kvm: Service events in the instruction event queues
[gem5.git] / src / cpu / kvm / base.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40 #include <linux/kvm.h>
41 #include <sys/ioctl.h>
42 #include <sys/mman.h>
43 #include <unistd.h>
44
45 #include <cerrno>
46 #include <csignal>
47 #include <ostream>
48
49 #include "arch/mmapped_ipr.hh"
50 #include "arch/utility.hh"
51 #include "cpu/kvm/base.hh"
52 #include "debug/Checkpoint.hh"
53 #include "debug/Drain.hh"
54 #include "debug/Kvm.hh"
55 #include "debug/KvmIO.hh"
56 #include "debug/KvmRun.hh"
57 #include "params/BaseKvmCPU.hh"
58 #include "sim/process.hh"
59 #include "sim/system.hh"
60
61 #include <signal.h>
62
63 /* Used by some KVM macros */
64 #define PAGE_SIZE pageSize
65
66 volatile bool timerOverflowed = false;
67
68 BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
69 : BaseCPU(params),
70 vm(*params->kvmVM),
71 _status(Idle),
72 dataPort(name() + ".dcache_port", this),
73 instPort(name() + ".icache_port", this),
74 threadContextDirty(true),
75 kvmStateDirty(false),
76 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
77 _kvmRun(NULL), mmioRing(NULL),
78 pageSize(sysconf(_SC_PAGE_SIZE)),
79 tickEvent(*this),
80 activeInstPeriod(0),
81 perfControlledByTimer(params->usePerfOverflow),
82 hostFreq(params->hostFreq),
83 hostFactor(params->hostFactor),
84 drainManager(NULL),
85 ctrInsts(0)
86 {
87 if (pageSize == -1)
88 panic("KVM: Failed to determine host page size (%i)\n",
89 errno);
90
91 thread = new SimpleThread(this, 0, params->system,
92 params->itb, params->dtb, params->isa[0]);
93 thread->setStatus(ThreadContext::Halted);
94 tc = thread->getTC();
95 threadContexts.push_back(tc);
96
97 setupCounters();
98
99 if (params->usePerfOverflow)
100 runTimer.reset(new PerfKvmTimer(hwCycles,
101 KVM_TIMER_SIGNAL,
102 params->hostFactor,
103 params->hostFreq));
104 else
105 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
106 params->hostFactor,
107 params->hostFreq));
108 }
109
110 BaseKvmCPU::~BaseKvmCPU()
111 {
112 if (_kvmRun)
113 munmap(_kvmRun, vcpuMMapSize);
114 close(vcpuFD);
115 }
116
117 void
118 BaseKvmCPU::init()
119 {
120 BaseCPU::init();
121
122 if (numThreads != 1)
123 fatal("KVM: Multithreading not supported");
124
125 tc->initMemProxies(tc);
126
127 // initialize CPU, including PC
128 if (FullSystem && !switchedOut())
129 TheISA::initCPU(tc, tc->contextId());
130
131 mmio_req.setThreadContext(tc->contextId(), 0);
132 }
133
134 void
135 BaseKvmCPU::startup()
136 {
137 const BaseKvmCPUParams * const p(
138 dynamic_cast<const BaseKvmCPUParams *>(params()));
139
140 Kvm &kvm(vm.kvm);
141
142 BaseCPU::startup();
143
144 assert(vcpuFD == -1);
145
146 // Tell the VM that a CPU is about to start.
147 vm.cpuStartup();
148
149 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
150 // not guaranteed that the parent KVM VM has initialized at that
151 // point. Initialize virtual CPUs here instead.
152 vcpuFD = vm.createVCPU(vcpuID);
153
154 // Setup signal handlers. This has to be done after the vCPU is
155 // created since it manipulates the vCPU signal mask.
156 setupSignalHandler();
157
158 // Map the KVM run structure */
159 vcpuMMapSize = kvm.getVCPUMMapSize();
160 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
161 PROT_READ | PROT_WRITE, MAP_SHARED,
162 vcpuFD, 0);
163 if (_kvmRun == MAP_FAILED)
164 panic("KVM: Failed to map run data structure\n");
165
166 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
167 // available. The offset into the KVM's communication page is
168 // provided by the coalesced MMIO capability.
169 int mmioOffset(kvm.capCoalescedMMIO());
170 if (!p->useCoalescedMMIO) {
171 inform("KVM: Coalesced MMIO disabled by config.\n");
172 } else if (mmioOffset) {
173 inform("KVM: Coalesced IO available\n");
174 mmioRing = (struct kvm_coalesced_mmio_ring *)(
175 (char *)_kvmRun + (mmioOffset * pageSize));
176 } else {
177 inform("KVM: Coalesced not supported by host OS\n");
178 }
179
180 thread->startup();
181 }
182
183 void
184 BaseKvmCPU::regStats()
185 {
186 using namespace Stats;
187
188 BaseCPU::regStats();
189
190 numInsts
191 .name(name() + ".committedInsts")
192 .desc("Number of instructions committed")
193 ;
194
195 numVMExits
196 .name(name() + ".numVMExits")
197 .desc("total number of KVM exits")
198 ;
199
200 numVMHalfEntries
201 .name(name() + ".numVMHalfEntries")
202 .desc("number of KVM entries to finalize pending operations")
203 ;
204
205 numExitSignal
206 .name(name() + ".numExitSignal")
207 .desc("exits due to signal delivery")
208 ;
209
210 numMMIO
211 .name(name() + ".numMMIO")
212 .desc("number of VM exits due to memory mapped IO")
213 ;
214
215 numCoalescedMMIO
216 .name(name() + ".numCoalescedMMIO")
217 .desc("number of coalesced memory mapped IO requests")
218 ;
219
220 numIO
221 .name(name() + ".numIO")
222 .desc("number of VM exits due to legacy IO")
223 ;
224
225 numHalt
226 .name(name() + ".numHalt")
227 .desc("number of VM exits due to wait for interrupt instructions")
228 ;
229
230 numInterrupts
231 .name(name() + ".numInterrupts")
232 .desc("number of interrupts delivered")
233 ;
234
235 numHypercalls
236 .name(name() + ".numHypercalls")
237 .desc("number of hypercalls")
238 ;
239 }
240
241 void
242 BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
243 {
244 if (DTRACE(Checkpoint)) {
245 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
246 dump();
247 }
248
249 assert(tid == 0);
250 assert(_status == Idle);
251 thread->serialize(os);
252 }
253
254 void
255 BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
256 ThreadID tid)
257 {
258 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
259
260 assert(tid == 0);
261 assert(_status == Idle);
262 thread->unserialize(cp, section);
263 threadContextDirty = true;
264 }
265
266 unsigned int
267 BaseKvmCPU::drain(DrainManager *dm)
268 {
269 if (switchedOut())
270 return 0;
271
272 DPRINTF(Drain, "BaseKvmCPU::drain\n");
273 switch (_status) {
274 case Running:
275 // The base KVM code is normally ready when it is in the
276 // Running state, but the architecture specific code might be
277 // of a different opinion. This may happen when the CPU been
278 // notified of an event that hasn't been accepted by the vCPU
279 // yet.
280 if (!archIsDrained()) {
281 drainManager = dm;
282 return 1;
283 }
284
285 // The state of the CPU is consistent, so we don't need to do
286 // anything special to drain it. We simply de-schedule the
287 // tick event and enter the Idle state to prevent nasty things
288 // like MMIOs from happening.
289 if (tickEvent.scheduled())
290 deschedule(tickEvent);
291 _status = Idle;
292
293 /** FALLTHROUGH */
294 case Idle:
295 // Idle, no need to drain
296 assert(!tickEvent.scheduled());
297
298 // Sync the thread context here since we'll need it when we
299 // switch CPUs or checkpoint the CPU.
300 syncThreadContext();
301
302 return 0;
303
304 case RunningServiceCompletion:
305 // The CPU has just requested a service that was handled in
306 // the RunningService state, but the results have still not
307 // been reported to the CPU. Now, we /could/ probably just
308 // update the register state ourselves instead of letting KVM
309 // handle it, but that would be tricky. Instead, we enter KVM
310 // and let it do its stuff.
311 drainManager = dm;
312
313 DPRINTF(Drain, "KVM CPU is waiting for service completion, "
314 "requesting drain.\n");
315 return 1;
316
317 case RunningService:
318 // We need to drain since the CPU is waiting for service (e.g., MMIOs)
319 drainManager = dm;
320
321 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
322 return 1;
323
324 default:
325 panic("KVM: Unhandled CPU state in drain()\n");
326 return 0;
327 }
328 }
329
330 void
331 BaseKvmCPU::drainResume()
332 {
333 assert(!tickEvent.scheduled());
334
335 // We might have been switched out. In that case, we don't need to
336 // do anything.
337 if (switchedOut())
338 return;
339
340 DPRINTF(Kvm, "drainResume\n");
341 verifyMemoryMode();
342
343 // The tick event is de-scheduled as a part of the draining
344 // process. Re-schedule it if the thread context is active.
345 if (tc->status() == ThreadContext::Active) {
346 schedule(tickEvent, nextCycle());
347 _status = Running;
348 } else {
349 _status = Idle;
350 }
351 }
352
353 void
354 BaseKvmCPU::switchOut()
355 {
356 DPRINTF(Kvm, "switchOut\n");
357
358 BaseCPU::switchOut();
359
360 // We should have drained prior to executing a switchOut, which
361 // means that the tick event shouldn't be scheduled and the CPU is
362 // idle.
363 assert(!tickEvent.scheduled());
364 assert(_status == Idle);
365 }
366
367 void
368 BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
369 {
370 DPRINTF(Kvm, "takeOverFrom\n");
371
372 BaseCPU::takeOverFrom(cpu);
373
374 // We should have drained prior to executing a switchOut, which
375 // means that the tick event shouldn't be scheduled and the CPU is
376 // idle.
377 assert(!tickEvent.scheduled());
378 assert(_status == Idle);
379 assert(threadContexts.size() == 1);
380
381 // Force an update of the KVM state here instead of flagging the
382 // TC as dirty. This is not ideal from a performance point of
383 // view, but it makes debugging easier as it allows meaningful KVM
384 // state to be dumped before and after a takeover.
385 updateKvmState();
386 threadContextDirty = false;
387 }
388
389 void
390 BaseKvmCPU::verifyMemoryMode() const
391 {
392 if (!(system->isAtomicMode() && system->bypassCaches())) {
393 fatal("The KVM-based CPUs requires the memory system to be in the "
394 "'atomic_noncaching' mode.\n");
395 }
396 }
397
398 void
399 BaseKvmCPU::wakeup()
400 {
401 DPRINTF(Kvm, "wakeup()\n");
402
403 if (thread->status() != ThreadContext::Suspended)
404 return;
405
406 thread->activate();
407 }
408
409 void
410 BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
411 {
412 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
413
414 assert(thread_num == 0);
415 assert(thread);
416
417 assert(_status == Idle);
418 assert(!tickEvent.scheduled());
419
420 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
421
422 schedule(tickEvent, clockEdge(delay));
423 _status = Running;
424 }
425
426
427 void
428 BaseKvmCPU::suspendContext(ThreadID thread_num)
429 {
430 DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
431
432 assert(thread_num == 0);
433 assert(thread);
434
435 if (_status == Idle)
436 return;
437
438 assert(_status == Running);
439
440 // The tick event may no be scheduled if the quest has requested
441 // the monitor to wait for interrupts. The normal CPU models can
442 // get their tick events descheduled by quiesce instructions, but
443 // that can't happen here.
444 if (tickEvent.scheduled())
445 deschedule(tickEvent);
446
447 _status = Idle;
448 }
449
450 void
451 BaseKvmCPU::deallocateContext(ThreadID thread_num)
452 {
453 // for now, these are equivalent
454 suspendContext(thread_num);
455 }
456
457 void
458 BaseKvmCPU::haltContext(ThreadID thread_num)
459 {
460 // for now, these are equivalent
461 suspendContext(thread_num);
462 }
463
464 ThreadContext *
465 BaseKvmCPU::getContext(int tn)
466 {
467 assert(tn == 0);
468 syncThreadContext();
469 return tc;
470 }
471
472
473 Counter
474 BaseKvmCPU::totalInsts() const
475 {
476 return ctrInsts;
477 }
478
479 Counter
480 BaseKvmCPU::totalOps() const
481 {
482 hack_once("Pretending totalOps is equivalent to totalInsts()\n");
483 return ctrInsts;
484 }
485
486 void
487 BaseKvmCPU::dump()
488 {
489 inform("State dumping not implemented.");
490 }
491
492 void
493 BaseKvmCPU::tick()
494 {
495 Tick delay(0);
496 assert(_status != Idle);
497
498 switch (_status) {
499 case RunningService:
500 // handleKvmExit() will determine the next state of the CPU
501 delay = handleKvmExit();
502
503 if (tryDrain())
504 _status = Idle;
505 break;
506
507 case RunningServiceCompletion:
508 case Running: {
509 Tick ticksToExecute(mainEventQueue.nextTick() - curTick());
510
511 // We might need to update the KVM state.
512 syncKvmState();
513
514 // Setup any pending instruction count breakpoints using
515 // PerfEvent.
516 setupInstStop();
517
518 DPRINTF(KvmRun, "Entering KVM...\n");
519 if (drainManager) {
520 // Force an immediate exit from KVM after completing
521 // pending operations. The architecture-specific code
522 // takes care to run until it is in a state where it can
523 // safely be drained.
524 delay = kvmRunDrain();
525 } else {
526 delay = kvmRun(ticksToExecute);
527 }
528
529 // Entering into KVM implies that we'll have to reload the thread
530 // context from KVM if we want to access it. Flag the KVM state as
531 // dirty with respect to the cached thread context.
532 kvmStateDirty = true;
533
534 // Enter into the RunningService state unless the
535 // simulation was stopped by a timer.
536 if (_kvmRun->exit_reason != KVM_EXIT_INTR) {
537 _status = RunningService;
538 } else {
539 ++numExitSignal;
540 _status = Running;
541 }
542
543 // Service any pending instruction events. The vCPU should
544 // have exited in time for the event using the instruction
545 // counter configured by setupInstStop().
546 comInstEventQueue[0]->serviceEvents(ctrInsts);
547 system->instEventQueue.serviceEvents(system->totalNumInsts);
548
549 if (tryDrain())
550 _status = Idle;
551 } break;
552
553 default:
554 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
555 _status);
556 }
557
558 // Schedule a new tick if we are still running
559 if (_status != Idle)
560 schedule(tickEvent, clockEdge(ticksToCycles(delay)));
561 }
562
563 Tick
564 BaseKvmCPU::kvmRunDrain()
565 {
566 // By default, the only thing we need to drain is a pending IO
567 // operation which assumes that we are in the
568 // RunningServiceCompletion state.
569 assert(_status == RunningServiceCompletion);
570
571 // Deliver the data from the pending IO operation and immediately
572 // exit.
573 return kvmRun(0);
574 }
575
576 uint64_t
577 BaseKvmCPU::getHostCycles() const
578 {
579 return hwCycles.read();
580 }
581
582 Tick
583 BaseKvmCPU::kvmRun(Tick ticks)
584 {
585 Tick ticksExecuted;
586 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
587 timerOverflowed = false;
588
589 if (ticks == 0) {
590 // Settings ticks == 0 is a special case which causes an entry
591 // into KVM that finishes pending operations (e.g., IO) and
592 // then immediately exits.
593 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
594
595 ++numVMHalfEntries;
596
597 // This signal is always masked while we are executing in gem5
598 // and gets unmasked temporarily as soon as we enter into
599 // KVM. See setSignalMask() and setupSignalHandler().
600 raise(KVM_TIMER_SIGNAL);
601
602 // Enter into KVM. KVM will check for signals after completing
603 // pending operations (IO). Since the KVM_TIMER_SIGNAL is
604 // pending, this forces an immediate exit into gem5 again. We
605 // don't bother to setup timers since this shouldn't actually
606 // execute any code in the guest.
607 ioctlRun();
608
609 // We always execute at least one cycle to prevent the
610 // BaseKvmCPU::tick() to be rescheduled on the same tick
611 // twice.
612 ticksExecuted = clockPeriod();
613 } else {
614 if (ticks < runTimer->resolution()) {
615 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
616 ticks, runTimer->resolution());
617 ticks = runTimer->resolution();
618 }
619
620 // Get hardware statistics after synchronizing contexts. The KVM
621 // state update might affect guest cycle counters.
622 uint64_t baseCycles(getHostCycles());
623 uint64_t baseInstrs(hwInstructions.read());
624
625 // Arm the run timer and start the cycle timer if it isn't
626 // controlled by the overflow timer. Starting/stopping the cycle
627 // timer automatically starts the other perf timers as they are in
628 // the same counter group.
629 runTimer->arm(ticks);
630 if (!perfControlledByTimer)
631 hwCycles.start();
632
633 ioctlRun();
634
635 runTimer->disarm();
636 if (!perfControlledByTimer)
637 hwCycles.stop();
638
639 // The timer signal may have been delivered after we exited
640 // from KVM. It will be pending in that case since it is
641 // masked when we aren't executing in KVM. Discard it to make
642 // sure we don't deliver it immediately next time we try to
643 // enter into KVM.
644 discardPendingSignal(KVM_TIMER_SIGNAL);
645 discardPendingSignal(KVM_INST_SIGNAL);
646
647 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
648 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
649 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
650 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
651
652 if (ticksExecuted < ticks &&
653 timerOverflowed &&
654 _kvmRun->exit_reason == KVM_EXIT_INTR) {
655 // TODO: We should probably do something clever here...
656 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
657 ticks, ticksExecuted);
658 }
659
660 /* Update statistics */
661 numCycles += simCyclesExecuted;;
662 numInsts += instsExecuted;
663 ctrInsts += instsExecuted;
664 system->totalNumInsts += instsExecuted;
665
666 DPRINTF(KvmRun,
667 "KVM: Executed %i instructions in %i cycles "
668 "(%i ticks, sim cycles: %i).\n",
669 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
670 }
671
672 ++numVMExits;
673
674 return ticksExecuted + flushCoalescedMMIO();
675 }
676
677 void
678 BaseKvmCPU::kvmNonMaskableInterrupt()
679 {
680 ++numInterrupts;
681 if (ioctl(KVM_NMI) == -1)
682 panic("KVM: Failed to deliver NMI to virtual CPU\n");
683 }
684
685 void
686 BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
687 {
688 ++numInterrupts;
689 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
690 panic("KVM: Failed to deliver interrupt to virtual CPU\n");
691 }
692
693 void
694 BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
695 {
696 if (ioctl(KVM_GET_REGS, &regs) == -1)
697 panic("KVM: Failed to get guest registers\n");
698 }
699
700 void
701 BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
702 {
703 if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
704 panic("KVM: Failed to set guest registers\n");
705 }
706
707 void
708 BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
709 {
710 if (ioctl(KVM_GET_SREGS, &regs) == -1)
711 panic("KVM: Failed to get guest special registers\n");
712 }
713
714 void
715 BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
716 {
717 if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
718 panic("KVM: Failed to set guest special registers\n");
719 }
720
721 void
722 BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
723 {
724 if (ioctl(KVM_GET_FPU, &state) == -1)
725 panic("KVM: Failed to get guest FPU state\n");
726 }
727
728 void
729 BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
730 {
731 if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
732 panic("KVM: Failed to set guest FPU state\n");
733 }
734
735
736 void
737 BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
738 {
739 #ifdef KVM_SET_ONE_REG
740 struct kvm_one_reg reg;
741 reg.id = id;
742 reg.addr = (uint64_t)addr;
743
744 if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
745 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
746 id, errno);
747 }
748 #else
749 panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
750 #endif
751 }
752
753 void
754 BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
755 {
756 #ifdef KVM_GET_ONE_REG
757 struct kvm_one_reg reg;
758 reg.id = id;
759 reg.addr = (uint64_t)addr;
760
761 if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
762 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
763 id, errno);
764 }
765 #else
766 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
767 #endif
768 }
769
770 std::string
771 BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
772 {
773 #ifdef KVM_GET_ONE_REG
774 std::ostringstream ss;
775
776 ss.setf(std::ios::hex, std::ios::basefield);
777 ss.setf(std::ios::showbase);
778 #define HANDLE_INTTYPE(len) \
779 case KVM_REG_SIZE_U ## len: { \
780 uint ## len ## _t value; \
781 getOneReg(id, &value); \
782 ss << value; \
783 } break
784
785 #define HANDLE_ARRAY(len) \
786 case KVM_REG_SIZE_U ## len: { \
787 uint8_t value[len / 8]; \
788 getOneReg(id, value); \
789 ss << "[" << value[0]; \
790 for (int i = 1; i < len / 8; ++i) \
791 ss << ", " << value[i]; \
792 ss << "]"; \
793 } break
794
795 switch (id & KVM_REG_SIZE_MASK) {
796 HANDLE_INTTYPE(8);
797 HANDLE_INTTYPE(16);
798 HANDLE_INTTYPE(32);
799 HANDLE_INTTYPE(64);
800 HANDLE_ARRAY(128);
801 HANDLE_ARRAY(256);
802 HANDLE_ARRAY(512);
803 HANDLE_ARRAY(1024);
804 default:
805 ss << "??";
806 }
807
808 #undef HANDLE_INTTYPE
809 #undef HANDLE_ARRAY
810
811 return ss.str();
812 #else
813 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
814 #endif
815 }
816
817 void
818 BaseKvmCPU::syncThreadContext()
819 {
820 if (!kvmStateDirty)
821 return;
822
823 assert(!threadContextDirty);
824
825 updateThreadContext();
826 kvmStateDirty = false;
827 }
828
829 void
830 BaseKvmCPU::syncKvmState()
831 {
832 if (!threadContextDirty)
833 return;
834
835 assert(!kvmStateDirty);
836
837 updateKvmState();
838 threadContextDirty = false;
839 }
840
841 Tick
842 BaseKvmCPU::handleKvmExit()
843 {
844 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
845 assert(_status == RunningService);
846
847 // Switch into the running state by default. Individual handlers
848 // can override this.
849 _status = Running;
850 switch (_kvmRun->exit_reason) {
851 case KVM_EXIT_UNKNOWN:
852 return handleKvmExitUnknown();
853
854 case KVM_EXIT_EXCEPTION:
855 return handleKvmExitException();
856
857 case KVM_EXIT_IO:
858 _status = RunningServiceCompletion;
859 ++numIO;
860 return handleKvmExitIO();
861
862 case KVM_EXIT_HYPERCALL:
863 ++numHypercalls;
864 return handleKvmExitHypercall();
865
866 case KVM_EXIT_HLT:
867 /* The guest has halted and is waiting for interrupts */
868 DPRINTF(Kvm, "handleKvmExitHalt\n");
869 ++numHalt;
870
871 // Suspend the thread until the next interrupt arrives
872 thread->suspend();
873
874 // This is actually ignored since the thread is suspended.
875 return 0;
876
877 case KVM_EXIT_MMIO:
878 _status = RunningServiceCompletion;
879 /* Service memory mapped IO requests */
880 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
881 _kvmRun->mmio.is_write,
882 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
883
884 ++numMMIO;
885 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
886 _kvmRun->mmio.len, _kvmRun->mmio.is_write);
887
888 case KVM_EXIT_IRQ_WINDOW_OPEN:
889 return handleKvmExitIRQWindowOpen();
890
891 case KVM_EXIT_FAIL_ENTRY:
892 return handleKvmExitFailEntry();
893
894 case KVM_EXIT_INTR:
895 /* KVM was interrupted by a signal, restart it in the next
896 * tick. */
897 return 0;
898
899 case KVM_EXIT_INTERNAL_ERROR:
900 panic("KVM: Internal error (suberror: %u)\n",
901 _kvmRun->internal.suberror);
902
903 default:
904 dump();
905 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
906 }
907 }
908
909 Tick
910 BaseKvmCPU::handleKvmExitIO()
911 {
912 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
913 _kvmRun->io.direction, _kvmRun->io.size,
914 _kvmRun->io.port, _kvmRun->io.count);
915 }
916
917 Tick
918 BaseKvmCPU::handleKvmExitHypercall()
919 {
920 panic("KVM: Unhandled hypercall\n");
921 }
922
923 Tick
924 BaseKvmCPU::handleKvmExitIRQWindowOpen()
925 {
926 warn("KVM: Unhandled IRQ window.\n");
927 return 0;
928 }
929
930
931 Tick
932 BaseKvmCPU::handleKvmExitUnknown()
933 {
934 dump();
935 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
936 _kvmRun->hw.hardware_exit_reason);
937 }
938
939 Tick
940 BaseKvmCPU::handleKvmExitException()
941 {
942 dump();
943 panic("KVM: Got exception when starting vCPU "
944 "(exception: %u, error_code: %u)\n",
945 _kvmRun->ex.exception, _kvmRun->ex.error_code);
946 }
947
948 Tick
949 BaseKvmCPU::handleKvmExitFailEntry()
950 {
951 dump();
952 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
953 _kvmRun->fail_entry.hardware_entry_failure_reason);
954 }
955
956 Tick
957 BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
958 {
959 ThreadContext *tc(thread->getTC());
960 syncThreadContext();
961
962 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
963 // Some architectures do need to massage physical addresses a bit
964 // before they are inserted into the memory system. This enables
965 // APIC accesses on x86 and m5ops where supported through a MMIO
966 // interface.
967 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
968 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
969 if (fault != NoFault)
970 warn("Finalization of MMIO address failed: %s\n", fault->name());
971
972
973 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
974 Packet pkt(&mmio_req, cmd);
975 pkt.dataStatic(data);
976
977 if (mmio_req.isMmappedIpr()) {
978 const Cycles ipr_delay(write ?
979 TheISA::handleIprWrite(tc, &pkt) :
980 TheISA::handleIprRead(tc, &pkt));
981 return clockEdge(ipr_delay);
982 } else {
983 return dataPort.sendAtomic(&pkt);
984 }
985 }
986
987 void
988 BaseKvmCPU::setSignalMask(const sigset_t *mask)
989 {
990 std::unique_ptr<struct kvm_signal_mask> kvm_mask;
991
992 if (mask) {
993 kvm_mask.reset((struct kvm_signal_mask *)operator new(
994 sizeof(struct kvm_signal_mask) + sizeof(*mask)));
995 // The kernel and the user-space headers have different ideas
996 // about the size of sigset_t. This seems like a massive hack,
997 // but is actually what qemu does.
998 assert(sizeof(*mask) >= 8);
999 kvm_mask->len = 8;
1000 memcpy(kvm_mask->sigset, mask, kvm_mask->len);
1001 }
1002
1003 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
1004 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
1005 errno);
1006 }
1007
1008 int
1009 BaseKvmCPU::ioctl(int request, long p1) const
1010 {
1011 if (vcpuFD == -1)
1012 panic("KVM: CPU ioctl called before initialization\n");
1013
1014 return ::ioctl(vcpuFD, request, p1);
1015 }
1016
1017 Tick
1018 BaseKvmCPU::flushCoalescedMMIO()
1019 {
1020 if (!mmioRing)
1021 return 0;
1022
1023 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1024
1025 // TODO: We might need to do synchronization when we start to
1026 // support multiple CPUs
1027 Tick ticks(0);
1028 while (mmioRing->first != mmioRing->last) {
1029 struct kvm_coalesced_mmio &ent(
1030 mmioRing->coalesced_mmio[mmioRing->first]);
1031
1032 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1033 ent.phys_addr, ent.len);
1034
1035 ++numCoalescedMMIO;
1036 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1037
1038 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1039 }
1040
1041 return ticks;
1042 }
1043
1044 /**
1045 * Cycle timer overflow when running in KVM. Forces the KVM syscall to
1046 * exit with EINTR and allows us to run the event queue.
1047 */
1048 static void
1049 onTimerOverflow(int signo, siginfo_t *si, void *data)
1050 {
1051 timerOverflowed = true;
1052 }
1053
1054 /**
1055 * Instruction counter overflow when running in KVM. Forces the KVM
1056 * syscall to exit with EINTR and allows us to handle instruction
1057 * count events.
1058 */
1059 static void
1060 onInstEvent(int signo, siginfo_t *si, void *data)
1061 {
1062 }
1063
1064 void
1065 BaseKvmCPU::setupSignalHandler()
1066 {
1067 struct sigaction sa;
1068
1069 memset(&sa, 0, sizeof(sa));
1070 sa.sa_sigaction = onTimerOverflow;
1071 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1072 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1073 panic("KVM: Failed to setup vCPU timer signal handler\n");
1074
1075 memset(&sa, 0, sizeof(sa));
1076 sa.sa_sigaction = onInstEvent;
1077 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1078 if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1)
1079 panic("KVM: Failed to setup vCPU instruction signal handler\n");
1080
1081 sigset_t sigset;
1082 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1)
1083 panic("KVM: Failed get signal mask\n");
1084
1085 // Request KVM to setup the same signal mask as we're currently
1086 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL
1087 // to cause immediate exits from KVM after servicing IO
1088 // requests. See kvmRun().
1089 setSignalMask(&sigset);
1090
1091 // Mask our control signals so they aren't delivered unless we're
1092 // actually executing inside KVM.
1093 sigaddset(&sigset, KVM_TIMER_SIGNAL);
1094 sigaddset(&sigset, KVM_INST_SIGNAL);
1095 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1)
1096 panic("KVM: Failed mask the KVM control signals\n");
1097 }
1098
1099 bool
1100 BaseKvmCPU::discardPendingSignal(int signum) const
1101 {
1102 int discardedSignal;
1103
1104 // Setting the timeout to zero causes sigtimedwait to return
1105 // immediately.
1106 struct timespec timeout;
1107 timeout.tv_sec = 0;
1108 timeout.tv_nsec = 0;
1109
1110 sigset_t sigset;
1111 sigemptyset(&sigset);
1112 sigaddset(&sigset, signum);
1113
1114 do {
1115 discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1116 } while (discardedSignal == -1 && errno == EINTR);
1117
1118 if (discardedSignal == signum)
1119 return true;
1120 else if (discardedSignal == -1 && errno == EAGAIN)
1121 return false;
1122 else
1123 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1124 discardedSignal, errno);
1125 }
1126
1127 void
1128 BaseKvmCPU::setupCounters()
1129 {
1130 DPRINTF(Kvm, "Attaching cycle counter...\n");
1131 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1132 PERF_COUNT_HW_CPU_CYCLES);
1133 cfgCycles.disabled(true)
1134 .pinned(true);
1135
1136 if (perfControlledByTimer) {
1137 // We need to configure the cycles counter to send overflows
1138 // since we are going to use it to trigger timer signals that
1139 // trap back into m5 from KVM. In practice, this means that we
1140 // need to set some non-zero sample period that gets
1141 // overridden when the timer is armed.
1142 cfgCycles.wakeupEvents(1)
1143 .samplePeriod(42);
1144 }
1145
1146 hwCycles.attach(cfgCycles,
1147 0); // TID (0 => currentThread)
1148
1149 setupInstCounter();
1150 }
1151
1152 bool
1153 BaseKvmCPU::tryDrain()
1154 {
1155 if (!drainManager)
1156 return false;
1157
1158 if (!archIsDrained()) {
1159 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1160 return false;
1161 }
1162
1163 if (_status == Idle || _status == Running) {
1164 DPRINTF(Drain,
1165 "tryDrain: CPU transitioned into the Idle state, drain done\n");
1166 drainManager->signalDrainDone();
1167 drainManager = NULL;
1168 return true;
1169 } else {
1170 DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1171 return false;
1172 }
1173 }
1174
1175 void
1176 BaseKvmCPU::ioctlRun()
1177 {
1178 if (ioctl(KVM_RUN) == -1) {
1179 if (errno != EINTR)
1180 panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1181 errno);
1182 }
1183 }
1184
1185 void
1186 BaseKvmCPU::setupInstStop()
1187 {
1188 if (comInstEventQueue[0]->empty()) {
1189 setupInstCounter(0);
1190 } else {
1191 const uint64_t next(comInstEventQueue[0]->nextTick());
1192
1193 assert(next > ctrInsts);
1194 setupInstCounter(next - ctrInsts);
1195 }
1196 }
1197
1198 void
1199 BaseKvmCPU::setupInstCounter(uint64_t period)
1200 {
1201 // No need to do anything if we aren't attaching for the first
1202 // time or the period isn't changing.
1203 if (period == activeInstPeriod && hwInstructions.attached())
1204 return;
1205
1206 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1207 PERF_COUNT_HW_INSTRUCTIONS);
1208
1209 if (period) {
1210 // Setup a sampling counter if that has been requested.
1211 cfgInstructions.wakeupEvents(1)
1212 .samplePeriod(period);
1213 }
1214
1215 // We need to detach and re-attach the counter to reliably change
1216 // sampling settings. See PerfKvmCounter::period() for details.
1217 if (hwInstructions.attached())
1218 hwInstructions.detach();
1219 assert(hwCycles.attached());
1220 hwInstructions.attach(cfgInstructions,
1221 0, // TID (0 => currentThread)
1222 hwCycles);
1223
1224 if (period)
1225 hwInstructions.enableSignals(KVM_INST_SIGNAL);
1226
1227 activeInstPeriod = period;
1228 }