Clock: Rework clocks to avoid tick-to-cycle transformations
[gem5.git] / src / cpu / inorder / cpu.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007 MIPS Technologies, Inc.
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Korey Sewell
41 *
42 */
43
44 #include <algorithm>
45
46 #include "arch/utility.hh"
47 #include "base/bigint.hh"
48 #include "config/the_isa.hh"
49 #include "cpu/inorder/resources/cache_unit.hh"
50 #include "cpu/inorder/resources/resource_list.hh"
51 #include "cpu/inorder/cpu.hh"
52 #include "cpu/inorder/first_stage.hh"
53 #include "cpu/inorder/inorder_dyn_inst.hh"
54 #include "cpu/inorder/pipeline_traits.hh"
55 #include "cpu/inorder/resource_pool.hh"
56 #include "cpu/inorder/thread_context.hh"
57 #include "cpu/inorder/thread_state.hh"
58 #include "cpu/activity.hh"
59 #include "cpu/base.hh"
60 #include "cpu/exetrace.hh"
61 #include "cpu/quiesce_event.hh"
62 #include "cpu/simple_thread.hh"
63 #include "cpu/thread_context.hh"
64 #include "debug/Activity.hh"
65 #include "debug/InOrderCPU.hh"
66 #include "debug/InOrderCachePort.hh"
67 #include "debug/Interrupt.hh"
68 #include "debug/Quiesce.hh"
69 #include "debug/RefCount.hh"
70 #include "debug/SkedCache.hh"
71 #include "params/InOrderCPU.hh"
72 #include "sim/full_system.hh"
73 #include "sim/process.hh"
74 #include "sim/stat_control.hh"
75 #include "sim/system.hh"
76
77 #if THE_ISA == ALPHA_ISA
78 #include "arch/alpha/osfpal.hh"
79 #endif
80
81 using namespace std;
82 using namespace TheISA;
83 using namespace ThePipeline;
84
85 InOrderCPU::CachePort::CachePort(CacheUnit *_cacheUnit,
86 const std::string& name) :
87 CpuPort(_cacheUnit->name() + name, _cacheUnit->cpu),
88 cacheUnit(_cacheUnit)
89 { }
90
91 bool
92 InOrderCPU::CachePort::recvTimingResp(Packet *pkt)
93 {
94 if (pkt->isError())
95 DPRINTF(InOrderCachePort, "Got error packet back for address: %x\n",
96 pkt->getAddr());
97 else
98 cacheUnit->processCacheCompletion(pkt);
99
100 return true;
101 }
102
103 void
104 InOrderCPU::CachePort::recvRetry()
105 {
106 cacheUnit->recvRetry();
107 }
108
109 InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
110 : Event(CPU_Tick_Pri), cpu(c)
111 { }
112
113
114 void
115 InOrderCPU::TickEvent::process()
116 {
117 cpu->tick();
118 }
119
120
121 const char *
122 InOrderCPU::TickEvent::description() const
123 {
124 return "InOrderCPU tick event";
125 }
126
127 InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
128 Fault fault, ThreadID _tid, DynInstPtr inst,
129 CPUEventPri event_pri)
130 : Event(event_pri), cpu(_cpu)
131 {
132 setEvent(e_type, fault, _tid, inst);
133 }
134
135
136 std::string InOrderCPU::eventNames[NumCPUEvents] =
137 {
138 "ActivateThread",
139 "ActivateNextReadyThread",
140 "DeactivateThread",
141 "HaltThread",
142 "SuspendThread",
143 "Trap",
144 "Syscall",
145 "SquashFromMemStall",
146 "UpdatePCs"
147 };
148
149 void
150 InOrderCPU::CPUEvent::process()
151 {
152 switch (cpuEventType)
153 {
154 case ActivateThread:
155 cpu->activateThread(tid);
156 cpu->resPool->activateThread(tid);
157 break;
158
159 case ActivateNextReadyThread:
160 cpu->activateNextReadyThread();
161 break;
162
163 case DeactivateThread:
164 cpu->deactivateThread(tid);
165 cpu->resPool->deactivateThread(tid);
166 break;
167
168 case HaltThread:
169 cpu->haltThread(tid);
170 cpu->resPool->deactivateThread(tid);
171 break;
172
173 case SuspendThread:
174 cpu->suspendThread(tid);
175 cpu->resPool->suspendThread(tid);
176 break;
177
178 case SquashFromMemStall:
179 cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
180 cpu->resPool->squashDueToMemStall(inst, inst->squashingStage,
181 inst->seqNum, tid);
182 break;
183
184 case Trap:
185 DPRINTF(InOrderCPU, "Trapping CPU\n");
186 cpu->trap(fault, tid, inst);
187 cpu->resPool->trap(fault, tid, inst);
188 cpu->trapPending[tid] = false;
189 break;
190
191 case Syscall:
192 cpu->syscall(inst->syscallNum, tid);
193 cpu->resPool->trap(fault, tid, inst);
194 break;
195
196 default:
197 fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
198 }
199
200 cpu->cpuEventRemoveList.push(this);
201 }
202
203
204
205 const char *
206 InOrderCPU::CPUEvent::description() const
207 {
208 return "InOrderCPU event";
209 }
210
211 void
212 InOrderCPU::CPUEvent::scheduleEvent(int delay)
213 {
214 assert(!scheduled() || squashed());
215 cpu->reschedule(this, cpu->clockEdge(delay), true);
216 }
217
218 void
219 InOrderCPU::CPUEvent::unscheduleEvent()
220 {
221 if (scheduled())
222 squash();
223 }
224
225 InOrderCPU::InOrderCPU(Params *params)
226 : BaseCPU(params),
227 cpu_id(params->cpu_id),
228 coreType("default"),
229 _status(Idle),
230 tickEvent(this),
231 stageWidth(params->stageWidth),
232 resPool(new ResourcePool(this, params)),
233 timeBuffer(2 , 2),
234 dataPort(resPool->getDataUnit(), ".dcache_port"),
235 instPort(resPool->getInstUnit(), ".icache_port"),
236 removeInstsThisCycle(false),
237 activityRec(params->name, NumStages, 10, params->activity),
238 system(params->system),
239 #ifdef DEBUG
240 cpuEventNum(0),
241 resReqCount(0),
242 #endif // DEBUG
243 drainCount(0),
244 deferRegistration(false/*params->deferRegistration*/),
245 stageTracing(params->stageTracing),
246 lastRunningCycle(0),
247 instsPerSwitch(0)
248 {
249 cpu_params = params;
250
251 // Resize for Multithreading CPUs
252 thread.resize(numThreads);
253
254 ThreadID active_threads = params->workload.size();
255 if (FullSystem) {
256 active_threads = 1;
257 } else {
258 active_threads = params->workload.size();
259
260 if (active_threads > MaxThreads) {
261 panic("Workload Size too large. Increase the 'MaxThreads'"
262 "in your InOrder implementation or "
263 "edit your workload size.");
264 }
265
266
267 if (active_threads > 1) {
268 threadModel = (InOrderCPU::ThreadModel) params->threadModel;
269
270 if (threadModel == SMT) {
271 DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
272 } else if (threadModel == SwitchOnCacheMiss) {
273 DPRINTF(InOrderCPU, "Setting Thread Model to "
274 "Switch On Cache Miss\n");
275 }
276
277 } else {
278 threadModel = Single;
279 }
280 }
281
282 for (ThreadID tid = 0; tid < numThreads; ++tid) {
283 pc[tid].set(0);
284 lastCommittedPC[tid].set(0);
285
286 if (FullSystem) {
287 // SMT is not supported in FS mode yet.
288 assert(numThreads == 1);
289 thread[tid] = new Thread(this, 0, NULL);
290 } else {
291 if (tid < (ThreadID)params->workload.size()) {
292 DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
293 tid, params->workload[tid]->progName());
294 thread[tid] =
295 new Thread(this, tid, params->workload[tid]);
296 } else {
297 //Allocate Empty thread so M5 can use later
298 //when scheduling threads to CPU
299 Process* dummy_proc = params->workload[0];
300 thread[tid] = new Thread(this, tid, dummy_proc);
301 }
302
303 // Eventually set this with parameters...
304 asid[tid] = tid;
305 }
306
307 // Setup the TC that will serve as the interface to the threads/CPU.
308 InOrderThreadContext *tc = new InOrderThreadContext;
309 tc->cpu = this;
310 tc->thread = thread[tid];
311
312 // Setup quiesce event.
313 this->thread[tid]->quiesceEvent = new EndQuiesceEvent(tc);
314
315 // Give the thread the TC.
316 thread[tid]->tc = tc;
317 thread[tid]->setFuncExeInst(0);
318 globalSeqNum[tid] = 1;
319
320 // Add the TC to the CPU's list of TC's.
321 this->threadContexts.push_back(tc);
322 }
323
324 // Initialize TimeBuffer Stage Queues
325 for (int stNum=0; stNum < NumStages - 1; stNum++) {
326 stageQueue[stNum] = new StageQueue(NumStages, NumStages);
327 stageQueue[stNum]->id(stNum);
328 }
329
330
331 // Set Up Pipeline Stages
332 for (int stNum=0; stNum < NumStages; stNum++) {
333 if (stNum == 0)
334 pipelineStage[stNum] = new FirstStage(params, stNum);
335 else
336 pipelineStage[stNum] = new PipelineStage(params, stNum);
337
338 pipelineStage[stNum]->setCPU(this);
339 pipelineStage[stNum]->setActiveThreads(&activeThreads);
340 pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
341
342 // Take Care of 1st/Nth stages
343 if (stNum > 0)
344 pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
345 if (stNum < NumStages - 1)
346 pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
347 }
348
349 // Initialize thread specific variables
350 for (ThreadID tid = 0; tid < numThreads; tid++) {
351 archRegDepMap[tid].setCPU(this);
352
353 nonSpecInstActive[tid] = false;
354 nonSpecSeqNum[tid] = 0;
355
356 squashSeqNum[tid] = MaxAddr;
357 lastSquashCycle[tid] = 0;
358
359 memset(intRegs[tid], 0, sizeof(intRegs[tid]));
360 memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
361 isa[tid].clear();
362
363 // Define dummy instructions and resource requests to be used.
364 dummyInst[tid] = new InOrderDynInst(this,
365 thread[tid],
366 0,
367 tid,
368 asid[tid]);
369
370 dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
371
372
373 if (FullSystem) {
374 // Use this dummy inst to force squashing behind every instruction
375 // in pipeline
376 dummyTrapInst[tid] = new InOrderDynInst(this, NULL, 0, 0, 0);
377 dummyTrapInst[tid]->seqNum = 0;
378 dummyTrapInst[tid]->squashSeqNum = 0;
379 dummyTrapInst[tid]->setTid(tid);
380 }
381
382 trapPending[tid] = false;
383
384 }
385
386 // InOrderCPU always requires an interrupt controller.
387 if (!params->defer_registration && !interrupts) {
388 fatal("InOrderCPU %s has no interrupt controller.\n"
389 "Ensure createInterruptController() is called.\n", name());
390 }
391
392 dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
393 dummyReqInst->setSquashed();
394 dummyReqInst->resetInstCount();
395
396 dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
397 dummyBufferInst->setSquashed();
398 dummyBufferInst->resetInstCount();
399
400 endOfSkedIt = skedCache.end();
401 frontEndSked = createFrontEndSked();
402 faultSked = createFaultSked();
403
404 lastRunningCycle = curCycle();
405
406 lockAddr = 0;
407 lockFlag = false;
408
409 // Schedule First Tick Event, CPU will reschedule itself from here on out.
410 scheduleTickEvent(0);
411 }
412
413 InOrderCPU::~InOrderCPU()
414 {
415 delete resPool;
416
417 SkedCacheIt sked_it = skedCache.begin();
418 SkedCacheIt sked_end = skedCache.end();
419
420 while (sked_it != sked_end) {
421 delete (*sked_it).second;
422 sked_it++;
423 }
424 skedCache.clear();
425 }
426
427 m5::hash_map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
428
429 RSkedPtr
430 InOrderCPU::createFrontEndSked()
431 {
432 RSkedPtr res_sked = new ResourceSked();
433 int stage_num = 0;
434 StageScheduler F(res_sked, stage_num++);
435 StageScheduler D(res_sked, stage_num++);
436
437 // FETCH
438 F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
439 F.needs(ICache, FetchUnit::InitiateFetch);
440
441 // DECODE
442 D.needs(ICache, FetchUnit::CompleteFetch);
443 D.needs(Decode, DecodeUnit::DecodeInst);
444 D.needs(BPred, BranchPredictor::PredictBranch);
445 D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
446
447
448 DPRINTF(SkedCache, "Resource Sked created for instruction Front End\n");
449
450 return res_sked;
451 }
452
453 RSkedPtr
454 InOrderCPU::createFaultSked()
455 {
456 RSkedPtr res_sked = new ResourceSked();
457 StageScheduler W(res_sked, NumStages - 1);
458 W.needs(Grad, GraduationUnit::CheckFault);
459 DPRINTF(SkedCache, "Resource Sked created for instruction Faults\n");
460 return res_sked;
461 }
462
463 RSkedPtr
464 InOrderCPU::createBackEndSked(DynInstPtr inst)
465 {
466 RSkedPtr res_sked = lookupSked(inst);
467 if (res_sked != NULL) {
468 DPRINTF(SkedCache, "Found %s in sked cache.\n",
469 inst->instName());
470 return res_sked;
471 } else {
472 res_sked = new ResourceSked();
473 }
474
475 int stage_num = ThePipeline::BackEndStartStage;
476 StageScheduler X(res_sked, stage_num++);
477 StageScheduler M(res_sked, stage_num++);
478 StageScheduler W(res_sked, stage_num++);
479
480 if (!inst->staticInst) {
481 warn_once("Static Instruction Object Not Set. Can't Create"
482 " Back End Schedule");
483 return NULL;
484 }
485
486 // EXECUTE
487 X.needs(RegManager, UseDefUnit::MarkDestRegs);
488 for (int idx=0; idx < inst->numSrcRegs(); idx++) {
489 if (!idx || !inst->isStore()) {
490 X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
491 }
492 }
493
494 //@todo: schedule non-spec insts to operate on this cycle
495 // as long as all previous insts are done
496 if ( inst->isNonSpeculative() ) {
497 // skip execution of non speculative insts until later
498 } else if ( inst->isMemRef() ) {
499 if ( inst->isLoad() ) {
500 X.needs(AGEN, AGENUnit::GenerateAddr);
501 }
502 } else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
503 X.needs(MDU, MultDivUnit::StartMultDiv);
504 } else {
505 X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
506 }
507
508 // MEMORY
509 if (!inst->isNonSpeculative()) {
510 if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
511 M.needs(MDU, MultDivUnit::EndMultDiv);
512 }
513
514 if ( inst->isLoad() ) {
515 M.needs(DCache, CacheUnit::InitiateReadData);
516 if (inst->splitInst)
517 M.needs(DCache, CacheUnit::InitSecondSplitRead);
518 } else if ( inst->isStore() ) {
519 for (int i = 1; i < inst->numSrcRegs(); i++ ) {
520 M.needs(RegManager, UseDefUnit::ReadSrcReg, i);
521 }
522 M.needs(AGEN, AGENUnit::GenerateAddr);
523 M.needs(DCache, CacheUnit::InitiateWriteData);
524 if (inst->splitInst)
525 M.needs(DCache, CacheUnit::InitSecondSplitWrite);
526 }
527 }
528
529 // WRITEBACK
530 if (!inst->isNonSpeculative()) {
531 if ( inst->isLoad() ) {
532 W.needs(DCache, CacheUnit::CompleteReadData);
533 if (inst->splitInst)
534 W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
535 } else if ( inst->isStore() ) {
536 W.needs(DCache, CacheUnit::CompleteWriteData);
537 if (inst->splitInst)
538 W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
539 }
540 } else {
541 // Finally, Execute Speculative Data
542 if (inst->isMemRef()) {
543 if (inst->isLoad()) {
544 W.needs(AGEN, AGENUnit::GenerateAddr);
545 W.needs(DCache, CacheUnit::InitiateReadData);
546 if (inst->splitInst)
547 W.needs(DCache, CacheUnit::InitSecondSplitRead);
548 W.needs(DCache, CacheUnit::CompleteReadData);
549 if (inst->splitInst)
550 W.needs(DCache, CacheUnit::CompleteSecondSplitRead);
551 } else if (inst->isStore()) {
552 if ( inst->numSrcRegs() >= 2 ) {
553 W.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
554 }
555 W.needs(AGEN, AGENUnit::GenerateAddr);
556 W.needs(DCache, CacheUnit::InitiateWriteData);
557 if (inst->splitInst)
558 W.needs(DCache, CacheUnit::InitSecondSplitWrite);
559 W.needs(DCache, CacheUnit::CompleteWriteData);
560 if (inst->splitInst)
561 W.needs(DCache, CacheUnit::CompleteSecondSplitWrite);
562 }
563 } else {
564 W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
565 }
566 }
567
568 W.needs(Grad, GraduationUnit::CheckFault);
569
570 for (int idx=0; idx < inst->numDestRegs(); idx++) {
571 W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
572 }
573
574 if (inst->isControl())
575 W.needs(BPred, BranchPredictor::UpdatePredictor);
576
577 W.needs(Grad, GraduationUnit::GraduateInst);
578
579 // Insert Back Schedule into our cache of
580 // resource schedules
581 addToSkedCache(inst, res_sked);
582
583 DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
584 inst->instName(), inst->getMachInst());
585 res_sked->print();
586
587 return res_sked;
588 }
589
590 void
591 InOrderCPU::regStats()
592 {
593 /* Register the Resource Pool's stats here.*/
594 resPool->regStats();
595
596 /* Register for each Pipeline Stage */
597 for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
598 pipelineStage[stage_num]->regStats();
599 }
600
601 /* Register any of the InOrderCPU's stats here.*/
602 instsPerCtxtSwitch
603 .name(name() + ".instsPerContextSwitch")
604 .desc("Instructions Committed Per Context Switch")
605 .prereq(instsPerCtxtSwitch);
606
607 numCtxtSwitches
608 .name(name() + ".contextSwitches")
609 .desc("Number of context switches");
610
611 comLoads
612 .name(name() + ".comLoads")
613 .desc("Number of Load instructions committed");
614
615 comStores
616 .name(name() + ".comStores")
617 .desc("Number of Store instructions committed");
618
619 comBranches
620 .name(name() + ".comBranches")
621 .desc("Number of Branches instructions committed");
622
623 comNops
624 .name(name() + ".comNops")
625 .desc("Number of Nop instructions committed");
626
627 comNonSpec
628 .name(name() + ".comNonSpec")
629 .desc("Number of Non-Speculative instructions committed");
630
631 comInts
632 .name(name() + ".comInts")
633 .desc("Number of Integer instructions committed");
634
635 comFloats
636 .name(name() + ".comFloats")
637 .desc("Number of Floating Point instructions committed");
638
639 timesIdled
640 .name(name() + ".timesIdled")
641 .desc("Number of times that the entire CPU went into an idle state and"
642 " unscheduled itself")
643 .prereq(timesIdled);
644
645 idleCycles
646 .name(name() + ".idleCycles")
647 .desc("Number of cycles cpu's stages were not processed");
648
649 runCycles
650 .name(name() + ".runCycles")
651 .desc("Number of cycles cpu stages are processed.");
652
653 activity
654 .name(name() + ".activity")
655 .desc("Percentage of cycles cpu is active")
656 .precision(6);
657 activity = (runCycles / numCycles) * 100;
658
659 threadCycles
660 .init(numThreads)
661 .name(name() + ".threadCycles")
662 .desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
663
664 smtCycles
665 .name(name() + ".smtCycles")
666 .desc("Total number of cycles that the CPU was in SMT-mode");
667
668 committedInsts
669 .init(numThreads)
670 .name(name() + ".committedInsts")
671 .desc("Number of Instructions committed (Per-Thread)");
672
673 committedOps
674 .init(numThreads)
675 .name(name() + ".committedOps")
676 .desc("Number of Ops committed (Per-Thread)");
677
678 smtCommittedInsts
679 .init(numThreads)
680 .name(name() + ".smtCommittedInsts")
681 .desc("Number of SMT Instructions committed (Per-Thread)");
682
683 totalCommittedInsts
684 .name(name() + ".committedInsts_total")
685 .desc("Number of Instructions committed (Total)");
686
687 cpi
688 .name(name() + ".cpi")
689 .desc("CPI: Cycles Per Instruction (Per-Thread)")
690 .precision(6);
691 cpi = numCycles / committedInsts;
692
693 smtCpi
694 .name(name() + ".smt_cpi")
695 .desc("CPI: Total SMT-CPI")
696 .precision(6);
697 smtCpi = smtCycles / smtCommittedInsts;
698
699 totalCpi
700 .name(name() + ".cpi_total")
701 .desc("CPI: Total CPI of All Threads")
702 .precision(6);
703 totalCpi = numCycles / totalCommittedInsts;
704
705 ipc
706 .name(name() + ".ipc")
707 .desc("IPC: Instructions Per Cycle (Per-Thread)")
708 .precision(6);
709 ipc = committedInsts / numCycles;
710
711 smtIpc
712 .name(name() + ".smt_ipc")
713 .desc("IPC: Total SMT-IPC")
714 .precision(6);
715 smtIpc = smtCommittedInsts / smtCycles;
716
717 totalIpc
718 .name(name() + ".ipc_total")
719 .desc("IPC: Total IPC of All Threads")
720 .precision(6);
721 totalIpc = totalCommittedInsts / numCycles;
722
723 BaseCPU::regStats();
724 }
725
726
727 void
728 InOrderCPU::tick()
729 {
730 DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
731
732 ++numCycles;
733
734 checkForInterrupts();
735
736 bool pipes_idle = true;
737 //Tick each of the stages
738 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
739 pipelineStage[stNum]->tick();
740
741 pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
742 }
743
744 if (pipes_idle)
745 idleCycles++;
746 else
747 runCycles++;
748
749 // Now advance the time buffers one tick
750 timeBuffer.advance();
751 for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
752 stageQueue[sqNum]->advance();
753 }
754 activityRec.advance();
755
756 // Any squashed events, or insts then remove them now
757 cleanUpRemovedEvents();
758 cleanUpRemovedInsts();
759
760 // Re-schedule CPU for this cycle
761 if (!tickEvent.scheduled()) {
762 if (_status == SwitchedOut) {
763 // increment stat
764 lastRunningCycle = curCycle();
765 } else if (!activityRec.active()) {
766 DPRINTF(InOrderCPU, "sleeping CPU.\n");
767 lastRunningCycle = curCycle();
768 timesIdled++;
769 } else {
770 //Tick next_tick = curTick() + cycles(1);
771 //tickEvent.schedule(next_tick);
772 schedule(&tickEvent, clockEdge(1));
773 DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
774 clockEdge(1));
775 }
776 }
777
778 tickThreadStats();
779 updateThreadPriority();
780 }
781
782
783 void
784 InOrderCPU::init()
785 {
786 BaseCPU::init();
787
788 for (ThreadID tid = 0; tid < numThreads; ++tid) {
789 // Set inSyscall so that the CPU doesn't squash when initially
790 // setting up registers.
791 thread[tid]->inSyscall = true;
792 // Initialise the ThreadContext's memory proxies
793 thread[tid]->initMemProxies(thread[tid]->getTC());
794 }
795
796 if (FullSystem && !params()->defer_registration) {
797 for (ThreadID tid = 0; tid < numThreads; tid++) {
798 ThreadContext *src_tc = threadContexts[tid];
799 TheISA::initCPU(src_tc, src_tc->contextId());
800 }
801 }
802
803 // Clear inSyscall.
804 for (ThreadID tid = 0; tid < numThreads; ++tid)
805 thread[tid]->inSyscall = false;
806
807 // Call Initializiation Routine for Resource Pool
808 resPool->init();
809 }
810
811 Fault
812 InOrderCPU::hwrei(ThreadID tid)
813 {
814 #if THE_ISA == ALPHA_ISA
815 // Need to clear the lock flag upon returning from an interrupt.
816 setMiscRegNoEffect(AlphaISA::MISCREG_LOCKFLAG, false, tid);
817
818 thread[tid]->kernelStats->hwrei();
819 // FIXME: XXX check for interrupts? XXX
820 #endif
821
822 return NoFault;
823 }
824
825
826 bool
827 InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
828 {
829 #if THE_ISA == ALPHA_ISA
830 if (this->thread[tid]->kernelStats)
831 this->thread[tid]->kernelStats->callpal(palFunc,
832 this->threadContexts[tid]);
833
834 switch (palFunc) {
835 case PAL::halt:
836 halt();
837 if (--System::numSystemsRunning == 0)
838 exitSimLoop("all cpus halted");
839 break;
840
841 case PAL::bpt:
842 case PAL::bugchk:
843 if (this->system->breakpoint())
844 return false;
845 break;
846 }
847 #endif
848 return true;
849 }
850
851 void
852 InOrderCPU::checkForInterrupts()
853 {
854 for (int i = 0; i < threadContexts.size(); i++) {
855 ThreadContext *tc = threadContexts[i];
856
857 if (interrupts->checkInterrupts(tc)) {
858 Fault interrupt = interrupts->getInterrupt(tc);
859
860 if (interrupt != NoFault) {
861 DPRINTF(Interrupt, "Processing Intterupt for [tid:%i].\n",
862 tc->threadId());
863
864 ThreadID tid = tc->threadId();
865 interrupts->updateIntrInfo(tc);
866
867 // Squash from Last Stage in Pipeline
868 unsigned last_stage = NumStages - 1;
869 dummyTrapInst[tid]->squashingStage = last_stage;
870 pipelineStage[last_stage]->setupSquash(dummyTrapInst[tid],
871 tid);
872
873 // By default, setupSquash will always squash from stage + 1
874 pipelineStage[BackEndStartStage - 1]->setupSquash(dummyTrapInst[tid],
875 tid);
876
877 // Schedule Squash Through-out Resource Pool
878 resPool->scheduleEvent(
879 (InOrderCPU::CPUEventType)ResourcePool::SquashAll,
880 dummyTrapInst[tid], 0);
881
882 // Finally, Setup Trap to happen at end of cycle
883 trapContext(interrupt, tid, dummyTrapInst[tid]);
884 }
885 }
886 }
887 }
888
889 Fault
890 InOrderCPU::getInterrupts()
891 {
892 // Check if there are any outstanding interrupts
893 return interrupts->getInterrupt(threadContexts[0]);
894 }
895
896 void
897 InOrderCPU::processInterrupts(Fault interrupt)
898 {
899 // Check for interrupts here. For now can copy the code that
900 // exists within isa_fullsys_traits.hh. Also assume that thread 0
901 // is the one that handles the interrupts.
902 // @todo: Possibly consolidate the interrupt checking code.
903 // @todo: Allow other threads to handle interrupts.
904
905 assert(interrupt != NoFault);
906 interrupts->updateIntrInfo(threadContexts[0]);
907
908 DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
909
910 // Note: Context ID ok here? Impl. of FS mode needs to revisit this
911 trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
912 }
913
914 void
915 InOrderCPU::trapContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
916 {
917 scheduleCpuEvent(Trap, fault, tid, inst, delay);
918 trapPending[tid] = true;
919 }
920
921 void
922 InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst)
923 {
924 fault->invoke(tcBase(tid), inst->staticInst);
925 removePipelineStalls(tid);
926 }
927
928 void
929 InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, int delay)
930 {
931 scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
932 }
933
934
935 void
936 InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
937 ThreadID tid)
938 {
939 DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
940
941 // Squash all instructions in each stage including
942 // instruction that caused the squash (seq_num - 1)
943 // NOTE: The stage bandwidth needs to be cleared so thats why
944 // the stalling instruction is squashed as well. The stalled
945 // instruction is previously placed in another intermediate buffer
946 // while it's stall is being handled.
947 InstSeqNum squash_seq_num = seq_num - 1;
948
949 for (int stNum=stage_num; stNum >= 0 ; stNum--) {
950 pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
951 }
952 }
953
954 void
955 InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
956 ThreadID tid, DynInstPtr inst,
957 unsigned delay, CPUEventPri event_pri)
958 {
959 CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
960 event_pri);
961
962 Tick sked_tick = clockEdge(delay);
963 DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
964 eventNames[c_event], curTick() + delay, tid);
965 schedule(cpu_event, sked_tick);
966
967 // Broadcast event to the Resource Pool
968 // Need to reset tid just in case this is a dummy instruction
969 inst->setTid(tid);
970 resPool->scheduleEvent(c_event, inst, 0, 0, tid);
971 }
972
973 bool
974 InOrderCPU::isThreadActive(ThreadID tid)
975 {
976 list<ThreadID>::iterator isActive =
977 std::find(activeThreads.begin(), activeThreads.end(), tid);
978
979 return (isActive != activeThreads.end());
980 }
981
982 bool
983 InOrderCPU::isThreadReady(ThreadID tid)
984 {
985 list<ThreadID>::iterator isReady =
986 std::find(readyThreads.begin(), readyThreads.end(), tid);
987
988 return (isReady != readyThreads.end());
989 }
990
991 bool
992 InOrderCPU::isThreadSuspended(ThreadID tid)
993 {
994 list<ThreadID>::iterator isSuspended =
995 std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
996
997 return (isSuspended != suspendedThreads.end());
998 }
999
1000 void
1001 InOrderCPU::activateNextReadyThread()
1002 {
1003 if (readyThreads.size() >= 1) {
1004 ThreadID ready_tid = readyThreads.front();
1005
1006 // Activate in Pipeline
1007 activateThread(ready_tid);
1008
1009 // Activate in Resource Pool
1010 resPool->activateThread(ready_tid);
1011
1012 list<ThreadID>::iterator ready_it =
1013 std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
1014 readyThreads.erase(ready_it);
1015 } else {
1016 DPRINTF(InOrderCPU,
1017 "Attempting to activate new thread, but No Ready Threads to"
1018 "activate.\n");
1019 DPRINTF(InOrderCPU,
1020 "Unable to switch to next active thread.\n");
1021 }
1022 }
1023
1024 void
1025 InOrderCPU::activateThread(ThreadID tid)
1026 {
1027 if (isThreadSuspended(tid)) {
1028 DPRINTF(InOrderCPU,
1029 "Removing [tid:%i] from suspended threads list.\n", tid);
1030
1031 list<ThreadID>::iterator susp_it =
1032 std::find(suspendedThreads.begin(), suspendedThreads.end(),
1033 tid);
1034 suspendedThreads.erase(susp_it);
1035 }
1036
1037 if (threadModel == SwitchOnCacheMiss &&
1038 numActiveThreads() == 1) {
1039 DPRINTF(InOrderCPU,
1040 "Ignoring activation of [tid:%i], since [tid:%i] is "
1041 "already running.\n", tid, activeThreadId());
1042
1043 DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
1044 tid);
1045
1046 readyThreads.push_back(tid);
1047
1048 } else if (!isThreadActive(tid)) {
1049 DPRINTF(InOrderCPU,
1050 "Adding [tid:%i] to active threads list.\n", tid);
1051 activeThreads.push_back(tid);
1052
1053 activateThreadInPipeline(tid);
1054
1055 thread[tid]->lastActivate = curTick();
1056
1057 tcBase(tid)->setStatus(ThreadContext::Active);
1058
1059 wakeCPU();
1060
1061 numCtxtSwitches++;
1062 }
1063 }
1064
1065 void
1066 InOrderCPU::activateThreadInPipeline(ThreadID tid)
1067 {
1068 for (int stNum=0; stNum < NumStages; stNum++) {
1069 pipelineStage[stNum]->activateThread(tid);
1070 }
1071 }
1072
1073 void
1074 InOrderCPU::deactivateContext(ThreadID tid, int delay)
1075 {
1076 DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
1077
1078 scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
1079
1080 // Be sure to signal that there's some activity so the CPU doesn't
1081 // deschedule itself.
1082 activityRec.activity();
1083
1084 _status = Running;
1085 }
1086
1087 void
1088 InOrderCPU::deactivateThread(ThreadID tid)
1089 {
1090 DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
1091
1092 if (isThreadActive(tid)) {
1093 DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
1094 tid);
1095 list<ThreadID>::iterator thread_it =
1096 std::find(activeThreads.begin(), activeThreads.end(), tid);
1097
1098 removePipelineStalls(*thread_it);
1099
1100 activeThreads.erase(thread_it);
1101
1102 // Ideally, this should be triggered from the
1103 // suspendContext/Thread functions
1104 tcBase(tid)->setStatus(ThreadContext::Suspended);
1105 }
1106
1107 assert(!isThreadActive(tid));
1108 }
1109
1110 void
1111 InOrderCPU::removePipelineStalls(ThreadID tid)
1112 {
1113 DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
1114 tid);
1115
1116 for (int stNum = 0; stNum < NumStages ; stNum++) {
1117 pipelineStage[stNum]->removeStalls(tid);
1118 }
1119
1120 }
1121
1122 void
1123 InOrderCPU::updateThreadPriority()
1124 {
1125 if (activeThreads.size() > 1)
1126 {
1127 //DEFAULT TO ROUND ROBIN SCHEME
1128 //e.g. Move highest priority to end of thread list
1129 list<ThreadID>::iterator list_begin = activeThreads.begin();
1130
1131 unsigned high_thread = *list_begin;
1132
1133 activeThreads.erase(list_begin);
1134
1135 activeThreads.push_back(high_thread);
1136 }
1137 }
1138
1139 inline void
1140 InOrderCPU::tickThreadStats()
1141 {
1142 /** Keep track of cycles that each thread is active */
1143 list<ThreadID>::iterator thread_it = activeThreads.begin();
1144 while (thread_it != activeThreads.end()) {
1145 threadCycles[*thread_it]++;
1146 thread_it++;
1147 }
1148
1149 // Keep track of cycles where SMT is active
1150 if (activeThreads.size() > 1) {
1151 smtCycles++;
1152 }
1153 }
1154
1155 void
1156 InOrderCPU::activateContext(ThreadID tid, int delay)
1157 {
1158 DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
1159
1160
1161 scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
1162
1163 // Be sure to signal that there's some activity so the CPU doesn't
1164 // deschedule itself.
1165 activityRec.activity();
1166
1167 _status = Running;
1168 }
1169
1170 void
1171 InOrderCPU::activateNextReadyContext(int delay)
1172 {
1173 DPRINTF(InOrderCPU,"Activating next ready thread\n");
1174
1175 scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
1176 delay, ActivateNextReadyThread_Pri);
1177
1178 // Be sure to signal that there's some activity so the CPU doesn't
1179 // deschedule itself.
1180 activityRec.activity();
1181
1182 _status = Running;
1183 }
1184
1185 void
1186 InOrderCPU::haltContext(ThreadID tid)
1187 {
1188 DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
1189
1190 scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid]);
1191
1192 activityRec.activity();
1193 }
1194
1195 void
1196 InOrderCPU::haltThread(ThreadID tid)
1197 {
1198 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
1199 deactivateThread(tid);
1200 squashThreadInPipeline(tid);
1201 haltedThreads.push_back(tid);
1202
1203 tcBase(tid)->setStatus(ThreadContext::Halted);
1204
1205 if (threadModel == SwitchOnCacheMiss) {
1206 activateNextReadyContext();
1207 }
1208 }
1209
1210 void
1211 InOrderCPU::suspendContext(ThreadID tid)
1212 {
1213 scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid]);
1214 }
1215
1216 void
1217 InOrderCPU::suspendThread(ThreadID tid)
1218 {
1219 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
1220 tid);
1221 deactivateThread(tid);
1222 suspendedThreads.push_back(tid);
1223 thread[tid]->lastSuspend = curTick();
1224
1225 tcBase(tid)->setStatus(ThreadContext::Suspended);
1226 }
1227
1228 void
1229 InOrderCPU::squashThreadInPipeline(ThreadID tid)
1230 {
1231 //Squash all instructions in each stage
1232 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
1233 pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
1234 }
1235 }
1236
1237 PipelineStage*
1238 InOrderCPU::getPipeStage(int stage_num)
1239 {
1240 return pipelineStage[stage_num];
1241 }
1242
1243
1244 RegIndex
1245 InOrderCPU::flattenRegIdx(RegIndex reg_idx, RegType &reg_type, ThreadID tid)
1246 {
1247 if (reg_idx < FP_Base_DepTag) {
1248 reg_type = IntType;
1249 return isa[tid].flattenIntIndex(reg_idx);
1250 } else if (reg_idx < Ctrl_Base_DepTag) {
1251 reg_type = FloatType;
1252 reg_idx -= FP_Base_DepTag;
1253 return isa[tid].flattenFloatIndex(reg_idx);
1254 } else {
1255 reg_type = MiscType;
1256 return reg_idx - TheISA::Ctrl_Base_DepTag;
1257 }
1258 }
1259
1260 uint64_t
1261 InOrderCPU::readIntReg(RegIndex reg_idx, ThreadID tid)
1262 {
1263 DPRINTF(IntRegs, "[tid:%i]: Reading Int. Reg %i as %x\n",
1264 tid, reg_idx, intRegs[tid][reg_idx]);
1265
1266 return intRegs[tid][reg_idx];
1267 }
1268
1269 FloatReg
1270 InOrderCPU::readFloatReg(RegIndex reg_idx, ThreadID tid)
1271 {
1272 DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
1273 tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
1274
1275 return floatRegs.f[tid][reg_idx];
1276 }
1277
1278 FloatRegBits
1279 InOrderCPU::readFloatRegBits(RegIndex reg_idx, ThreadID tid)
1280 {
1281 DPRINTF(FloatRegs, "[tid:%i]: Reading Float Reg %i as %x, %08f\n",
1282 tid, reg_idx, floatRegs.i[tid][reg_idx], floatRegs.f[tid][reg_idx]);
1283
1284 return floatRegs.i[tid][reg_idx];
1285 }
1286
1287 void
1288 InOrderCPU::setIntReg(RegIndex reg_idx, uint64_t val, ThreadID tid)
1289 {
1290 if (reg_idx == TheISA::ZeroReg) {
1291 DPRINTF(IntRegs, "[tid:%i]: Ignoring Setting of ISA-ZeroReg "
1292 "(Int. Reg %i) to %x\n", tid, reg_idx, val);
1293 return;
1294 } else {
1295 DPRINTF(IntRegs, "[tid:%i]: Setting Int. Reg %i to %x\n",
1296 tid, reg_idx, val);
1297
1298 intRegs[tid][reg_idx] = val;
1299 }
1300 }
1301
1302
1303 void
1304 InOrderCPU::setFloatReg(RegIndex reg_idx, FloatReg val, ThreadID tid)
1305 {
1306 floatRegs.f[tid][reg_idx] = val;
1307 DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
1308 "%x, %08f\n",
1309 tid, reg_idx,
1310 floatRegs.i[tid][reg_idx],
1311 floatRegs.f[tid][reg_idx]);
1312 }
1313
1314
1315 void
1316 InOrderCPU::setFloatRegBits(RegIndex reg_idx, FloatRegBits val, ThreadID tid)
1317 {
1318 floatRegs.i[tid][reg_idx] = val;
1319 DPRINTF(FloatRegs, "[tid:%i]: Setting Float. Reg %i bits to "
1320 "%x, %08f\n",
1321 tid, reg_idx,
1322 floatRegs.i[tid][reg_idx],
1323 floatRegs.f[tid][reg_idx]);
1324 }
1325
1326 uint64_t
1327 InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
1328 {
1329 // If Default value is set, then retrieve target thread
1330 if (tid == InvalidThreadID) {
1331 tid = TheISA::getTargetThread(tcBase(tid));
1332 }
1333
1334 if (reg_idx < FP_Base_DepTag) {
1335 // Integer Register File
1336 return readIntReg(reg_idx, tid);
1337 } else if (reg_idx < Ctrl_Base_DepTag) {
1338 // Float Register File
1339 reg_idx -= FP_Base_DepTag;
1340 return readFloatRegBits(reg_idx, tid);
1341 } else {
1342 reg_idx -= Ctrl_Base_DepTag;
1343 return readMiscReg(reg_idx, tid); // Misc. Register File
1344 }
1345 }
1346 void
1347 InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
1348 ThreadID tid)
1349 {
1350 // If Default value is set, then retrieve target thread
1351 if (tid == InvalidThreadID) {
1352 tid = TheISA::getTargetThread(tcBase(tid));
1353 }
1354
1355 if (reg_idx < FP_Base_DepTag) { // Integer Register File
1356 setIntReg(reg_idx, val, tid);
1357 } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File
1358 reg_idx -= FP_Base_DepTag;
1359 setFloatRegBits(reg_idx, val, tid);
1360 } else {
1361 reg_idx -= Ctrl_Base_DepTag;
1362 setMiscReg(reg_idx, val, tid); // Misc. Register File
1363 }
1364 }
1365
1366 MiscReg
1367 InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
1368 {
1369 return isa[tid].readMiscRegNoEffect(misc_reg);
1370 }
1371
1372 MiscReg
1373 InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
1374 {
1375 return isa[tid].readMiscReg(misc_reg, tcBase(tid));
1376 }
1377
1378 void
1379 InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
1380 {
1381 isa[tid].setMiscRegNoEffect(misc_reg, val);
1382 }
1383
1384 void
1385 InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
1386 {
1387 isa[tid].setMiscReg(misc_reg, val, tcBase(tid));
1388 }
1389
1390
1391 InOrderCPU::ListIt
1392 InOrderCPU::addInst(DynInstPtr inst)
1393 {
1394 ThreadID tid = inst->readTid();
1395
1396 instList[tid].push_back(inst);
1397
1398 return --(instList[tid].end());
1399 }
1400
1401 InOrderCPU::ListIt
1402 InOrderCPU::findInst(InstSeqNum seq_num, ThreadID tid)
1403 {
1404 ListIt it = instList[tid].begin();
1405 ListIt end = instList[tid].end();
1406
1407 while (it != end) {
1408 if ((*it)->seqNum == seq_num)
1409 return it;
1410 else if ((*it)->seqNum > seq_num)
1411 break;
1412
1413 it++;
1414 }
1415
1416 return instList[tid].end();
1417 }
1418
1419 void
1420 InOrderCPU::updateContextSwitchStats()
1421 {
1422 // Set Average Stat Here, then reset to 0
1423 instsPerCtxtSwitch = instsPerSwitch;
1424 instsPerSwitch = 0;
1425 }
1426
1427
1428 void
1429 InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
1430 {
1431 // Set the nextPC to be fetched if this is the last instruction
1432 // committed
1433 // ========
1434 // This contributes to the precise state of the CPU
1435 // which can be used when restoring a thread to the CPU after after any
1436 // type of context switching activity (fork, exception, etc.)
1437 TheISA::PCState comm_pc = inst->pcState();
1438 lastCommittedPC[tid] = comm_pc;
1439 TheISA::advancePC(comm_pc, inst->staticInst);
1440 pcState(comm_pc, tid);
1441
1442 //@todo: may be unnecessary with new-ISA-specific branch handling code
1443 if (inst->isControl()) {
1444 thread[tid]->lastGradIsBranch = true;
1445 thread[tid]->lastBranchPC = inst->pcState();
1446 TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
1447 } else {
1448 thread[tid]->lastGradIsBranch = false;
1449 }
1450
1451
1452 // Finalize Trace Data For Instruction
1453 if (inst->traceData) {
1454 //inst->traceData->setCycle(curTick());
1455 inst->traceData->setFetchSeq(inst->seqNum);
1456 //inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
1457 inst->traceData->dump();
1458 delete inst->traceData;
1459 inst->traceData = NULL;
1460 }
1461
1462 // Increment active thread's instruction count
1463 instsPerSwitch++;
1464
1465 // Increment thread-state's instruction count
1466 thread[tid]->numInst++;
1467 thread[tid]->numOp++;
1468
1469 // Increment thread-state's instruction stats
1470 thread[tid]->numInsts++;
1471 thread[tid]->numOps++;
1472
1473 // Count committed insts per thread stats
1474 if (!inst->isMicroop() || inst->isLastMicroop()) {
1475 committedInsts[tid]++;
1476
1477 // Count total insts committed stat
1478 totalCommittedInsts++;
1479 }
1480
1481 committedOps[tid]++;
1482
1483 // Count SMT-committed insts per thread stat
1484 if (numActiveThreads() > 1) {
1485 if (!inst->isMicroop() || inst->isLastMicroop())
1486 smtCommittedInsts[tid]++;
1487 }
1488
1489 // Instruction-Mix Stats
1490 if (inst->isLoad()) {
1491 comLoads++;
1492 } else if (inst->isStore()) {
1493 comStores++;
1494 } else if (inst->isControl()) {
1495 comBranches++;
1496 } else if (inst->isNop()) {
1497 comNops++;
1498 } else if (inst->isNonSpeculative()) {
1499 comNonSpec++;
1500 } else if (inst->isInteger()) {
1501 comInts++;
1502 } else if (inst->isFloating()) {
1503 comFloats++;
1504 }
1505
1506 // Check for instruction-count-based events.
1507 comInstEventQueue[tid]->serviceEvents(thread[tid]->numOp);
1508
1509 // Finally, remove instruction from CPU
1510 removeInst(inst);
1511 }
1512
1513 // currently unused function, but substitute repetitive code w/this function
1514 // call
1515 void
1516 InOrderCPU::addToRemoveList(DynInstPtr inst)
1517 {
1518 removeInstsThisCycle = true;
1519 if (!inst->isRemoveList()) {
1520 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1521 "[sn:%lli] to remove list\n",
1522 inst->threadNumber, inst->pcState(), inst->seqNum);
1523 inst->setRemoveList();
1524 removeList.push(inst->getInstListIt());
1525 } else {
1526 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1527 "[sn:%lli], already remove list\n",
1528 inst->threadNumber, inst->pcState(), inst->seqNum);
1529 }
1530
1531 }
1532
1533 void
1534 InOrderCPU::removeInst(DynInstPtr inst)
1535 {
1536 DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
1537 "[sn:%lli]\n",
1538 inst->threadNumber, inst->pcState(), inst->seqNum);
1539
1540 removeInstsThisCycle = true;
1541
1542 // Remove the instruction.
1543 if (!inst->isRemoveList()) {
1544 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1545 "[sn:%lli] to remove list\n",
1546 inst->threadNumber, inst->pcState(), inst->seqNum);
1547 inst->setRemoveList();
1548 removeList.push(inst->getInstListIt());
1549 } else {
1550 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1551 "[sn:%lli], already on remove list\n",
1552 inst->threadNumber, inst->pcState(), inst->seqNum);
1553 }
1554
1555 }
1556
1557 void
1558 InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
1559 {
1560 //assert(!instList[tid].empty());
1561
1562 removeInstsThisCycle = true;
1563
1564 ListIt inst_iter = instList[tid].end();
1565
1566 inst_iter--;
1567
1568 DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
1569 "list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
1570 tid, seq_num, (*inst_iter)->seqNum);
1571
1572 while ((*inst_iter)->seqNum > seq_num) {
1573
1574 bool break_loop = (inst_iter == instList[tid].begin());
1575
1576 squashInstIt(inst_iter, tid);
1577
1578 inst_iter--;
1579
1580 if (break_loop)
1581 break;
1582 }
1583 }
1584
1585
1586 inline void
1587 InOrderCPU::squashInstIt(const ListIt inst_it, ThreadID tid)
1588 {
1589 DynInstPtr inst = (*inst_it);
1590 if (inst->threadNumber == tid) {
1591 DPRINTF(InOrderCPU, "Squashing instruction, "
1592 "[tid:%i] [sn:%lli] PC %s\n",
1593 inst->threadNumber,
1594 inst->seqNum,
1595 inst->pcState());
1596
1597 inst->setSquashed();
1598 archRegDepMap[tid].remove(inst);
1599
1600 if (!inst->isRemoveList()) {
1601 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1602 "[sn:%lli] to remove list\n",
1603 inst->threadNumber, inst->pcState(),
1604 inst->seqNum);
1605 inst->setRemoveList();
1606 removeList.push(inst_it);
1607 } else {
1608 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
1609 " PC %s [sn:%lli], already on remove list\n",
1610 inst->threadNumber, inst->pcState(),
1611 inst->seqNum);
1612 }
1613
1614 }
1615
1616 }
1617
1618
1619 void
1620 InOrderCPU::cleanUpRemovedInsts()
1621 {
1622 while (!removeList.empty()) {
1623 DPRINTF(InOrderCPU, "Removing instruction, "
1624 "[tid:%i] [sn:%lli] PC %s\n",
1625 (*removeList.front())->threadNumber,
1626 (*removeList.front())->seqNum,
1627 (*removeList.front())->pcState());
1628
1629 DynInstPtr inst = *removeList.front();
1630 ThreadID tid = inst->threadNumber;
1631
1632 // Remove From Register Dependency Map, If Necessary
1633 // archRegDepMap[tid].remove(inst);
1634
1635 // Clear if Non-Speculative
1636 if (inst->staticInst &&
1637 inst->seqNum == nonSpecSeqNum[tid] &&
1638 nonSpecInstActive[tid] == true) {
1639 nonSpecInstActive[tid] = false;
1640 }
1641
1642 inst->onInstList = false;
1643
1644 instList[tid].erase(removeList.front());
1645
1646 removeList.pop();
1647 }
1648
1649 removeInstsThisCycle = false;
1650 }
1651
1652 void
1653 InOrderCPU::cleanUpRemovedEvents()
1654 {
1655 while (!cpuEventRemoveList.empty()) {
1656 Event *cpu_event = cpuEventRemoveList.front();
1657 cpuEventRemoveList.pop();
1658 delete cpu_event;
1659 }
1660 }
1661
1662
1663 void
1664 InOrderCPU::dumpInsts()
1665 {
1666 int num = 0;
1667
1668 ListIt inst_list_it = instList[0].begin();
1669
1670 cprintf("Dumping Instruction List\n");
1671
1672 while (inst_list_it != instList[0].end()) {
1673 cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
1674 "Squashed:%i\n\n",
1675 num, (*inst_list_it)->pcState(),
1676 (*inst_list_it)->threadNumber,
1677 (*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
1678 (*inst_list_it)->isSquashed());
1679 inst_list_it++;
1680 ++num;
1681 }
1682 }
1683
1684 void
1685 InOrderCPU::wakeCPU()
1686 {
1687 if (/*activityRec.active() || */tickEvent.scheduled()) {
1688 DPRINTF(Activity, "CPU already running.\n");
1689 return;
1690 }
1691
1692 DPRINTF(Activity, "Waking up CPU\n");
1693
1694 Tick extra_cycles = curCycle() - lastRunningCycle;
1695 if (extra_cycles != 0)
1696 --extra_cycles;
1697
1698 idleCycles += extra_cycles;
1699 for (int stage_num = 0; stage_num < NumStages; stage_num++) {
1700 pipelineStage[stage_num]->idleCycles += extra_cycles;
1701 }
1702
1703 numCycles += extra_cycles;
1704
1705 schedule(&tickEvent, nextCycle());
1706 }
1707
1708 // Lots of copied full system code...place into BaseCPU class?
1709 void
1710 InOrderCPU::wakeup()
1711 {
1712 if (thread[0]->status() != ThreadContext::Suspended)
1713 return;
1714
1715 wakeCPU();
1716
1717 DPRINTF(Quiesce, "Suspended Processor woken\n");
1718 threadContexts[0]->activate();
1719 }
1720
1721 void
1722 InOrderCPU::syscallContext(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
1723 {
1724 // Syscall must be non-speculative, so squash from last stage
1725 unsigned squash_stage = NumStages - 1;
1726 inst->setSquashInfo(squash_stage);
1727
1728 // Squash In Pipeline Stage
1729 pipelineStage[squash_stage]->setupSquash(inst, tid);
1730
1731 // Schedule Squash Through-out Resource Pool
1732 resPool->scheduleEvent(
1733 (InOrderCPU::CPUEventType)ResourcePool::SquashAll, inst, 0);
1734 scheduleCpuEvent(Syscall, fault, tid, inst, delay, Syscall_Pri);
1735 }
1736
1737 void
1738 InOrderCPU::syscall(int64_t callnum, ThreadID tid)
1739 {
1740 DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
1741
1742 DPRINTF(Activity,"Activity: syscall() called.\n");
1743
1744 // Temporarily increase this by one to account for the syscall
1745 // instruction.
1746 ++(this->thread[tid]->funcExeInst);
1747
1748 // Execute the actual syscall.
1749 this->thread[tid]->syscall(callnum);
1750
1751 // Decrease funcExeInst by one as the normal commit will handle
1752 // incrementing it.
1753 --(this->thread[tid]->funcExeInst);
1754
1755 // Clear Non-Speculative Block Variable
1756 nonSpecInstActive[tid] = false;
1757 }
1758
1759 TheISA::TLB*
1760 InOrderCPU::getITBPtr()
1761 {
1762 CacheUnit *itb_res = resPool->getInstUnit();
1763 return itb_res->tlb();
1764 }
1765
1766
1767 TheISA::TLB*
1768 InOrderCPU::getDTBPtr()
1769 {
1770 return resPool->getDataUnit()->tlb();
1771 }
1772
1773 TheISA::Decoder *
1774 InOrderCPU::getDecoderPtr(unsigned tid)
1775 {
1776 return resPool->getInstUnit()->decoder[tid];
1777 }
1778
1779 Fault
1780 InOrderCPU::read(DynInstPtr inst, Addr addr,
1781 uint8_t *data, unsigned size, unsigned flags)
1782 {
1783 return resPool->getDataUnit()->read(inst, addr, data, size, flags);
1784 }
1785
1786 Fault
1787 InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
1788 Addr addr, unsigned flags, uint64_t *write_res)
1789 {
1790 return resPool->getDataUnit()->write(inst, data, size, addr, flags,
1791 write_res);
1792 }