kvm: x86: Fix segment registers to make them VMX compatible
[gem5.git] / src / cpu / kvm / base.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40 #include <linux/kvm.h>
41 #include <sys/ioctl.h>
42 #include <sys/mman.h>
43 #include <unistd.h>
44
45 #include <cerrno>
46 #include <csignal>
47 #include <ostream>
48
49 #include "arch/mmapped_ipr.hh"
50 #include "arch/utility.hh"
51 #include "cpu/kvm/base.hh"
52 #include "debug/Checkpoint.hh"
53 #include "debug/Drain.hh"
54 #include "debug/Kvm.hh"
55 #include "debug/KvmIO.hh"
56 #include "debug/KvmRun.hh"
57 #include "params/BaseKvmCPU.hh"
58 #include "sim/process.hh"
59 #include "sim/system.hh"
60
61 #include <signal.h>
62
63 /* Used by some KVM macros */
64 #define PAGE_SIZE pageSize
65
66 volatile bool timerOverflowed = false;
67
68 static void
69 onTimerOverflow(int signo, siginfo_t *si, void *data)
70 {
71 timerOverflowed = true;
72 }
73
74 BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
75 : BaseCPU(params),
76 vm(*params->kvmVM),
77 _status(Idle),
78 dataPort(name() + ".dcache_port", this),
79 instPort(name() + ".icache_port", this),
80 threadContextDirty(true),
81 kvmStateDirty(false),
82 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
83 _kvmRun(NULL), mmioRing(NULL),
84 pageSize(sysconf(_SC_PAGE_SIZE)),
85 tickEvent(*this),
86 perfControlledByTimer(params->usePerfOverflow),
87 hostFreq(params->hostFreq),
88 hostFactor(params->hostFactor),
89 drainManager(NULL),
90 ctrInsts(0)
91 {
92 if (pageSize == -1)
93 panic("KVM: Failed to determine host page size (%i)\n",
94 errno);
95
96 thread = new SimpleThread(this, 0, params->system,
97 params->itb, params->dtb, params->isa[0]);
98 thread->setStatus(ThreadContext::Halted);
99 tc = thread->getTC();
100 threadContexts.push_back(tc);
101
102 setupCounters();
103
104 if (params->usePerfOverflow)
105 runTimer.reset(new PerfKvmTimer(hwCycles,
106 KVM_TIMER_SIGNAL,
107 params->hostFactor,
108 params->hostFreq));
109 else
110 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
111 params->hostFactor,
112 params->hostFreq));
113 }
114
115 BaseKvmCPU::~BaseKvmCPU()
116 {
117 if (_kvmRun)
118 munmap(_kvmRun, vcpuMMapSize);
119 close(vcpuFD);
120 }
121
122 void
123 BaseKvmCPU::init()
124 {
125 BaseCPU::init();
126
127 if (numThreads != 1)
128 fatal("KVM: Multithreading not supported");
129
130 tc->initMemProxies(tc);
131
132 // initialize CPU, including PC
133 if (FullSystem && !switchedOut())
134 TheISA::initCPU(tc, tc->contextId());
135
136 mmio_req.setThreadContext(tc->contextId(), 0);
137 }
138
139 void
140 BaseKvmCPU::startup()
141 {
142 const BaseKvmCPUParams * const p(
143 dynamic_cast<const BaseKvmCPUParams *>(params()));
144
145 Kvm &kvm(vm.kvm);
146
147 BaseCPU::startup();
148
149 assert(vcpuFD == -1);
150
151 // Tell the VM that a CPU is about to start.
152 vm.cpuStartup();
153
154 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
155 // not guaranteed that the parent KVM VM has initialized at that
156 // point. Initialize virtual CPUs here instead.
157 vcpuFD = vm.createVCPU(vcpuID);
158
159 // Setup signal handlers. This has to be done after the vCPU is
160 // created since it manipulates the vCPU signal mask.
161 setupSignalHandler();
162
163 // Map the KVM run structure */
164 vcpuMMapSize = kvm.getVCPUMMapSize();
165 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
166 PROT_READ | PROT_WRITE, MAP_SHARED,
167 vcpuFD, 0);
168 if (_kvmRun == MAP_FAILED)
169 panic("KVM: Failed to map run data structure\n");
170
171 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
172 // available. The offset into the KVM's communication page is
173 // provided by the coalesced MMIO capability.
174 int mmioOffset(kvm.capCoalescedMMIO());
175 if (!p->useCoalescedMMIO) {
176 inform("KVM: Coalesced MMIO disabled by config.\n");
177 } else if (mmioOffset) {
178 inform("KVM: Coalesced IO available\n");
179 mmioRing = (struct kvm_coalesced_mmio_ring *)(
180 (char *)_kvmRun + (mmioOffset * pageSize));
181 } else {
182 inform("KVM: Coalesced not supported by host OS\n");
183 }
184
185 thread->startup();
186 }
187
188 void
189 BaseKvmCPU::regStats()
190 {
191 using namespace Stats;
192
193 BaseCPU::regStats();
194
195 numInsts
196 .name(name() + ".committedInsts")
197 .desc("Number of instructions committed")
198 ;
199
200 numVMExits
201 .name(name() + ".numVMExits")
202 .desc("total number of KVM exits")
203 ;
204
205 numVMHalfEntries
206 .name(name() + ".numVMHalfEntries")
207 .desc("number of KVM entries to finalize pending operations")
208 ;
209
210 numExitSignal
211 .name(name() + ".numExitSignal")
212 .desc("exits due to signal delivery")
213 ;
214
215 numMMIO
216 .name(name() + ".numMMIO")
217 .desc("number of VM exits due to memory mapped IO")
218 ;
219
220 numCoalescedMMIO
221 .name(name() + ".numCoalescedMMIO")
222 .desc("number of coalesced memory mapped IO requests")
223 ;
224
225 numIO
226 .name(name() + ".numIO")
227 .desc("number of VM exits due to legacy IO")
228 ;
229
230 numHalt
231 .name(name() + ".numHalt")
232 .desc("number of VM exits due to wait for interrupt instructions")
233 ;
234
235 numInterrupts
236 .name(name() + ".numInterrupts")
237 .desc("number of interrupts delivered")
238 ;
239
240 numHypercalls
241 .name(name() + ".numHypercalls")
242 .desc("number of hypercalls")
243 ;
244 }
245
246 void
247 BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
248 {
249 if (DTRACE(Checkpoint)) {
250 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
251 dump();
252 }
253
254 assert(tid == 0);
255 assert(_status == Idle);
256 thread->serialize(os);
257 }
258
259 void
260 BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
261 ThreadID tid)
262 {
263 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
264
265 assert(tid == 0);
266 assert(_status == Idle);
267 thread->unserialize(cp, section);
268 threadContextDirty = true;
269 }
270
271 unsigned int
272 BaseKvmCPU::drain(DrainManager *dm)
273 {
274 if (switchedOut())
275 return 0;
276
277 DPRINTF(Drain, "BaseKvmCPU::drain\n");
278 switch (_status) {
279 case Running:
280 // The base KVM code is normally ready when it is in the
281 // Running state, but the architecture specific code might be
282 // of a different opinion. This may happen when the CPU been
283 // notified of an event that hasn't been accepted by the vCPU
284 // yet.
285 if (!archIsDrained()) {
286 drainManager = dm;
287 return 1;
288 }
289
290 // The state of the CPU is consistent, so we don't need to do
291 // anything special to drain it. We simply de-schedule the
292 // tick event and enter the Idle state to prevent nasty things
293 // like MMIOs from happening.
294 if (tickEvent.scheduled())
295 deschedule(tickEvent);
296 _status = Idle;
297
298 /** FALLTHROUGH */
299 case Idle:
300 // Idle, no need to drain
301 assert(!tickEvent.scheduled());
302
303 // Sync the thread context here since we'll need it when we
304 // switch CPUs or checkpoint the CPU.
305 syncThreadContext();
306
307 return 0;
308
309 case RunningServiceCompletion:
310 // The CPU has just requested a service that was handled in
311 // the RunningService state, but the results have still not
312 // been reported to the CPU. Now, we /could/ probably just
313 // update the register state ourselves instead of letting KVM
314 // handle it, but that would be tricky. Instead, we enter KVM
315 // and let it do its stuff.
316 drainManager = dm;
317
318 DPRINTF(Drain, "KVM CPU is waiting for service completion, "
319 "requesting drain.\n");
320 return 1;
321
322 case RunningService:
323 // We need to drain since the CPU is waiting for service (e.g., MMIOs)
324 drainManager = dm;
325
326 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
327 return 1;
328
329 default:
330 panic("KVM: Unhandled CPU state in drain()\n");
331 return 0;
332 }
333 }
334
335 void
336 BaseKvmCPU::drainResume()
337 {
338 assert(!tickEvent.scheduled());
339
340 // We might have been switched out. In that case, we don't need to
341 // do anything.
342 if (switchedOut())
343 return;
344
345 DPRINTF(Kvm, "drainResume\n");
346 verifyMemoryMode();
347
348 // The tick event is de-scheduled as a part of the draining
349 // process. Re-schedule it if the thread context is active.
350 if (tc->status() == ThreadContext::Active) {
351 schedule(tickEvent, nextCycle());
352 _status = Running;
353 } else {
354 _status = Idle;
355 }
356 }
357
358 void
359 BaseKvmCPU::switchOut()
360 {
361 DPRINTF(Kvm, "switchOut\n");
362
363 BaseCPU::switchOut();
364
365 // We should have drained prior to executing a switchOut, which
366 // means that the tick event shouldn't be scheduled and the CPU is
367 // idle.
368 assert(!tickEvent.scheduled());
369 assert(_status == Idle);
370 }
371
372 void
373 BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
374 {
375 DPRINTF(Kvm, "takeOverFrom\n");
376
377 BaseCPU::takeOverFrom(cpu);
378
379 // We should have drained prior to executing a switchOut, which
380 // means that the tick event shouldn't be scheduled and the CPU is
381 // idle.
382 assert(!tickEvent.scheduled());
383 assert(_status == Idle);
384 assert(threadContexts.size() == 1);
385
386 // Force an update of the KVM state here instead of flagging the
387 // TC as dirty. This is not ideal from a performance point of
388 // view, but it makes debugging easier as it allows meaningful KVM
389 // state to be dumped before and after a takeover.
390 updateKvmState();
391 threadContextDirty = false;
392 }
393
394 void
395 BaseKvmCPU::verifyMemoryMode() const
396 {
397 if (!(system->isAtomicMode() && system->bypassCaches())) {
398 fatal("The KVM-based CPUs requires the memory system to be in the "
399 "'atomic_noncaching' mode.\n");
400 }
401 }
402
403 void
404 BaseKvmCPU::wakeup()
405 {
406 DPRINTF(Kvm, "wakeup()\n");
407
408 if (thread->status() != ThreadContext::Suspended)
409 return;
410
411 thread->activate();
412 }
413
414 void
415 BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
416 {
417 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
418
419 assert(thread_num == 0);
420 assert(thread);
421
422 assert(_status == Idle);
423 assert(!tickEvent.scheduled());
424
425 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
426
427 schedule(tickEvent, clockEdge(delay));
428 _status = Running;
429 }
430
431
432 void
433 BaseKvmCPU::suspendContext(ThreadID thread_num)
434 {
435 DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
436
437 assert(thread_num == 0);
438 assert(thread);
439
440 if (_status == Idle)
441 return;
442
443 assert(_status == Running);
444
445 // The tick event may no be scheduled if the quest has requested
446 // the monitor to wait for interrupts. The normal CPU models can
447 // get their tick events descheduled by quiesce instructions, but
448 // that can't happen here.
449 if (tickEvent.scheduled())
450 deschedule(tickEvent);
451
452 _status = Idle;
453 }
454
455 void
456 BaseKvmCPU::deallocateContext(ThreadID thread_num)
457 {
458 // for now, these are equivalent
459 suspendContext(thread_num);
460 }
461
462 void
463 BaseKvmCPU::haltContext(ThreadID thread_num)
464 {
465 // for now, these are equivalent
466 suspendContext(thread_num);
467 }
468
469 ThreadContext *
470 BaseKvmCPU::getContext(int tn)
471 {
472 assert(tn == 0);
473 syncThreadContext();
474 return tc;
475 }
476
477
478 Counter
479 BaseKvmCPU::totalInsts() const
480 {
481 return ctrInsts;
482 }
483
484 Counter
485 BaseKvmCPU::totalOps() const
486 {
487 hack_once("Pretending totalOps is equivalent to totalInsts()\n");
488 return ctrInsts;
489 }
490
491 void
492 BaseKvmCPU::dump()
493 {
494 inform("State dumping not implemented.");
495 }
496
497 void
498 BaseKvmCPU::tick()
499 {
500 Tick delay(0);
501 assert(_status != Idle);
502
503 switch (_status) {
504 case RunningService:
505 // handleKvmExit() will determine the next state of the CPU
506 delay = handleKvmExit();
507
508 if (tryDrain())
509 _status = Idle;
510 break;
511
512 case RunningServiceCompletion:
513 case Running: {
514 Tick ticksToExecute(mainEventQueue.nextTick() - curTick());
515
516 // We might need to update the KVM state.
517 syncKvmState();
518
519 DPRINTF(KvmRun, "Entering KVM...\n");
520 if (drainManager) {
521 // Force an immediate exit from KVM after completing
522 // pending operations. The architecture-specific code
523 // takes care to run until it is in a state where it can
524 // safely be drained.
525 delay = kvmRunDrain();
526 } else {
527 delay = kvmRun(ticksToExecute);
528 }
529
530 // Entering into KVM implies that we'll have to reload the thread
531 // context from KVM if we want to access it. Flag the KVM state as
532 // dirty with respect to the cached thread context.
533 kvmStateDirty = true;
534
535 // Enter into the RunningService state unless the
536 // simulation was stopped by a timer.
537 if (_kvmRun->exit_reason != KVM_EXIT_INTR) {
538 _status = RunningService;
539 } else {
540 ++numExitSignal;
541 _status = Running;
542 }
543
544 if (tryDrain())
545 _status = Idle;
546 } break;
547
548 default:
549 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
550 _status);
551 }
552
553 // Schedule a new tick if we are still running
554 if (_status != Idle)
555 schedule(tickEvent, clockEdge(ticksToCycles(delay)));
556 }
557
558 Tick
559 BaseKvmCPU::kvmRunDrain()
560 {
561 // By default, the only thing we need to drain is a pending IO
562 // operation which assumes that we are in the
563 // RunningServiceCompletion state.
564 assert(_status == RunningServiceCompletion);
565
566 // Deliver the data from the pending IO operation and immediately
567 // exit.
568 return kvmRun(0);
569 }
570
571 uint64_t
572 BaseKvmCPU::getHostCycles() const
573 {
574 return hwCycles.read();
575 }
576
577 Tick
578 BaseKvmCPU::kvmRun(Tick ticks)
579 {
580 Tick ticksExecuted;
581 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
582 timerOverflowed = false;
583
584 if (ticks == 0) {
585 // Settings ticks == 0 is a special case which causes an entry
586 // into KVM that finishes pending operations (e.g., IO) and
587 // then immediately exits.
588 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
589
590 ++numVMHalfEntries;
591
592 // This signal is always masked while we are executing in gem5
593 // and gets unmasked temporarily as soon as we enter into
594 // KVM. See setSignalMask() and setupSignalHandler().
595 raise(KVM_TIMER_SIGNAL);
596
597 // Enter into KVM. KVM will check for signals after completing
598 // pending operations (IO). Since the KVM_TIMER_SIGNAL is
599 // pending, this forces an immediate exit into gem5 again. We
600 // don't bother to setup timers since this shouldn't actually
601 // execute any code in the guest.
602 ioctlRun();
603
604 // We always execute at least one cycle to prevent the
605 // BaseKvmCPU::tick() to be rescheduled on the same tick
606 // twice.
607 ticksExecuted = clockPeriod();
608 } else {
609 if (ticks < runTimer->resolution()) {
610 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
611 ticks, runTimer->resolution());
612 ticks = runTimer->resolution();
613 }
614
615 // Get hardware statistics after synchronizing contexts. The KVM
616 // state update might affect guest cycle counters.
617 uint64_t baseCycles(getHostCycles());
618 uint64_t baseInstrs(hwInstructions.read());
619
620 // Arm the run timer and start the cycle timer if it isn't
621 // controlled by the overflow timer. Starting/stopping the cycle
622 // timer automatically starts the other perf timers as they are in
623 // the same counter group.
624 runTimer->arm(ticks);
625 if (!perfControlledByTimer)
626 hwCycles.start();
627
628 ioctlRun();
629
630 runTimer->disarm();
631 if (!perfControlledByTimer)
632 hwCycles.stop();
633
634 // The timer signal may have been delivered after we exited
635 // from KVM. It will be pending in that case since it is
636 // masked when we aren't executing in KVM. Discard it to make
637 // sure we don't deliver it immediately next time we try to
638 // enter into KVM.
639 discardPendingSignal(KVM_TIMER_SIGNAL);
640
641 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
642 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
643 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
644 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
645
646 if (ticksExecuted < ticks &&
647 timerOverflowed &&
648 _kvmRun->exit_reason == KVM_EXIT_INTR) {
649 // TODO: We should probably do something clever here...
650 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
651 ticks, ticksExecuted);
652 }
653
654 /* Update statistics */
655 numCycles += simCyclesExecuted;;
656 numInsts += instsExecuted;
657 ctrInsts += instsExecuted;
658 system->totalNumInsts += instsExecuted;
659
660 DPRINTF(KvmRun,
661 "KVM: Executed %i instructions in %i cycles "
662 "(%i ticks, sim cycles: %i).\n",
663 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
664 }
665
666 ++numVMExits;
667
668 return ticksExecuted + flushCoalescedMMIO();
669 }
670
671 void
672 BaseKvmCPU::kvmNonMaskableInterrupt()
673 {
674 ++numInterrupts;
675 if (ioctl(KVM_NMI) == -1)
676 panic("KVM: Failed to deliver NMI to virtual CPU\n");
677 }
678
679 void
680 BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
681 {
682 ++numInterrupts;
683 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
684 panic("KVM: Failed to deliver interrupt to virtual CPU\n");
685 }
686
687 void
688 BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
689 {
690 if (ioctl(KVM_GET_REGS, &regs) == -1)
691 panic("KVM: Failed to get guest registers\n");
692 }
693
694 void
695 BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
696 {
697 if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
698 panic("KVM: Failed to set guest registers\n");
699 }
700
701 void
702 BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
703 {
704 if (ioctl(KVM_GET_SREGS, &regs) == -1)
705 panic("KVM: Failed to get guest special registers\n");
706 }
707
708 void
709 BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
710 {
711 if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
712 panic("KVM: Failed to set guest special registers\n");
713 }
714
715 void
716 BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
717 {
718 if (ioctl(KVM_GET_FPU, &state) == -1)
719 panic("KVM: Failed to get guest FPU state\n");
720 }
721
722 void
723 BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
724 {
725 if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
726 panic("KVM: Failed to set guest FPU state\n");
727 }
728
729
730 void
731 BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
732 {
733 #ifdef KVM_SET_ONE_REG
734 struct kvm_one_reg reg;
735 reg.id = id;
736 reg.addr = (uint64_t)addr;
737
738 if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
739 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
740 id, errno);
741 }
742 #else
743 panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
744 #endif
745 }
746
747 void
748 BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
749 {
750 #ifdef KVM_GET_ONE_REG
751 struct kvm_one_reg reg;
752 reg.id = id;
753 reg.addr = (uint64_t)addr;
754
755 if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
756 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
757 id, errno);
758 }
759 #else
760 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
761 #endif
762 }
763
764 std::string
765 BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
766 {
767 #ifdef KVM_GET_ONE_REG
768 std::ostringstream ss;
769
770 ss.setf(std::ios::hex, std::ios::basefield);
771 ss.setf(std::ios::showbase);
772 #define HANDLE_INTTYPE(len) \
773 case KVM_REG_SIZE_U ## len: { \
774 uint ## len ## _t value; \
775 getOneReg(id, &value); \
776 ss << value; \
777 } break
778
779 #define HANDLE_ARRAY(len) \
780 case KVM_REG_SIZE_U ## len: { \
781 uint8_t value[len / 8]; \
782 getOneReg(id, value); \
783 ss << "[" << value[0]; \
784 for (int i = 1; i < len / 8; ++i) \
785 ss << ", " << value[i]; \
786 ss << "]"; \
787 } break
788
789 switch (id & KVM_REG_SIZE_MASK) {
790 HANDLE_INTTYPE(8);
791 HANDLE_INTTYPE(16);
792 HANDLE_INTTYPE(32);
793 HANDLE_INTTYPE(64);
794 HANDLE_ARRAY(128);
795 HANDLE_ARRAY(256);
796 HANDLE_ARRAY(512);
797 HANDLE_ARRAY(1024);
798 default:
799 ss << "??";
800 }
801
802 #undef HANDLE_INTTYPE
803 #undef HANDLE_ARRAY
804
805 return ss.str();
806 #else
807 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
808 #endif
809 }
810
811 void
812 BaseKvmCPU::syncThreadContext()
813 {
814 if (!kvmStateDirty)
815 return;
816
817 assert(!threadContextDirty);
818
819 updateThreadContext();
820 kvmStateDirty = false;
821 }
822
823 void
824 BaseKvmCPU::syncKvmState()
825 {
826 if (!threadContextDirty)
827 return;
828
829 assert(!kvmStateDirty);
830
831 updateKvmState();
832 threadContextDirty = false;
833 }
834
835 Tick
836 BaseKvmCPU::handleKvmExit()
837 {
838 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
839 assert(_status == RunningService);
840
841 // Switch into the running state by default. Individual handlers
842 // can override this.
843 _status = Running;
844 switch (_kvmRun->exit_reason) {
845 case KVM_EXIT_UNKNOWN:
846 return handleKvmExitUnknown();
847
848 case KVM_EXIT_EXCEPTION:
849 return handleKvmExitException();
850
851 case KVM_EXIT_IO:
852 _status = RunningServiceCompletion;
853 ++numIO;
854 return handleKvmExitIO();
855
856 case KVM_EXIT_HYPERCALL:
857 ++numHypercalls;
858 return handleKvmExitHypercall();
859
860 case KVM_EXIT_HLT:
861 /* The guest has halted and is waiting for interrupts */
862 DPRINTF(Kvm, "handleKvmExitHalt\n");
863 ++numHalt;
864
865 // Suspend the thread until the next interrupt arrives
866 thread->suspend();
867
868 // This is actually ignored since the thread is suspended.
869 return 0;
870
871 case KVM_EXIT_MMIO:
872 _status = RunningServiceCompletion;
873 /* Service memory mapped IO requests */
874 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
875 _kvmRun->mmio.is_write,
876 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
877
878 ++numMMIO;
879 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
880 _kvmRun->mmio.len, _kvmRun->mmio.is_write);
881
882 case KVM_EXIT_IRQ_WINDOW_OPEN:
883 return handleKvmExitIRQWindowOpen();
884
885 case KVM_EXIT_FAIL_ENTRY:
886 return handleKvmExitFailEntry();
887
888 case KVM_EXIT_INTR:
889 /* KVM was interrupted by a signal, restart it in the next
890 * tick. */
891 return 0;
892
893 case KVM_EXIT_INTERNAL_ERROR:
894 panic("KVM: Internal error (suberror: %u)\n",
895 _kvmRun->internal.suberror);
896
897 default:
898 dump();
899 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
900 }
901 }
902
903 Tick
904 BaseKvmCPU::handleKvmExitIO()
905 {
906 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
907 _kvmRun->io.direction, _kvmRun->io.size,
908 _kvmRun->io.port, _kvmRun->io.count);
909 }
910
911 Tick
912 BaseKvmCPU::handleKvmExitHypercall()
913 {
914 panic("KVM: Unhandled hypercall\n");
915 }
916
917 Tick
918 BaseKvmCPU::handleKvmExitIRQWindowOpen()
919 {
920 warn("KVM: Unhandled IRQ window.\n");
921 return 0;
922 }
923
924
925 Tick
926 BaseKvmCPU::handleKvmExitUnknown()
927 {
928 dump();
929 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
930 _kvmRun->hw.hardware_exit_reason);
931 }
932
933 Tick
934 BaseKvmCPU::handleKvmExitException()
935 {
936 dump();
937 panic("KVM: Got exception when starting vCPU "
938 "(exception: %u, error_code: %u)\n",
939 _kvmRun->ex.exception, _kvmRun->ex.error_code);
940 }
941
942 Tick
943 BaseKvmCPU::handleKvmExitFailEntry()
944 {
945 dump();
946 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
947 _kvmRun->fail_entry.hardware_entry_failure_reason);
948 }
949
950 Tick
951 BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
952 {
953 ThreadContext *tc(thread->getTC());
954 syncThreadContext();
955
956 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
957 // Some architectures do need to massage physical addresses a bit
958 // before they are inserted into the memory system. This enables
959 // APIC accesses on x86 and m5ops where supported through a MMIO
960 // interface.
961 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
962 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
963 if (fault != NoFault)
964 warn("Finalization of MMIO address failed: %s\n", fault->name());
965
966
967 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
968 Packet pkt(&mmio_req, cmd);
969 pkt.dataStatic(data);
970
971 if (mmio_req.isMmappedIpr()) {
972 const Cycles ipr_delay(write ?
973 TheISA::handleIprWrite(tc, &pkt) :
974 TheISA::handleIprRead(tc, &pkt));
975 return clockEdge(ipr_delay);
976 } else {
977 return dataPort.sendAtomic(&pkt);
978 }
979 }
980
981 void
982 BaseKvmCPU::setSignalMask(const sigset_t *mask)
983 {
984 std::unique_ptr<struct kvm_signal_mask> kvm_mask;
985
986 if (mask) {
987 kvm_mask.reset((struct kvm_signal_mask *)operator new(
988 sizeof(struct kvm_signal_mask) + sizeof(*mask)));
989 // The kernel and the user-space headers have different ideas
990 // about the size of sigset_t. This seems like a massive hack,
991 // but is actually what qemu does.
992 assert(sizeof(*mask) >= 8);
993 kvm_mask->len = 8;
994 memcpy(kvm_mask->sigset, mask, kvm_mask->len);
995 }
996
997 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
998 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
999 errno);
1000 }
1001
1002 int
1003 BaseKvmCPU::ioctl(int request, long p1) const
1004 {
1005 if (vcpuFD == -1)
1006 panic("KVM: CPU ioctl called before initialization\n");
1007
1008 return ::ioctl(vcpuFD, request, p1);
1009 }
1010
1011 Tick
1012 BaseKvmCPU::flushCoalescedMMIO()
1013 {
1014 if (!mmioRing)
1015 return 0;
1016
1017 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1018
1019 // TODO: We might need to do synchronization when we start to
1020 // support multiple CPUs
1021 Tick ticks(0);
1022 while (mmioRing->first != mmioRing->last) {
1023 struct kvm_coalesced_mmio &ent(
1024 mmioRing->coalesced_mmio[mmioRing->first]);
1025
1026 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1027 ent.phys_addr, ent.len);
1028
1029 ++numCoalescedMMIO;
1030 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1031
1032 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1033 }
1034
1035 return ticks;
1036 }
1037
1038 void
1039 BaseKvmCPU::setupSignalHandler()
1040 {
1041 struct sigaction sa;
1042
1043 memset(&sa, 0, sizeof(sa));
1044 sa.sa_sigaction = onTimerOverflow;
1045 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1046 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1047 panic("KVM: Failed to setup vCPU signal handler\n");
1048
1049 sigset_t sigset;
1050 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1)
1051 panic("KVM: Failed get signal mask\n");
1052
1053 // Request KVM to setup the same signal mask as we're currently
1054 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL
1055 // to cause immediate exits from KVM after servicing IO
1056 // requests. See kvmRun().
1057 setSignalMask(&sigset);
1058
1059 // Mask the KVM_TIMER_SIGNAL so it isn't delivered unless we're
1060 // actually executing inside KVM.
1061 sigaddset(&sigset, KVM_TIMER_SIGNAL);
1062 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1)
1063 panic("KVM: Failed mask the KVM timer signal\n");
1064 }
1065
1066 bool
1067 BaseKvmCPU::discardPendingSignal(int signum) const
1068 {
1069 int discardedSignal;
1070
1071 // Setting the timeout to zero causes sigtimedwait to return
1072 // immediately.
1073 struct timespec timeout;
1074 timeout.tv_sec = 0;
1075 timeout.tv_nsec = 0;
1076
1077 sigset_t sigset;
1078 sigemptyset(&sigset);
1079 sigaddset(&sigset, signum);
1080
1081 do {
1082 discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1083 } while (discardedSignal == -1 && errno == EINTR);
1084
1085 if (discardedSignal == signum)
1086 return true;
1087 else if (discardedSignal == -1 && errno == EAGAIN)
1088 return false;
1089 else
1090 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1091 discardedSignal, errno);
1092 }
1093
1094 void
1095 BaseKvmCPU::setupCounters()
1096 {
1097 DPRINTF(Kvm, "Attaching cycle counter...\n");
1098 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1099 PERF_COUNT_HW_CPU_CYCLES);
1100 cfgCycles.disabled(true)
1101 .pinned(true);
1102
1103 if (perfControlledByTimer) {
1104 // We need to configure the cycles counter to send overflows
1105 // since we are going to use it to trigger timer signals that
1106 // trap back into m5 from KVM. In practice, this means that we
1107 // need to set some non-zero sample period that gets
1108 // overridden when the timer is armed.
1109 cfgCycles.wakeupEvents(1)
1110 .samplePeriod(42);
1111 }
1112
1113 hwCycles.attach(cfgCycles,
1114 0); // TID (0 => currentThread)
1115
1116 DPRINTF(Kvm, "Attaching instruction counter...\n");
1117 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1118 PERF_COUNT_HW_INSTRUCTIONS);
1119 hwInstructions.attach(cfgInstructions,
1120 0, // TID (0 => currentThread)
1121 hwCycles);
1122 }
1123
1124 bool
1125 BaseKvmCPU::tryDrain()
1126 {
1127 if (!drainManager)
1128 return false;
1129
1130 if (!archIsDrained()) {
1131 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1132 return false;
1133 }
1134
1135 if (_status == Idle || _status == Running) {
1136 DPRINTF(Drain,
1137 "tryDrain: CPU transitioned into the Idle state, drain done\n");
1138 drainManager->signalDrainDone();
1139 drainManager = NULL;
1140 return true;
1141 } else {
1142 DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1143 return false;
1144 }
1145 }
1146
1147 void
1148 BaseKvmCPU::ioctlRun()
1149 {
1150 if (ioctl(KVM_RUN) == -1) {
1151 if (errno != EINTR)
1152 panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1153 errno);
1154 }
1155 }