kvm: Add support for multi-system simulation
[gem5.git] / src / cpu / kvm / base.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40 #include <linux/kvm.h>
41 #include <sys/ioctl.h>
42 #include <sys/mman.h>
43 #include <unistd.h>
44
45 #include <cerrno>
46 #include <csignal>
47 #include <ostream>
48
49 #include "arch/mmapped_ipr.hh"
50 #include "arch/utility.hh"
51 #include "cpu/kvm/base.hh"
52 #include "debug/Checkpoint.hh"
53 #include "debug/Drain.hh"
54 #include "debug/Kvm.hh"
55 #include "debug/KvmIO.hh"
56 #include "debug/KvmRun.hh"
57 #include "params/BaseKvmCPU.hh"
58 #include "sim/process.hh"
59 #include "sim/system.hh"
60
61 #include <signal.h>
62
63 /* Used by some KVM macros */
64 #define PAGE_SIZE pageSize
65
66 static volatile __thread bool timerOverflowed = false;
67
68 BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
69 : BaseCPU(params),
70 vm(*params->kvmVM),
71 _status(Idle),
72 dataPort(name() + ".dcache_port", this),
73 instPort(name() + ".icache_port", this),
74 threadContextDirty(true),
75 kvmStateDirty(false),
76 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
77 _kvmRun(NULL), mmioRing(NULL),
78 pageSize(sysconf(_SC_PAGE_SIZE)),
79 tickEvent(*this),
80 activeInstPeriod(0),
81 perfControlledByTimer(params->usePerfOverflow),
82 hostFactor(params->hostFactor),
83 drainManager(NULL),
84 ctrInsts(0)
85 {
86 if (pageSize == -1)
87 panic("KVM: Failed to determine host page size (%i)\n",
88 errno);
89
90 thread = new SimpleThread(this, 0, params->system,
91 params->itb, params->dtb, params->isa[0]);
92 thread->setStatus(ThreadContext::Halted);
93 tc = thread->getTC();
94 threadContexts.push_back(tc);
95 }
96
97 BaseKvmCPU::~BaseKvmCPU()
98 {
99 if (_kvmRun)
100 munmap(_kvmRun, vcpuMMapSize);
101 close(vcpuFD);
102 }
103
104 void
105 BaseKvmCPU::init()
106 {
107 BaseCPU::init();
108
109 if (numThreads != 1)
110 fatal("KVM: Multithreading not supported");
111
112 tc->initMemProxies(tc);
113
114 // initialize CPU, including PC
115 if (FullSystem && !switchedOut())
116 TheISA::initCPU(tc, tc->contextId());
117
118 mmio_req.setThreadContext(tc->contextId(), 0);
119 }
120
121 void
122 BaseKvmCPU::startup()
123 {
124 const BaseKvmCPUParams * const p(
125 dynamic_cast<const BaseKvmCPUParams *>(params()));
126
127 Kvm &kvm(vm.kvm);
128
129 BaseCPU::startup();
130
131 assert(vcpuFD == -1);
132
133 // Tell the VM that a CPU is about to start.
134 vm.cpuStartup();
135
136 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
137 // not guaranteed that the parent KVM VM has initialized at that
138 // point. Initialize virtual CPUs here instead.
139 vcpuFD = vm.createVCPU(vcpuID);
140
141 // Setup signal handlers. This has to be done after the vCPU is
142 // created since it manipulates the vCPU signal mask.
143 setupSignalHandler();
144
145 // Map the KVM run structure */
146 vcpuMMapSize = kvm.getVCPUMMapSize();
147 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
148 PROT_READ | PROT_WRITE, MAP_SHARED,
149 vcpuFD, 0);
150 if (_kvmRun == MAP_FAILED)
151 panic("KVM: Failed to map run data structure\n");
152
153 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
154 // available. The offset into the KVM's communication page is
155 // provided by the coalesced MMIO capability.
156 int mmioOffset(kvm.capCoalescedMMIO());
157 if (!p->useCoalescedMMIO) {
158 inform("KVM: Coalesced MMIO disabled by config.\n");
159 } else if (mmioOffset) {
160 inform("KVM: Coalesced IO available\n");
161 mmioRing = (struct kvm_coalesced_mmio_ring *)(
162 (char *)_kvmRun + (mmioOffset * pageSize));
163 } else {
164 inform("KVM: Coalesced not supported by host OS\n");
165 }
166
167 thread->startup();
168
169 Event *startupEvent(
170 new EventWrapper<BaseKvmCPU,
171 &BaseKvmCPU::startupThread>(this, true));
172 schedule(startupEvent, curTick());
173 }
174
175 void
176 BaseKvmCPU::startupThread()
177 {
178 // Do thread-specific initialization. We need to setup signal
179 // delivery for counters and timers from within the thread that
180 // will execute the event queue to ensure that signals are
181 // delivered to the right threads.
182 const BaseKvmCPUParams * const p(
183 dynamic_cast<const BaseKvmCPUParams *>(params()));
184
185 setupCounters();
186
187 if (p->usePerfOverflow)
188 runTimer.reset(new PerfKvmTimer(hwCycles,
189 KVM_TIMER_SIGNAL,
190 p->hostFactor,
191 p->hostFreq));
192 else
193 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
194 p->hostFactor,
195 p->hostFreq));
196
197 }
198
199 void
200 BaseKvmCPU::regStats()
201 {
202 using namespace Stats;
203
204 BaseCPU::regStats();
205
206 numInsts
207 .name(name() + ".committedInsts")
208 .desc("Number of instructions committed")
209 ;
210
211 numVMExits
212 .name(name() + ".numVMExits")
213 .desc("total number of KVM exits")
214 ;
215
216 numVMHalfEntries
217 .name(name() + ".numVMHalfEntries")
218 .desc("number of KVM entries to finalize pending operations")
219 ;
220
221 numExitSignal
222 .name(name() + ".numExitSignal")
223 .desc("exits due to signal delivery")
224 ;
225
226 numMMIO
227 .name(name() + ".numMMIO")
228 .desc("number of VM exits due to memory mapped IO")
229 ;
230
231 numCoalescedMMIO
232 .name(name() + ".numCoalescedMMIO")
233 .desc("number of coalesced memory mapped IO requests")
234 ;
235
236 numIO
237 .name(name() + ".numIO")
238 .desc("number of VM exits due to legacy IO")
239 ;
240
241 numHalt
242 .name(name() + ".numHalt")
243 .desc("number of VM exits due to wait for interrupt instructions")
244 ;
245
246 numInterrupts
247 .name(name() + ".numInterrupts")
248 .desc("number of interrupts delivered")
249 ;
250
251 numHypercalls
252 .name(name() + ".numHypercalls")
253 .desc("number of hypercalls")
254 ;
255 }
256
257 void
258 BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
259 {
260 if (DTRACE(Checkpoint)) {
261 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
262 dump();
263 }
264
265 assert(tid == 0);
266 assert(_status == Idle);
267 thread->serialize(os);
268 }
269
270 void
271 BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
272 ThreadID tid)
273 {
274 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
275
276 assert(tid == 0);
277 assert(_status == Idle);
278 thread->unserialize(cp, section);
279 threadContextDirty = true;
280 }
281
282 unsigned int
283 BaseKvmCPU::drain(DrainManager *dm)
284 {
285 if (switchedOut())
286 return 0;
287
288 DPRINTF(Drain, "BaseKvmCPU::drain\n");
289 switch (_status) {
290 case Running:
291 // The base KVM code is normally ready when it is in the
292 // Running state, but the architecture specific code might be
293 // of a different opinion. This may happen when the CPU been
294 // notified of an event that hasn't been accepted by the vCPU
295 // yet.
296 if (!archIsDrained()) {
297 drainManager = dm;
298 return 1;
299 }
300
301 // The state of the CPU is consistent, so we don't need to do
302 // anything special to drain it. We simply de-schedule the
303 // tick event and enter the Idle state to prevent nasty things
304 // like MMIOs from happening.
305 if (tickEvent.scheduled())
306 deschedule(tickEvent);
307 _status = Idle;
308
309 /** FALLTHROUGH */
310 case Idle:
311 // Idle, no need to drain
312 assert(!tickEvent.scheduled());
313
314 // Sync the thread context here since we'll need it when we
315 // switch CPUs or checkpoint the CPU.
316 syncThreadContext();
317
318 return 0;
319
320 case RunningServiceCompletion:
321 // The CPU has just requested a service that was handled in
322 // the RunningService state, but the results have still not
323 // been reported to the CPU. Now, we /could/ probably just
324 // update the register state ourselves instead of letting KVM
325 // handle it, but that would be tricky. Instead, we enter KVM
326 // and let it do its stuff.
327 drainManager = dm;
328
329 DPRINTF(Drain, "KVM CPU is waiting for service completion, "
330 "requesting drain.\n");
331 return 1;
332
333 case RunningService:
334 // We need to drain since the CPU is waiting for service (e.g., MMIOs)
335 drainManager = dm;
336
337 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
338 return 1;
339
340 default:
341 panic("KVM: Unhandled CPU state in drain()\n");
342 return 0;
343 }
344 }
345
346 void
347 BaseKvmCPU::drainResume()
348 {
349 assert(!tickEvent.scheduled());
350
351 // We might have been switched out. In that case, we don't need to
352 // do anything.
353 if (switchedOut())
354 return;
355
356 DPRINTF(Kvm, "drainResume\n");
357 verifyMemoryMode();
358
359 // The tick event is de-scheduled as a part of the draining
360 // process. Re-schedule it if the thread context is active.
361 if (tc->status() == ThreadContext::Active) {
362 schedule(tickEvent, nextCycle());
363 _status = Running;
364 } else {
365 _status = Idle;
366 }
367 }
368
369 void
370 BaseKvmCPU::switchOut()
371 {
372 DPRINTF(Kvm, "switchOut\n");
373
374 BaseCPU::switchOut();
375
376 // We should have drained prior to executing a switchOut, which
377 // means that the tick event shouldn't be scheduled and the CPU is
378 // idle.
379 assert(!tickEvent.scheduled());
380 assert(_status == Idle);
381 }
382
383 void
384 BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
385 {
386 DPRINTF(Kvm, "takeOverFrom\n");
387
388 BaseCPU::takeOverFrom(cpu);
389
390 // We should have drained prior to executing a switchOut, which
391 // means that the tick event shouldn't be scheduled and the CPU is
392 // idle.
393 assert(!tickEvent.scheduled());
394 assert(_status == Idle);
395 assert(threadContexts.size() == 1);
396
397 // Force an update of the KVM state here instead of flagging the
398 // TC as dirty. This is not ideal from a performance point of
399 // view, but it makes debugging easier as it allows meaningful KVM
400 // state to be dumped before and after a takeover.
401 updateKvmState();
402 threadContextDirty = false;
403 }
404
405 void
406 BaseKvmCPU::verifyMemoryMode() const
407 {
408 if (!(system->isAtomicMode() && system->bypassCaches())) {
409 fatal("The KVM-based CPUs requires the memory system to be in the "
410 "'atomic_noncaching' mode.\n");
411 }
412 }
413
414 void
415 BaseKvmCPU::wakeup()
416 {
417 DPRINTF(Kvm, "wakeup()\n");
418
419 if (thread->status() != ThreadContext::Suspended)
420 return;
421
422 thread->activate();
423 }
424
425 void
426 BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
427 {
428 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
429
430 assert(thread_num == 0);
431 assert(thread);
432
433 assert(_status == Idle);
434 assert(!tickEvent.scheduled());
435
436 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
437
438 schedule(tickEvent, clockEdge(delay));
439 _status = Running;
440 }
441
442
443 void
444 BaseKvmCPU::suspendContext(ThreadID thread_num)
445 {
446 DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
447
448 assert(thread_num == 0);
449 assert(thread);
450
451 if (_status == Idle)
452 return;
453
454 assert(_status == Running);
455
456 // The tick event may no be scheduled if the quest has requested
457 // the monitor to wait for interrupts. The normal CPU models can
458 // get their tick events descheduled by quiesce instructions, but
459 // that can't happen here.
460 if (tickEvent.scheduled())
461 deschedule(tickEvent);
462
463 _status = Idle;
464 }
465
466 void
467 BaseKvmCPU::deallocateContext(ThreadID thread_num)
468 {
469 // for now, these are equivalent
470 suspendContext(thread_num);
471 }
472
473 void
474 BaseKvmCPU::haltContext(ThreadID thread_num)
475 {
476 // for now, these are equivalent
477 suspendContext(thread_num);
478 }
479
480 ThreadContext *
481 BaseKvmCPU::getContext(int tn)
482 {
483 assert(tn == 0);
484 syncThreadContext();
485 return tc;
486 }
487
488
489 Counter
490 BaseKvmCPU::totalInsts() const
491 {
492 return ctrInsts;
493 }
494
495 Counter
496 BaseKvmCPU::totalOps() const
497 {
498 hack_once("Pretending totalOps is equivalent to totalInsts()\n");
499 return ctrInsts;
500 }
501
502 void
503 BaseKvmCPU::dump()
504 {
505 inform("State dumping not implemented.");
506 }
507
508 void
509 BaseKvmCPU::tick()
510 {
511 Tick delay(0);
512 assert(_status != Idle);
513
514 switch (_status) {
515 case RunningService:
516 // handleKvmExit() will determine the next state of the CPU
517 delay = handleKvmExit();
518
519 if (tryDrain())
520 _status = Idle;
521 break;
522
523 case RunningServiceCompletion:
524 case Running: {
525 EventQueue *q = curEventQueue();
526 Tick ticksToExecute(q->nextTick() - curTick());
527
528 // We might need to update the KVM state.
529 syncKvmState();
530
531 // Setup any pending instruction count breakpoints using
532 // PerfEvent.
533 setupInstStop();
534
535 DPRINTF(KvmRun, "Entering KVM...\n");
536 if (drainManager) {
537 // Force an immediate exit from KVM after completing
538 // pending operations. The architecture-specific code
539 // takes care to run until it is in a state where it can
540 // safely be drained.
541 delay = kvmRunDrain();
542 } else {
543 delay = kvmRun(ticksToExecute);
544 }
545
546 // Entering into KVM implies that we'll have to reload the thread
547 // context from KVM if we want to access it. Flag the KVM state as
548 // dirty with respect to the cached thread context.
549 kvmStateDirty = true;
550
551 // Enter into the RunningService state unless the
552 // simulation was stopped by a timer.
553 if (_kvmRun->exit_reason != KVM_EXIT_INTR) {
554 _status = RunningService;
555 } else {
556 ++numExitSignal;
557 _status = Running;
558 }
559
560 // Service any pending instruction events. The vCPU should
561 // have exited in time for the event using the instruction
562 // counter configured by setupInstStop().
563 comInstEventQueue[0]->serviceEvents(ctrInsts);
564 system->instEventQueue.serviceEvents(system->totalNumInsts);
565
566 if (tryDrain())
567 _status = Idle;
568 } break;
569
570 default:
571 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
572 _status);
573 }
574
575 // Schedule a new tick if we are still running
576 if (_status != Idle)
577 schedule(tickEvent, clockEdge(ticksToCycles(delay)));
578 }
579
580 Tick
581 BaseKvmCPU::kvmRunDrain()
582 {
583 // By default, the only thing we need to drain is a pending IO
584 // operation which assumes that we are in the
585 // RunningServiceCompletion state.
586 assert(_status == RunningServiceCompletion);
587
588 // Deliver the data from the pending IO operation and immediately
589 // exit.
590 return kvmRun(0);
591 }
592
593 uint64_t
594 BaseKvmCPU::getHostCycles() const
595 {
596 return hwCycles.read();
597 }
598
599 Tick
600 BaseKvmCPU::kvmRun(Tick ticks)
601 {
602 Tick ticksExecuted;
603 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
604 timerOverflowed = false;
605
606 if (ticks == 0) {
607 // Settings ticks == 0 is a special case which causes an entry
608 // into KVM that finishes pending operations (e.g., IO) and
609 // then immediately exits.
610 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
611
612 ++numVMHalfEntries;
613
614 // This signal is always masked while we are executing in gem5
615 // and gets unmasked temporarily as soon as we enter into
616 // KVM. See setSignalMask() and setupSignalHandler().
617 raise(KVM_TIMER_SIGNAL);
618
619 // Enter into KVM. KVM will check for signals after completing
620 // pending operations (IO). Since the KVM_TIMER_SIGNAL is
621 // pending, this forces an immediate exit into gem5 again. We
622 // don't bother to setup timers since this shouldn't actually
623 // execute any code in the guest.
624 ioctlRun();
625
626 // We always execute at least one cycle to prevent the
627 // BaseKvmCPU::tick() to be rescheduled on the same tick
628 // twice.
629 ticksExecuted = clockPeriod();
630 } else {
631 if (ticks < runTimer->resolution()) {
632 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
633 ticks, runTimer->resolution());
634 ticks = runTimer->resolution();
635 }
636
637 // Get hardware statistics after synchronizing contexts. The KVM
638 // state update might affect guest cycle counters.
639 uint64_t baseCycles(getHostCycles());
640 uint64_t baseInstrs(hwInstructions.read());
641
642 // Arm the run timer and start the cycle timer if it isn't
643 // controlled by the overflow timer. Starting/stopping the cycle
644 // timer automatically starts the other perf timers as they are in
645 // the same counter group.
646 runTimer->arm(ticks);
647 if (!perfControlledByTimer)
648 hwCycles.start();
649
650 ioctlRun();
651
652 runTimer->disarm();
653 if (!perfControlledByTimer)
654 hwCycles.stop();
655
656 // The timer signal may have been delivered after we exited
657 // from KVM. It will be pending in that case since it is
658 // masked when we aren't executing in KVM. Discard it to make
659 // sure we don't deliver it immediately next time we try to
660 // enter into KVM.
661 discardPendingSignal(KVM_TIMER_SIGNAL);
662 discardPendingSignal(KVM_INST_SIGNAL);
663
664 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
665 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
666 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
667 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
668
669 if (ticksExecuted < ticks &&
670 timerOverflowed &&
671 _kvmRun->exit_reason == KVM_EXIT_INTR) {
672 // TODO: We should probably do something clever here...
673 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
674 ticks, ticksExecuted);
675 }
676
677 /* Update statistics */
678 numCycles += simCyclesExecuted;;
679 numInsts += instsExecuted;
680 ctrInsts += instsExecuted;
681 system->totalNumInsts += instsExecuted;
682
683 DPRINTF(KvmRun,
684 "KVM: Executed %i instructions in %i cycles "
685 "(%i ticks, sim cycles: %i).\n",
686 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
687 }
688
689 ++numVMExits;
690
691 return ticksExecuted + flushCoalescedMMIO();
692 }
693
694 void
695 BaseKvmCPU::kvmNonMaskableInterrupt()
696 {
697 ++numInterrupts;
698 if (ioctl(KVM_NMI) == -1)
699 panic("KVM: Failed to deliver NMI to virtual CPU\n");
700 }
701
702 void
703 BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
704 {
705 ++numInterrupts;
706 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
707 panic("KVM: Failed to deliver interrupt to virtual CPU\n");
708 }
709
710 void
711 BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
712 {
713 if (ioctl(KVM_GET_REGS, &regs) == -1)
714 panic("KVM: Failed to get guest registers\n");
715 }
716
717 void
718 BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
719 {
720 if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
721 panic("KVM: Failed to set guest registers\n");
722 }
723
724 void
725 BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
726 {
727 if (ioctl(KVM_GET_SREGS, &regs) == -1)
728 panic("KVM: Failed to get guest special registers\n");
729 }
730
731 void
732 BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
733 {
734 if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
735 panic("KVM: Failed to set guest special registers\n");
736 }
737
738 void
739 BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
740 {
741 if (ioctl(KVM_GET_FPU, &state) == -1)
742 panic("KVM: Failed to get guest FPU state\n");
743 }
744
745 void
746 BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
747 {
748 if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
749 panic("KVM: Failed to set guest FPU state\n");
750 }
751
752
753 void
754 BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
755 {
756 #ifdef KVM_SET_ONE_REG
757 struct kvm_one_reg reg;
758 reg.id = id;
759 reg.addr = (uint64_t)addr;
760
761 if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
762 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
763 id, errno);
764 }
765 #else
766 panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
767 #endif
768 }
769
770 void
771 BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
772 {
773 #ifdef KVM_GET_ONE_REG
774 struct kvm_one_reg reg;
775 reg.id = id;
776 reg.addr = (uint64_t)addr;
777
778 if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
779 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
780 id, errno);
781 }
782 #else
783 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
784 #endif
785 }
786
787 std::string
788 BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
789 {
790 #ifdef KVM_GET_ONE_REG
791 std::ostringstream ss;
792
793 ss.setf(std::ios::hex, std::ios::basefield);
794 ss.setf(std::ios::showbase);
795 #define HANDLE_INTTYPE(len) \
796 case KVM_REG_SIZE_U ## len: { \
797 uint ## len ## _t value; \
798 getOneReg(id, &value); \
799 ss << value; \
800 } break
801
802 #define HANDLE_ARRAY(len) \
803 case KVM_REG_SIZE_U ## len: { \
804 uint8_t value[len / 8]; \
805 getOneReg(id, value); \
806 ss << "[" << value[0]; \
807 for (int i = 1; i < len / 8; ++i) \
808 ss << ", " << value[i]; \
809 ss << "]"; \
810 } break
811
812 switch (id & KVM_REG_SIZE_MASK) {
813 HANDLE_INTTYPE(8);
814 HANDLE_INTTYPE(16);
815 HANDLE_INTTYPE(32);
816 HANDLE_INTTYPE(64);
817 HANDLE_ARRAY(128);
818 HANDLE_ARRAY(256);
819 HANDLE_ARRAY(512);
820 HANDLE_ARRAY(1024);
821 default:
822 ss << "??";
823 }
824
825 #undef HANDLE_INTTYPE
826 #undef HANDLE_ARRAY
827
828 return ss.str();
829 #else
830 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
831 #endif
832 }
833
834 void
835 BaseKvmCPU::syncThreadContext()
836 {
837 if (!kvmStateDirty)
838 return;
839
840 assert(!threadContextDirty);
841
842 updateThreadContext();
843 kvmStateDirty = false;
844 }
845
846 void
847 BaseKvmCPU::syncKvmState()
848 {
849 if (!threadContextDirty)
850 return;
851
852 assert(!kvmStateDirty);
853
854 updateKvmState();
855 threadContextDirty = false;
856 }
857
858 Tick
859 BaseKvmCPU::handleKvmExit()
860 {
861 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
862 assert(_status == RunningService);
863
864 // Switch into the running state by default. Individual handlers
865 // can override this.
866 _status = Running;
867 switch (_kvmRun->exit_reason) {
868 case KVM_EXIT_UNKNOWN:
869 return handleKvmExitUnknown();
870
871 case KVM_EXIT_EXCEPTION:
872 return handleKvmExitException();
873
874 case KVM_EXIT_IO:
875 _status = RunningServiceCompletion;
876 ++numIO;
877 return handleKvmExitIO();
878
879 case KVM_EXIT_HYPERCALL:
880 ++numHypercalls;
881 return handleKvmExitHypercall();
882
883 case KVM_EXIT_HLT:
884 /* The guest has halted and is waiting for interrupts */
885 DPRINTF(Kvm, "handleKvmExitHalt\n");
886 ++numHalt;
887
888 // Suspend the thread until the next interrupt arrives
889 thread->suspend();
890
891 // This is actually ignored since the thread is suspended.
892 return 0;
893
894 case KVM_EXIT_MMIO:
895 _status = RunningServiceCompletion;
896 /* Service memory mapped IO requests */
897 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
898 _kvmRun->mmio.is_write,
899 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
900
901 ++numMMIO;
902 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
903 _kvmRun->mmio.len, _kvmRun->mmio.is_write);
904
905 case KVM_EXIT_IRQ_WINDOW_OPEN:
906 return handleKvmExitIRQWindowOpen();
907
908 case KVM_EXIT_FAIL_ENTRY:
909 return handleKvmExitFailEntry();
910
911 case KVM_EXIT_INTR:
912 /* KVM was interrupted by a signal, restart it in the next
913 * tick. */
914 return 0;
915
916 case KVM_EXIT_INTERNAL_ERROR:
917 panic("KVM: Internal error (suberror: %u)\n",
918 _kvmRun->internal.suberror);
919
920 default:
921 dump();
922 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
923 }
924 }
925
926 Tick
927 BaseKvmCPU::handleKvmExitIO()
928 {
929 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
930 _kvmRun->io.direction, _kvmRun->io.size,
931 _kvmRun->io.port, _kvmRun->io.count);
932 }
933
934 Tick
935 BaseKvmCPU::handleKvmExitHypercall()
936 {
937 panic("KVM: Unhandled hypercall\n");
938 }
939
940 Tick
941 BaseKvmCPU::handleKvmExitIRQWindowOpen()
942 {
943 warn("KVM: Unhandled IRQ window.\n");
944 return 0;
945 }
946
947
948 Tick
949 BaseKvmCPU::handleKvmExitUnknown()
950 {
951 dump();
952 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
953 _kvmRun->hw.hardware_exit_reason);
954 }
955
956 Tick
957 BaseKvmCPU::handleKvmExitException()
958 {
959 dump();
960 panic("KVM: Got exception when starting vCPU "
961 "(exception: %u, error_code: %u)\n",
962 _kvmRun->ex.exception, _kvmRun->ex.error_code);
963 }
964
965 Tick
966 BaseKvmCPU::handleKvmExitFailEntry()
967 {
968 dump();
969 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
970 _kvmRun->fail_entry.hardware_entry_failure_reason);
971 }
972
973 Tick
974 BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
975 {
976 ThreadContext *tc(thread->getTC());
977 syncThreadContext();
978
979 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
980 // Some architectures do need to massage physical addresses a bit
981 // before they are inserted into the memory system. This enables
982 // APIC accesses on x86 and m5ops where supported through a MMIO
983 // interface.
984 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
985 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
986 if (fault != NoFault)
987 warn("Finalization of MMIO address failed: %s\n", fault->name());
988
989
990 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
991 Packet pkt(&mmio_req, cmd);
992 pkt.dataStatic(data);
993
994 if (mmio_req.isMmappedIpr()) {
995 const Cycles ipr_delay(write ?
996 TheISA::handleIprWrite(tc, &pkt) :
997 TheISA::handleIprRead(tc, &pkt));
998 return clockPeriod() * ipr_delay;
999 } else {
1000 return dataPort.sendAtomic(&pkt);
1001 }
1002 }
1003
1004 void
1005 BaseKvmCPU::setSignalMask(const sigset_t *mask)
1006 {
1007 std::unique_ptr<struct kvm_signal_mask> kvm_mask;
1008
1009 if (mask) {
1010 kvm_mask.reset((struct kvm_signal_mask *)operator new(
1011 sizeof(struct kvm_signal_mask) + sizeof(*mask)));
1012 // The kernel and the user-space headers have different ideas
1013 // about the size of sigset_t. This seems like a massive hack,
1014 // but is actually what qemu does.
1015 assert(sizeof(*mask) >= 8);
1016 kvm_mask->len = 8;
1017 memcpy(kvm_mask->sigset, mask, kvm_mask->len);
1018 }
1019
1020 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
1021 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
1022 errno);
1023 }
1024
1025 int
1026 BaseKvmCPU::ioctl(int request, long p1) const
1027 {
1028 if (vcpuFD == -1)
1029 panic("KVM: CPU ioctl called before initialization\n");
1030
1031 return ::ioctl(vcpuFD, request, p1);
1032 }
1033
1034 Tick
1035 BaseKvmCPU::flushCoalescedMMIO()
1036 {
1037 if (!mmioRing)
1038 return 0;
1039
1040 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1041
1042 // TODO: We might need to do synchronization when we start to
1043 // support multiple CPUs
1044 Tick ticks(0);
1045 while (mmioRing->first != mmioRing->last) {
1046 struct kvm_coalesced_mmio &ent(
1047 mmioRing->coalesced_mmio[mmioRing->first]);
1048
1049 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1050 ent.phys_addr, ent.len);
1051
1052 ++numCoalescedMMIO;
1053 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1054
1055 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1056 }
1057
1058 return ticks;
1059 }
1060
1061 /**
1062 * Cycle timer overflow when running in KVM. Forces the KVM syscall to
1063 * exit with EINTR and allows us to run the event queue.
1064 *
1065 * @warn This function might not be called since some kernels don't
1066 * seem to deliver signals when the signal is only unmasked when
1067 * running in KVM. This doesn't matter though since we are only
1068 * interested in getting KVM to exit, which happens as expected. See
1069 * setupSignalHandler() and kvmRun() for details about KVM signal
1070 * handling.
1071 */
1072 static void
1073 onTimerOverflow(int signo, siginfo_t *si, void *data)
1074 {
1075 timerOverflowed = true;
1076 }
1077
1078 /**
1079 * Instruction counter overflow when running in KVM. Forces the KVM
1080 * syscall to exit with EINTR and allows us to handle instruction
1081 * count events.
1082 */
1083 static void
1084 onInstEvent(int signo, siginfo_t *si, void *data)
1085 {
1086 }
1087
1088 void
1089 BaseKvmCPU::setupSignalHandler()
1090 {
1091 struct sigaction sa;
1092
1093 memset(&sa, 0, sizeof(sa));
1094 sa.sa_sigaction = onTimerOverflow;
1095 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1096 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1097 panic("KVM: Failed to setup vCPU timer signal handler\n");
1098
1099 memset(&sa, 0, sizeof(sa));
1100 sa.sa_sigaction = onInstEvent;
1101 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1102 if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1)
1103 panic("KVM: Failed to setup vCPU instruction signal handler\n");
1104
1105 sigset_t sigset;
1106 if (pthread_sigmask(SIG_BLOCK, NULL, &sigset) == -1)
1107 panic("KVM: Failed get signal mask\n");
1108
1109 // Request KVM to setup the same signal mask as we're currently
1110 // running with except for the KVM control signals. We'll
1111 // sometimes need to raise the KVM_TIMER_SIGNAL to cause immediate
1112 // exits from KVM after servicing IO requests. See kvmRun().
1113 sigdelset(&sigset, KVM_TIMER_SIGNAL);
1114 sigdelset(&sigset, KVM_INST_SIGNAL);
1115 setSignalMask(&sigset);
1116
1117 // Mask our control signals so they aren't delivered unless we're
1118 // actually executing inside KVM.
1119 sigaddset(&sigset, KVM_TIMER_SIGNAL);
1120 sigaddset(&sigset, KVM_INST_SIGNAL);
1121 if (pthread_sigmask(SIG_SETMASK, &sigset, NULL) == -1)
1122 panic("KVM: Failed mask the KVM control signals\n");
1123 }
1124
1125 bool
1126 BaseKvmCPU::discardPendingSignal(int signum) const
1127 {
1128 int discardedSignal;
1129
1130 // Setting the timeout to zero causes sigtimedwait to return
1131 // immediately.
1132 struct timespec timeout;
1133 timeout.tv_sec = 0;
1134 timeout.tv_nsec = 0;
1135
1136 sigset_t sigset;
1137 sigemptyset(&sigset);
1138 sigaddset(&sigset, signum);
1139
1140 do {
1141 discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1142 } while (discardedSignal == -1 && errno == EINTR);
1143
1144 if (discardedSignal == signum)
1145 return true;
1146 else if (discardedSignal == -1 && errno == EAGAIN)
1147 return false;
1148 else
1149 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1150 discardedSignal, errno);
1151 }
1152
1153 void
1154 BaseKvmCPU::setupCounters()
1155 {
1156 DPRINTF(Kvm, "Attaching cycle counter...\n");
1157 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1158 PERF_COUNT_HW_CPU_CYCLES);
1159 cfgCycles.disabled(true)
1160 .pinned(true);
1161
1162 // Try to exclude the host. We set both exclude_hv and
1163 // exclude_host since different architectures use slightly
1164 // different APIs in the kernel.
1165 cfgCycles.exclude_hv(true)
1166 .exclude_host(true);
1167
1168 if (perfControlledByTimer) {
1169 // We need to configure the cycles counter to send overflows
1170 // since we are going to use it to trigger timer signals that
1171 // trap back into m5 from KVM. In practice, this means that we
1172 // need to set some non-zero sample period that gets
1173 // overridden when the timer is armed.
1174 cfgCycles.wakeupEvents(1)
1175 .samplePeriod(42);
1176 }
1177
1178 hwCycles.attach(cfgCycles,
1179 0); // TID (0 => currentThread)
1180
1181 setupInstCounter();
1182 }
1183
1184 bool
1185 BaseKvmCPU::tryDrain()
1186 {
1187 if (!drainManager)
1188 return false;
1189
1190 if (!archIsDrained()) {
1191 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1192 return false;
1193 }
1194
1195 if (_status == Idle || _status == Running) {
1196 DPRINTF(Drain,
1197 "tryDrain: CPU transitioned into the Idle state, drain done\n");
1198 drainManager->signalDrainDone();
1199 drainManager = NULL;
1200 return true;
1201 } else {
1202 DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1203 return false;
1204 }
1205 }
1206
1207 void
1208 BaseKvmCPU::ioctlRun()
1209 {
1210 if (ioctl(KVM_RUN) == -1) {
1211 if (errno != EINTR)
1212 panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1213 errno);
1214 }
1215 }
1216
1217 void
1218 BaseKvmCPU::setupInstStop()
1219 {
1220 if (comInstEventQueue[0]->empty()) {
1221 setupInstCounter(0);
1222 } else {
1223 const uint64_t next(comInstEventQueue[0]->nextTick());
1224
1225 assert(next > ctrInsts);
1226 setupInstCounter(next - ctrInsts);
1227 }
1228 }
1229
1230 void
1231 BaseKvmCPU::setupInstCounter(uint64_t period)
1232 {
1233 // No need to do anything if we aren't attaching for the first
1234 // time or the period isn't changing.
1235 if (period == activeInstPeriod && hwInstructions.attached())
1236 return;
1237
1238 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1239 PERF_COUNT_HW_INSTRUCTIONS);
1240
1241 // Try to exclude the host. We set both exclude_hv and
1242 // exclude_host since different architectures use slightly
1243 // different APIs in the kernel.
1244 cfgInstructions.exclude_hv(true)
1245 .exclude_host(true);
1246
1247 if (period) {
1248 // Setup a sampling counter if that has been requested.
1249 cfgInstructions.wakeupEvents(1)
1250 .samplePeriod(period);
1251 }
1252
1253 // We need to detach and re-attach the counter to reliably change
1254 // sampling settings. See PerfKvmCounter::period() for details.
1255 if (hwInstructions.attached())
1256 hwInstructions.detach();
1257 assert(hwCycles.attached());
1258 hwInstructions.attach(cfgInstructions,
1259 0, // TID (0 => currentThread)
1260 hwCycles);
1261
1262 if (period)
1263 hwInstructions.enableSignals(KVM_INST_SIGNAL);
1264
1265 activeInstPeriod = period;
1266 }