trace: reimplement the DTRACE function so it doesn't use a vector
[gem5.git] / src / cpu / inorder / cpu.cc
1 /*
2 * Copyright (c) 2007 MIPS Technologies, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Korey Sewell
29 *
30 */
31
32 #include <algorithm>
33
34 #include "arch/utility.hh"
35 #include "config/full_system.hh"
36 #include "config/the_isa.hh"
37 #include "cpu/inorder/resources/resource_list.hh"
38 #include "cpu/inorder/cpu.hh"
39 #include "cpu/inorder/first_stage.hh"
40 #include "cpu/inorder/inorder_dyn_inst.hh"
41 #include "cpu/inorder/pipeline_traits.hh"
42 #include "cpu/inorder/resource_pool.hh"
43 #include "cpu/inorder/thread_context.hh"
44 #include "cpu/inorder/thread_state.hh"
45 #include "cpu/activity.hh"
46 #include "cpu/base.hh"
47 #include "cpu/exetrace.hh"
48 #include "cpu/simple_thread.hh"
49 #include "cpu/thread_context.hh"
50 #include "debug/Activity.hh"
51 #include "debug/InOrderCPU.hh"
52 #include "debug/RefCount.hh"
53 #include "debug/SkedCache.hh"
54 #include "mem/translating_port.hh"
55 #include "params/InOrderCPU.hh"
56 #include "sim/process.hh"
57 #include "sim/stat_control.hh"
58
59 #if FULL_SYSTEM
60 #include "cpu/quiesce_event.hh"
61 #include "sim/system.hh"
62 #endif
63
64 #if THE_ISA == ALPHA_ISA
65 #include "arch/alpha/osfpal.hh"
66 #endif
67
68 using namespace std;
69 using namespace TheISA;
70 using namespace ThePipeline;
71
72 InOrderCPU::TickEvent::TickEvent(InOrderCPU *c)
73 : Event(CPU_Tick_Pri), cpu(c)
74 { }
75
76
77 void
78 InOrderCPU::TickEvent::process()
79 {
80 cpu->tick();
81 }
82
83
84 const char *
85 InOrderCPU::TickEvent::description()
86 {
87 return "InOrderCPU tick event";
88 }
89
90 InOrderCPU::CPUEvent::CPUEvent(InOrderCPU *_cpu, CPUEventType e_type,
91 Fault fault, ThreadID _tid, DynInstPtr inst,
92 unsigned event_pri_offset)
93 : Event(Event::Priority((unsigned int)CPU_Tick_Pri + event_pri_offset)),
94 cpu(_cpu)
95 {
96 setEvent(e_type, fault, _tid, inst);
97 }
98
99
100 std::string InOrderCPU::eventNames[NumCPUEvents] =
101 {
102 "ActivateThread",
103 "ActivateNextReadyThread",
104 "DeactivateThread",
105 "HaltThread",
106 "SuspendThread",
107 "Trap",
108 "InstGraduated",
109 "SquashFromMemStall",
110 "UpdatePCs"
111 };
112
113 void
114 InOrderCPU::CPUEvent::process()
115 {
116 switch (cpuEventType)
117 {
118 case ActivateThread:
119 cpu->activateThread(tid);
120 break;
121
122 case ActivateNextReadyThread:
123 cpu->activateNextReadyThread();
124 break;
125
126 case DeactivateThread:
127 cpu->deactivateThread(tid);
128 break;
129
130 case HaltThread:
131 cpu->haltThread(tid);
132 break;
133
134 case SuspendThread:
135 cpu->suspendThread(tid);
136 break;
137
138 case SquashFromMemStall:
139 cpu->squashDueToMemStall(inst->squashingStage, inst->seqNum, tid);
140 break;
141
142 case Trap:
143 cpu->trapCPU(fault, tid, inst);
144 break;
145
146 default:
147 fatal("Unrecognized Event Type %s", eventNames[cpuEventType]);
148 }
149
150 cpu->cpuEventRemoveList.push(this);
151 }
152
153
154
155 const char *
156 InOrderCPU::CPUEvent::description()
157 {
158 return "InOrderCPU event";
159 }
160
161 void
162 InOrderCPU::CPUEvent::scheduleEvent(int delay)
163 {
164 assert(!scheduled() || squashed());
165 cpu->reschedule(this, cpu->nextCycle(curTick() + cpu->ticks(delay)), true);
166 }
167
168 void
169 InOrderCPU::CPUEvent::unscheduleEvent()
170 {
171 if (scheduled())
172 squash();
173 }
174
175 InOrderCPU::InOrderCPU(Params *params)
176 : BaseCPU(params),
177 cpu_id(params->cpu_id),
178 coreType("default"),
179 _status(Idle),
180 tickEvent(this),
181 stageWidth(params->stageWidth),
182 timeBuffer(2 , 2),
183 removeInstsThisCycle(false),
184 activityRec(params->name, NumStages, 10, params->activity),
185 #if FULL_SYSTEM
186 system(params->system),
187 physmem(system->physmem),
188 #endif // FULL_SYSTEM
189 #ifdef DEBUG
190 cpuEventNum(0),
191 resReqCount(0),
192 #endif // DEBUG
193 switchCount(0),
194 deferRegistration(false/*params->deferRegistration*/),
195 stageTracing(params->stageTracing),
196 instsPerSwitch(0)
197 {
198 ThreadID active_threads;
199 cpu_params = params;
200
201 resPool = new ResourcePool(this, params);
202
203 // Resize for Multithreading CPUs
204 thread.resize(numThreads);
205
206 #if FULL_SYSTEM
207 active_threads = 1;
208 #else
209 active_threads = params->workload.size();
210
211 if (active_threads > MaxThreads) {
212 panic("Workload Size too large. Increase the 'MaxThreads'"
213 "in your InOrder implementation or "
214 "edit your workload size.");
215 }
216
217
218 if (active_threads > 1) {
219 threadModel = (InOrderCPU::ThreadModel) params->threadModel;
220
221 if (threadModel == SMT) {
222 DPRINTF(InOrderCPU, "Setting Thread Model to SMT.\n");
223 } else if (threadModel == SwitchOnCacheMiss) {
224 DPRINTF(InOrderCPU, "Setting Thread Model to "
225 "Switch On Cache Miss\n");
226 }
227
228 } else {
229 threadModel = Single;
230 }
231
232
233
234 #endif
235
236 // Bind the fetch & data ports from the resource pool.
237 fetchPortIdx = resPool->getPortIdx(params->fetchMemPort);
238 if (fetchPortIdx == 0) {
239 fatal("Unable to find port to fetch instructions from.\n");
240 }
241
242 dataPortIdx = resPool->getPortIdx(params->dataMemPort);
243 if (dataPortIdx == 0) {
244 fatal("Unable to find port for data.\n");
245 }
246
247 for (ThreadID tid = 0; tid < numThreads; ++tid) {
248 #if FULL_SYSTEM
249 // SMT is not supported in FS mode yet.
250 assert(numThreads == 1);
251 thread[tid] = new Thread(this, 0);
252 #else
253 if (tid < (ThreadID)params->workload.size()) {
254 DPRINTF(InOrderCPU, "Workload[%i] process is %#x\n",
255 tid, params->workload[tid]->prog_fname);
256 thread[tid] =
257 new Thread(this, tid, params->workload[tid]);
258 } else {
259 //Allocate Empty thread so M5 can use later
260 //when scheduling threads to CPU
261 Process* dummy_proc = params->workload[0];
262 thread[tid] = new Thread(this, tid, dummy_proc);
263 }
264
265 // Eventually set this with parameters...
266 asid[tid] = tid;
267 #endif
268
269 // Setup the TC that will serve as the interface to the threads/CPU.
270 InOrderThreadContext *tc = new InOrderThreadContext;
271 tc->cpu = this;
272 tc->thread = thread[tid];
273
274 // Give the thread the TC.
275 thread[tid]->tc = tc;
276 thread[tid]->setFuncExeInst(0);
277 globalSeqNum[tid] = 1;
278
279 // Add the TC to the CPU's list of TC's.
280 this->threadContexts.push_back(tc);
281 }
282
283 // Initialize TimeBuffer Stage Queues
284 for (int stNum=0; stNum < NumStages - 1; stNum++) {
285 stageQueue[stNum] = new StageQueue(NumStages, NumStages);
286 stageQueue[stNum]->id(stNum);
287 }
288
289
290 // Set Up Pipeline Stages
291 for (int stNum=0; stNum < NumStages; stNum++) {
292 if (stNum == 0)
293 pipelineStage[stNum] = new FirstStage(params, stNum);
294 else
295 pipelineStage[stNum] = new PipelineStage(params, stNum);
296
297 pipelineStage[stNum]->setCPU(this);
298 pipelineStage[stNum]->setActiveThreads(&activeThreads);
299 pipelineStage[stNum]->setTimeBuffer(&timeBuffer);
300
301 // Take Care of 1st/Nth stages
302 if (stNum > 0)
303 pipelineStage[stNum]->setPrevStageQueue(stageQueue[stNum - 1]);
304 if (stNum < NumStages - 1)
305 pipelineStage[stNum]->setNextStageQueue(stageQueue[stNum]);
306 }
307
308 // Initialize thread specific variables
309 for (ThreadID tid = 0; tid < numThreads; tid++) {
310 archRegDepMap[tid].setCPU(this);
311
312 nonSpecInstActive[tid] = false;
313 nonSpecSeqNum[tid] = 0;
314
315 squashSeqNum[tid] = MaxAddr;
316 lastSquashCycle[tid] = 0;
317
318 memset(intRegs[tid], 0, sizeof(intRegs[tid]));
319 memset(floatRegs.i[tid], 0, sizeof(floatRegs.i[tid]));
320 isa[tid].clear();
321
322 // Define dummy instructions and resource requests to be used.
323 dummyInst[tid] = new InOrderDynInst(this,
324 thread[tid],
325 0,
326 tid,
327 asid[tid]);
328
329 dummyReq[tid] = new ResourceRequest(resPool->getResource(0));
330 }
331
332 dummyReqInst = new InOrderDynInst(this, NULL, 0, 0, 0);
333 dummyReqInst->setSquashed();
334 dummyReqInst->resetInstCount();
335
336 dummyBufferInst = new InOrderDynInst(this, NULL, 0, 0, 0);
337 dummyBufferInst->setSquashed();
338 dummyBufferInst->resetInstCount();
339
340 endOfSkedIt = skedCache.end();
341 frontEndSked = createFrontEndSked();
342
343 lastRunningCycle = curTick();
344
345 // Reset CPU to reset state.
346 #if FULL_SYSTEM
347 Fault resetFault = new ResetFault();
348 resetFault->invoke(tcBase());
349 #endif
350
351
352 // Schedule First Tick Event, CPU will reschedule itself from here on out.
353 scheduleTickEvent(0);
354 }
355
356 InOrderCPU::~InOrderCPU()
357 {
358 delete resPool;
359
360 std::map<SkedID, ThePipeline::RSkedPtr>::iterator sked_it =
361 skedCache.begin();
362 std::map<SkedID, ThePipeline::RSkedPtr>::iterator sked_end =
363 skedCache.end();
364
365 while (sked_it != sked_end) {
366 delete (*sked_it).second;
367 sked_it++;
368 }
369 skedCache.clear();
370 }
371
372 std::map<InOrderCPU::SkedID, ThePipeline::RSkedPtr> InOrderCPU::skedCache;
373
374 RSkedPtr
375 InOrderCPU::createFrontEndSked()
376 {
377 RSkedPtr res_sked = new ResourceSked();
378 int stage_num = 0;
379 StageScheduler F(res_sked, stage_num++);
380 StageScheduler D(res_sked, stage_num++);
381
382 // FETCH
383 F.needs(FetchSeq, FetchSeqUnit::AssignNextPC);
384 F.needs(ICache, FetchUnit::InitiateFetch);
385
386 // DECODE
387 D.needs(ICache, FetchUnit::CompleteFetch);
388 D.needs(Decode, DecodeUnit::DecodeInst);
389 D.needs(BPred, BranchPredictor::PredictBranch);
390 D.needs(FetchSeq, FetchSeqUnit::UpdateTargetPC);
391
392
393 DPRINTF(SkedCache, "Resource Sked created for instruction \"front_end\"\n");
394
395 return res_sked;
396 }
397
398 RSkedPtr
399 InOrderCPU::createBackEndSked(DynInstPtr inst)
400 {
401 RSkedPtr res_sked = lookupSked(inst);
402 if (res_sked != NULL) {
403 DPRINTF(SkedCache, "Found %s in sked cache.\n",
404 inst->instName());
405 return res_sked;
406 } else {
407 res_sked = new ResourceSked();
408 }
409
410 int stage_num = ThePipeline::BackEndStartStage;
411 StageScheduler X(res_sked, stage_num++);
412 StageScheduler M(res_sked, stage_num++);
413 StageScheduler W(res_sked, stage_num++);
414
415 if (!inst->staticInst) {
416 warn_once("Static Instruction Object Not Set. Can't Create"
417 " Back End Schedule");
418 return NULL;
419 }
420
421 // EXECUTE
422 for (int idx=0; idx < inst->numSrcRegs(); idx++) {
423 if (!idx || !inst->isStore()) {
424 X.needs(RegManager, UseDefUnit::ReadSrcReg, idx);
425 }
426 }
427
428 if ( inst->isNonSpeculative() ) {
429 // skip execution of non speculative insts until later
430 } else if ( inst->isMemRef() ) {
431 if ( inst->isLoad() ) {
432 X.needs(AGEN, AGENUnit::GenerateAddr);
433 }
434 } else if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
435 X.needs(MDU, MultDivUnit::StartMultDiv);
436 } else {
437 X.needs(ExecUnit, ExecutionUnit::ExecuteInst);
438 }
439
440 if (inst->opClass() == IntMultOp || inst->opClass() == IntDivOp) {
441 X.needs(MDU, MultDivUnit::EndMultDiv);
442 }
443
444 // MEMORY
445 if ( inst->isLoad() ) {
446 M.needs(DCache, CacheUnit::InitiateReadData);
447 } else if ( inst->isStore() ) {
448 if ( inst->numSrcRegs() >= 2 ) {
449 M.needs(RegManager, UseDefUnit::ReadSrcReg, 1);
450 }
451 M.needs(AGEN, AGENUnit::GenerateAddr);
452 M.needs(DCache, CacheUnit::InitiateWriteData);
453 }
454
455
456 // WRITEBACK
457 if ( inst->isLoad() ) {
458 W.needs(DCache, CacheUnit::CompleteReadData);
459 } else if ( inst->isStore() ) {
460 W.needs(DCache, CacheUnit::CompleteWriteData);
461 }
462
463 if ( inst->isNonSpeculative() ) {
464 if ( inst->isMemRef() ) fatal("Non-Speculative Memory Instruction");
465 W.needs(ExecUnit, ExecutionUnit::ExecuteInst);
466 }
467
468 W.needs(Grad, GraduationUnit::GraduateInst);
469
470 for (int idx=0; idx < inst->numDestRegs(); idx++) {
471 W.needs(RegManager, UseDefUnit::WriteDestReg, idx);
472 }
473
474 // Insert Back Schedule into our cache of
475 // resource schedules
476 addToSkedCache(inst, res_sked);
477
478 DPRINTF(SkedCache, "Back End Sked Created for instruction: %s (%08p)\n",
479 inst->instName(), inst->getMachInst());
480 res_sked->print();
481
482 return res_sked;
483 }
484
485 void
486 InOrderCPU::regStats()
487 {
488 /* Register the Resource Pool's stats here.*/
489 resPool->regStats();
490
491 /* Register for each Pipeline Stage */
492 for (int stage_num=0; stage_num < ThePipeline::NumStages; stage_num++) {
493 pipelineStage[stage_num]->regStats();
494 }
495
496 /* Register any of the InOrderCPU's stats here.*/
497 instsPerCtxtSwitch
498 .name(name() + ".instsPerContextSwitch")
499 .desc("Instructions Committed Per Context Switch")
500 .prereq(instsPerCtxtSwitch);
501
502 numCtxtSwitches
503 .name(name() + ".contextSwitches")
504 .desc("Number of context switches");
505
506 comLoads
507 .name(name() + ".comLoads")
508 .desc("Number of Load instructions committed");
509
510 comStores
511 .name(name() + ".comStores")
512 .desc("Number of Store instructions committed");
513
514 comBranches
515 .name(name() + ".comBranches")
516 .desc("Number of Branches instructions committed");
517
518 comNops
519 .name(name() + ".comNops")
520 .desc("Number of Nop instructions committed");
521
522 comNonSpec
523 .name(name() + ".comNonSpec")
524 .desc("Number of Non-Speculative instructions committed");
525
526 comInts
527 .name(name() + ".comInts")
528 .desc("Number of Integer instructions committed");
529
530 comFloats
531 .name(name() + ".comFloats")
532 .desc("Number of Floating Point instructions committed");
533
534 timesIdled
535 .name(name() + ".timesIdled")
536 .desc("Number of times that the entire CPU went into an idle state and"
537 " unscheduled itself")
538 .prereq(timesIdled);
539
540 idleCycles
541 .name(name() + ".idleCycles")
542 .desc("Number of cycles cpu's stages were not processed");
543
544 runCycles
545 .name(name() + ".runCycles")
546 .desc("Number of cycles cpu stages are processed.");
547
548 activity
549 .name(name() + ".activity")
550 .desc("Percentage of cycles cpu is active")
551 .precision(6);
552 activity = (runCycles / numCycles) * 100;
553
554 threadCycles
555 .init(numThreads)
556 .name(name() + ".threadCycles")
557 .desc("Total Number of Cycles A Thread Was Active in CPU (Per-Thread)");
558
559 smtCycles
560 .name(name() + ".smtCycles")
561 .desc("Total number of cycles that the CPU was in SMT-mode");
562
563 committedInsts
564 .init(numThreads)
565 .name(name() + ".committedInsts")
566 .desc("Number of Instructions Simulated (Per-Thread)");
567
568 smtCommittedInsts
569 .init(numThreads)
570 .name(name() + ".smtCommittedInsts")
571 .desc("Number of SMT Instructions Simulated (Per-Thread)");
572
573 totalCommittedInsts
574 .name(name() + ".committedInsts_total")
575 .desc("Number of Instructions Simulated (Total)");
576
577 cpi
578 .name(name() + ".cpi")
579 .desc("CPI: Cycles Per Instruction (Per-Thread)")
580 .precision(6);
581 cpi = numCycles / committedInsts;
582
583 smtCpi
584 .name(name() + ".smt_cpi")
585 .desc("CPI: Total SMT-CPI")
586 .precision(6);
587 smtCpi = smtCycles / smtCommittedInsts;
588
589 totalCpi
590 .name(name() + ".cpi_total")
591 .desc("CPI: Total CPI of All Threads")
592 .precision(6);
593 totalCpi = numCycles / totalCommittedInsts;
594
595 ipc
596 .name(name() + ".ipc")
597 .desc("IPC: Instructions Per Cycle (Per-Thread)")
598 .precision(6);
599 ipc = committedInsts / numCycles;
600
601 smtIpc
602 .name(name() + ".smt_ipc")
603 .desc("IPC: Total SMT-IPC")
604 .precision(6);
605 smtIpc = smtCommittedInsts / smtCycles;
606
607 totalIpc
608 .name(name() + ".ipc_total")
609 .desc("IPC: Total IPC of All Threads")
610 .precision(6);
611 totalIpc = totalCommittedInsts / numCycles;
612
613 BaseCPU::regStats();
614 }
615
616
617 void
618 InOrderCPU::tick()
619 {
620 DPRINTF(InOrderCPU, "\n\nInOrderCPU: Ticking main, InOrderCPU.\n");
621
622 ++numCycles;
623
624 bool pipes_idle = true;
625
626 //Tick each of the stages
627 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
628 pipelineStage[stNum]->tick();
629
630 pipes_idle = pipes_idle && pipelineStage[stNum]->idle;
631 }
632
633 if (pipes_idle)
634 idleCycles++;
635 else
636 runCycles++;
637
638 // Now advance the time buffers one tick
639 timeBuffer.advance();
640 for (int sqNum=0; sqNum < NumStages - 1; sqNum++) {
641 stageQueue[sqNum]->advance();
642 }
643 activityRec.advance();
644
645 // Any squashed events, or insts then remove them now
646 cleanUpRemovedEvents();
647 cleanUpRemovedInsts();
648
649 // Re-schedule CPU for this cycle
650 if (!tickEvent.scheduled()) {
651 if (_status == SwitchedOut) {
652 // increment stat
653 lastRunningCycle = curTick();
654 } else if (!activityRec.active()) {
655 DPRINTF(InOrderCPU, "sleeping CPU.\n");
656 lastRunningCycle = curTick();
657 timesIdled++;
658 } else {
659 //Tick next_tick = curTick() + cycles(1);
660 //tickEvent.schedule(next_tick);
661 schedule(&tickEvent, nextCycle(curTick() + 1));
662 DPRINTF(InOrderCPU, "Scheduled CPU for next tick @ %i.\n",
663 nextCycle(curTick() + 1));
664 }
665 }
666
667 tickThreadStats();
668 updateThreadPriority();
669 }
670
671
672 void
673 InOrderCPU::init()
674 {
675 if (!deferRegistration) {
676 registerThreadContexts();
677 }
678
679 // Set inSyscall so that the CPU doesn't squash when initially
680 // setting up registers.
681 for (ThreadID tid = 0; tid < numThreads; ++tid)
682 thread[tid]->inSyscall = true;
683
684 #if FULL_SYSTEM
685 for (ThreadID tid = 0; tid < numThreads; tid++) {
686 ThreadContext *src_tc = threadContexts[tid];
687 TheISA::initCPU(src_tc, src_tc->contextId());
688 }
689 #endif
690
691 // Clear inSyscall.
692 for (ThreadID tid = 0; tid < numThreads; ++tid)
693 thread[tid]->inSyscall = false;
694
695 // Call Initializiation Routine for Resource Pool
696 resPool->init();
697 }
698
699 Port*
700 InOrderCPU::getPort(const std::string &if_name, int idx)
701 {
702 return resPool->getPort(if_name, idx);
703 }
704
705 #if FULL_SYSTEM
706 Fault
707 InOrderCPU::hwrei(ThreadID tid)
708 {
709 panic("hwrei: Unimplemented");
710
711 return NoFault;
712 }
713
714
715 bool
716 InOrderCPU::simPalCheck(int palFunc, ThreadID tid)
717 {
718 panic("simPalCheck: Unimplemented");
719
720 return true;
721 }
722
723
724 Fault
725 InOrderCPU::getInterrupts()
726 {
727 // Check if there are any outstanding interrupts
728 return interrupts->getInterrupt(threadContexts[0]);
729 }
730
731
732 void
733 InOrderCPU::processInterrupts(Fault interrupt)
734 {
735 // Check for interrupts here. For now can copy the code that
736 // exists within isa_fullsys_traits.hh. Also assume that thread 0
737 // is the one that handles the interrupts.
738 // @todo: Possibly consolidate the interrupt checking code.
739 // @todo: Allow other threads to handle interrupts.
740
741 assert(interrupt != NoFault);
742 interrupts->updateIntrInfo(threadContexts[0]);
743
744 DPRINTF(InOrderCPU, "Interrupt %s being handled\n", interrupt->name());
745
746 // Note: Context ID ok here? Impl. of FS mode needs to revisit this
747 trap(interrupt, threadContexts[0]->contextId(), dummyBufferInst);
748 }
749
750
751 void
752 InOrderCPU::updateMemPorts()
753 {
754 // Update all ThreadContext's memory ports (Functional/Virtual
755 // Ports)
756 ThreadID size = thread.size();
757 for (ThreadID i = 0; i < size; ++i)
758 thread[i]->connectMemPorts(thread[i]->getTC());
759 }
760 #endif
761
762 void
763 InOrderCPU::trap(Fault fault, ThreadID tid, DynInstPtr inst, int delay)
764 {
765 //@ Squash Pipeline during TRAP
766 scheduleCpuEvent(Trap, fault, tid, inst, delay);
767 }
768
769 void
770 InOrderCPU::trapCPU(Fault fault, ThreadID tid, DynInstPtr inst)
771 {
772 fault->invoke(tcBase(tid), inst->staticInst);
773 }
774
775 void
776 InOrderCPU::squashFromMemStall(DynInstPtr inst, ThreadID tid, int delay)
777 {
778 scheduleCpuEvent(SquashFromMemStall, NoFault, tid, inst, delay);
779 }
780
781
782 void
783 InOrderCPU::squashDueToMemStall(int stage_num, InstSeqNum seq_num,
784 ThreadID tid)
785 {
786 DPRINTF(InOrderCPU, "Squashing Pipeline Stages Due to Memory Stall...\n");
787
788 // Squash all instructions in each stage including
789 // instruction that caused the squash (seq_num - 1)
790 // NOTE: The stage bandwidth needs to be cleared so thats why
791 // the stalling instruction is squashed as well. The stalled
792 // instruction is previously placed in another intermediate buffer
793 // while it's stall is being handled.
794 InstSeqNum squash_seq_num = seq_num - 1;
795
796 for (int stNum=stage_num; stNum >= 0 ; stNum--) {
797 pipelineStage[stNum]->squashDueToMemStall(squash_seq_num, tid);
798 }
799 }
800
801 void
802 InOrderCPU::scheduleCpuEvent(CPUEventType c_event, Fault fault,
803 ThreadID tid, DynInstPtr inst,
804 unsigned delay, unsigned event_pri_offset)
805 {
806 CPUEvent *cpu_event = new CPUEvent(this, c_event, fault, tid, inst,
807 event_pri_offset);
808
809 Tick sked_tick = nextCycle(curTick() + ticks(delay));
810 if (delay >= 0) {
811 DPRINTF(InOrderCPU, "Scheduling CPU Event (%s) for cycle %i, [tid:%i].\n",
812 eventNames[c_event], curTick() + delay, tid);
813 schedule(cpu_event, sked_tick);
814 } else {
815 cpu_event->process();
816 cpuEventRemoveList.push(cpu_event);
817 }
818
819 // Broadcast event to the Resource Pool
820 // Need to reset tid just in case this is a dummy instruction
821 inst->setTid(tid);
822 resPool->scheduleEvent(c_event, inst, 0, 0, tid);
823 }
824
825 bool
826 InOrderCPU::isThreadActive(ThreadID tid)
827 {
828 list<ThreadID>::iterator isActive =
829 std::find(activeThreads.begin(), activeThreads.end(), tid);
830
831 return (isActive != activeThreads.end());
832 }
833
834 bool
835 InOrderCPU::isThreadReady(ThreadID tid)
836 {
837 list<ThreadID>::iterator isReady =
838 std::find(readyThreads.begin(), readyThreads.end(), tid);
839
840 return (isReady != readyThreads.end());
841 }
842
843 bool
844 InOrderCPU::isThreadSuspended(ThreadID tid)
845 {
846 list<ThreadID>::iterator isSuspended =
847 std::find(suspendedThreads.begin(), suspendedThreads.end(), tid);
848
849 return (isSuspended != suspendedThreads.end());
850 }
851
852 void
853 InOrderCPU::activateNextReadyThread()
854 {
855 if (readyThreads.size() >= 1) {
856 ThreadID ready_tid = readyThreads.front();
857
858 // Activate in Pipeline
859 activateThread(ready_tid);
860
861 // Activate in Resource Pool
862 resPool->activateAll(ready_tid);
863
864 list<ThreadID>::iterator ready_it =
865 std::find(readyThreads.begin(), readyThreads.end(), ready_tid);
866 readyThreads.erase(ready_it);
867 } else {
868 DPRINTF(InOrderCPU,
869 "Attempting to activate new thread, but No Ready Threads to"
870 "activate.\n");
871 DPRINTF(InOrderCPU,
872 "Unable to switch to next active thread.\n");
873 }
874 }
875
876 void
877 InOrderCPU::activateThread(ThreadID tid)
878 {
879 if (isThreadSuspended(tid)) {
880 DPRINTF(InOrderCPU,
881 "Removing [tid:%i] from suspended threads list.\n", tid);
882
883 list<ThreadID>::iterator susp_it =
884 std::find(suspendedThreads.begin(), suspendedThreads.end(),
885 tid);
886 suspendedThreads.erase(susp_it);
887 }
888
889 if (threadModel == SwitchOnCacheMiss &&
890 numActiveThreads() == 1) {
891 DPRINTF(InOrderCPU,
892 "Ignoring activation of [tid:%i], since [tid:%i] is "
893 "already running.\n", tid, activeThreadId());
894
895 DPRINTF(InOrderCPU,"Placing [tid:%i] on ready threads list\n",
896 tid);
897
898 readyThreads.push_back(tid);
899
900 } else if (!isThreadActive(tid)) {
901 DPRINTF(InOrderCPU,
902 "Adding [tid:%i] to active threads list.\n", tid);
903 activeThreads.push_back(tid);
904
905 activateThreadInPipeline(tid);
906
907 thread[tid]->lastActivate = curTick();
908
909 tcBase(tid)->setStatus(ThreadContext::Active);
910
911 wakeCPU();
912
913 numCtxtSwitches++;
914 }
915 }
916
917 void
918 InOrderCPU::activateThreadInPipeline(ThreadID tid)
919 {
920 for (int stNum=0; stNum < NumStages; stNum++) {
921 pipelineStage[stNum]->activateThread(tid);
922 }
923 }
924
925 void
926 InOrderCPU::deactivateContext(ThreadID tid, int delay)
927 {
928 DPRINTF(InOrderCPU,"[tid:%i]: Deactivating ...\n", tid);
929
930 scheduleCpuEvent(DeactivateThread, NoFault, tid, dummyInst[tid], delay);
931
932 // Be sure to signal that there's some activity so the CPU doesn't
933 // deschedule itself.
934 activityRec.activity();
935
936 _status = Running;
937 }
938
939 void
940 InOrderCPU::deactivateThread(ThreadID tid)
941 {
942 DPRINTF(InOrderCPU, "[tid:%i]: Calling deactivate thread.\n", tid);
943
944 if (isThreadActive(tid)) {
945 DPRINTF(InOrderCPU,"[tid:%i]: Removing from active threads list\n",
946 tid);
947 list<ThreadID>::iterator thread_it =
948 std::find(activeThreads.begin(), activeThreads.end(), tid);
949
950 removePipelineStalls(*thread_it);
951
952 activeThreads.erase(thread_it);
953
954 // Ideally, this should be triggered from the
955 // suspendContext/Thread functions
956 tcBase(tid)->setStatus(ThreadContext::Suspended);
957 }
958
959 assert(!isThreadActive(tid));
960 }
961
962 void
963 InOrderCPU::removePipelineStalls(ThreadID tid)
964 {
965 DPRINTF(InOrderCPU,"[tid:%i]: Removing all pipeline stalls\n",
966 tid);
967
968 for (int stNum = 0; stNum < NumStages ; stNum++) {
969 pipelineStage[stNum]->removeStalls(tid);
970 }
971
972 }
973
974 void
975 InOrderCPU::updateThreadPriority()
976 {
977 if (activeThreads.size() > 1)
978 {
979 //DEFAULT TO ROUND ROBIN SCHEME
980 //e.g. Move highest priority to end of thread list
981 list<ThreadID>::iterator list_begin = activeThreads.begin();
982 list<ThreadID>::iterator list_end = activeThreads.end();
983
984 unsigned high_thread = *list_begin;
985
986 activeThreads.erase(list_begin);
987
988 activeThreads.push_back(high_thread);
989 }
990 }
991
992 inline void
993 InOrderCPU::tickThreadStats()
994 {
995 /** Keep track of cycles that each thread is active */
996 list<ThreadID>::iterator thread_it = activeThreads.begin();
997 while (thread_it != activeThreads.end()) {
998 threadCycles[*thread_it]++;
999 thread_it++;
1000 }
1001
1002 // Keep track of cycles where SMT is active
1003 if (activeThreads.size() > 1) {
1004 smtCycles++;
1005 }
1006 }
1007
1008 void
1009 InOrderCPU::activateContext(ThreadID tid, int delay)
1010 {
1011 DPRINTF(InOrderCPU,"[tid:%i]: Activating ...\n", tid);
1012
1013
1014 scheduleCpuEvent(ActivateThread, NoFault, tid, dummyInst[tid], delay);
1015
1016 // Be sure to signal that there's some activity so the CPU doesn't
1017 // deschedule itself.
1018 activityRec.activity();
1019
1020 _status = Running;
1021 }
1022
1023 void
1024 InOrderCPU::activateNextReadyContext(int delay)
1025 {
1026 DPRINTF(InOrderCPU,"Activating next ready thread\n");
1027
1028 // NOTE: Add 5 to the event priority so that we always activate
1029 // threads after we've finished deactivating, squashing,etc.
1030 // other threads
1031 scheduleCpuEvent(ActivateNextReadyThread, NoFault, 0/*tid*/, dummyInst[0],
1032 delay, 5);
1033
1034 // Be sure to signal that there's some activity so the CPU doesn't
1035 // deschedule itself.
1036 activityRec.activity();
1037
1038 _status = Running;
1039 }
1040
1041 void
1042 InOrderCPU::haltContext(ThreadID tid, int delay)
1043 {
1044 DPRINTF(InOrderCPU, "[tid:%i]: Calling Halt Context...\n", tid);
1045
1046 scheduleCpuEvent(HaltThread, NoFault, tid, dummyInst[tid], delay);
1047
1048 activityRec.activity();
1049 }
1050
1051 void
1052 InOrderCPU::haltThread(ThreadID tid)
1053 {
1054 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Halted Threads List...\n", tid);
1055 deactivateThread(tid);
1056 squashThreadInPipeline(tid);
1057 haltedThreads.push_back(tid);
1058
1059 tcBase(tid)->setStatus(ThreadContext::Halted);
1060
1061 if (threadModel == SwitchOnCacheMiss) {
1062 activateNextReadyContext();
1063 }
1064 }
1065
1066 void
1067 InOrderCPU::suspendContext(ThreadID tid, int delay)
1068 {
1069 scheduleCpuEvent(SuspendThread, NoFault, tid, dummyInst[tid], delay);
1070 }
1071
1072 void
1073 InOrderCPU::suspendThread(ThreadID tid)
1074 {
1075 DPRINTF(InOrderCPU, "[tid:%i]: Placing on Suspended Threads List...\n",
1076 tid);
1077 deactivateThread(tid);
1078 suspendedThreads.push_back(tid);
1079 thread[tid]->lastSuspend = curTick();
1080
1081 tcBase(tid)->setStatus(ThreadContext::Suspended);
1082 }
1083
1084 void
1085 InOrderCPU::squashThreadInPipeline(ThreadID tid)
1086 {
1087 //Squash all instructions in each stage
1088 for (int stNum=NumStages - 1; stNum >= 0 ; stNum--) {
1089 pipelineStage[stNum]->squash(0 /*seq_num*/, tid);
1090 }
1091 }
1092
1093 PipelineStage*
1094 InOrderCPU::getPipeStage(int stage_num)
1095 {
1096 return pipelineStage[stage_num];
1097 }
1098
1099 uint64_t
1100 InOrderCPU::readIntReg(int reg_idx, ThreadID tid)
1101 {
1102 return intRegs[tid][reg_idx];
1103 }
1104
1105 FloatReg
1106 InOrderCPU::readFloatReg(int reg_idx, ThreadID tid)
1107 {
1108 return floatRegs.f[tid][reg_idx];
1109 }
1110
1111 FloatRegBits
1112 InOrderCPU::readFloatRegBits(int reg_idx, ThreadID tid)
1113 {;
1114 return floatRegs.i[tid][reg_idx];
1115 }
1116
1117 void
1118 InOrderCPU::setIntReg(int reg_idx, uint64_t val, ThreadID tid)
1119 {
1120 intRegs[tid][reg_idx] = val;
1121 }
1122
1123
1124 void
1125 InOrderCPU::setFloatReg(int reg_idx, FloatReg val, ThreadID tid)
1126 {
1127 floatRegs.f[tid][reg_idx] = val;
1128 }
1129
1130
1131 void
1132 InOrderCPU::setFloatRegBits(int reg_idx, FloatRegBits val, ThreadID tid)
1133 {
1134 floatRegs.i[tid][reg_idx] = val;
1135 }
1136
1137 uint64_t
1138 InOrderCPU::readRegOtherThread(unsigned reg_idx, ThreadID tid)
1139 {
1140 // If Default value is set, then retrieve target thread
1141 if (tid == InvalidThreadID) {
1142 tid = TheISA::getTargetThread(tcBase(tid));
1143 }
1144
1145 if (reg_idx < FP_Base_DepTag) {
1146 // Integer Register File
1147 return readIntReg(reg_idx, tid);
1148 } else if (reg_idx < Ctrl_Base_DepTag) {
1149 // Float Register File
1150 reg_idx -= FP_Base_DepTag;
1151 return readFloatRegBits(reg_idx, tid);
1152 } else {
1153 reg_idx -= Ctrl_Base_DepTag;
1154 return readMiscReg(reg_idx, tid); // Misc. Register File
1155 }
1156 }
1157 void
1158 InOrderCPU::setRegOtherThread(unsigned reg_idx, const MiscReg &val,
1159 ThreadID tid)
1160 {
1161 // If Default value is set, then retrieve target thread
1162 if (tid == InvalidThreadID) {
1163 tid = TheISA::getTargetThread(tcBase(tid));
1164 }
1165
1166 if (reg_idx < FP_Base_DepTag) { // Integer Register File
1167 setIntReg(reg_idx, val, tid);
1168 } else if (reg_idx < Ctrl_Base_DepTag) { // Float Register File
1169 reg_idx -= FP_Base_DepTag;
1170 setFloatRegBits(reg_idx, val, tid);
1171 } else {
1172 reg_idx -= Ctrl_Base_DepTag;
1173 setMiscReg(reg_idx, val, tid); // Misc. Register File
1174 }
1175 }
1176
1177 MiscReg
1178 InOrderCPU::readMiscRegNoEffect(int misc_reg, ThreadID tid)
1179 {
1180 return isa[tid].readMiscRegNoEffect(misc_reg);
1181 }
1182
1183 MiscReg
1184 InOrderCPU::readMiscReg(int misc_reg, ThreadID tid)
1185 {
1186 return isa[tid].readMiscReg(misc_reg, tcBase(tid));
1187 }
1188
1189 void
1190 InOrderCPU::setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid)
1191 {
1192 isa[tid].setMiscRegNoEffect(misc_reg, val);
1193 }
1194
1195 void
1196 InOrderCPU::setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid)
1197 {
1198 isa[tid].setMiscReg(misc_reg, val, tcBase(tid));
1199 }
1200
1201
1202 InOrderCPU::ListIt
1203 InOrderCPU::addInst(DynInstPtr &inst)
1204 {
1205 ThreadID tid = inst->readTid();
1206
1207 instList[tid].push_back(inst);
1208
1209 return --(instList[tid].end());
1210 }
1211
1212 void
1213 InOrderCPU::updateContextSwitchStats()
1214 {
1215 // Set Average Stat Here, then reset to 0
1216 instsPerCtxtSwitch = instsPerSwitch;
1217 instsPerSwitch = 0;
1218 }
1219
1220
1221 void
1222 InOrderCPU::instDone(DynInstPtr inst, ThreadID tid)
1223 {
1224 // Set the CPU's PCs - This contributes to the precise state of the CPU
1225 // which can be used when restoring a thread to the CPU after after any
1226 // type of context switching activity (fork, exception, etc.)
1227 pcState(inst->pcState(), tid);
1228
1229 if (inst->isControl()) {
1230 thread[tid]->lastGradIsBranch = true;
1231 thread[tid]->lastBranchPC = inst->pcState();
1232 TheISA::advancePC(thread[tid]->lastBranchPC, inst->staticInst);
1233 } else {
1234 thread[tid]->lastGradIsBranch = false;
1235 }
1236
1237
1238 // Finalize Trace Data For Instruction
1239 if (inst->traceData) {
1240 //inst->traceData->setCycle(curTick());
1241 inst->traceData->setFetchSeq(inst->seqNum);
1242 //inst->traceData->setCPSeq(cpu->tcBase(tid)->numInst);
1243 inst->traceData->dump();
1244 delete inst->traceData;
1245 inst->traceData = NULL;
1246 }
1247
1248 // Increment active thread's instruction count
1249 instsPerSwitch++;
1250
1251 // Increment thread-state's instruction count
1252 thread[tid]->numInst++;
1253
1254 // Increment thread-state's instruction stats
1255 thread[tid]->numInsts++;
1256
1257 // Count committed insts per thread stats
1258 committedInsts[tid]++;
1259
1260 // Count total insts committed stat
1261 totalCommittedInsts++;
1262
1263 // Count SMT-committed insts per thread stat
1264 if (numActiveThreads() > 1) {
1265 smtCommittedInsts[tid]++;
1266 }
1267
1268 // Instruction-Mix Stats
1269 if (inst->isLoad()) {
1270 comLoads++;
1271 } else if (inst->isStore()) {
1272 comStores++;
1273 } else if (inst->isControl()) {
1274 comBranches++;
1275 } else if (inst->isNop()) {
1276 comNops++;
1277 } else if (inst->isNonSpeculative()) {
1278 comNonSpec++;
1279 } else if (inst->isInteger()) {
1280 comInts++;
1281 } else if (inst->isFloating()) {
1282 comFloats++;
1283 }
1284
1285 // Check for instruction-count-based events.
1286 comInstEventQueue[tid]->serviceEvents(thread[tid]->numInst);
1287
1288 // Broadcast to other resources an instruction
1289 // has been completed
1290 resPool->scheduleEvent((CPUEventType)ResourcePool::InstGraduated, inst,
1291 0, 0, tid);
1292
1293 // Finally, remove instruction from CPU
1294 removeInst(inst);
1295 }
1296
1297 // currently unused function, but substitute repetitive code w/this function
1298 // call
1299 void
1300 InOrderCPU::addToRemoveList(DynInstPtr &inst)
1301 {
1302 removeInstsThisCycle = true;
1303 if (!inst->isRemoveList()) {
1304 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1305 "[sn:%lli] to remove list\n",
1306 inst->threadNumber, inst->pcState(), inst->seqNum);
1307 inst->setRemoveList();
1308 removeList.push(inst->getInstListIt());
1309 } else {
1310 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1311 "[sn:%lli], already remove list\n",
1312 inst->threadNumber, inst->pcState(), inst->seqNum);
1313 }
1314
1315 }
1316
1317 void
1318 InOrderCPU::removeInst(DynInstPtr &inst)
1319 {
1320 DPRINTF(InOrderCPU, "Removing graduated instruction [tid:%i] PC %s "
1321 "[sn:%lli]\n",
1322 inst->threadNumber, inst->pcState(), inst->seqNum);
1323
1324 removeInstsThisCycle = true;
1325
1326 // Remove the instruction.
1327 if (!inst->isRemoveList()) {
1328 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1329 "[sn:%lli] to remove list\n",
1330 inst->threadNumber, inst->pcState(), inst->seqNum);
1331 inst->setRemoveList();
1332 removeList.push(inst->getInstListIt());
1333 } else {
1334 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i] PC %s "
1335 "[sn:%lli], already on remove list\n",
1336 inst->threadNumber, inst->pcState(), inst->seqNum);
1337 }
1338
1339 }
1340
1341 void
1342 InOrderCPU::removeInstsUntil(const InstSeqNum &seq_num, ThreadID tid)
1343 {
1344 //assert(!instList[tid].empty());
1345
1346 removeInstsThisCycle = true;
1347
1348 ListIt inst_iter = instList[tid].end();
1349
1350 inst_iter--;
1351
1352 DPRINTF(InOrderCPU, "Squashing instructions from CPU instruction "
1353 "list that are from [tid:%i] and above [sn:%lli] (end=%lli).\n",
1354 tid, seq_num, (*inst_iter)->seqNum);
1355
1356 while ((*inst_iter)->seqNum > seq_num) {
1357
1358 bool break_loop = (inst_iter == instList[tid].begin());
1359
1360 squashInstIt(inst_iter, tid);
1361
1362 inst_iter--;
1363
1364 if (break_loop)
1365 break;
1366 }
1367 }
1368
1369
1370 inline void
1371 InOrderCPU::squashInstIt(const ListIt &instIt, ThreadID tid)
1372 {
1373 if ((*instIt)->threadNumber == tid) {
1374 DPRINTF(InOrderCPU, "Squashing instruction, "
1375 "[tid:%i] [sn:%lli] PC %s\n",
1376 (*instIt)->threadNumber,
1377 (*instIt)->seqNum,
1378 (*instIt)->pcState());
1379
1380 (*instIt)->setSquashed();
1381
1382 if (!(*instIt)->isRemoveList()) {
1383 DPRINTF(InOrderCPU, "Pushing instruction [tid:%i] PC %s "
1384 "[sn:%lli] to remove list\n",
1385 (*instIt)->threadNumber, (*instIt)->pcState(),
1386 (*instIt)->seqNum);
1387 (*instIt)->setRemoveList();
1388 removeList.push(instIt);
1389 } else {
1390 DPRINTF(InOrderCPU, "Ignoring instruction removal for [tid:%i]"
1391 " PC %s [sn:%lli], already on remove list\n",
1392 (*instIt)->threadNumber, (*instIt)->pcState(),
1393 (*instIt)->seqNum);
1394 }
1395
1396 }
1397
1398 }
1399
1400
1401 void
1402 InOrderCPU::cleanUpRemovedInsts()
1403 {
1404 while (!removeList.empty()) {
1405 DPRINTF(InOrderCPU, "Removing instruction, "
1406 "[tid:%i] [sn:%lli] PC %s\n",
1407 (*removeList.front())->threadNumber,
1408 (*removeList.front())->seqNum,
1409 (*removeList.front())->pcState());
1410
1411 DynInstPtr inst = *removeList.front();
1412 ThreadID tid = inst->threadNumber;
1413
1414 // Remove From Register Dependency Map, If Necessary
1415 archRegDepMap[(*removeList.front())->threadNumber].
1416 remove((*removeList.front()));
1417
1418
1419 // Clear if Non-Speculative
1420 if (inst->staticInst &&
1421 inst->seqNum == nonSpecSeqNum[tid] &&
1422 nonSpecInstActive[tid] == true) {
1423 nonSpecInstActive[tid] = false;
1424 }
1425
1426 instList[tid].erase(removeList.front());
1427
1428 removeList.pop();
1429 }
1430
1431 removeInstsThisCycle = false;
1432 }
1433
1434 void
1435 InOrderCPU::cleanUpRemovedEvents()
1436 {
1437 while (!cpuEventRemoveList.empty()) {
1438 Event *cpu_event = cpuEventRemoveList.front();
1439 cpuEventRemoveList.pop();
1440 delete cpu_event;
1441 }
1442 }
1443
1444
1445 void
1446 InOrderCPU::dumpInsts()
1447 {
1448 int num = 0;
1449
1450 ListIt inst_list_it = instList[0].begin();
1451
1452 cprintf("Dumping Instruction List\n");
1453
1454 while (inst_list_it != instList[0].end()) {
1455 cprintf("Instruction:%i\nPC:%s\n[tid:%i]\n[sn:%lli]\nIssued:%i\n"
1456 "Squashed:%i\n\n",
1457 num, (*inst_list_it)->pcState(),
1458 (*inst_list_it)->threadNumber,
1459 (*inst_list_it)->seqNum, (*inst_list_it)->isIssued(),
1460 (*inst_list_it)->isSquashed());
1461 inst_list_it++;
1462 ++num;
1463 }
1464 }
1465
1466 void
1467 InOrderCPU::wakeCPU()
1468 {
1469 if (/*activityRec.active() || */tickEvent.scheduled()) {
1470 DPRINTF(Activity, "CPU already running.\n");
1471 return;
1472 }
1473
1474 DPRINTF(Activity, "Waking up CPU\n");
1475
1476 Tick extra_cycles = tickToCycles((curTick() - 1) - lastRunningCycle);
1477
1478 idleCycles += extra_cycles;
1479 for (int stage_num = 0; stage_num < NumStages; stage_num++) {
1480 pipelineStage[stage_num]->idleCycles += extra_cycles;
1481 }
1482
1483 numCycles += extra_cycles;
1484
1485 schedule(&tickEvent, nextCycle(curTick()));
1486 }
1487
1488 #if FULL_SYSTEM
1489
1490 void
1491 InOrderCPU::wakeup()
1492 {
1493 if (thread[0]->status() != ThreadContext::Suspended)
1494 return;
1495
1496 wakeCPU();
1497
1498 DPRINTF(Quiesce, "Suspended Processor woken\n");
1499 threadContexts[0]->activate();
1500 }
1501 #endif
1502
1503 #if !FULL_SYSTEM
1504 void
1505 InOrderCPU::syscall(int64_t callnum, ThreadID tid)
1506 {
1507 DPRINTF(InOrderCPU, "[tid:%i] Executing syscall().\n\n", tid);
1508
1509 DPRINTF(Activity,"Activity: syscall() called.\n");
1510
1511 // Temporarily increase this by one to account for the syscall
1512 // instruction.
1513 ++(this->thread[tid]->funcExeInst);
1514
1515 // Execute the actual syscall.
1516 this->thread[tid]->syscall(callnum);
1517
1518 // Decrease funcExeInst by one as the normal commit will handle
1519 // incrementing it.
1520 --(this->thread[tid]->funcExeInst);
1521
1522 // Clear Non-Speculative Block Variable
1523 nonSpecInstActive[tid] = false;
1524 }
1525 #endif
1526
1527 TheISA::TLB*
1528 InOrderCPU::getITBPtr()
1529 {
1530 CacheUnit *itb_res =
1531 dynamic_cast<CacheUnit*>(resPool->getResource(fetchPortIdx));
1532 return itb_res->tlb();
1533 }
1534
1535
1536 TheISA::TLB*
1537 InOrderCPU::getDTBPtr()
1538 {
1539 CacheUnit *dtb_res =
1540 dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
1541 return dtb_res->tlb();
1542 }
1543
1544 Fault
1545 InOrderCPU::read(DynInstPtr inst, Addr addr,
1546 uint8_t *data, unsigned size, unsigned flags)
1547 {
1548 //@TODO: Generalize name "CacheUnit" to "MemUnit" just in case
1549 // you want to run w/out caches?
1550 CacheUnit *cache_res =
1551 dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
1552
1553 return cache_res->read(inst, addr, data, size, flags);
1554 }
1555
1556 Fault
1557 InOrderCPU::write(DynInstPtr inst, uint8_t *data, unsigned size,
1558 Addr addr, unsigned flags, uint64_t *write_res)
1559 {
1560 //@TODO: Generalize name "CacheUnit" to "MemUnit" just in case
1561 // you want to run w/out caches?
1562 CacheUnit *cache_res =
1563 dynamic_cast<CacheUnit*>(resPool->getResource(dataPortIdx));
1564 return cache_res->write(inst, data, size, addr, flags, write_res);
1565 }