cpu: implement a bi-mode branch predictor
[gem5.git] / src / cpu / kvm / arm_cpu.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40 #include <linux/kvm.h>
41
42 #include <algorithm>
43 #include <cerrno>
44 #include <memory>
45
46 #include "arch/registers.hh"
47 #include "cpu/kvm/arm_cpu.hh"
48 #include "cpu/kvm/base.hh"
49 #include "debug/Kvm.hh"
50 #include "debug/KvmContext.hh"
51 #include "debug/KvmInt.hh"
52 #include "sim/pseudo_inst.hh"
53
54 using namespace ArmISA;
55
56 #define EXTRACT_FIELD(val, mask, shift) \
57 (((val) & (mask)) >> (shift))
58
59 #define REG_IS_ARM(id) \
60 (((id) & KVM_REG_ARCH_MASK) == KVM_REG_ARM)
61
62 #define REG_IS_32BIT(id) \
63 (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32)
64
65 #define REG_IS_64BIT(id) \
66 (((id) & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64)
67
68 #define REG_IS_CP(id, cp) \
69 (((id) & KVM_REG_ARM_COPROC_MASK) == (cp))
70
71 #define REG_IS_CORE(id) REG_IS_CP((id), KVM_REG_ARM_CORE)
72
73 #define REG_IS_VFP(id) REG_IS_CP((id), KVM_REG_ARM_VFP)
74 #define REG_VFP_REG(id) ((id) & KVM_REG_ARM_VFP_MASK)
75 // HACK: These aren't really defined in any of the headers, so we'll
76 // assume some reasonable values for now.
77 #define REG_IS_VFP_REG(id) (REG_VFP_REG(id) < 0x100)
78 #define REG_IS_VFP_CTRL(id) (REG_VFP_REG(id) >= 0x100)
79
80 #define REG_IS_DEMUX(id) REG_IS_CP((id), KVM_REG_ARM_DEMUX)
81
82
83 // There is no constant in the kernel headers defining the mask to use
84 // to get the core register index. We'll just do what they do
85 // internally.
86 #define REG_CORE_IDX(id) \
87 (~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE))
88
89 #define REG_CP(id) \
90 EXTRACT_FIELD(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT)
91
92 #define REG_CRN(id) \
93 EXTRACT_FIELD(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT)
94
95 #define REG_OPC1(id) \
96 EXTRACT_FIELD(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT)
97
98 #define REG_CRM(id) \
99 EXTRACT_FIELD(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT)
100
101 #define REG_OPC2(id) \
102 EXTRACT_FIELD(id, KVM_REG_ARM_32_OPC2_MASK, KVM_REG_ARM_32_OPC2_SHIFT)
103
104 #define REG_CP32(cpnum, crn, opc1, crm, opc2) ( \
105 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
106 ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
107 ((crn) << KVM_REG_ARM_32_CRN_SHIFT) | \
108 ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \
109 ((crm) << KVM_REG_ARM_CRM_SHIFT) | \
110 ((opc2) << KVM_REG_ARM_32_OPC2_SHIFT))
111
112 #define REG_CP64(cpnum, opc1, crm) ( \
113 (KVM_REG_ARM | KVM_REG_SIZE_U64) | \
114 ((cpnum) << KVM_REG_ARM_COPROC_SHIFT) | \
115 ((opc1) << KVM_REG_ARM_OPC1_SHIFT) | \
116 ((crm) << KVM_REG_ARM_CRM_SHIFT))
117
118 #define REG_CORE32(kname) ( \
119 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
120 (KVM_REG_ARM_CORE) | \
121 (KVM_REG_ARM_CORE_REG(kname)))
122
123 #define REG_VFP32(regno) ( \
124 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
125 KVM_REG_ARM_VFP | (regno))
126
127 #define REG_VFP64(regno) ( \
128 (KVM_REG_ARM | KVM_REG_SIZE_U64) | \
129 KVM_REG_ARM_VFP | (regno))
130
131 #define REG_DEMUX32(dmxid, val) ( \
132 (KVM_REG_ARM | KVM_REG_SIZE_U32) | \
133 (dmxid) | (val))
134
135 // Some of the co-processor registers are invariants and must have the
136 // same value on both the host and the guest. We need to keep a list
137 // of these to prevent gem5 from fiddling with them on the guest.
138 static uint64_t invariant_reg_vector[] = {
139 REG_CP32(15, 0, 0, 0, 0), // MIDR
140 REG_CP32(15, 0, 0, 0, 1), // CTR
141 REG_CP32(15, 0, 0, 0, 2), // TCMTR
142 REG_CP32(15, 0, 0, 0, 3), // TLBTR
143 REG_CP32(15, 0, 0, 0, 6), // REVIDR
144
145 REG_CP32(15, 0, 0, 1, 0), // ID_PFR0
146 REG_CP32(15, 0, 0, 1, 1), // ID_PFR1
147 REG_CP32(15, 0, 0, 1, 2), // ID_DFR0
148 REG_CP32(15, 0, 0, 1, 3), // ID_AFR0
149 REG_CP32(15, 0, 0, 1, 4), // ID_MMFR0
150 REG_CP32(15, 0, 0, 1, 5), // ID_MMFR1
151 REG_CP32(15, 0, 0, 1, 6), // ID_MMFR2
152 REG_CP32(15, 0, 0, 1, 7), // ID_MMFR3
153
154 REG_CP32(15, 0, 0, 2, 0), // ID_ISAR0
155 REG_CP32(15, 0, 0, 2, 1), // ID_ISAR1
156 REG_CP32(15, 0, 0, 2, 2), // ID_ISAR2
157 REG_CP32(15, 0, 0, 2, 3), // ID_ISAR3
158 REG_CP32(15, 0, 0, 2, 4), // ID_ISAR4
159 REG_CP32(15, 0, 0, 2, 5), // ID_ISAR5
160
161 REG_CP32(15, 0, 1, 0, 0), // CSSIDR
162 REG_CP32(15, 0, 1, 0, 1), // CLIDR
163 REG_CP32(15, 0, 1, 0, 7), // AIDR
164
165 REG_VFP32(KVM_REG_ARM_VFP_MVFR0),
166 REG_VFP32(KVM_REG_ARM_VFP_MVFR1),
167 REG_VFP32(KVM_REG_ARM_VFP_FPSID),
168
169 REG_DEMUX32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0),
170 };
171
172 const static uint64_t KVM_REG64_TTBR0(REG_CP64(15, 0, 2));
173 const static uint64_t KVM_REG64_TTBR1(REG_CP64(15, 1, 2));
174
175 #define INTERRUPT_ID(type, vcpu, irq) ( \
176 ((type) << KVM_ARM_IRQ_TYPE_SHIFT) | \
177 ((vcpu) << KVM_ARM_IRQ_VCPU_SHIFT) | \
178 ((irq) << KVM_ARM_IRQ_NUM_SHIFT))
179
180 #define INTERRUPT_VCPU_IRQ(vcpu) \
181 INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ)
182
183 #define INTERRUPT_VCPU_FIQ(vcpu) \
184 INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ)
185
186
187 #define COUNT_OF(l) (sizeof(l) / sizeof(*l))
188
189 const std::set<uint64_t> ArmKvmCPU::invariant_regs(
190 invariant_reg_vector,
191 invariant_reg_vector + COUNT_OF(invariant_reg_vector));
192
193
194 ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = {
195 { REG_CORE32(usr_regs.ARM_r0), INTREG_R0, "R0" },
196 { REG_CORE32(usr_regs.ARM_r1), INTREG_R1, "R1" },
197 { REG_CORE32(usr_regs.ARM_r2), INTREG_R2, "R2" },
198 { REG_CORE32(usr_regs.ARM_r3), INTREG_R3, "R3" },
199 { REG_CORE32(usr_regs.ARM_r4), INTREG_R4, "R4" },
200 { REG_CORE32(usr_regs.ARM_r5), INTREG_R5, "R5" },
201 { REG_CORE32(usr_regs.ARM_r6), INTREG_R6, "R6" },
202 { REG_CORE32(usr_regs.ARM_r7), INTREG_R7, "R7" },
203 { REG_CORE32(usr_regs.ARM_r8), INTREG_R8, "R8" },
204 { REG_CORE32(usr_regs.ARM_r9), INTREG_R9, "R9" },
205 { REG_CORE32(usr_regs.ARM_r10), INTREG_R10, "R10" },
206 { REG_CORE32(usr_regs.ARM_fp), INTREG_R11, "R11" },
207 { REG_CORE32(usr_regs.ARM_ip), INTREG_R12, "R12" },
208 { REG_CORE32(usr_regs.ARM_sp), INTREG_R13, "R13(USR)" },
209 { REG_CORE32(usr_regs.ARM_lr), INTREG_R14, "R14(USR)" },
210
211 { REG_CORE32(svc_regs[0]), INTREG_SP_SVC, "R13(SVC)" },
212 { REG_CORE32(svc_regs[1]), INTREG_LR_SVC, "R14(SVC)" },
213
214 { REG_CORE32(abt_regs[0]), INTREG_SP_ABT, "R13(ABT)" },
215 { REG_CORE32(abt_regs[1]), INTREG_LR_ABT, "R14(ABT)" },
216
217 { REG_CORE32(und_regs[0]), INTREG_SP_UND, "R13(UND)" },
218 { REG_CORE32(und_regs[1]), INTREG_LR_UND, "R14(UND)" },
219
220 { REG_CORE32(irq_regs[0]), INTREG_SP_IRQ, "R13(IRQ)" },
221 { REG_CORE32(irq_regs[1]), INTREG_LR_IRQ, "R14(IRQ)" },
222
223
224 { REG_CORE32(fiq_regs[0]), INTREG_R8_FIQ, "R8(FIQ)" },
225 { REG_CORE32(fiq_regs[1]), INTREG_R9_FIQ, "R9(FIQ)" },
226 { REG_CORE32(fiq_regs[2]), INTREG_R10_FIQ, "R10(FIQ)" },
227 { REG_CORE32(fiq_regs[3]), INTREG_R11_FIQ, "R11(FIQ)" },
228 { REG_CORE32(fiq_regs[4]), INTREG_R12_FIQ, "R12(FIQ)" },
229 { REG_CORE32(fiq_regs[5]), INTREG_R13_FIQ, "R13(FIQ)" },
230 { REG_CORE32(fiq_regs[6]), INTREG_R14_FIQ, "R14(FIQ)" },
231 { 0, NUM_INTREGS, NULL }
232 };
233
234 ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = {
235 { REG_CORE32(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR" },
236 { REG_CORE32(svc_regs[2]), MISCREG_SPSR_SVC, "SPSR(SVC)" },
237 { REG_CORE32(abt_regs[2]), MISCREG_SPSR_ABT, "SPSR(ABT)" },
238 { REG_CORE32(und_regs[2]), MISCREG_SPSR_UND, "SPSR(UND)" },
239 { REG_CORE32(irq_regs[2]), MISCREG_SPSR_IRQ, "SPSR(IRQ)" },
240 { REG_CORE32(fiq_regs[2]), MISCREG_SPSR_FIQ, "SPSR(FIQ)" },
241 { 0, NUM_MISCREGS }
242 };
243
244 ArmKvmCPU::ArmKvmCPU(ArmKvmCPUParams *params)
245 : BaseKvmCPU(params),
246 irqAsserted(false), fiqAsserted(false)
247 {
248 }
249
250 ArmKvmCPU::~ArmKvmCPU()
251 {
252 }
253
254 void
255 ArmKvmCPU::startup()
256 {
257 BaseKvmCPU::startup();
258
259 /* TODO: This needs to be moved when we start to support VMs with
260 * multiple threads since kvmArmVCpuInit requires that all CPUs in
261 * the VM have been created.
262 */
263 /* TODO: The CPU type needs to be configurable once KVM on ARM
264 * starts to support more CPUs.
265 */
266 kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15);
267 }
268
269 Tick
270 ArmKvmCPU::kvmRun(Tick ticks)
271 {
272 bool simFIQ(interrupts->checkRaw(INT_FIQ));
273 bool simIRQ(interrupts->checkRaw(INT_IRQ));
274
275 if (fiqAsserted != simFIQ) {
276 fiqAsserted = simFIQ;
277 DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ);
278 vm.setIRQLine(INTERRUPT_VCPU_FIQ(vcpuID), simFIQ);
279 }
280 if (irqAsserted != simIRQ) {
281 irqAsserted = simIRQ;
282 DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ);
283 vm.setIRQLine(INTERRUPT_VCPU_IRQ(vcpuID), simIRQ);
284 }
285
286 return BaseKvmCPU::kvmRun(ticks);
287 }
288
289 void
290 ArmKvmCPU::dump()
291 {
292 dumpKvmStateCore();
293 dumpKvmStateMisc();
294 }
295
296 void
297 ArmKvmCPU::updateKvmState()
298 {
299 DPRINTF(KvmContext, "Updating KVM state...\n");
300
301 updateKvmStateCore();
302 updateKvmStateMisc();
303 }
304
305 void
306 ArmKvmCPU::updateThreadContext()
307 {
308 DPRINTF(KvmContext, "Updating gem5 state...\n");
309
310 updateTCStateCore();
311 updateTCStateMisc();
312 }
313
314 Tick
315 ArmKvmCPU::onKvmExitHypercall()
316 {
317 ThreadContext *tc(getContext(0));
318 const uint32_t reg_ip(tc->readIntRegFlat(INTREG_R12));
319 const uint8_t func((reg_ip >> 8) & 0xFF);
320 const uint8_t subfunc(reg_ip & 0xFF);
321
322 DPRINTF(Kvm, "KVM Hypercall: 0x%x/0x%x\n", func, subfunc);
323 const uint64_t ret(PseudoInst::pseudoInst(getContext(0), func, subfunc));
324
325 // Just set the return value using the KVM API instead of messing
326 // with the context. We could have used the context, but that
327 // would have required us to request a full context sync.
328 setOneReg(REG_CORE32(usr_regs.ARM_r0), ret & 0xFFFFFFFF);
329 setOneReg(REG_CORE32(usr_regs.ARM_r1), (ret >> 32) & 0xFFFFFFFF);
330
331 return 0;
332 }
333
334 const ArmKvmCPU::RegIndexVector &
335 ArmKvmCPU::getRegList() const
336 {
337 if (_regIndexList.size() == 0) {
338 std::unique_ptr<struct kvm_reg_list> regs;
339 uint64_t i(1);
340
341 do {
342 i <<= 1;
343 regs.reset((struct kvm_reg_list *)
344 operator new(sizeof(struct kvm_reg_list) +
345 i * sizeof(uint64_t)));
346 regs->n = i;
347 } while (!getRegList(*regs));
348 _regIndexList.assign(regs->reg,
349 regs->reg + regs->n);
350 }
351
352 return _regIndexList;
353 }
354
355 void
356 ArmKvmCPU::kvmArmVCpuInit(uint32_t target)
357 {
358 struct kvm_vcpu_init init;
359
360 memset(&init, 0, sizeof(init));
361
362 init.target = target;
363
364 kvmArmVCpuInit(init);
365 }
366
367 void
368 ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init)
369 {
370 if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1)
371 panic("KVM: Failed to initialize vCPU\n");
372 }
373
374 MiscRegIndex
375 ArmKvmCPU::decodeCoProcReg(uint64_t id) const
376 {
377 const unsigned cp(REG_CP(id));
378 const bool is_reg32(REG_IS_32BIT(id));
379 const bool is_reg64(REG_IS_64BIT(id));
380
381 // CP numbers larger than 15 are reserved for KVM extensions
382 if (cp > 15)
383 return NUM_MISCREGS;
384
385 const unsigned crm(REG_CRM(id));
386 const unsigned crn(REG_CRN(id));
387 const unsigned opc1(REG_OPC1(id));
388 const unsigned opc2(REG_OPC2(id));
389
390 if (is_reg32) {
391 switch (cp) {
392 case 14:
393 return decodeCP14Reg(crn, opc1, crm, opc2);
394
395 case 15:
396 return decodeCP15Reg(crn, opc1, crm, opc2);
397
398 default:
399 return NUM_MISCREGS;
400 }
401 } else if(is_reg64) {
402 return NUM_MISCREGS;
403 } else {
404 warn("Unhandled register length, register (0x%x) ignored.\n");
405 return NUM_MISCREGS;
406 }
407 }
408
409 ArmISA::MiscRegIndex
410 ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const
411 {
412 if (!REG_IS_ARM(id) || !REG_IS_VFP(id) || !REG_IS_VFP_CTRL(id))
413 return NUM_MISCREGS;
414
415 const unsigned vfp_reg(REG_VFP_REG(id));
416 switch (vfp_reg) {
417 case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID;
418 case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR;
419 case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0;
420 case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1;
421 case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC;
422
423 case KVM_REG_ARM_VFP_FPINST:
424 case KVM_REG_ARM_VFP_FPINST2:
425 warn_once("KVM: FPINST not implemented.\n");
426 return NUM_MISCREGS;
427
428 default:
429 return NUM_MISCREGS;
430 }
431 }
432
433 bool
434 ArmKvmCPU::isInvariantReg(uint64_t id)
435 {
436 /* Mask away the value field from multiplexed registers, we assume
437 * that entire groups of multiplexed registers can be treated as
438 * invariant. */
439 if (REG_IS_ARM(id) && REG_IS_DEMUX(id))
440 id &= ~KVM_REG_ARM_DEMUX_VAL_MASK;
441
442 return invariant_regs.find(id) != invariant_regs.end();
443 }
444
445 bool
446 ArmKvmCPU::getRegList(struct kvm_reg_list &regs) const
447 {
448 if (ioctl(KVM_GET_REG_LIST, (void *)&regs) == -1) {
449 if (errno == E2BIG) {
450 return false;
451 } else {
452 panic("KVM: Failed to get vCPU register list (errno: %i)\n",
453 errno);
454 }
455 } else {
456 return true;
457 }
458 }
459
460 void
461 ArmKvmCPU::dumpKvmStateCore()
462 {
463 /* Print core registers */
464 uint32_t pc(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
465 inform("PC: 0x%x\n", pc);
466
467 for (const KvmIntRegInfo *ri(kvmIntRegs);
468 ri->idx != NUM_INTREGS; ++ri) {
469
470 uint32_t value(getOneRegU32(ri->id));
471 inform("%s: 0x%x\n", ri->name, value);
472 }
473
474 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
475 ri->idx != NUM_MISCREGS; ++ri) {
476
477 uint32_t value(getOneRegU32(ri->id));
478 inform("%s: 0x%x\n", miscRegName[ri->idx], value);
479 }
480 }
481
482 void
483 ArmKvmCPU::dumpKvmStateMisc()
484 {
485 /* Print co-processor registers */
486 const RegIndexVector &reg_ids(getRegList());;
487 for (RegIndexVector::const_iterator it(reg_ids.begin());
488 it != reg_ids.end(); ++it) {
489 uint64_t id(*it);
490
491 if (REG_IS_ARM(id) && REG_CP(id) <= 15) {
492 dumpKvmStateCoProc(id);
493 } else if (REG_IS_ARM(id) && REG_IS_VFP(id)) {
494 dumpKvmStateVFP(id);
495 } else if (REG_IS_ARM(id) && REG_IS_DEMUX(id)) {
496 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
497 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
498 inform("CCSIDR [0x%x]: %s\n",
499 EXTRACT_FIELD(id,
500 KVM_REG_ARM_DEMUX_VAL_MASK,
501 KVM_REG_ARM_DEMUX_VAL_SHIFT),
502 getAndFormatOneReg(id));
503 break;
504 default:
505 inform("DEMUX [0x%x, 0x%x]: %s\n",
506 EXTRACT_FIELD(id,
507 KVM_REG_ARM_DEMUX_ID_MASK,
508 KVM_REG_ARM_DEMUX_ID_SHIFT),
509 EXTRACT_FIELD(id,
510 KVM_REG_ARM_DEMUX_VAL_MASK,
511 KVM_REG_ARM_DEMUX_VAL_SHIFT),
512 getAndFormatOneReg(id));
513 break;
514 }
515 } else if (!REG_IS_CORE(id)) {
516 inform("0x%x: %s\n", id, getAndFormatOneReg(id));
517 }
518 }
519 }
520
521 void
522 ArmKvmCPU::dumpKvmStateCoProc(uint64_t id)
523 {
524 assert(REG_IS_ARM(id));
525 assert(REG_CP(id) <= 15);
526
527 if (REG_IS_32BIT(id)) {
528 // 32-bit co-proc registers
529 MiscRegIndex idx(decodeCoProcReg(id));
530 uint32_t value(getOneRegU32(id));
531
532 if (idx != NUM_MISCREGS &&
533 !(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) {
534 const char *name(miscRegName[idx]);
535 const unsigned m5_ne(tc->readMiscRegNoEffect(idx));
536 const unsigned m5_e(tc->readMiscReg(idx));
537 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: "
538 "[%s]: 0x%x/0x%x\n",
539 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
540 REG_OPC2(id), isInvariantReg(id),
541 name, value, m5_e);
542 if (m5_e != m5_ne) {
543 inform("readMiscReg: %x, readMiscRegNoEffect: %x\n",
544 m5_e, m5_ne);
545 }
546 } else {
547 const char *name(idx != NUM_MISCREGS ? miscRegName[idx] : "-");
548 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: [%s]: "
549 "0x%x\n",
550 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
551 REG_OPC2(id), isInvariantReg(id), name, value);
552 }
553 } else {
554 inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i "
555 "len: 0x%x]: %s\n",
556 REG_CP(id), REG_CRN(id), REG_OPC1(id), REG_CRM(id),
557 REG_OPC2(id), isInvariantReg(id),
558 EXTRACT_FIELD(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT),
559 getAndFormatOneReg(id));
560 }
561 }
562
563 void
564 ArmKvmCPU::dumpKvmStateVFP(uint64_t id)
565 {
566 assert(REG_IS_ARM(id));
567 assert(REG_IS_VFP(id));
568
569 if (REG_IS_VFP_REG(id)) {
570 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
571 inform("VFP reg %i: %s", idx, getAndFormatOneReg(id));
572 } else if (REG_IS_VFP_CTRL(id)) {
573 MiscRegIndex idx(decodeVFPCtrlReg(id));
574 if (idx != NUM_MISCREGS) {
575 inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id));
576 } else {
577 inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
578 }
579 } else {
580 inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
581 }
582 }
583
584 void
585 ArmKvmCPU::updateKvmStateCore()
586 {
587 for (const KvmIntRegInfo *ri(kvmIntRegs);
588 ri->idx != NUM_INTREGS; ++ri) {
589
590 uint64_t value(tc->readIntRegFlat(ri->idx));
591 DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
592 setOneReg(ri->id, value);
593 }
594
595 DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->instAddr());
596 setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->instAddr());
597
598 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
599 ri->idx != NUM_MISCREGS; ++ri) {
600
601 uint64_t value(tc->readMiscReg(ri->idx));
602 DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
603 setOneReg(ri->id, value);
604 }
605
606 if (DTRACE(KvmContext))
607 dumpKvmStateCore();
608 }
609
610 void
611 ArmKvmCPU::updateKvmStateMisc()
612 {
613 static bool warned(false); // We can't use warn_once since we want
614 // to show /all/ registers
615
616 const RegIndexVector &regs(getRegList());
617
618 for (RegIndexVector::const_iterator it(regs.begin());
619 it != regs.end();
620 ++it) {
621
622 if (!REG_IS_ARM(*it)) {
623 if (!warned)
624 warn("Skipping non-ARM register: 0x%x\n", *it);
625 } else if (isInvariantReg(*it)) {
626 DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it);
627 } else if (REG_IS_CORE(*it)) {
628 // Core registers are handled in updateKvmStateCore
629 continue;
630 } else if (REG_CP(*it) <= 15) {
631 updateKvmStateCoProc(*it, !warned);
632 } else if (REG_IS_VFP(*it)) {
633 updateKvmStateVFP(*it, !warned);
634 } else {
635 if (!warned) {
636 warn("Skipping register with unknown CP (%i) id: 0x%x\n",
637 REG_CP(*it), *it);
638 }
639 }
640
641 }
642
643 warned = true;
644 if (DTRACE(KvmContext))
645 dumpKvmStateMisc();
646 }
647
648 void
649 ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings)
650 {
651 MiscRegIndex reg(decodeCoProcReg(id));
652
653 assert(REG_IS_ARM(id));
654 assert(REG_CP(id) <= 15);
655
656 if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
657 // HACK HACK HACK: Workaround for 64-bit TTBRx
658 reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1);
659 if (show_warnings)
660 hack("KVM: 64-bit TTBBRx workaround\n");
661 }
662
663 if (reg == NUM_MISCREGS) {
664 if (show_warnings) {
665 warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n",
666 id);
667 warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
668 " opc2: %i]\n",
669 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
670 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
671 }
672 } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
673 if (show_warnings)
674 warn("KVM: Co-processor reg. %s not implemented by gem5.\n",
675 miscRegName[reg]);
676 } else {
677 setOneReg(id, tc->readMiscRegNoEffect(reg));
678 }
679 }
680
681
682 void
683 ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings)
684 {
685 assert(REG_IS_ARM(id));
686 assert(REG_IS_VFP(id));
687
688 if (REG_IS_VFP_REG(id)) {
689 if (!REG_IS_64BIT(id)) {
690 if (show_warnings)
691 warn("Unexpected VFP register length (reg: 0x%x).\n", id);
692 return;
693 }
694 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
695 const unsigned idx_base(idx << 1);
696 const unsigned idx_hi(idx_base + 1);
697 const unsigned idx_lo(idx_base + 0);
698 uint64_t value(
699 ((uint64_t)tc->readFloatRegBitsFlat(idx_hi) << 32) |
700 tc->readFloatRegBitsFlat(idx_lo));
701
702 setOneReg(id, value);
703 } else if (REG_IS_VFP_CTRL(id)) {
704 MiscRegIndex idx(decodeVFPCtrlReg(id));
705 if (idx == NUM_MISCREGS) {
706 if (show_warnings)
707 warn("Unhandled VFP control register: 0x%x\n", id);
708 return;
709 }
710 if (!REG_IS_32BIT(id)) {
711 if (show_warnings)
712 warn("Ignoring VFP control register (%s) with "
713 "unexpected size.\n",
714 miscRegName[idx]);
715 return;
716 }
717 setOneReg(id, (uint32_t)tc->readMiscReg(idx));
718 } else {
719 if (show_warnings)
720 warn("Unhandled VFP register: 0x%x\n", id);
721 }
722 }
723
724 void
725 ArmKvmCPU::updateTCStateCore()
726 {
727 for (const KvmIntRegInfo *ri(kvmIntRegs);
728 ri->idx != NUM_INTREGS; ++ri) {
729
730 tc->setIntRegFlat(ri->idx, getOneRegU32(ri->id));
731 }
732
733 for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
734 ri->idx != NUM_MISCREGS; ++ri) {
735
736 tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id));
737 }
738
739 /* We want the simulator to execute all side-effects of the CPSR
740 * update since this updates PC state and register maps.
741 */
742 tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR));
743
744 // We update the PC state after we have updated the CPSR the
745 // contents of the CPSR affects how the npc is updated.
746 PCState pc(tc->pcState());
747 pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
748 tc->pcState(pc);
749
750 if (DTRACE(KvmContext))
751 dumpKvmStateCore();
752 }
753
754 void
755 ArmKvmCPU::updateTCStateMisc()
756 {
757 static bool warned(false); // We can't use warn_once since we want
758 // to show /all/ registers
759
760 const RegIndexVector &reg_ids(getRegList());;
761 for (RegIndexVector::const_iterator it(reg_ids.begin());
762 it != reg_ids.end(); ++it) {
763
764 if (!REG_IS_ARM(*it)) {
765 if (!warned)
766 warn("Skipping non-ARM register: 0x%x\n", *it);
767 } else if (REG_IS_CORE(*it)) {
768 // Core registers are handled in updateKvmStateCore
769 } else if (REG_CP(*it) <= 15) {
770 updateTCStateCoProc(*it, !warned);
771 } else if (REG_IS_VFP(*it)) {
772 updateTCStateVFP(*it, !warned);
773 } else {
774 if (!warned) {
775 warn("Skipping register with unknown CP (%i) id: 0x%x\n",
776 REG_CP(*it), *it);
777 }
778 }
779 }
780
781 warned = true;
782
783 if (DTRACE(KvmContext))
784 dumpKvmStateMisc();
785 }
786
787 void
788 ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings)
789 {
790 MiscRegIndex reg(decodeCoProcReg(id));
791
792 assert(REG_IS_ARM(id));
793 assert(REG_CP(id) <= 15);
794
795 if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
796 // HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1
797 hack_once("KVM: 64-bit TTBRx workaround\n");
798 tc->setMiscRegNoEffect(
799 id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1,
800 (uint32_t)(getOneRegU64(id) & 0xFFFFFFFF));
801 } else if (reg == MISCREG_TTBCR) {
802 uint32_t value(getOneRegU64(id));
803 if (value & 0x80000000)
804 panic("KVM: Guest tried to enable LPAE.\n");
805 tc->setMiscRegNoEffect(reg, value);
806 } else if (reg == NUM_MISCREGS) {
807 if (show_warnings) {
808 warn("KVM: Ignoring unknown KVM co-processor register:\n", id);
809 warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
810 " opc2: %i]\n",
811 id, REG_CP(id), REG_IS_64BIT(id), REG_CRN(id),
812 REG_OPC1(id), REG_CRM(id), REG_OPC2(id));
813 }
814 } else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
815 if (show_warnings)
816 warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n",
817 miscRegName[reg]);
818 } else {
819 tc->setMiscRegNoEffect(reg, getOneRegU32(id));
820 }
821 }
822
823 void
824 ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings)
825 {
826 assert(REG_IS_ARM(id));
827 assert(REG_IS_VFP(id));
828
829 if (REG_IS_VFP_REG(id)) {
830 if (!REG_IS_64BIT(id)) {
831 if (show_warnings)
832 warn("Unexpected VFP register length (reg: 0x%x).\n", id);
833 return;
834 }
835 const unsigned idx(id & KVM_REG_ARM_VFP_MASK);
836 const unsigned idx_base(idx << 1);
837 const unsigned idx_hi(idx_base + 1);
838 const unsigned idx_lo(idx_base + 0);
839 uint64_t value(getOneRegU64(id));
840
841 tc->setFloatRegBitsFlat(idx_hi, (value >> 32) & 0xFFFFFFFF);
842 tc->setFloatRegBitsFlat(idx_lo, value & 0xFFFFFFFF);
843 } else if (REG_IS_VFP_CTRL(id)) {
844 MiscRegIndex idx(decodeVFPCtrlReg(id));
845 if (idx == NUM_MISCREGS) {
846 if (show_warnings)
847 warn("Unhandled VFP control register: 0x%x\n", id);
848 return;
849 }
850 if (!REG_IS_32BIT(id)) {
851 if (show_warnings)
852 warn("Ignoring VFP control register (%s) with "
853 "unexpected size.\n",
854 miscRegName[idx]);
855 return;
856 }
857 tc->setMiscReg(idx, getOneRegU64(id));
858 } else {
859 if (show_warnings)
860 warn("Unhandled VFP register: 0x%x\n", id);
861 }
862 }
863
864 ArmKvmCPU *
865 ArmKvmCPUParams::create()
866 {
867 return new ArmKvmCPU(this);
868 }