies
804 thread[tid]->initMemProxies(thread[tid]->getTC());
805 }
806 }
807
808 // Clear inSyscall.
809 for (ThreadID tid = 0; tid < numThreads; ++tid)
810 thread[tid]->inSyscall = false;
811
812 // Call Initializiation Routine for Resource Pool
813 resPool->init();
814 }
815
816 Fault
817 InOrderCPU::hwrei(ThreadID tid)
818 {
819 #if THE_ISA == ALPHA_ISA
820 // Need to clear the lock flag upon returning from an interrupt.
821 setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid);
822
823 thread[tid]->kernelStats->hwrei();
824 // FIXME: XXX check for interrupts? XXX
825 #endif
826
827 return NoFault;
828 }
829
830
831 bool
832 InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
833 {
834 #if THE_ISA == ALPHA_ISA
835 if (this->thread[tid]->kernelStats)
836 this->thread[tid]->kernelStats->callpal(palFunc,
837 this->threadContexts[tid]);
838
839 switch (palFunc) {
840 case PAL::halt:
841 halt();
842 if (--System::numSystemsRunning == 0)
843 exitSimLoop("all cpus halted");
844 break;
845
846 case PAL::bpt:
847 case PAL::bugchk:
848 if (this->system->breakpoint())
849 return false;
850 break;
851 }
852 #endif
853 return true;
854 }
855
856 void
857 InOrderCPU::checkForInterrupts()
858 {
859 for (int i = 0; i < threadContexts.size(); i++) {
860 ThreadContext *tc = threadContexts[i];
861
862 if (interrupts->checkInterrupts(tc)) {
863 Fault interrupt = interrupts->getInterrupt(tc);
864
865 if (interrupt != NoFault) {
866 DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n",
867 tc->threadId());
868
869 ThreadID tid = tc->threadId();
870 interrupts->updateIntrInfo(tc);
871
872 // Squash from Last Stage in Pipeline
873 unsigned last_stage = NumStages - 1;
874 dummyTrapInst[tid]->squashingStage = last_stage;
875 pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid],
876 tid);
877
878 // By default, setupSquash will always squash from stage + 1
879 pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid],
880 tid);
881
882 // Schedule Squash Through-out Resource Pool
883 resPool->scheduleEvent(
884 (InOrderCPU::CPUEventType)ResourcePool::SquashAll,
885 dummyTrapInst[tid], 0);
886
887 // Finally, Setup Trap to happen at end of cycle
888 trapContext(interrupt, tid, dummyTrapInst[tid]);
889 }
890 }
891 }
892 }
893
894 Fault
895 InOrderCPU::getInterrupts()
896 {
897 // Check if there are any outstanding interrupts
898 return interrupts->getInterrupt(threadContexts[0]);
899 }
900
901 void
902 InOrderCPU::processInterrupts(Fault interrupt)
903 {
904 // Check for interrupts here. For now can copy the code that
905 // exists within isa_fullsys_traits.hh. Also assume that thread 0
906 // is the one that handles the interrupts.
907 // @todo: Possibly consolidate the interrupt checking code.
908 // @todo: Allow other threads to handle interrupts.
909
910 assert(interrupt != NoFault);
911 interrupts->updateIntrInfo(threadContexts[0]);
912
913 DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
914
915 // Note: Context ID ok here? Impl. of FS mode needs to revisit this
916 trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
917 }
918
919 void
920 InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
921 {
922 scheduleCpuEvent(Trap, fault, tid, inst, delay);
923 trapPending[tid] = true;
924 }
925
926 void
927 InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst)
928 {
929 fault->invoke(tcBase(tid), inst->staticInst);
930 removePipelineStalls(tid);
931 }
932
933 void
934 InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, int delay)
935 {
936 scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
937 }
938
939
940 void
941 InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
942 ThreadID tid)
943 {
944 DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
945
946 // Squash all instructions in each stage including
947 // instruction that caused the squash (seq_num - 1)
948 // NOTE: The stage bandwidth needs to be cleared so thats why
949 // the stalling instruction is squashed as well. The stalled
950 // instruction is previously placed in another intermediate buffer
951 // while it's stall is being handled.
952 InstSeqNum squash_seq_num = seq_num - 1;
953
954 for (int stNum=stage_num; stNum >= 0 ; stNum--) {
955 pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
956 }
957 }
958
959 void
960 InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
961 ThreadID tid, DynInstPtr inst,
962 unsigned delay, CPUEventPri event_pri)
963 {
964 CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
965 event_pri);
966
967 Tick sked_tick = nextCycle(curTick() + ticks(delay));
968 if (delay >= 0) {
969 DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
970 eventNames[c_event], curTick() + delay, tid);
971 schedule(cpu_event, sked_tick);
972 } else {
973 cpu_event->process();
974 cpuEventRemoveList.push(cpu_event);
975 }
976
977 // Broadcast event to the Resource Pool
978 // Need to reset tid just in case this is a dummy instruction
979 inst->setTid(tid);
980 resPool->scheduleEvent(c_event, inst, 0, 0, tid);
981 }
982
983 bool
984 InOrderCPU::isThreadActive(ThreadID tid)
985 {
986 list<ThreadID>::iterator isActive =
987 std::find(activeThreads.begin(), activeThreads.end(), tid);
988
989 return (isActive != activeThreads.end());
990 }
991
992 bool
993 InOrderCPU::isThreadReady(ThreadID tid)
994 {
995 list<ThreadID>::iterator isReady =
996 std::find(readyThreads.begin(), readyThreads.end(), tid);
997
998 return (isReady != readyThreads.end());
999 }
1000
1001 bool
1002 InOrderCPU::isThreadSuspended(ThreadID tid)
1003 {
1004 list<ThreadID>::iterator isSuspended =
1005 std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
1006
1007 return (isSuspended != suspendedThreads.end());
1008 }
1009
1010 void
1011 InOrderCPU::activateNextReadyThread()
1012 {
1013 if (readyThreads.size() >= 1) {
1014 ThreadID ready_tid = readyThreads.front();
1015
1016 // Activate in Pipeline
1017 activateThread(ready_tid);
1018
1019 // Activate in Resource Pool
1020 resPool->activateThread(ready_tid);
1021
1022 list<ThreadID>::iterator ready_it =
1023 std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
1024 readyThreads.erase(ready_it);
1025 } else {
1026 DPRINTF(InOrderCPU,
1027 "Attempting to activate new thread, but No Ready Threads to"
1028 "activate.\n");
1029 DPRINTF(InOrderCPU,
1030 "Unable to switch to next active thread.\n");
1031 }
1032 }
1033
1034 void
1035 InOrderCPU::activateThread(ThreadID tid)
1036 {
1037 if (isThreadSuspended(tid)) {
1038 DPRINTF(InOrderCPU,
1039 "Removing [tid:%i] from suspended threads list.\n", tid);
1040
1041 list<ThreadID>::iterator susp_it =
1042 std::find(suspendedThreads.begin(), suspendedThreads.end(),
1043 tid);
1044 suspendedThreads.erase(susp_it);
1045 }
1046
1047 if (threadModel == SwitchOnCacheMiss &&
1048 numActiveThreads() == 1) {
1049 DPRINTF(InOrderCPU,
1050 "Ignoring activation of [tid:%i], since [tid:%i] is "
1051 "already running.\n", tid, activeThreadId());
1052
1053 DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
1054 tid);
1055
1056 readyThreads.push_back(tid);
1057
1058 } else if (!isThreadActive(tid)) {
1059 DPRINTF(InOrderCPU,
1060 "Adding [tid:%i] to active threads list.\n", tid);
1061 activeThreads.push_back(tid);
1062
1063 activateThreadInPipeline(tid);
1064
1065 thread[tid]->lastActivate = curTick();
1066
1067 tcBase(tid)->setStatus(ThreadContext::Active);
1068
1069 wakeCPU();
1070
1071 numCtxtSwitches++;
1072 }
1073 }
1074
1075 void
1076 InOrderCPU::activateThreadInPipeline(ThreadID tid)
1077 {
1078 for (int stNum=0; stNum < NumStages; stNum++) {
1079 pipelineStage[stNum]->activateThread(tid);
1080 }
1081 }
1082
1083 void
1084 InOrderCPU::deactivateContext(ThreadID tid, int delay)
1085 {
1086 DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
1087
1088 scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
1089
1090 // Be sure to signal that there's some activity so the CPU doesn't
1091 // deschedule itself.
1092 activityRec.activity();
1093
1094 _status = Running;
1095 }
1096
1097 void
1098 InOrderCPU::deactivateThread(ThreadID tid)
1099 {
1100 DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
1101
1102 if (isThreadActive(tid)) {
1103 DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
1104 tid);
1105 list<ThreadID>::iterator thread_it =
1106 std::find(activeThreads.begin(), activeThreads.end(), tid);
1107
1108 removePipelineStalls(*thread_it);
1109
1110 activeThreads.erase(thread_it);
1111
1112 // Ideally, this should be triggered from the
1113 // suspendContext/Thread functions
1114 tcBase(tid)->setStatus(ThreadContext::Suspended);
1115 }
1116
1117 assert(!isThreadActive(tid));
1118 }
1119
1120 void
1121 InOrderCPU::removePipelineStalls(ThreadID tid)
1122 {
1123 DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
1124 tid);
1125
1126 for (int stNum = 0; stNum < NumStages ; stNum++) {
1127 pipelineStage[stNum]->removeStalls(tid);
1128 }
1129
1130 }
1131
1132 void
1133 InOrderCPU::updateThreadPriority()
1134 {
1135 if (activeThreads.size() > 1)
1136 {
1137 //DEFAULT TO ROUND ROBIN SCHEME
1138 //e.g. Move highest priority to end of thread list
1139 list<ThreadID>::iterator list_begin = activeThreads.begin();
1140
1141 unsigned high_thread = *list_begin;
1142
1143 activeThreads.erase(list_begin);
1144
1145 activeThreads.push_back(high_thread);
1146 }
1147 }
1148
1149 inline void
1150 InOrderCPU::tickThreadStats()
1151 {
1152 /** Keep track of cycles that each thread is active */
1153 list<ThreadID>::iterator thread_it = activeThreads.begin();
1154 while (thread_it != activeThreads.end()) {
1155 threadCycles[*thread_it]++;
1156 thread_it++;
1157 }
1158
1159 // Keep track of cycles where SMT is active
1160 if (activeThreads.size() > 1) {
1161 smtCycles++;
1162 }
1163 }
1164
1165 void
1166 InOrderCPU::activateContext(ThreadID tid, int delay)
1167 {
1168 DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
1169
1170
1171 scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
1172
1173 // Be sure to signal that there's some activity so the CPU doesn't
1174 // deschedule itself.
1175 activityRec.activity();
1176
1177 _status = Running;
1178 }
1179
1180 void
1181 InOrderCPU::activateNextReadyContext(int delay)
1182 {
1183 DPRINTF(InOrderCPU,"Activating next ready thread\n");
1184
1185 scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
1186 delay, ActivateNextReadyThread_Pri);
1187
1188 // Be sure to signal that there's some activity so the CPU doesn't
1189 // deschedule itself.
1190 activityRec.activity();
1191
1192 _status = Running;
1193 }
1194
1195 void
1196 InOrderCPU::haltContext(ThreadID tid)
1197 {
1198 DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
1199
1200 scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid]);
1201
1202 activityRec.activity();
1203 }
1204
1205 void
1206 InOrderCPU::haltThread(ThreadID tid)
1207 {
1208 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
1209 deactivateThread(tid);
1210 squashThreadInPipeline(tid);
1211 haltedThreads.push_back(tid);
1212
1213 tcBase(tid)->setStatus(ThreadContext::Halted);
1214
1215 if (threadModel == SwitchOnCacheMiss) {
1216 activateNextReadyContext();
1217 }
1218 }
1219
1220 void
1221 InOrderCPU::suspendContext(ThreadID tid)
1222 {
1223 scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid]);
1224 }
1225
1226 void
1227 InOrderCPU::suspendThread(ThreadID tid)
1228 {
1229 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
1230 tid);
1231 deactivateThread(tid);
1232 suspendedThreads.push_back(tid);
1233 thread[tid]->lastSuspend = curTick();
1234
1235 tcBase(tid)->setStatus(ThreadContext::Suspended);
1236 }
1237
1238 void
1239 InOrderCPU::squashThreadInPipeline(ThreadID tid)
1240 {
1241 //Squash all instructions in each stage
1242 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
1243 pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
1244 }
1245 }
1246
1247 PipelineStage*
1248 InOrderCPU::getPipeStage(int stage_num)
1249 {
1250 return pipelineStage[stage_num];
1251 }
1252
1253
1254 RegIndex
1255 InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegType &reg_type, ThreadID tid)
1256 {
1257 if (reg_idx < FP_Base_DepTag) {
1258 reg_type = IntType;
1259 return isa[tid].flattenIntIndex(reg_idx);
1260 } else if (reg_idx < Ctrl_Base_DepTag) {
1261 reg_type = FloatType;
1262 reg_idx -= FP_Base_DepTag;
1263 return isa[tid].flattenFloatIndex(reg_idx);
1264 } else {
1265 reg_type = MiscType;
1266 return reg_idx - TheISA::Ctrl_Base_DepTag;
1267 }
1268 }
1269
1270 uint64_t
1271 InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid)
1272 {
1273 DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n",
1274 tid, reg_idx, intRegs[tid][reg_idx]);
1275
1276 return intRegs[tid][reg_idx];
1277 }
1278
1279 FloatReg
1280 InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid)
1281 {
1282 DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
1283 tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
1284
1285 return floatRegs.f[tid][reg_idx];
1286 }
1287
1288 FloatRegBits
1289 InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid)
1290 {
1291 DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
1292 tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
1293
1294 return floatRegs.i[tid][reg_idx];
1295 }
1296
1297 void
1298 InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid)
1299 {
1300 if (reg_idx == TheISA::ZeroReg) {
1301 DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg "
1302 "(Int. Reg %i) to %x\n", tid, reg_idx, val);
1303 return;
1304 } else {
1305 DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n",
1306 tid, reg_idx, val);
1307
1308 intRegs[tid][reg_idx] = val;
1309 }
1310 }
1311
1312
1313 void
1314 InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid)
1315 {
1316 floatRegs.f[tid][reg_idx] = val;
1317 DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
1318 "%x, %08f\n",
1319 tid, reg_idx,
1320 floatRegs.i[tid][reg_idx],
1321 floatRegs.f[tid][reg_idx]);
1322 }
1323
1324
1325 void
1326 InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid)
1327 {
1328 floatRegs.i[tid][reg_idx] = val;
1329 DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
1330 "%x, %08f\n",
1331 tid, reg_idx,
1332 floatRegs.i[tid][reg_idx],
1333 floatRegs.f[tid][reg_idx]);
1334 }
1335
1336 uint64_t
1337 InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
1338 {
1339 // If Default value is set, then retrieve target thread
1340 if (tid == InvalidThreadID) {
1341 tid = TheISA::getTargetThread(tcBase(tid));
1342 }
1343
1344 if (reg_idx < FP_Base_DepTag) {
1345 // Integer Register File
1346 return readIntReg(reg_idx, tid);
1347 } else if (reg_idx < Ctrl_Base_DepTag) {
1348 // Float Register File
1349 reg_idx -= FP_Base_DepTag;
1350 return readFloatRegBits(reg_idx, tid);
1351 } else {
1352 reg_idx -= Ctrl_Base_DepTag;
1353 return readMiscReg(reg_idx, tid); // Misc. Register File
1354 }
1355 }
1356 void
1357 InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
1358 ThreadID tid)
1359 {
1360 // If Default value is set, then retrieve target thread
1361 if (tid == InvalidThreadID) {
1362 tid = TheISA::getTargetThread(tcBase(tid));
1363 }
1364
1365 if (reg_idx < FP_Base_DepTag) { // Integer Register File
1366 setIntReg(reg_idx, val, tid);
1367 } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File
1368 reg_idx -= FP_Base_DepTag;
1369 setFloatRegBits(reg_idx, val, tid);
1370 } else {
1371 reg_idx -= Ctrl_Base_DepTag;
1372 setMiscReg(reg_idx, val, tid); // Misc. Register File
1373 }
1374 }
1375
1376 MiscReg
1377 InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
1378 {
1379 return isa[tid].readMiscRegNoEffect(misc_reg);
1380 }
1381
1382 MiscReg
1383 InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
1384 {
1385 return isa[tid].readMiscReg(misc_reg, tcBase(tid));
1386 }
1387
1388 void
1389 InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
1390 {
1391 isa[tid].setMiscRegNoEffect(misc_reg, val);
1392 }
1393
1394 void
1395 InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
1396 {
1397 isa[tid].setMiscReg(misc_reg, val, tcBase(tid));
1398 }
1399
1400
1401 InOrderCPU::ListIt
1402 InOrderCPU::addInst(DynInstPtr inst)
1403 {
1404 ThreadID tid = inst->readTid();
1405
1406 instList[tid].push_back(inst);
1407
1408 return --(instList[tid].end());
1409 }
1410
1411 InOrderCPU::ListIt
1412 InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid)
1413 {
1414 ListIt it = instList[tid].begin();
1415 ListIt end = instList[tid].end();
1416
1417 while (it != end) {
1418 if ((*it)->seqNum == seq_num)
1419 return it;
1420 else if ((*it)->seqNum > seq_num)
1421 break;
1422
1423 it++;
1424 }
1425
1426 return instList[tid].end();
1427 }
1428
1429 void
1430 InOrderCPU::updateContextSwitchStats()
1431 {
1432 // Set Average Stat Here, then reset to 0
1433 instsPerCtxtSwitch = instsPerSwitch;
1434 instsPerSwitch = 0;
1435 }
1436
1437
1438 void
1439 InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
1440 {
1441 // Set the nextPC to be fetched if this is the last instruction
1442 // committed
1443 // ========
1444 // This contributes to the precise state of the CPU
1445 // which can be used when restoring a thread to the CPU after after any
1446 // type of context switching activity (fork, exception, etc.)
1447 TheISA::PCState comm_pc = inst->pcState();
1448 lastCommittedPC[tid] = comm_pc;
1449 TheISA::advancePC(comm_pc, inst->staticInst);
1450 pcState(comm_pc, tid);
1451
1452 //@todo: may be unnecessary with new-ISA-specific branch handling code
1453 if (inst->isControl()) {
1454 thread[tid]->lastGradIsBranch = true;
1455 thread[tid]->lastBranchPC = inst->pcState();
1456 TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
1457 } else {
1458 thread[tid]->lastGradIsBranch = false;
1459 }
1460
1461
1462 // Finalize Trace Data For Instruction
1463 if (inst->traceData) {
1464 //inst->traceData->setCycle(curTick());
1465 inst->traceData->setFetchSeq(inst->seqNum);
1466 //inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
1467 inst->traceData->dump();
1468 delete inst->traceData;
1469 inst->traceData = NULL;
1470 }
1471
1472 // Increment active thread's instruction count
1473 instsPerSwitch++;
1474
1475 // Increment thread-state's instruction count
1476 thread[tid]->numInst++;
1477 thread[tid]->numOp++;
1478
1479 // Increment thread-state's instruction stats
1480 thread[tid]->numInsts++;
1481 thread[tid]->numOps++;
1482
1483 // Count committed insts per thread stats
1484 if (!inst->isMicroop() || inst->isLastMicroop()) {
1485 committedInsts[tid]++;
1486
1487 // Count total insts committed stat
1488 totalCommittedInsts++;
1489 }
1490
1491 committedOps[tid]++;
1492
1493 // Count SMT-committed insts per thread stat
1494 if (numActiveThreads() > 1) {
1495 if (!inst->isMicroop() || inst->isLastMicroop())
1496 smtCommittedInsts[tid]++;
1497 }
1498
1499 // Instruction-Mix Stats
1500 if (inst->isLoad()) {
1501 comLoads++;
1502 } else if (inst->isStore()) {
1503 comStores++;
1504 } else if (inst->isControl()) {
1505 comBranches++;
1506 } else if (inst->isNop()) {
1507 comNops++;
1508 } else if (inst->isNonSpeculative()) {
1509 comNonSpec++;
1510 } else if (inst->isInteger()) {
1511 comInts++;
1512 } else if (inst->isFloating()) {
1513 comFloats++;
1514 }
1515
1516 // Check for instruction-count-based events.
1517 comInstEventQueue[tid]->serviceEvents(thread[tid]->numOp);
1518
1519 // Finally, remove instruction from CPU
1520 removeInst(inst);
1521 }
1522
1523 // currently unused function, but substitute repetitive code w/this function
1524 // call
1525 void
1526 InOrderCPU::addToRemoveList(DynInstPtr inst)
1527 {
1528 removeInstsThisCycle = true;
1529 if (!inst->isRemoveList()) {
1530 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1531 "[sn:%lli] to remove list\n",
1532 inst->threadNumber, inst->pcState(), inst->seqNum);
1533 inst->setRemoveList();
1534 removeList.push(inst->getInstListIt());
1535 } else {
1536 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1537 "[sn:%lli], already remove list\n",
1538 inst->threadNumber, inst->pcState(), inst->seqNum);
1539 }
1540
1541 }
1542
1543 void
1544 InOrderCPU::removeInst(DynInstPtr inst)
1545 {
1546 DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
1547 "[sn:%lli]\n",
1548 inst->threadNumber, inst->pcState(), inst->seqNum);
1549
1550 removeInstsThisCycle = true;
1551
1552 // Remove the instruction.
1553 if (!inst->isRemoveList()) {
1554 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1555 "[sn:%lli] to remove list\n",
1556 inst->threadNumber, inst->pcState(), inst->seqNum);
1557 inst->setRemoveList();
1558 removeList.push(inst->getInstListIt());
1559 } else {
1560 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1561 "[sn:%lli], already on remove list\n",
1562 inst->threadNumber, inst->pcState(), inst->seqNum);
1563 }
1564
1565 }
1566
1567 void
1568 InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
1569 {
1570 //assert(!instList[tid].empty());
1571
1572 removeInstsThisCycle = true;
1573
1574 ListIt inst_iter = instList[tid].end();
1575
1576 inst_iter--;
1577
1578 DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
1579 "list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
1580 tid, seq_num, (*inst_iter)->seqNum);
1581
1582 while ((*inst_iter)->seqNum > seq_num) {
1583
1584 bool break_loop = (inst_iter == instList[tid].begin());
1585
1586 squashInstIt(inst_iter, tid);
1587
1588 inst_iter--;
1589
1590 if (break_loop)
1591 break;
1592 }
1593 }
1594
1595
1596 inline void
1597 InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid)
1598 {
1599 DynInstPtr inst = (*inst_it);
1600 if (inst->threadNumber == tid) {
1601 DPRINTF(InOrderCPU, "Squashing instruction, "
1602 "[tid:%i] [sn:%lli] PC %s\n",
1603 inst->threadNumber,
1604 inst->seqNum,
1605 inst->pcState());
1606
1607 inst->setSquashed();
1608 archRegDepMap[tid].remove(inst);
1609
1610 if (!inst->isRemoveList()) {
1611 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1612 "[sn:%lli] to remove list\n",
1613 inst->threadNumber, inst->pcState(),
1614 inst->seqNum);
1615 inst->setRemoveList();
1616 removeList.push(inst_it);
1617 } else {
1618 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
1619 " PC %s [sn:%lli], already on remove list\n",
1620 inst->threadNumber, inst->pcState(),
1621 inst->seqNum);
1622 }
1623
1624 }
1625
1626 }
1627
1628
1629 void
1630 InOrderCPU::cleanUpRemovedInsts()
1631 {
1632 while (!removeList.empty()) {
1633 DPRINTF(InOrderCPU, "Removing instruction, "
1634 "[tid:%i] [sn:%lli] PC %s\n",
1635 (*removeList.front())->threadNumber,
1636 (*removeList.front())->seqNum,
1637 (*removeList.front())->pcState());
1638
1639 DynInstPtr inst = *removeList.front();
1640 ThreadID tid = inst->threadNumber;
1641
1642 // Remove From Register Dependency Map, If Necessary
1643 // archRegDepMap[tid].remove(inst);
1644
1645 // Clear if Non-Speculative
1646 if (inst->staticInst &&
1647 inst->seqNum == nonSpecSeqNum[tid] &&
1648 nonSpecInstActive[tid] == true) {
1649 nonSpecInstActive[tid] = false;
1650 }
1651
1652 inst->onInstList = false;
1653
1654 instList[tid].erase(removeList.front());
1655
1656 removeList.pop();
1657 }
1658
1659 removeInstsThisCycle = false;
1660 }
1661
1662 void
1663 InOrderCPU::cleanUpRemovedEvents()
1664 {
1665 while (!cpuEventRemoveList.empty()) {
1666 Event *cpu_event = cpuEventRemoveList.front();
1667 cpuEventRemoveList.pop();
1668 delete cpu_event;
1669 }
1670 }
1671
1672
1673 void
1674 InOrderCPU::dumpInsts()
1675 {
1676 int num = 0;
1677
1678 ListIt inst_list_it = instList[0].begin();
1679
1680 cprintf("Dumping Instruction List\n");
1681
1682 while (inst_list_it != instList[0].end()) {
1683 cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
1684 "Squashed:%i\n\n",
1685 num, (*inst_list_it)->pcState(),
1686 (*inst_list_it)->threadNumber,
1687 (*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
1688 (*inst_list_it)->isSquashed());
1689 inst_list_it++;
1690 ++num;
1691 }
1692 }
1693
1694 void
1695 InOrderCPU::wakeCPU()
1696 {
1697 if (/*activityRec.active() || */tickEvent.scheduled()) {
1698 DPRINTF(Activity, "CPU already running.\n");
1699 return;
1700 }
1701
1702 DPRINTF(Activity, "Waking up CPU\n");
1703
1704 Tick extra_cycles = tickToCycles((curTick() - 1) - lastRunningCycle);
1705
1706 idleCycles += extra_cycles;
1707 for (int stage_num = 0; stage_num < NumStages; stage_num++) {
1708 pipelineStage[stage_num]->idleCycles += extra_cycles;
1709 }
1710
1711 numCycles += extra_cycles;
1712
1713 schedule(&tickEvent, nextCycle(curTick()));
1714 }
1715
1716 // Lots of copied full system code...place into BaseCPU class?
1717 void
1718 InOrderCPU::wakeup()
1719 {
1720 if (thread[0]->status() != ThreadContext::Suspended)
1721 return;
1722
1723 wakeCPU();
1724
1725 DPRINTF(Quiesce, "Suspended Processor woken\n");
1726 threadContexts[0]->activate();
1727 }
1728
1729 void
1730 InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
1731 {
1732 // Syscall must be non-speculative, so squash from last stage
1733 unsigned squash_stage = NumStages - 1;
1734 inst->setSquashInfo(squash_stage);
1735
1736 // Squash In Pipeline Stage
1737 pipelineStage[squash_stage]->setupSquash(inst, tid);
1738
1739 // Schedule Squash Through-out Resource Pool
1740 resPool->scheduleEvent(
1741 (InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst, 0);
1742 scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri);
1743 }
1744
1745 void
1746 InOrderCPU::syscall(int64_t callnum, ThreadID tid)
1747 {
1748 DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
1749
1750 DPRINTF(Activity,"Activity: syscall() called.\n");
1751
1752 // Temporarily increase this by one to account for the syscall
1753 // instruction.
1754 ++(this->thread[tid]->funcExeInst);
1755
1756 // Execute the actual syscall.
1757 this->thread[tid]->syscall(callnum);
1758
1759 // Decrease funcExeInst by one as the normal commit will handle
1760 // incrementing it.
1761 --(this->thread[tid]->funcExeInst);
1762
1763 // Clear Non-Speculative Block Variable
1764 nonSpecInstActive[tid] = false;
1765 }
1766
1767 TheISA::TLB*
1768 InOrderCPU::getITBPtr()
1769 {
1770 CacheUnit *itb_res = resPool->getInstUnit();
1771 return itb_res->tlb();
1772 }
1773
1774
1775 TheISA::TLB*
1776 InOrderCPU::getDTBPtr()
1777 {
1778 return resPool->getDataUnit()->tlb();
1779 }
1780
1781 Decoder *
1782 InOrderCPU::getDecoderPtr()
1783 {
1784 return &resPool->getInstUnit()->decoder;
1785 }
1786
1787 Fault
1788 InOrderCPU::read(DynInstPtr inst, Addr addr,
1789 uint8_t *data, unsigned size, unsigned flags)
1790 {
1791 return resPool->getDataUnit()->read(inst, addr, data, size, flags);
1792 }
1793
1794 Fault
1795 InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
1796 Addr addr, unsigned flags, uint64_t *write_res)
1797 {
1798 return resPool->getDataUnit()->write(inst, data, size, addr, flags,
1799 write_res);
1800 }