sim: simulate with multiple threads and event queues
[gem5.git] / src / cpu / kvm / base.cc
1 /*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Sandberg
38 */
39
40 #include <linux/kvm.h>
41 #include <sys/ioctl.h>
42 #include <sys/mman.h>
43 #include <unistd.h>
44
45 #include <cerrno>
46 #include <csignal>
47 #include <ostream>
48
49 #include "arch/mmapped_ipr.hh"
50 #include "arch/utility.hh"
51 #include "cpu/kvm/base.hh"
52 #include "debug/Checkpoint.hh"
53 #include "debug/Drain.hh"
54 #include "debug/Kvm.hh"
55 #include "debug/KvmIO.hh"
56 #include "debug/KvmRun.hh"
57 #include "params/BaseKvmCPU.hh"
58 #include "sim/process.hh"
59 #include "sim/system.hh"
60
61 #include <signal.h>
62
63 /* Used by some KVM macros */
64 #define PAGE_SIZE pageSize
65
66 volatile bool timerOverflowed = false;
67
68 BaseKvmCPU::BaseKvmCPU(BaseKvmCPUParams *params)
69 : BaseCPU(params),
70 vm(*params->kvmVM),
71 _status(Idle),
72 dataPort(name() + ".dcache_port", this),
73 instPort(name() + ".icache_port", this),
74 threadContextDirty(true),
75 kvmStateDirty(false),
76 vcpuID(vm.allocVCPUID()), vcpuFD(-1), vcpuMMapSize(0),
77 _kvmRun(NULL), mmioRing(NULL),
78 pageSize(sysconf(_SC_PAGE_SIZE)),
79 tickEvent(*this),
80 activeInstPeriod(0),
81 perfControlledByTimer(params->usePerfOverflow),
82 hostFreq(params->hostFreq),
83 hostFactor(params->hostFactor),
84 drainManager(NULL),
85 ctrInsts(0)
86 {
87 if (pageSize == -1)
88 panic("KVM: Failed to determine host page size (%i)\n",
89 errno);
90
91 thread = new SimpleThread(this, 0, params->system,
92 params->itb, params->dtb, params->isa[0]);
93 thread->setStatus(ThreadContext::Halted);
94 tc = thread->getTC();
95 threadContexts.push_back(tc);
96
97 setupCounters();
98
99 if (params->usePerfOverflow)
100 runTimer.reset(new PerfKvmTimer(hwCycles,
101 KVM_TIMER_SIGNAL,
102 params->hostFactor,
103 params->hostFreq));
104 else
105 runTimer.reset(new PosixKvmTimer(KVM_TIMER_SIGNAL, CLOCK_MONOTONIC,
106 params->hostFactor,
107 params->hostFreq));
108 }
109
110 BaseKvmCPU::~BaseKvmCPU()
111 {
112 if (_kvmRun)
113 munmap(_kvmRun, vcpuMMapSize);
114 close(vcpuFD);
115 }
116
117 void
118 BaseKvmCPU::init()
119 {
120 BaseCPU::init();
121
122 if (numThreads != 1)
123 fatal("KVM: Multithreading not supported");
124
125 tc->initMemProxies(tc);
126
127 // initialize CPU, including PC
128 if (FullSystem && !switchedOut())
129 TheISA::initCPU(tc, tc->contextId());
130
131 mmio_req.setThreadContext(tc->contextId(), 0);
132 }
133
134 void
135 BaseKvmCPU::startup()
136 {
137 const BaseKvmCPUParams * const p(
138 dynamic_cast<const BaseKvmCPUParams *>(params()));
139
140 Kvm &kvm(vm.kvm);
141
142 BaseCPU::startup();
143
144 assert(vcpuFD == -1);
145
146 // Tell the VM that a CPU is about to start.
147 vm.cpuStartup();
148
149 // We can't initialize KVM CPUs in BaseKvmCPU::init() since we are
150 // not guaranteed that the parent KVM VM has initialized at that
151 // point. Initialize virtual CPUs here instead.
152 vcpuFD = vm.createVCPU(vcpuID);
153
154 // Setup signal handlers. This has to be done after the vCPU is
155 // created since it manipulates the vCPU signal mask.
156 setupSignalHandler();
157
158 // Map the KVM run structure */
159 vcpuMMapSize = kvm.getVCPUMMapSize();
160 _kvmRun = (struct kvm_run *)mmap(0, vcpuMMapSize,
161 PROT_READ | PROT_WRITE, MAP_SHARED,
162 vcpuFD, 0);
163 if (_kvmRun == MAP_FAILED)
164 panic("KVM: Failed to map run data structure\n");
165
166 // Setup a pointer to the MMIO ring buffer if coalesced MMIO is
167 // available. The offset into the KVM's communication page is
168 // provided by the coalesced MMIO capability.
169 int mmioOffset(kvm.capCoalescedMMIO());
170 if (!p->useCoalescedMMIO) {
171 inform("KVM: Coalesced MMIO disabled by config.\n");
172 } else if (mmioOffset) {
173 inform("KVM: Coalesced IO available\n");
174 mmioRing = (struct kvm_coalesced_mmio_ring *)(
175 (char *)_kvmRun + (mmioOffset * pageSize));
176 } else {
177 inform("KVM: Coalesced not supported by host OS\n");
178 }
179
180 thread->startup();
181 }
182
183 void
184 BaseKvmCPU::regStats()
185 {
186 using namespace Stats;
187
188 BaseCPU::regStats();
189
190 numInsts
191 .name(name() + ".committedInsts")
192 .desc("Number of instructions committed")
193 ;
194
195 numVMExits
196 .name(name() + ".numVMExits")
197 .desc("total number of KVM exits")
198 ;
199
200 numVMHalfEntries
201 .name(name() + ".numVMHalfEntries")
202 .desc("number of KVM entries to finalize pending operations")
203 ;
204
205 numExitSignal
206 .name(name() + ".numExitSignal")
207 .desc("exits due to signal delivery")
208 ;
209
210 numMMIO
211 .name(name() + ".numMMIO")
212 .desc("number of VM exits due to memory mapped IO")
213 ;
214
215 numCoalescedMMIO
216 .name(name() + ".numCoalescedMMIO")
217 .desc("number of coalesced memory mapped IO requests")
218 ;
219
220 numIO
221 .name(name() + ".numIO")
222 .desc("number of VM exits due to legacy IO")
223 ;
224
225 numHalt
226 .name(name() + ".numHalt")
227 .desc("number of VM exits due to wait for interrupt instructions")
228 ;
229
230 numInterrupts
231 .name(name() + ".numInterrupts")
232 .desc("number of interrupts delivered")
233 ;
234
235 numHypercalls
236 .name(name() + ".numHypercalls")
237 .desc("number of hypercalls")
238 ;
239 }
240
241 void
242 BaseKvmCPU::serializeThread(std::ostream &os, ThreadID tid)
243 {
244 if (DTRACE(Checkpoint)) {
245 DPRINTF(Checkpoint, "KVM: Serializing thread %i:\n", tid);
246 dump();
247 }
248
249 assert(tid == 0);
250 assert(_status == Idle);
251 thread->serialize(os);
252 }
253
254 void
255 BaseKvmCPU::unserializeThread(Checkpoint *cp, const std::string &section,
256 ThreadID tid)
257 {
258 DPRINTF(Checkpoint, "KVM: Unserialize thread %i:\n", tid);
259
260 assert(tid == 0);
261 assert(_status == Idle);
262 thread->unserialize(cp, section);
263 threadContextDirty = true;
264 }
265
266 unsigned int
267 BaseKvmCPU::drain(DrainManager *dm)
268 {
269 if (switchedOut())
270 return 0;
271
272 DPRINTF(Drain, "BaseKvmCPU::drain\n");
273 switch (_status) {
274 case Running:
275 // The base KVM code is normally ready when it is in the
276 // Running state, but the architecture specific code might be
277 // of a different opinion. This may happen when the CPU been
278 // notified of an event that hasn't been accepted by the vCPU
279 // yet.
280 if (!archIsDrained()) {
281 drainManager = dm;
282 return 1;
283 }
284
285 // The state of the CPU is consistent, so we don't need to do
286 // anything special to drain it. We simply de-schedule the
287 // tick event and enter the Idle state to prevent nasty things
288 // like MMIOs from happening.
289 if (tickEvent.scheduled())
290 deschedule(tickEvent);
291 _status = Idle;
292
293 /** FALLTHROUGH */
294 case Idle:
295 // Idle, no need to drain
296 assert(!tickEvent.scheduled());
297
298 // Sync the thread context here since we'll need it when we
299 // switch CPUs or checkpoint the CPU.
300 syncThreadContext();
301
302 return 0;
303
304 case RunningServiceCompletion:
305 // The CPU has just requested a service that was handled in
306 // the RunningService state, but the results have still not
307 // been reported to the CPU. Now, we /could/ probably just
308 // update the register state ourselves instead of letting KVM
309 // handle it, but that would be tricky. Instead, we enter KVM
310 // and let it do its stuff.
311 drainManager = dm;
312
313 DPRINTF(Drain, "KVM CPU is waiting for service completion, "
314 "requesting drain.\n");
315 return 1;
316
317 case RunningService:
318 // We need to drain since the CPU is waiting for service (e.g., MMIOs)
319 drainManager = dm;
320
321 DPRINTF(Drain, "KVM CPU is waiting for service, requesting drain.\n");
322 return 1;
323
324 default:
325 panic("KVM: Unhandled CPU state in drain()\n");
326 return 0;
327 }
328 }
329
330 void
331 BaseKvmCPU::drainResume()
332 {
333 assert(!tickEvent.scheduled());
334
335 // We might have been switched out. In that case, we don't need to
336 // do anything.
337 if (switchedOut())
338 return;
339
340 DPRINTF(Kvm, "drainResume\n");
341 verifyMemoryMode();
342
343 // The tick event is de-scheduled as a part of the draining
344 // process. Re-schedule it if the thread context is active.
345 if (tc->status() == ThreadContext::Active) {
346 schedule(tickEvent, nextCycle());
347 _status = Running;
348 } else {
349 _status = Idle;
350 }
351 }
352
353 void
354 BaseKvmCPU::switchOut()
355 {
356 DPRINTF(Kvm, "switchOut\n");
357
358 BaseCPU::switchOut();
359
360 // We should have drained prior to executing a switchOut, which
361 // means that the tick event shouldn't be scheduled and the CPU is
362 // idle.
363 assert(!tickEvent.scheduled());
364 assert(_status == Idle);
365 }
366
367 void
368 BaseKvmCPU::takeOverFrom(BaseCPU *cpu)
369 {
370 DPRINTF(Kvm, "takeOverFrom\n");
371
372 BaseCPU::takeOverFrom(cpu);
373
374 // We should have drained prior to executing a switchOut, which
375 // means that the tick event shouldn't be scheduled and the CPU is
376 // idle.
377 assert(!tickEvent.scheduled());
378 assert(_status == Idle);
379 assert(threadContexts.size() == 1);
380
381 // Force an update of the KVM state here instead of flagging the
382 // TC as dirty. This is not ideal from a performance point of
383 // view, but it makes debugging easier as it allows meaningful KVM
384 // state to be dumped before and after a takeover.
385 updateKvmState();
386 threadContextDirty = false;
387 }
388
389 void
390 BaseKvmCPU::verifyMemoryMode() const
391 {
392 if (!(system->isAtomicMode() && system->bypassCaches())) {
393 fatal("The KVM-based CPUs requires the memory system to be in the "
394 "'atomic_noncaching' mode.\n");
395 }
396 }
397
398 void
399 BaseKvmCPU::wakeup()
400 {
401 DPRINTF(Kvm, "wakeup()\n");
402
403 if (thread->status() != ThreadContext::Suspended)
404 return;
405
406 thread->activate();
407 }
408
409 void
410 BaseKvmCPU::activateContext(ThreadID thread_num, Cycles delay)
411 {
412 DPRINTF(Kvm, "ActivateContext %d (%d cycles)\n", thread_num, delay);
413
414 assert(thread_num == 0);
415 assert(thread);
416
417 assert(_status == Idle);
418 assert(!tickEvent.scheduled());
419
420 numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
421
422 schedule(tickEvent, clockEdge(delay));
423 _status = Running;
424 }
425
426
427 void
428 BaseKvmCPU::suspendContext(ThreadID thread_num)
429 {
430 DPRINTF(Kvm, "SuspendContext %d\n", thread_num);
431
432 assert(thread_num == 0);
433 assert(thread);
434
435 if (_status == Idle)
436 return;
437
438 assert(_status == Running);
439
440 // The tick event may no be scheduled if the quest has requested
441 // the monitor to wait for interrupts. The normal CPU models can
442 // get their tick events descheduled by quiesce instructions, but
443 // that can't happen here.
444 if (tickEvent.scheduled())
445 deschedule(tickEvent);
446
447 _status = Idle;
448 }
449
450 void
451 BaseKvmCPU::deallocateContext(ThreadID thread_num)
452 {
453 // for now, these are equivalent
454 suspendContext(thread_num);
455 }
456
457 void
458 BaseKvmCPU::haltContext(ThreadID thread_num)
459 {
460 // for now, these are equivalent
461 suspendContext(thread_num);
462 }
463
464 ThreadContext *
465 BaseKvmCPU::getContext(int tn)
466 {
467 assert(tn == 0);
468 syncThreadContext();
469 return tc;
470 }
471
472
473 Counter
474 BaseKvmCPU::totalInsts() const
475 {
476 return ctrInsts;
477 }
478
479 Counter
480 BaseKvmCPU::totalOps() const
481 {
482 hack_once("Pretending totalOps is equivalent to totalInsts()\n");
483 return ctrInsts;
484 }
485
486 void
487 BaseKvmCPU::dump()
488 {
489 inform("State dumping not implemented.");
490 }
491
492 void
493 BaseKvmCPU::tick()
494 {
495 Tick delay(0);
496 assert(_status != Idle);
497
498 switch (_status) {
499 case RunningService:
500 // handleKvmExit() will determine the next state of the CPU
501 delay = handleKvmExit();
502
503 if (tryDrain())
504 _status = Idle;
505 break;
506
507 case RunningServiceCompletion:
508 case Running: {
509 EventQueue *q = curEventQueue();
510 Tick ticksToExecute(q->nextTick() - curTick());
511
512 // We might need to update the KVM state.
513 syncKvmState();
514
515 // Setup any pending instruction count breakpoints using
516 // PerfEvent.
517 setupInstStop();
518
519 DPRINTF(KvmRun, "Entering KVM...\n");
520 if (drainManager) {
521 // Force an immediate exit from KVM after completing
522 // pending operations. The architecture-specific code
523 // takes care to run until it is in a state where it can
524 // safely be drained.
525 delay = kvmRunDrain();
526 } else {
527 delay = kvmRun(ticksToExecute);
528 }
529
530 // Entering into KVM implies that we'll have to reload the thread
531 // context from KVM if we want to access it. Flag the KVM state as
532 // dirty with respect to the cached thread context.
533 kvmStateDirty = true;
534
535 // Enter into the RunningService state unless the
536 // simulation was stopped by a timer.
537 if (_kvmRun->exit_reason != KVM_EXIT_INTR) {
538 _status = RunningService;
539 } else {
540 ++numExitSignal;
541 _status = Running;
542 }
543
544 // Service any pending instruction events. The vCPU should
545 // have exited in time for the event using the instruction
546 // counter configured by setupInstStop().
547 comInstEventQueue[0]->serviceEvents(ctrInsts);
548 system->instEventQueue.serviceEvents(system->totalNumInsts);
549
550 if (tryDrain())
551 _status = Idle;
552 } break;
553
554 default:
555 panic("BaseKvmCPU entered tick() in an illegal state (%i)\n",
556 _status);
557 }
558
559 // Schedule a new tick if we are still running
560 if (_status != Idle)
561 schedule(tickEvent, clockEdge(ticksToCycles(delay)));
562 }
563
564 Tick
565 BaseKvmCPU::kvmRunDrain()
566 {
567 // By default, the only thing we need to drain is a pending IO
568 // operation which assumes that we are in the
569 // RunningServiceCompletion state.
570 assert(_status == RunningServiceCompletion);
571
572 // Deliver the data from the pending IO operation and immediately
573 // exit.
574 return kvmRun(0);
575 }
576
577 uint64_t
578 BaseKvmCPU::getHostCycles() const
579 {
580 return hwCycles.read();
581 }
582
583 Tick
584 BaseKvmCPU::kvmRun(Tick ticks)
585 {
586 Tick ticksExecuted;
587 DPRINTF(KvmRun, "KVM: Executing for %i ticks\n", ticks);
588 timerOverflowed = false;
589
590 if (ticks == 0) {
591 // Settings ticks == 0 is a special case which causes an entry
592 // into KVM that finishes pending operations (e.g., IO) and
593 // then immediately exits.
594 DPRINTF(KvmRun, "KVM: Delivering IO without full guest entry\n");
595
596 ++numVMHalfEntries;
597
598 // This signal is always masked while we are executing in gem5
599 // and gets unmasked temporarily as soon as we enter into
600 // KVM. See setSignalMask() and setupSignalHandler().
601 raise(KVM_TIMER_SIGNAL);
602
603 // Enter into KVM. KVM will check for signals after completing
604 // pending operations (IO). Since the KVM_TIMER_SIGNAL is
605 // pending, this forces an immediate exit into gem5 again. We
606 // don't bother to setup timers since this shouldn't actually
607 // execute any code in the guest.
608 ioctlRun();
609
610 // We always execute at least one cycle to prevent the
611 // BaseKvmCPU::tick() to be rescheduled on the same tick
612 // twice.
613 ticksExecuted = clockPeriod();
614 } else {
615 if (ticks < runTimer->resolution()) {
616 DPRINTF(KvmRun, "KVM: Adjusting tick count (%i -> %i)\n",
617 ticks, runTimer->resolution());
618 ticks = runTimer->resolution();
619 }
620
621 // Get hardware statistics after synchronizing contexts. The KVM
622 // state update might affect guest cycle counters.
623 uint64_t baseCycles(getHostCycles());
624 uint64_t baseInstrs(hwInstructions.read());
625
626 // Arm the run timer and start the cycle timer if it isn't
627 // controlled by the overflow timer. Starting/stopping the cycle
628 // timer automatically starts the other perf timers as they are in
629 // the same counter group.
630 runTimer->arm(ticks);
631 if (!perfControlledByTimer)
632 hwCycles.start();
633
634 ioctlRun();
635
636 runTimer->disarm();
637 if (!perfControlledByTimer)
638 hwCycles.stop();
639
640 // The timer signal may have been delivered after we exited
641 // from KVM. It will be pending in that case since it is
642 // masked when we aren't executing in KVM. Discard it to make
643 // sure we don't deliver it immediately next time we try to
644 // enter into KVM.
645 discardPendingSignal(KVM_TIMER_SIGNAL);
646 discardPendingSignal(KVM_INST_SIGNAL);
647
648 const uint64_t hostCyclesExecuted(getHostCycles() - baseCycles);
649 const uint64_t simCyclesExecuted(hostCyclesExecuted * hostFactor);
650 const uint64_t instsExecuted(hwInstructions.read() - baseInstrs);
651 ticksExecuted = runTimer->ticksFromHostCycles(hostCyclesExecuted);
652
653 if (ticksExecuted < ticks &&
654 timerOverflowed &&
655 _kvmRun->exit_reason == KVM_EXIT_INTR) {
656 // TODO: We should probably do something clever here...
657 warn("KVM: Early timer event, requested %i ticks but got %i ticks.\n",
658 ticks, ticksExecuted);
659 }
660
661 /* Update statistics */
662 numCycles += simCyclesExecuted;;
663 numInsts += instsExecuted;
664 ctrInsts += instsExecuted;
665 system->totalNumInsts += instsExecuted;
666
667 DPRINTF(KvmRun,
668 "KVM: Executed %i instructions in %i cycles "
669 "(%i ticks, sim cycles: %i).\n",
670 instsExecuted, hostCyclesExecuted, ticksExecuted, simCyclesExecuted);
671 }
672
673 ++numVMExits;
674
675 return ticksExecuted + flushCoalescedMMIO();
676 }
677
678 void
679 BaseKvmCPU::kvmNonMaskableInterrupt()
680 {
681 ++numInterrupts;
682 if (ioctl(KVM_NMI) == -1)
683 panic("KVM: Failed to deliver NMI to virtual CPU\n");
684 }
685
686 void
687 BaseKvmCPU::kvmInterrupt(const struct kvm_interrupt &interrupt)
688 {
689 ++numInterrupts;
690 if (ioctl(KVM_INTERRUPT, (void *)&interrupt) == -1)
691 panic("KVM: Failed to deliver interrupt to virtual CPU\n");
692 }
693
694 void
695 BaseKvmCPU::getRegisters(struct kvm_regs &regs) const
696 {
697 if (ioctl(KVM_GET_REGS, &regs) == -1)
698 panic("KVM: Failed to get guest registers\n");
699 }
700
701 void
702 BaseKvmCPU::setRegisters(const struct kvm_regs &regs)
703 {
704 if (ioctl(KVM_SET_REGS, (void *)&regs) == -1)
705 panic("KVM: Failed to set guest registers\n");
706 }
707
708 void
709 BaseKvmCPU::getSpecialRegisters(struct kvm_sregs &regs) const
710 {
711 if (ioctl(KVM_GET_SREGS, &regs) == -1)
712 panic("KVM: Failed to get guest special registers\n");
713 }
714
715 void
716 BaseKvmCPU::setSpecialRegisters(const struct kvm_sregs &regs)
717 {
718 if (ioctl(KVM_SET_SREGS, (void *)&regs) == -1)
719 panic("KVM: Failed to set guest special registers\n");
720 }
721
722 void
723 BaseKvmCPU::getFPUState(struct kvm_fpu &state) const
724 {
725 if (ioctl(KVM_GET_FPU, &state) == -1)
726 panic("KVM: Failed to get guest FPU state\n");
727 }
728
729 void
730 BaseKvmCPU::setFPUState(const struct kvm_fpu &state)
731 {
732 if (ioctl(KVM_SET_FPU, (void *)&state) == -1)
733 panic("KVM: Failed to set guest FPU state\n");
734 }
735
736
737 void
738 BaseKvmCPU::setOneReg(uint64_t id, const void *addr)
739 {
740 #ifdef KVM_SET_ONE_REG
741 struct kvm_one_reg reg;
742 reg.id = id;
743 reg.addr = (uint64_t)addr;
744
745 if (ioctl(KVM_SET_ONE_REG, &reg) == -1) {
746 panic("KVM: Failed to set register (0x%x) value (errno: %i)\n",
747 id, errno);
748 }
749 #else
750 panic("KVM_SET_ONE_REG is unsupported on this platform.\n");
751 #endif
752 }
753
754 void
755 BaseKvmCPU::getOneReg(uint64_t id, void *addr) const
756 {
757 #ifdef KVM_GET_ONE_REG
758 struct kvm_one_reg reg;
759 reg.id = id;
760 reg.addr = (uint64_t)addr;
761
762 if (ioctl(KVM_GET_ONE_REG, &reg) == -1) {
763 panic("KVM: Failed to get register (0x%x) value (errno: %i)\n",
764 id, errno);
765 }
766 #else
767 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
768 #endif
769 }
770
771 std::string
772 BaseKvmCPU::getAndFormatOneReg(uint64_t id) const
773 {
774 #ifdef KVM_GET_ONE_REG
775 std::ostringstream ss;
776
777 ss.setf(std::ios::hex, std::ios::basefield);
778 ss.setf(std::ios::showbase);
779 #define HANDLE_INTTYPE(len) \
780 case KVM_REG_SIZE_U ## len: { \
781 uint ## len ## _t value; \
782 getOneReg(id, &value); \
783 ss << value; \
784 } break
785
786 #define HANDLE_ARRAY(len) \
787 case KVM_REG_SIZE_U ## len: { \
788 uint8_t value[len / 8]; \
789 getOneReg(id, value); \
790 ss << "[" << value[0]; \
791 for (int i = 1; i < len / 8; ++i) \
792 ss << ", " << value[i]; \
793 ss << "]"; \
794 } break
795
796 switch (id & KVM_REG_SIZE_MASK) {
797 HANDLE_INTTYPE(8);
798 HANDLE_INTTYPE(16);
799 HANDLE_INTTYPE(32);
800 HANDLE_INTTYPE(64);
801 HANDLE_ARRAY(128);
802 HANDLE_ARRAY(256);
803 HANDLE_ARRAY(512);
804 HANDLE_ARRAY(1024);
805 default:
806 ss << "??";
807 }
808
809 #undef HANDLE_INTTYPE
810 #undef HANDLE_ARRAY
811
812 return ss.str();
813 #else
814 panic("KVM_GET_ONE_REG is unsupported on this platform.\n");
815 #endif
816 }
817
818 void
819 BaseKvmCPU::syncThreadContext()
820 {
821 if (!kvmStateDirty)
822 return;
823
824 assert(!threadContextDirty);
825
826 updateThreadContext();
827 kvmStateDirty = false;
828 }
829
830 void
831 BaseKvmCPU::syncKvmState()
832 {
833 if (!threadContextDirty)
834 return;
835
836 assert(!kvmStateDirty);
837
838 updateKvmState();
839 threadContextDirty = false;
840 }
841
842 Tick
843 BaseKvmCPU::handleKvmExit()
844 {
845 DPRINTF(KvmRun, "handleKvmExit (exit_reason: %i)\n", _kvmRun->exit_reason);
846 assert(_status == RunningService);
847
848 // Switch into the running state by default. Individual handlers
849 // can override this.
850 _status = Running;
851 switch (_kvmRun->exit_reason) {
852 case KVM_EXIT_UNKNOWN:
853 return handleKvmExitUnknown();
854
855 case KVM_EXIT_EXCEPTION:
856 return handleKvmExitException();
857
858 case KVM_EXIT_IO:
859 _status = RunningServiceCompletion;
860 ++numIO;
861 return handleKvmExitIO();
862
863 case KVM_EXIT_HYPERCALL:
864 ++numHypercalls;
865 return handleKvmExitHypercall();
866
867 case KVM_EXIT_HLT:
868 /* The guest has halted and is waiting for interrupts */
869 DPRINTF(Kvm, "handleKvmExitHalt\n");
870 ++numHalt;
871
872 // Suspend the thread until the next interrupt arrives
873 thread->suspend();
874
875 // This is actually ignored since the thread is suspended.
876 return 0;
877
878 case KVM_EXIT_MMIO:
879 _status = RunningServiceCompletion;
880 /* Service memory mapped IO requests */
881 DPRINTF(KvmIO, "KVM: Handling MMIO (w: %u, addr: 0x%x, len: %u)\n",
882 _kvmRun->mmio.is_write,
883 _kvmRun->mmio.phys_addr, _kvmRun->mmio.len);
884
885 ++numMMIO;
886 return doMMIOAccess(_kvmRun->mmio.phys_addr, _kvmRun->mmio.data,
887 _kvmRun->mmio.len, _kvmRun->mmio.is_write);
888
889 case KVM_EXIT_IRQ_WINDOW_OPEN:
890 return handleKvmExitIRQWindowOpen();
891
892 case KVM_EXIT_FAIL_ENTRY:
893 return handleKvmExitFailEntry();
894
895 case KVM_EXIT_INTR:
896 /* KVM was interrupted by a signal, restart it in the next
897 * tick. */
898 return 0;
899
900 case KVM_EXIT_INTERNAL_ERROR:
901 panic("KVM: Internal error (suberror: %u)\n",
902 _kvmRun->internal.suberror);
903
904 default:
905 dump();
906 panic("KVM: Unexpected exit (exit_reason: %u)\n", _kvmRun->exit_reason);
907 }
908 }
909
910 Tick
911 BaseKvmCPU::handleKvmExitIO()
912 {
913 panic("KVM: Unhandled guest IO (dir: %i, size: %i, port: 0x%x, count: %i)\n",
914 _kvmRun->io.direction, _kvmRun->io.size,
915 _kvmRun->io.port, _kvmRun->io.count);
916 }
917
918 Tick
919 BaseKvmCPU::handleKvmExitHypercall()
920 {
921 panic("KVM: Unhandled hypercall\n");
922 }
923
924 Tick
925 BaseKvmCPU::handleKvmExitIRQWindowOpen()
926 {
927 warn("KVM: Unhandled IRQ window.\n");
928 return 0;
929 }
930
931
932 Tick
933 BaseKvmCPU::handleKvmExitUnknown()
934 {
935 dump();
936 panic("KVM: Unknown error when starting vCPU (hw reason: 0x%llx)\n",
937 _kvmRun->hw.hardware_exit_reason);
938 }
939
940 Tick
941 BaseKvmCPU::handleKvmExitException()
942 {
943 dump();
944 panic("KVM: Got exception when starting vCPU "
945 "(exception: %u, error_code: %u)\n",
946 _kvmRun->ex.exception, _kvmRun->ex.error_code);
947 }
948
949 Tick
950 BaseKvmCPU::handleKvmExitFailEntry()
951 {
952 dump();
953 panic("KVM: Failed to enter virtualized mode (hw reason: 0x%llx)\n",
954 _kvmRun->fail_entry.hardware_entry_failure_reason);
955 }
956
957 Tick
958 BaseKvmCPU::doMMIOAccess(Addr paddr, void *data, int size, bool write)
959 {
960 ThreadContext *tc(thread->getTC());
961 syncThreadContext();
962
963 mmio_req.setPhys(paddr, size, Request::UNCACHEABLE, dataMasterId());
964 // Some architectures do need to massage physical addresses a bit
965 // before they are inserted into the memory system. This enables
966 // APIC accesses on x86 and m5ops where supported through a MMIO
967 // interface.
968 BaseTLB::Mode tlb_mode(write ? BaseTLB::Write : BaseTLB::Read);
969 Fault fault(tc->getDTBPtr()->finalizePhysical(&mmio_req, tc, tlb_mode));
970 if (fault != NoFault)
971 warn("Finalization of MMIO address failed: %s\n", fault->name());
972
973
974 const MemCmd cmd(write ? MemCmd::WriteReq : MemCmd::ReadReq);
975 Packet pkt(&mmio_req, cmd);
976 pkt.dataStatic(data);
977
978 if (mmio_req.isMmappedIpr()) {
979 const Cycles ipr_delay(write ?
980 TheISA::handleIprWrite(tc, &pkt) :
981 TheISA::handleIprRead(tc, &pkt));
982 return clockPeriod() * ipr_delay;
983 } else {
984 return dataPort.sendAtomic(&pkt);
985 }
986 }
987
988 void
989 BaseKvmCPU::setSignalMask(const sigset_t *mask)
990 {
991 std::unique_ptr<struct kvm_signal_mask> kvm_mask;
992
993 if (mask) {
994 kvm_mask.reset((struct kvm_signal_mask *)operator new(
995 sizeof(struct kvm_signal_mask) + sizeof(*mask)));
996 // The kernel and the user-space headers have different ideas
997 // about the size of sigset_t. This seems like a massive hack,
998 // but is actually what qemu does.
999 assert(sizeof(*mask) >= 8);
1000 kvm_mask->len = 8;
1001 memcpy(kvm_mask->sigset, mask, kvm_mask->len);
1002 }
1003
1004 if (ioctl(KVM_SET_SIGNAL_MASK, (void *)kvm_mask.get()) == -1)
1005 panic("KVM: Failed to set vCPU signal mask (errno: %i)\n",
1006 errno);
1007 }
1008
1009 int
1010 BaseKvmCPU::ioctl(int request, long p1) const
1011 {
1012 if (vcpuFD == -1)
1013 panic("KVM: CPU ioctl called before initialization\n");
1014
1015 return ::ioctl(vcpuFD, request, p1);
1016 }
1017
1018 Tick
1019 BaseKvmCPU::flushCoalescedMMIO()
1020 {
1021 if (!mmioRing)
1022 return 0;
1023
1024 DPRINTF(KvmIO, "KVM: Flushing the coalesced MMIO ring buffer\n");
1025
1026 // TODO: We might need to do synchronization when we start to
1027 // support multiple CPUs
1028 Tick ticks(0);
1029 while (mmioRing->first != mmioRing->last) {
1030 struct kvm_coalesced_mmio &ent(
1031 mmioRing->coalesced_mmio[mmioRing->first]);
1032
1033 DPRINTF(KvmIO, "KVM: Handling coalesced MMIO (addr: 0x%x, len: %u)\n",
1034 ent.phys_addr, ent.len);
1035
1036 ++numCoalescedMMIO;
1037 ticks += doMMIOAccess(ent.phys_addr, ent.data, ent.len, true);
1038
1039 mmioRing->first = (mmioRing->first + 1) % KVM_COALESCED_MMIO_MAX;
1040 }
1041
1042 return ticks;
1043 }
1044
1045 /**
1046 * Cycle timer overflow when running in KVM. Forces the KVM syscall to
1047 * exit with EINTR and allows us to run the event queue.
1048 */
1049 static void
1050 onTimerOverflow(int signo, siginfo_t *si, void *data)
1051 {
1052 timerOverflowed = true;
1053 }
1054
1055 /**
1056 * Instruction counter overflow when running in KVM. Forces the KVM
1057 * syscall to exit with EINTR and allows us to handle instruction
1058 * count events.
1059 */
1060 static void
1061 onInstEvent(int signo, siginfo_t *si, void *data)
1062 {
1063 }
1064
1065 void
1066 BaseKvmCPU::setupSignalHandler()
1067 {
1068 struct sigaction sa;
1069
1070 memset(&sa, 0, sizeof(sa));
1071 sa.sa_sigaction = onTimerOverflow;
1072 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1073 if (sigaction(KVM_TIMER_SIGNAL, &sa, NULL) == -1)
1074 panic("KVM: Failed to setup vCPU timer signal handler\n");
1075
1076 memset(&sa, 0, sizeof(sa));
1077 sa.sa_sigaction = onInstEvent;
1078 sa.sa_flags = SA_SIGINFO | SA_RESTART;
1079 if (sigaction(KVM_INST_SIGNAL, &sa, NULL) == -1)
1080 panic("KVM: Failed to setup vCPU instruction signal handler\n");
1081
1082 sigset_t sigset;
1083 if (sigprocmask(SIG_BLOCK, NULL, &sigset) == -1)
1084 panic("KVM: Failed get signal mask\n");
1085
1086 // Request KVM to setup the same signal mask as we're currently
1087 // running with. We'll sometimes need to mask the KVM_TIMER_SIGNAL
1088 // to cause immediate exits from KVM after servicing IO
1089 // requests. See kvmRun().
1090 setSignalMask(&sigset);
1091
1092 // Mask our control signals so they aren't delivered unless we're
1093 // actually executing inside KVM.
1094 sigaddset(&sigset, KVM_TIMER_SIGNAL);
1095 sigaddset(&sigset, KVM_INST_SIGNAL);
1096 if (sigprocmask(SIG_SETMASK, &sigset, NULL) == -1)
1097 panic("KVM: Failed mask the KVM control signals\n");
1098 }
1099
1100 bool
1101 BaseKvmCPU::discardPendingSignal(int signum) const
1102 {
1103 int discardedSignal;
1104
1105 // Setting the timeout to zero causes sigtimedwait to return
1106 // immediately.
1107 struct timespec timeout;
1108 timeout.tv_sec = 0;
1109 timeout.tv_nsec = 0;
1110
1111 sigset_t sigset;
1112 sigemptyset(&sigset);
1113 sigaddset(&sigset, signum);
1114
1115 do {
1116 discardedSignal = sigtimedwait(&sigset, NULL, &timeout);
1117 } while (discardedSignal == -1 && errno == EINTR);
1118
1119 if (discardedSignal == signum)
1120 return true;
1121 else if (discardedSignal == -1 && errno == EAGAIN)
1122 return false;
1123 else
1124 panic("Unexpected return value from sigtimedwait: %i (errno: %i)\n",
1125 discardedSignal, errno);
1126 }
1127
1128 void
1129 BaseKvmCPU::setupCounters()
1130 {
1131 DPRINTF(Kvm, "Attaching cycle counter...\n");
1132 PerfKvmCounterConfig cfgCycles(PERF_TYPE_HARDWARE,
1133 PERF_COUNT_HW_CPU_CYCLES);
1134 cfgCycles.disabled(true)
1135 .pinned(true);
1136
1137 if (perfControlledByTimer) {
1138 // We need to configure the cycles counter to send overflows
1139 // since we are going to use it to trigger timer signals that
1140 // trap back into m5 from KVM. In practice, this means that we
1141 // need to set some non-zero sample period that gets
1142 // overridden when the timer is armed.
1143 cfgCycles.wakeupEvents(1)
1144 .samplePeriod(42);
1145 }
1146
1147 hwCycles.attach(cfgCycles,
1148 0); // TID (0 => currentThread)
1149
1150 setupInstCounter();
1151 }
1152
1153 bool
1154 BaseKvmCPU::tryDrain()
1155 {
1156 if (!drainManager)
1157 return false;
1158
1159 if (!archIsDrained()) {
1160 DPRINTF(Drain, "tryDrain: Architecture code is not ready.\n");
1161 return false;
1162 }
1163
1164 if (_status == Idle || _status == Running) {
1165 DPRINTF(Drain,
1166 "tryDrain: CPU transitioned into the Idle state, drain done\n");
1167 drainManager->signalDrainDone();
1168 drainManager = NULL;
1169 return true;
1170 } else {
1171 DPRINTF(Drain, "tryDrain: CPU not ready.\n");
1172 return false;
1173 }
1174 }
1175
1176 void
1177 BaseKvmCPU::ioctlRun()
1178 {
1179 if (ioctl(KVM_RUN) == -1) {
1180 if (errno != EINTR)
1181 panic("KVM: Failed to start virtual CPU (errno: %i)\n",
1182 errno);
1183 }
1184 }
1185
1186 void
1187 BaseKvmCPU::setupInstStop()
1188 {
1189 if (comInstEventQueue[0]->empty()) {
1190 setupInstCounter(0);
1191 } else {
1192 const uint64_t next(comInstEventQueue[0]->nextTick());
1193
1194 assert(next > ctrInsts);
1195 setupInstCounter(next - ctrInsts);
1196 }
1197 }
1198
1199 void
1200 BaseKvmCPU::setupInstCounter(uint64_t period)
1201 {
1202 // No need to do anything if we aren't attaching for the first
1203 // time or the period isn't changing.
1204 if (period == activeInstPeriod && hwInstructions.attached())
1205 return;
1206
1207 PerfKvmCounterConfig cfgInstructions(PERF_TYPE_HARDWARE,
1208 PERF_COUNT_HW_INSTRUCTIONS);
1209
1210 if (period) {
1211 // Setup a sampling counter if that has been requested.
1212 cfgInstructions.wakeupEvents(1)
1213 .samplePeriod(period);
1214 }
1215
1216 // We need to detach and re-attach the counter to reliably change
1217 // sampling settings. See PerfKvmCounter::period() for details.
1218 if (hwInstructions.attached())
1219 hwInstructions.detach();
1220 assert(hwCycles.attached());
1221 hwInstructions.attach(cfgInstructions,
1222 0, // TID (0 => currentThread)
1223 hwCycles);
1224
1225 if (period)
1226 hwInstructions.enableSignals(KVM_INST_SIGNAL);
1227
1228 activeInstPeriod = period;
1229 }