kvm: Add support for thread-specific instruction events
[gem5.git] / src / cpu / kvm / base.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40 #include <linux/kvm.h>
41 #include <sys/ioctl.h>
42 #include <sys/mman.h>
43 #include <unistd.h>
44
45 #include <cerrno>
46 #include <csignal>
47 #include <ostream>
48
49 #include "arch/mmapped_ipr.hh"
50 #include "arch/utility.hh"
51 #include "cpu/kvm/base.hh"
52 #include "debug/Checkpoint.hh"
53 #include "debug/Drain.hh"
54 #include "debug/Kvm.hh"
55 #include "debug/KvmIO.hh"
56 #include "debug/KvmRun.hh"
57 #include "params/BaseKvmCPU.hh"
58 #include "sim/process.hh"
59 #include "sim/system.hh"
60
61 #include <signal.h>
62
63 /* Used by some KVM macros */
64 #define PAGE_SIZE pageSize
65
66 volatile bool timerOverflowed = false;
67
68 BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
69 : BaseCPU(params),
70 vm(*params->kvmVM),
71 _status(Idle),
72 dataPort(name() + ".dcache_port", this),
73 instPort(name() + ".icache_port", this),
74 threadContextDirty(true),
75 kvmStateDirty(false),
76 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
77 _kvmRun(NULL), mmioRing(NULL),
78 pageSize(sysconf(_SC_PAGE_SIZE)),
79 tickEvent(*this),
80 activeInstPeriod(0),
81 perfControlledByTimer(params->usePerfOverflow),
82 hostFreq(params->hostFreq),
83 hostFactor(params->hostFactor),
84 drainManager(NULL),
85 ctrInsts(0)
86 {
87 if (pageSize == -1)
88 panic("KVM: Failed to determine host page size (%i)\n",
89 errno);
90
91 thread = new SimpleThread(this, 0, params->system,
92 params->itb, params->dtb, params->isa[0]);
93 thread->setStatus(ThreadContext::Halted);
94 tc = thread->getTC();
95 threadContexts.push_back(tc);
96
97 setupCounters();
98
99 if (params->usePerfOverflow)
100 runTimer.reset(new PerfKvmTimer(hwCycles,
101 KVM_TIMER_SIGNAL,
102 params->hostFactor,
103 params->hostFreq));
104 else
105 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
106 params->hostFactor,
107 params->hostFreq));
108 }
109
110 BaseKvmCPU::~BaseKvmCPU()
111 {
112 if (_kvmRun)
113 munmap(_kvmRun, vcpuMMapSize);
114 close(vcpuFD);
115 }
116
117 void
118 BaseKvmCPU::init()
119 {
120 BaseCPU::init();
121
122 if (numThreads != 1)
123 fatal("KVM: Multithreading not supported");
124
125 tc->initMemProxies(tc);
126
127 // initialize CPU, including PC
128 if (FullSystem && !switchedOut())
129 TheISA::initCPU(tc, tc->contextId());
130
131 mmio_req.setThreadContext(tc->contextId(), 0);
132 }
133
134 void
135 BaseKvmCPU::startup()
136 {
137 const BaseKvmCPUParams * const p(
138 dynamic_cast<const BaseKvmCPUParams *>(params()));
139
140 Kvm &kvm(vm.kvm);
141
142 BaseCPU::startup();
143
144 assert(vcpuFD == -1);
145
146 // Tell the VM that a CPU is about to start.
147 vm.cpuStartup();
148
149 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
150 // not guaranteed that the parent KVM VM has initialized at that
151 // point. Initialize virtual CPUs here instead.
152 vcpuFD = vm.createVCPU(vcpuID);
153
154 // Setup signal handlers. This has to be done after the vCPU is
155 // created since it manipulates the vCPU signal mask.
156 setupSignalHandler();
157
158 // Map the KVM run structure */
159 vcpuMMapSize = kvm.getVCPUMMapSize();
160 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
161 PROT_READ | PROT_WRITE, MAP_SHARED,
162 vcpuFD, 0);
163 if (_kvmRun == MAP_FAILED)
164 panic("KVM: Failed to map run data structure\n");
165
166 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
167 // available. The offset into the KVM's communication page is
168 // provided by the coalesced MMIO capability.
169 int mmioOffset(kvm.capCoalescedMMIO());
170 if (!p->useCoalescedMMIO) {
171 inform("KVM: Coalesced MMIO disabled by config.\n");
172 } else if (mmioOffset) {
173 inform("KVM: Coalesced IO available\n");
174 mmioRing = (struct kvm_coalesced_mmio_ring *)(
175 (char *)_kvmRun + (mmioOffset * pageSize));
176 } else {
177 inform("KVM: Coalesced not supported by host OS\n");
178 }
179
180 thread->startup();
181 }
182
183 void
184 BaseKvmCPU::regStats()
185 {
186 using namespace Stats;
187
188 BaseCPU::regStats();
189
190 numInsts
191 .name(name() + ".committedInsts")
192 .desc("Number of instructions committed")
193 ;
194
195 numVMExits
196 .name(name() + ".numVMExits")
197 .desc("total number of KVM exits")
198 ;
199
200 numVMHalfEntries
201 .name(name() + ".numVMHalfEntries")
202 .desc("number of KVM entries to finalize pending operations")
203 ;
204
205 numExitSignal
206 .name(name() + ".numExitSignal")
207 .desc("exits due to signal delivery")
208 ;
209
210 numMMIO
211 .name(name() + ".numMMIO")
212 .desc("number of VM exits due to memory mapped IO")
213 ;
214
215 numCoalescedMMIO
216 .name(name() + ".numCoalescedMMIO")
217 .desc("number of coalesced memory mapped IO requests")
218 ;
219
220 numIO
221 .name(name() + ".numIO")
222 .desc("number of VM exits due to legacy IO")
223 ;
224
225 numHalt
226 .name(name() + ".numHalt")
227 .desc("number of VM exits due to wait for interrupt instructions")
228 ;
229
230 numInterrupts
231 .name(name() + ".numInterrupts")
232 .desc("number of interrupts delivered")
233 ;
234
235 numHypercalls
236 .name(name() + ".numHypercalls")
237 .desc("number of hypercalls")
238 ;
239 }
240
241 void
242 BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
243 {
244 if (DTRACE(Checkpoint)) {
245 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
246 dump();
247 }
248
249 assert(tid == 0);
250 assert(_status == Idle);
251 thread->serialize(os);
252 }
253
254 void
255 BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
256 ThreadID tid)
257 {
258 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
259
260 assert(tid == 0);
261 assert(_status == Idle);
262 thread->unserialize(cp, section);
263 threadContextDirty = true;
264 }
265
266 unsigned int
267 BaseKvmCPU::drain(DrainManager *dm)
268 {
269 if (switchedOut())
270 return 0;
271
272 DPRINTF(Drain, "BaseKvmCPU::drain\n");
273 switch (_status) {
274 case Running:
275 // The base KVM code is normally ready when it is in the
276 // Running state, but the architecture specific code might be
277 // of a different opinion. This may happen when the CPU been
278 // notified of an event that hasn't been accepted by the vCPU
279 // yet.
280 if (!archIsDrained()) {
281 drainManager = dm;
282 return 1;
283 }
284
285 // The state of the CPU is consistent, so we don't need to do
286 // anything special to drain it. We simply de-schedule the
287 // tick event and enter the Idle state to prevent nasty things
288 // like MMIOs from happening.
289 if (tickEvent.scheduled())
290 deschedule(tickEvent);
291 _status = Idle;
292
293 /** FALLTHROUGH */
294 case Idle:
295 // Idle, no need to drain
296 assert(!tickEvent.scheduled());
297
298 // Sync the thread context here since we'll need it when we
299 // switch CPUs or checkpoint the CPU.
300 syncThreadContext();
301
302 return 0;
303
304 case RunningServiceCompletion:
305 // The CPU has just requested a service that was handled in
306 // the RunningService state, but the results have still not
307 // been reported to the CPU. Now, we /could/ probably just
308 // update the register state ourselves instead of letting KVM
309 // handle it, but that would be tricky. Instead, we enter KVM
310 // and let it do its stuff.
311 drainManager = dm;
312
313 DPRINTF(Drain, "KVM CPU is waiting for service completion, "
314 "requesting drain.\n");
315 return 1;
316
317 case RunningService:
318 // We need to drain since the CPU is waiting for service (e.g., MMIOs)
319 drainManager = dm;
320
321 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
322 return 1;
323
324 default:
325 panic("KVM: Unhandled CPU state in drain()\n");
326 return 0;
327 }
328 }
329
330 void
331 BaseKvmCPU::drainResume()
332 {
333 assert(!tickEvent.scheduled());
334
335 // We might have been switched out. In that case, we don't need to
336 // do anything.
337 if (switchedOut())
338 return;
339
340 DPRINTF(Kvm, "drainResume\n");
341 verifyMemoryMode();
342
343 // The tick event is de-scheduled as a part of the draining
344 // process. Re-schedule it if the thread context is active.
345 if (tc->status() == ThreadContext::Active) {
346 schedule(tickEvent, nextCycle());
347 _status = Running;
348 } else {
349 _status = Idle;
350 }
351 }
352
353 void
354 BaseKvmCPU::switchOut()
355 {
356 DPRINTF(Kvm, "switchOut\n");
357
358 BaseCPU::switchOut();
359
360 // We should have drained prior to executing a switchOut, which
361 // means that the tick event shouldn't be scheduled and the CPU is
362 // idle.
363 assert(!tickEvent.scheduled());
364 assert(_status == Idle);
365 }
366
367 void
368 BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
369 {
370 DPRINTF(Kvm, "takeOverFrom\n");
371
372 BaseCPU::takeOverFrom(cpu);
373
374 // We should have drained prior to executing a switchOut, which
375 // means that the tick event shouldn't be scheduled and the CPU is
376 // idle.
377 assert(!tickEvent.scheduled());
378 assert(_status == Idle);
379 assert(threadContexts.size() == 1);
380
381 // Force an update of the KVM state here instead of flagging the
382 // TC as dirty. This is not ideal from a performance point of
383 // view, but it makes debugging easier as it allows meaningful KVM
384 // state to be dumped before and after a takeover.
385 updateKvmState();
386 threadContextDirty = false;
387 }
388
389 void
390 BaseKvmCPU::verifyMemoryMode() const
391 {
392 if (!(system->isAtomicMode() && system->bypassCaches())) {
393 fatal("The KVM-based CPUs requires the memory system to be in the "
394 "'atomic_noncaching' mode.\n");
395 }
396 }
397
398 void
399 BaseKvmCPU::wakeup()
400 {
401 DPRINTF(Kvm, "wakeup()\n");
402
403 if (thread->status() != ThreadContext::Suspended)
404 return;
405
406 thread->activate();
407 }
408
409 void
410 BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
411 {
412 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
413
414 assert(thread_num == 0);
415 assert(thread);
416
417 assert(_status == Idle);
418 assert(!tickEvent.scheduled());
419
420 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
421
422 schedule(tickEvent, clockEdge(delay));
423 _status = Running;
424 }
425
426
427 void
428 BaseKvmCPU::suspendContext(ThreadID thread_num)
429 {
430 DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
431
432 assert(thread_num == 0);
433 assert(thread);
434
435 if (_status == Idle)
436 return;
437
438 assert(_status == Running);
439
440 // The tick event may no be scheduled if the quest has requested
441 // the monitor to wait for interrupts. The normal CPU models can
442 // get their tick events descheduled by quiesce instructions, but
443 // that can't happen here.
444 if (tickEvent.scheduled())
445 deschedule(tickEvent);
446
447 _status = Idle;
448 }
449
450 void
451 BaseKvmCPU::deallocateContext(ThreadID thread_num)
452 {
453 // for now, these are equivalent
454 suspendContext(thread_num);
455 }
456
457 void
458 BaseKvmCPU::haltContext(ThreadID thread_num)
459 {
460 // for now, these are equivalent
461 suspendContext(thread_num);
462 }
463
464 ThreadContext *
465 BaseKvmCPU::getContext(int tn)
466 {
467 assert(tn == 0);
468 syncThreadContext();
469 return tc;
470 }
471
472
473 Counter
474 BaseKvmCPU::totalInsts() const
475 {
476 return ctrInsts;
477 }
478
479 Counter
480 BaseKvmCPU::totalOps() const
481 {
482 hack_once("Pretending totalOps is equivalent to totalInsts()\n");
483 return ctrInsts;
484 }
485
486 void
487 BaseKvmCPU::dump()
488 {
489 inform("State dumping not implemented.");
490 }
491
492 void
493 BaseKvmCPU::tick()
494 {
495 Tick delay(0);
496 assert(_status != Idle);
497
498 switch (_status) {
499 case RunningService:
500 // handleKvmExit() will determine the next state of the CPU
501 delay = handleKvmExit();
502
503 if (tryDrain())
504 _status = Idle;
505 break;
506
507 case RunningServiceCompletion:
508 case Running: {
509 Tick ticksToExecute(mainEventQueue.nextTick() - curTick());
510
511 // We might need to update the KVM state.
512 syncKvmState();
513
514 // Setup any pending instruction count breakpoints using
515 // PerfEvent.
516 setupInstStop();
517
518 DPRINTF(KvmRun, "Entering KVM...\n");
519 if (drainManager) {
520 // Force an immediate exit from KVM after completing
521 // pending operations. The architecture-specific code
522 // takes care to run until it is in a state where it can
523 // safely be drained.
524 delay = kvmRunDrain();
525 } else {
526 delay = kvmRun(ticksToExecute);
527 }
528
529 // Entering into KVM implies that we'll have to reload the thread
530 // context from KVM if we want to access it. Flag the KVM state as
531 // dirty with respect to the cached thread context.
532 kvmStateDirty = true;
533
534 // Enter into the RunningService state unless the
535 // simulation was stopped by a timer.
536 if (_kvmRun->exit_reason != KVM_EXIT_INTR) {
537 _status = RunningService;
538 } else {
539 ++numExitSignal;
540 _status = Running;
541 }
542
543 if (tryDrain())
544 _status = Idle;
545 } break;
546
547 default:
548 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
549 _status);
550 }
551
552 // Schedule a new tick if we are still running
553 if (_status != Idle)
554 schedule(tickEvent, clockEdge(ticksToCycles(delay)));
555 }
556
557 Tick
558 BaseKvmCPU::kvmRunDrain()
559 {
560 // By default, the only thing we need to drain is a pending IO
561 // operation which assumes that we are in the
562 // RunningServiceCompletion state.
563 assert(_status == RunningServiceCompletion);
564
565 // Deliver the data from the pending IO operation and immediately
566 // exit.
567 return kvmRun(0);
568 }
569
570 uint64_t
571 BaseKvmCPU::getHostCycles() const
572 {
573 return hwCycles.read();
574 }
575
576 Tick
577 BaseKvmCPU::kvmRun(Tick ticks)
578 {
579 Tick ticksExecuted;
580 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
581 timerOverflowed = false;
582
583 if (ticks == 0) {
584 // Settings ticks == 0 is a special case which causes an entry
585 // into KVM that finishes pending operations (e.g., IO) and
586 // then immediately exits.
587 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
588
589 ++numVMHalfEntries;
590
591 // This signal is always masked while we are executing in gem5
592 // and gets unmasked temporarily as soon as we enter into
593 // KVM. See setSignalMask() and setupSignalHandler().
594 raise(KVM_TIMER_SIGNAL);
595
596 // Enter into KVM. KVM will check for signals after completing
597 // pending operations (IO). Since the KVM_TIMER_SIGNAL is
598 // pending, this forces an immediate exit into gem5 again. We
599 // don't bother to setup timers since this shouldn't actually
600 // execute any code in the guest.
601 ioctlRun();
602
603 // We always execute at least one cycle to prevent the
604 // BaseKvmCPU::tick() to be rescheduled on the same tick
605 // twice.
606 ticksExecuted = clockPeriod();
607 } else {
608 if (ticks < runTimer->resolution()) {
609 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
610 ticks, runTimer->resolution());
611 ticks = runTimer->resolution();
612 }
613
614 // Get hardware statistics after synchronizing contexts. The KVM
615 // state update might affect guest cycle counters.
616 uint64_t baseCycles(getHostCycles());
617 uint64_t baseInstrs(hwInstructions.read());
618
619 // Arm the run timer and start the cycle timer if it isn't
620 // controlled by the overflow timer. Starting/stopping the cycle
621 // timer automatically starts the other perf timers as they are in
622 // the same counter group.
623 runTimer->arm(ticks);
624 if (!perfControlledByTimer)
625 hwCycles.start();
626
627 ioctlRun();
628
629 runTimer->disarm();
630 if (!perfControlledByTimer)
631 hwCycles.stop();
632
633 // The timer signal may have been delivered after we exited
634 // from KVM. It will be pending in that case since it is
635 // masked when we aren't executing in KVM. Discard it to make
636 // sure we don't deliver it immediately next time we try to
637 // enter into KVM.
638 discardPendingSignal(KVM_TIMER_SIGNAL);
639 discardPendingSignal(KVM_INST_SIGNAL);
640
641 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
642 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
643 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
644 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
645
646 if (ticksExecuted < ticks &&
647 timerOverflowed &&
648 _kvmRun->exit_reason == KVM_EXIT_INTR) {
649 // TODO: We should probably do something clever here...
650 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
651 ticks, ticksExecuted);
652 }
653
654 /* Update statistics */
655 numCycles += simCyclesExecuted;;
656 numInsts += instsExecuted;
657 ctrInsts += instsExecuted;
658 system->totalNumInsts += instsExecuted;
659
660 DPRINTF(KvmRun,
661 "KVM: Executed %i instructions in %i cycles "
662 "(%i ticks, sim cycles: %i).\n",
663 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
664 }
665
666 ++numVMExits;
667
668 return ticksExecuted + flushCoalescedMMIO();
669 }
670
671 void
672 BaseKvmCPU::kvmNonMaskableInterrupt()
673 {
674 ++numInterrupts;
675 if (ioctl(KVM_NMI) == -1)
676 panic("KVM: Failed to deliver NMI to virtual CPU\n");
677 }
678
679 void
680 BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
681 {
682 ++numInterrupts;
683 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
684 panic("KVM: Failed to deliver interrupt to virtual CPU\n");
685 }
686
687 void
688 BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
689 {
690 if (ioctl(KVM_GET_REGS, &regs) == -1)
691 panic("KVM: Failed to get guest registers\n");
692 }
693
694 void
695 BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
696 {
697 if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
698 panic("KVM: Failed to set guest registers\n");
699 }
700
701 void
702 BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
703 {
704 if (ioctl(KVM_GET_SREGS, &regs) == -1)
705 panic("KVM: Failed to get guest special registers\n");
706 }
707
708 void
709 BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
710 {
711 if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
712 panic("KVM: Failed to set guest special registers\n");
713 }
714
715 void
716 BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
717 {
718 if (ioctl(KVM_GET_FPU, &state) == -1)
719 panic("KVM: Failed to get guest FPU state\n");
720 }
721
722 void
723 BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
724 {
725 if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
726 panic("KVM: Failed to set guest FPU state\n");
727 }
728
729
730 void
731 BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
732 {
733 #ifdef KVM_SET_ONE_REG
734 struct kvm_one_reg reg;
735 reg.id = id;
736 reg.addr = (uint64_t)addr;
737
738 if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
739 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
740 id, errno);
741 }
742 #else
743 panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
744 #endif
745 }
746
747 void
748 BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
749 {
750 #ifdef KVM_GET_ONE_REG
751 struct kvm_one_reg reg;
752 reg.id = id;
753 reg.addr = (uint64_t)addr;
754
755 if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
756 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
757 id, errno);
758 }
759 #else
760 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
761 #endif
762 }
763
764 std::string
765 BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
766 {
767 #ifdef KVM_GET_ONE_REG
768 std::ostringstream ss;
769
770 ss.setf(std::ios::hex, std::ios::basefield);
771 ss.setf(std::ios::showbase);
772 #define HANDLE_INTTYPE(len) \
773 case KVM_REG_SIZE_U ## len: { \
774 uint ## len ## _t value; \
775 getOneReg(id, &value); \
776 ss << value; \
777 } break
778
779 #define HANDLE_ARRAY(len) \
780 case KVM_REG_SIZE_U ## len: { \
781 uint8_t value[len / 8]; \
782 getOneReg(id, value); \
783 ss << "[" << value[0]; \
784 for (int i = 1; i < len / 8; ++i) \
785 ss << ", " << value[i]; \
786 ss << "]"; \
787 } break
788
789 switch (id & KVM_REG_SIZE_MASK) {
790 HANDLE_INTTYPE(8);
791 HANDLE_INTTYPE(16);
792 HANDLE_INTTYPE(32);
793 HANDLE_INTTYPE(64);
794 HANDLE_ARRAY(128);
795 HANDLE_ARRAY(256);
796 HANDLE_ARRAY(512);
797 HANDLE_ARRAY(1024);
798 default:
799 ss << "??";
800 }
801
802 #undef HANDLE_INTTYPE
803 #undef HANDLE_ARRAY
804
805 return ss.str();
806 #else
807 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
808 #endif
809 }
810
811 void
812 BaseKvmCPU::syncThreadContext()
813 {
814 if (!kvmStateDirty)
815 return;
816
817 assert(!threadContextDirty);
818
819 updateThreadContext();
820 kvmStateDirty = false;
821 }
822
823 void
824 BaseKvmCPU::syncKvmState()
825 {
826 if (!threadContextDirty)
827 return;
828
829 assert(!kvmStateDirty);
830
831 updateKvmState();
832 threadContextDirty = false;
833 }
834
835 Tick
836 BaseKvmCPU::handleKvmExit()
837 {
838 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
839 assert(_status == RunningService);
840
841 // Switch into the running state by default. Individual handlers
842 // can override this.
843 _status = Running;
844 switch (_kvmRun->exit_reason) {
845 case KVM_EXIT_UNKNOWN:
846 return handleKvmExitUnknown();
847
848 case KVM_EXIT_EXCEPTION:
849 return handleKvmExitException();
850
851 case KVM_EXIT_IO:
852 _status = RunningServiceCompletion;
853 ++numIO;
854 return handleKvmExitIO();
855
856 case KVM_EXIT_HYPERCALL:
857 ++numHypercalls;
858 return handleKvmExitHypercall();
859
860 case KVM_EXIT_HLT:
861 /* The guest has halted and is waiting for interrupts */
862 DPRINTF(Kvm, "handleKvmExitHalt\n");
863 ++numHalt;
864
865 // Suspend the thread until the next interrupt arrives
866 thread->suspend();
867
868 // This is actually ignored since the thread is suspended.
869 return 0;
870
871 case KVM_EXIT_MMIO:
872 _status = RunningServiceCompletion;
873 /* Service memory mapped IO requests */
874 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
875 _kvmRun->mmio.is_write,
876 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
877
878 ++numMMIO;
879 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
880 _kvmRun->mmio.len, _kvmRun->mmio.is_write);
881
882 case KVM_EXIT_IRQ_WINDOW_OPEN:
883 return handleKvmExitIRQWindowOpen();
884
885 case KVM_EXIT_FAIL_ENTRY:
886 return handleKvmExitFailEntry();
887
888 case KVM_EXIT_INTR:
889 /* KVM was interrupted by a signal, restart it in the next
890 * tick. */
891 return 0;
892
893 case KVM_EXIT_INTERNAL_ERROR:
894 panic("KVM: Internal error (suberror: %u)\n",
895 _kvmRun->internal.suberror);
896
897 default:
898 dump();
899 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
900 }
901 }
902
903 Tick
904 BaseKvmCPU::handleKvmExitIO()
905 {
906 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
907 _kvmRun->io.direction, _kvmRun->io.size,
908 _kvmRun->io.port, _kvmRun->io.count);
909 }
910
911 Tick
912 BaseKvmCPU::handleKvmExitHypercall()
913 {
914 panic("KVM: Unhandled hypercall\n");
915 }
916
917 Tick
918 BaseKvmCPU::handleKvmExitIRQWindowOpen()
919 {
920 warn("KVM: Unhandled IRQ window.\n");
921 return 0;
922 }
923
924
925 Tick
926 BaseKvmCPU::handleKvmExitUnknown()
927 {
928 dump();
929 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
930 _kvmRun->hw.hardware_exit_reason);
931 }
932
933 Tick
934 BaseKvmCPU::handleKvmExitException()
935 {
936 dump();
937 panic("KVM: Got exception when starting vCPU "
938 "(exception: %u, error_code: %u)\n",
939 _kvmRun->ex.exception, _kvmRun->ex.error_code);
940 }
941
942 Tick
943 BaseKvmCPU::handleKvmExitFailEntry()
944 {
945 dump();
946 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
947 _kvmRun->fail_entry.hardware_entry_failure_reason);
948 }
949
950 Tick
951 BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
952 {
953 ThreadContext *tc(thread->getTC());
954 syncThreadContext();
955
956 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
957 // Some architectures do need to massage physical addresses a bit
958 // before they are inserted into the memory system. This enables
959 // APIC accesses on x86 and m5ops where supported through a MMIO
960 // interface.
961 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
962 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
963 if (fault != NoFault)
964 warn("Finalization of MMIO address failed: %s\n", fault->name());
965
966
967 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
968 Packet pkt(&mmio_req, cmd);
969 pkt.dataStatic(data);
970
971 if (mmio_req.isMmappedIpr()) {
972 const Cycles ipr_delay(write ?
973 TheISA::handleIprWrite(tc, &pkt) :
974 TheISA::handleIprRead(tc, &pkt));
975 return clockEdge(ipr_delay);
976 } else {
977 return dataPort.sendAtomic(&pkt);
978 }
979 }
980
981 void
982 BaseKvmCPU::setSignalMask(const sigset_t *mask)
983 {
984 std::unique_ptr<struct kvm_signal_mask> kvm_mask;
985
986 if (mask) {
987 kvm_mask.reset((struct kvm_signal_mask *)operator new(
988 sizeof(struct kvm_signal_mask) + sizeof(*mask)));
989 // The kernel and the user-space headers have different ideas
990 // about the size of sigset_t. This seems like a massive hack,
991 // but is actually what qemu does.
992 assert(sizeof(*mask) >= 8);
993 kvm_mask->len = 8;
994 memcpy(kvm_mask->sigset, mask, kvm_mask->len);
995 }
996
997 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
998 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
999 errno);
1000 }
1001
1002 int
1003 BaseKvmCPU::ioctl(int request, long p1) const
1004 {
1005 if (vcpuFD == -1)
1006 panic("KVM: CPU ioctl called before initialization\n");
1007
1008 return ::ioctl(vcpuFD, request, p1);
1009 }
1010
1011 Tick
1012 BaseKvmCPU::flushCoalescedMMIO()
1013 {
1014 if (!mmioRing)
1015 return 0;
1016
1017 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1018
1019 // TODO: We might need to do synchronization when we start to
1020 // support multiple CPUs
1021 Tick ticks(0);
1022 while (mmioRing->first != mmioRing->last) {
1023 struct kvm_coalesced_mmio &ent(
1024 mmioRing->coalesced_mmio[mmioRing->first]);
1025
1026 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1027 ent.phys_addr, ent.len);
1028
1029 ++numCoalescedMMIO;
1030 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1031
1032 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1033 }
1034
1035 return ticks;
1036 }
1037
1038 /**
1039 * Cycle timer overflow when running in KVM. Forces the KVM syscall to
1040 * exit with EINTR and allows us to run the event queue.
1041 */
1042 static void
1043 onTimerOverflow(int signo, siginfo_t *si, void *data)
1044 {
1045 timerOverflowed = true;
1046 }
1047
1048 /**
1049 * Instruction counter overflow when running in KVM. Forces the KVM
1050 * syscall to exit with EINTR and allows us to handle instruction
1051 * count events.
1052 */
1053 static void
1054 onInstEvent(int signo, siginfo_t *si, void *data)
1055 {
1056 }
1057
1058 void
1059 BaseKvmCPU::setupSignalHandler()
1060 {
1061 struct sigaction sa;
1062
1063 memset(&sa, 0, sizeof(sa));
1064 sa.sa_sigaction = onTimerOverflow;
1065 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1066 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1067 panic("KVM: Failed to setup vCPU timer signal handler\n");
1068
1069 memset(&sa, 0, sizeof(sa));
1070 sa.sa_sigaction = onInstEvent;
1071 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1072 if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1)
1073 panic("KVM: Failed to setup vCPU instruction signal handler\n");
1074
1075 sigset_t sigset;
1076 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1)
1077 panic("KVM: Failed get signal mask\n");
1078
1079 // Request KVM to setup the same signal mask as we're currently
1080 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL
1081 // to cause immediate exits from KVM after servicing IO
1082 // requests. See kvmRun().
1083 setSignalMask(&sigset);
1084
1085 // Mask our control signals so they aren't delivered unless we're
1086 // actually executing inside KVM.
1087 sigaddset(&sigset, KVM_TIMER_SIGNAL);
1088 sigaddset(&sigset, KVM_INST_SIGNAL);
1089 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1)
1090 panic("KVM: Failed mask the KVM control signals\n");
1091 }
1092
1093 bool
1094 BaseKvmCPU::discardPendingSignal(int signum) const
1095 {
1096 int discardedSignal;
1097
1098 // Setting the timeout to zero causes sigtimedwait to return
1099 // immediately.
1100 struct timespec timeout;
1101 timeout.tv_sec = 0;
1102 timeout.tv_nsec = 0;
1103
1104 sigset_t sigset;
1105 sigemptyset(&sigset);
1106 sigaddset(&sigset, signum);
1107
1108 do {
1109 discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1110 } while (discardedSignal == -1 && errno == EINTR);
1111
1112 if (discardedSignal == signum)
1113 return true;
1114 else if (discardedSignal == -1 && errno == EAGAIN)
1115 return false;
1116 else
1117 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1118 discardedSignal, errno);
1119 }
1120
1121 void
1122 BaseKvmCPU::setupCounters()
1123 {
1124 DPRINTF(Kvm, "Attaching cycle counter...\n");
1125 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1126 PERF_COUNT_HW_CPU_CYCLES);
1127 cfgCycles.disabled(true)
1128 .pinned(true);
1129
1130 if (perfControlledByTimer) {
1131 // We need to configure the cycles counter to send overflows
1132 // since we are going to use it to trigger timer signals that
1133 // trap back into m5 from KVM. In practice, this means that we
1134 // need to set some non-zero sample period that gets
1135 // overridden when the timer is armed.
1136 cfgCycles.wakeupEvents(1)
1137 .samplePeriod(42);
1138 }
1139
1140 hwCycles.attach(cfgCycles,
1141 0); // TID (0 => currentThread)
1142
1143 setupInstCounter();
1144 }
1145
1146 bool
1147 BaseKvmCPU::tryDrain()
1148 {
1149 if (!drainManager)
1150 return false;
1151
1152 if (!archIsDrained()) {
1153 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1154 return false;
1155 }
1156
1157 if (_status == Idle || _status == Running) {
1158 DPRINTF(Drain,
1159 "tryDrain: CPU transitioned into the Idle state, drain done\n");
1160 drainManager->signalDrainDone();
1161 drainManager = NULL;
1162 return true;
1163 } else {
1164 DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1165 return false;
1166 }
1167 }
1168
1169 void
1170 BaseKvmCPU::ioctlRun()
1171 {
1172 if (ioctl(KVM_RUN) == -1) {
1173 if (errno != EINTR)
1174 panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1175 errno);
1176 }
1177 }
1178
1179 void
1180 BaseKvmCPU::setupInstStop()
1181 {
1182
1183 if (comInstEventQueue[0]->empty()) {
1184 setupInstCounter(0);
1185 } else {
1186 const uint64_t next(comInstEventQueue[0]->nextTick());
1187
1188 assert(next > ctrInsts);
1189 setupInstCounter(next - ctrInsts);
1190 }
1191 }
1192
1193 void
1194 BaseKvmCPU::setupInstCounter(uint64_t period)
1195 {
1196 // No need to do anything if we aren't attaching for the first
1197 // time or the period isn't changing.
1198 if (period == activeInstPeriod && hwInstructions.attached())
1199 return;
1200
1201 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1202 PERF_COUNT_HW_INSTRUCTIONS);
1203
1204 if (period) {
1205 // Setup a sampling counter if that has been requested.
1206 cfgInstructions.wakeupEvents(1)
1207 .samplePeriod(period);
1208 }
1209
1210 // We need to detach and re-attach the counter to reliably change
1211 // sampling settings. See PerfKvmCounter::period() for details.
1212 if (hwInstructions.attached())
1213 hwInstructions.detach();
1214 assert(hwCycles.attached());
1215 hwInstructions.attach(cfgInstructions,
1216 0, // TID (0 => currentThread)
1217 hwCycles);
1218
1219 if (period)
1220 hwInstructions.enableSignals(KVM_INST_SIGNAL);
1221
1222 activeInstPeriod = period;
1223 }