cpu: Add a memory access predicate
[gem5.git] / src / cpu / minor / execute.cc
1 /*
2 * Copyright (c) 2013-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andrew Bardsley
38 */
39
40 #include "cpu/minor/execute.hh"
41
42 #include "arch/locked_mem.hh"
43 #include "arch/registers.hh"
44 #include "arch/utility.hh"
45 #include "cpu/minor/cpu.hh"
46 #include "cpu/minor/exec_context.hh"
47 #include "cpu/minor/fetch1.hh"
48 #include "cpu/minor/lsq.hh"
49 #include "cpu/op_class.hh"
50 #include "debug/Activity.hh"
51 #include "debug/Branch.hh"
52 #include "debug/Drain.hh"
53 #include "debug/MinorExecute.hh"
54 #include "debug/MinorInterrupt.hh"
55 #include "debug/MinorMem.hh"
56 #include "debug/MinorTrace.hh"
57 #include "debug/PCEvent.hh"
58
59 namespace Minor
60 {
61
62 Execute::Execute(const std::string &name_,
63 MinorCPU &cpu_,
64 MinorCPUParams &params,
65 Latch<ForwardInstData>::Output inp_,
66 Latch<BranchData>::Input out_) :
67 Named(name_),
68 inp(inp_),
69 out(out_),
70 cpu(cpu_),
71 issueLimit(params.executeIssueLimit),
72 memoryIssueLimit(params.executeMemoryIssueLimit),
73 commitLimit(params.executeCommitLimit),
74 memoryCommitLimit(params.executeMemoryCommitLimit),
75 processMoreThanOneInput(params.executeCycleInput),
76 fuDescriptions(*params.executeFuncUnits),
77 numFuncUnits(fuDescriptions.funcUnits.size()),
78 setTraceTimeOnCommit(params.executeSetTraceTimeOnCommit),
79 setTraceTimeOnIssue(params.executeSetTraceTimeOnIssue),
80 allowEarlyMemIssue(params.executeAllowEarlyMemoryIssue),
81 noCostFUIndex(fuDescriptions.funcUnits.size() + 1),
82 lsq(name_ + ".lsq", name_ + ".dcache_port",
83 cpu_, *this,
84 params.executeMaxAccessesInMemory,
85 params.executeMemoryWidth,
86 params.executeLSQRequestsQueueSize,
87 params.executeLSQTransfersQueueSize,
88 params.executeLSQStoreBufferSize,
89 params.executeLSQMaxStoreBufferStoresPerCycle),
90 executeInfo(params.numThreads, ExecuteThreadInfo(params.executeCommitLimit)),
91 interruptPriority(0),
92 issuePriority(0),
93 commitPriority(0)
94 {
95 if (commitLimit < 1) {
96 fatal("%s: executeCommitLimit must be >= 1 (%d)\n", name_,
97 commitLimit);
98 }
99
100 if (issueLimit < 1) {
101 fatal("%s: executeCommitLimit must be >= 1 (%d)\n", name_,
102 issueLimit);
103 }
104
105 if (memoryIssueLimit < 1) {
106 fatal("%s: executeMemoryIssueLimit must be >= 1 (%d)\n", name_,
107 memoryIssueLimit);
108 }
109
110 if (memoryCommitLimit > commitLimit) {
111 fatal("%s: executeMemoryCommitLimit (%d) must be <="
112 " executeCommitLimit (%d)\n",
113 name_, memoryCommitLimit, commitLimit);
114 }
115
116 if (params.executeInputBufferSize < 1) {
117 fatal("%s: executeInputBufferSize must be >= 1 (%d)\n", name_,
118 params.executeInputBufferSize);
119 }
120
121 if (params.executeInputBufferSize < 1) {
122 fatal("%s: executeInputBufferSize must be >= 1 (%d)\n", name_,
123 params.executeInputBufferSize);
124 }
125
126 /* This should be large enough to count all the in-FU instructions
127 * which need to be accounted for in the inFlightInsts
128 * queue */
129 unsigned int total_slots = 0;
130
131 /* Make FUPipelines for each MinorFU */
132 for (unsigned int i = 0; i < numFuncUnits; i++) {
133 std::ostringstream fu_name;
134 MinorFU *fu_description = fuDescriptions.funcUnits[i];
135
136 /* Note the total number of instruction slots (for sizing
137 * the inFlightInst queue) and the maximum latency of any FU
138 * (for sizing the activity recorder) */
139 total_slots += fu_description->opLat;
140
141 fu_name << name_ << ".fu." << i;
142
143 FUPipeline *fu = new FUPipeline(fu_name.str(), *fu_description, cpu);
144
145 funcUnits.push_back(fu);
146 }
147
148 /** Check that there is a functional unit for all operation classes */
149 for (int op_class = No_OpClass + 1; op_class < Num_OpClasses; op_class++) {
150 bool found_fu = false;
151 unsigned int fu_index = 0;
152
153 while (fu_index < numFuncUnits && !found_fu)
154 {
155 if (funcUnits[fu_index]->provides(
156 static_cast<OpClass>(op_class)))
157 {
158 found_fu = true;
159 }
160 fu_index++;
161 }
162
163 if (!found_fu) {
164 warn("No functional unit for OpClass %s\n",
165 Enums::OpClassStrings[op_class]);
166 }
167 }
168
169 /* Per-thread structures */
170 for (ThreadID tid = 0; tid < params.numThreads; tid++) {
171 std::string tid_str = std::to_string(tid);
172
173 /* Input Buffers */
174 inputBuffer.push_back(
175 InputBuffer<ForwardInstData>(
176 name_ + ".inputBuffer" + tid_str, "insts",
177 params.executeInputBufferSize));
178
179 /* Scoreboards */
180 scoreboard.push_back(Scoreboard(name_ + ".scoreboard" + tid_str));
181
182 /* In-flight instruction records */
183 executeInfo[tid].inFlightInsts = new Queue<QueuedInst,
184 ReportTraitsAdaptor<QueuedInst> >(
185 name_ + ".inFlightInsts" + tid_str, "insts", total_slots);
186
187 executeInfo[tid].inFUMemInsts = new Queue<QueuedInst,
188 ReportTraitsAdaptor<QueuedInst> >(
189 name_ + ".inFUMemInsts" + tid_str, "insts", total_slots);
190 }
191 }
192
193 const ForwardInstData *
194 Execute::getInput(ThreadID tid)
195 {
196 /* Get a line from the inputBuffer to work with */
197 if (!inputBuffer[tid].empty()) {
198 const ForwardInstData &head = inputBuffer[tid].front();
199
200 return (head.isBubble() ? NULL : &(inputBuffer[tid].front()));
201 } else {
202 return NULL;
203 }
204 }
205
206 void
207 Execute::popInput(ThreadID tid)
208 {
209 if (!inputBuffer[tid].empty())
210 inputBuffer[tid].pop();
211
212 executeInfo[tid].inputIndex = 0;
213 }
214
215 void
216 Execute::tryToBranch(MinorDynInstPtr inst, Fault fault, BranchData &branch)
217 {
218 ThreadContext *thread = cpu.getContext(inst->id.threadId);
219 const TheISA::PCState &pc_before = inst->pc;
220 TheISA::PCState target = thread->pcState();
221
222 /* Force a branch for SerializeAfter/SquashAfter instructions
223 * at the end of micro-op sequence when we're not suspended */
224 bool force_branch = thread->status() != ThreadContext::Suspended &&
225 !inst->isFault() &&
226 inst->isLastOpInInst() &&
227 (inst->staticInst->isSerializeAfter() ||
228 inst->staticInst->isSquashAfter() ||
229 inst->staticInst->isIprAccess());
230
231 DPRINTF(Branch, "tryToBranch before: %s after: %s%s\n",
232 pc_before, target, (force_branch ? " (forcing)" : ""));
233
234 /* Will we change the PC to something other than the next instruction? */
235 bool must_branch = pc_before != target ||
236 fault != NoFault ||
237 force_branch;
238
239 /* The reason for the branch data we're about to generate, set below */
240 BranchData::Reason reason = BranchData::NoBranch;
241
242 if (fault == NoFault)
243 {
244 TheISA::advancePC(target, inst->staticInst);
245 thread->pcState(target);
246
247 DPRINTF(Branch, "Advancing current PC from: %s to: %s\n",
248 pc_before, target);
249 }
250
251 if (thread->status() == ThreadContext::Suspended) {
252 /* Thread got suspended */
253 DPRINTF(Branch, "Thread got suspended: branch from 0x%x to 0x%x "
254 "inst: %s\n",
255 inst->pc.instAddr(), target.instAddr(), *inst);
256
257 reason = BranchData::SuspendThread;
258 } else if (inst->predictedTaken && !force_branch) {
259 /* Predicted to branch */
260 if (!must_branch) {
261 /* No branch was taken, change stream to get us back to the
262 * intended PC value */
263 DPRINTF(Branch, "Predicted a branch from 0x%x to 0x%x but"
264 " none happened inst: %s\n",
265 inst->pc.instAddr(), inst->predictedTarget.instAddr(), *inst);
266
267 reason = BranchData::BadlyPredictedBranch;
268 } else if (inst->predictedTarget == target) {
269 /* Branch prediction got the right target, kill the branch and
270 * carry on.
271 * Note that this information to the branch predictor might get
272 * overwritten by a "real" branch during this cycle */
273 DPRINTF(Branch, "Predicted a branch from 0x%x to 0x%x correctly"
274 " inst: %s\n",
275 inst->pc.instAddr(), inst->predictedTarget.instAddr(), *inst);
276
277 reason = BranchData::CorrectlyPredictedBranch;
278 } else {
279 /* Branch prediction got the wrong target */
280 DPRINTF(Branch, "Predicted a branch from 0x%x to 0x%x"
281 " but got the wrong target (actual: 0x%x) inst: %s\n",
282 inst->pc.instAddr(), inst->predictedTarget.instAddr(),
283 target.instAddr(), *inst);
284
285 reason = BranchData::BadlyPredictedBranchTarget;
286 }
287 } else if (must_branch) {
288 /* Unpredicted branch */
289 DPRINTF(Branch, "Unpredicted branch from 0x%x to 0x%x inst: %s\n",
290 inst->pc.instAddr(), target.instAddr(), *inst);
291
292 reason = BranchData::UnpredictedBranch;
293 } else {
294 /* No branch at all */
295 reason = BranchData::NoBranch;
296 }
297
298 updateBranchData(inst->id.threadId, reason, inst, target, branch);
299 }
300
301 void
302 Execute::updateBranchData(
303 ThreadID tid,
304 BranchData::Reason reason,
305 MinorDynInstPtr inst, const TheISA::PCState &target,
306 BranchData &branch)
307 {
308 if (reason != BranchData::NoBranch) {
309 /* Bump up the stream sequence number on a real branch*/
310 if (BranchData::isStreamChange(reason))
311 executeInfo[tid].streamSeqNum++;
312
313 /* Branches (even mis-predictions) don't change the predictionSeqNum,
314 * just the streamSeqNum */
315 branch = BranchData(reason, tid,
316 executeInfo[tid].streamSeqNum,
317 /* Maintaining predictionSeqNum if there's no inst is just a
318 * courtesy and looks better on minorview */
319 (inst->isBubble() ? executeInfo[tid].lastPredictionSeqNum
320 : inst->id.predictionSeqNum),
321 target, inst);
322
323 DPRINTF(Branch, "Branch data signalled: %s\n", branch);
324 }
325 }
326
327 void
328 Execute::handleMemResponse(MinorDynInstPtr inst,
329 LSQ::LSQRequestPtr response, BranchData &branch, Fault &fault)
330 {
331 ThreadID thread_id = inst->id.threadId;
332 ThreadContext *thread = cpu.getContext(thread_id);
333
334 ExecContext context(cpu, *cpu.threads[thread_id], *this, inst);
335
336 PacketPtr packet = response->packet;
337
338 bool is_load = inst->staticInst->isLoad();
339 bool is_store = inst->staticInst->isStore();
340 bool is_atomic = inst->staticInst->isAtomic();
341 bool is_prefetch = inst->staticInst->isDataPrefetch();
342
343 /* If true, the trace's predicate value will be taken from the exec
344 * context predicate, otherwise, it will be set to false */
345 bool use_context_predicate = true;
346
347 if (response->fault != NoFault) {
348 /* Invoke memory faults. */
349 DPRINTF(MinorMem, "Completing fault from DTLB access: %s\n",
350 response->fault->name());
351
352 if (inst->staticInst->isPrefetch()) {
353 DPRINTF(MinorMem, "Not taking fault on prefetch: %s\n",
354 response->fault->name());
355
356 /* Don't assign to fault */
357 } else {
358 /* Take the fault raised during the TLB/memory access */
359 fault = response->fault;
360
361 fault->invoke(thread, inst->staticInst);
362 }
363 } else if (!packet) {
364 DPRINTF(MinorMem, "Completing failed request inst: %s\n",
365 *inst);
366 use_context_predicate = false;
367 } else if (packet->isError()) {
368 DPRINTF(MinorMem, "Trying to commit error response: %s\n",
369 *inst);
370
371 fatal("Received error response packet for inst: %s\n", *inst);
372 } else if (is_store || is_load || is_prefetch || is_atomic) {
373 assert(packet);
374
375 DPRINTF(MinorMem, "Memory response inst: %s addr: 0x%x size: %d\n",
376 *inst, packet->getAddr(), packet->getSize());
377
378 if (is_load && packet->getSize() > 0) {
379 DPRINTF(MinorMem, "Memory data[0]: 0x%x\n",
380 static_cast<unsigned int>(packet->getConstPtr<uint8_t>()[0]));
381 }
382
383 /* Complete the memory access instruction */
384 fault = inst->staticInst->completeAcc(packet, &context,
385 inst->traceData);
386
387 if (fault != NoFault) {
388 /* Invoke fault created by instruction completion */
389 DPRINTF(MinorMem, "Fault in memory completeAcc: %s\n",
390 fault->name());
391 fault->invoke(thread, inst->staticInst);
392 } else {
393 /* Stores need to be pushed into the store buffer to finish
394 * them off */
395 if (response->needsToBeSentToStoreBuffer())
396 lsq.sendStoreToStoreBuffer(response);
397 }
398 } else {
399 fatal("There should only ever be reads, "
400 "writes or faults at this point\n");
401 }
402
403 lsq.popResponse(response);
404
405 if (inst->traceData) {
406 inst->traceData->setPredicate((use_context_predicate ?
407 context.readPredicate() : false));
408 }
409
410 doInstCommitAccounting(inst);
411
412 /* Generate output to account for branches */
413 tryToBranch(inst, fault, branch);
414 }
415
416 bool
417 Execute::isInterrupted(ThreadID thread_id) const
418 {
419 return cpu.checkInterrupts(cpu.getContext(thread_id));
420 }
421
422 bool
423 Execute::takeInterrupt(ThreadID thread_id, BranchData &branch)
424 {
425 DPRINTF(MinorInterrupt, "Considering interrupt status from PC: %s\n",
426 cpu.getContext(thread_id)->pcState());
427
428 Fault interrupt = cpu.getInterruptController(thread_id)->getInterrupt
429 (cpu.getContext(thread_id));
430
431 if (interrupt != NoFault) {
432 /* The interrupt *must* set pcState */
433 cpu.getInterruptController(thread_id)->updateIntrInfo
434 (cpu.getContext(thread_id));
435 interrupt->invoke(cpu.getContext(thread_id));
436
437 assert(!lsq.accessesInFlight());
438
439 DPRINTF(MinorInterrupt, "Invoking interrupt: %s to PC: %s\n",
440 interrupt->name(), cpu.getContext(thread_id)->pcState());
441
442 /* Assume that an interrupt *must* cause a branch. Assert this? */
443
444 updateBranchData(thread_id, BranchData::Interrupt,
445 MinorDynInst::bubble(), cpu.getContext(thread_id)->pcState(),
446 branch);
447 }
448
449 return interrupt != NoFault;
450 }
451
452 bool
453 Execute::executeMemRefInst(MinorDynInstPtr inst, BranchData &branch,
454 bool &passed_predicate, Fault &fault)
455 {
456 bool issued = false;
457
458 /* Set to true if the mem op. is issued and sent to the mem system */
459 passed_predicate = false;
460
461 if (!lsq.canRequest()) {
462 /* Not acting on instruction yet as the memory
463 * queues are full */
464 issued = false;
465 } else {
466 ThreadContext *thread = cpu.getContext(inst->id.threadId);
467 TheISA::PCState old_pc = thread->pcState();
468
469 ExecContext context(cpu, *cpu.threads[inst->id.threadId],
470 *this, inst);
471
472 DPRINTF(MinorExecute, "Initiating memRef inst: %s\n", *inst);
473
474 Fault init_fault = inst->staticInst->initiateAcc(&context,
475 inst->traceData);
476
477 if (init_fault != NoFault) {
478 DPRINTF(MinorExecute, "Fault on memory inst: %s"
479 " initiateAcc: %s\n", *inst, init_fault->name());
480 fault = init_fault;
481 } else {
482 /* Only set this if the instruction passed its
483 * predicate */
484 passed_predicate = context.readPredicate();
485
486 /* Set predicate in tracing */
487 if (inst->traceData)
488 inst->traceData->setPredicate(passed_predicate);
489
490 /* If the instruction didn't pass its predicate (and so will not
491 * progress from here) Try to branch to correct and branch
492 * mis-prediction. */
493 if (!passed_predicate) {
494 /* Leave it up to commit to handle the fault */
495 lsq.pushFailedRequest(inst);
496 }
497 }
498
499 /* Restore thread PC */
500 thread->pcState(old_pc);
501 issued = true;
502 }
503
504 return issued;
505 }
506
507 /** Increment a cyclic buffer index for indices [0, cycle_size-1] */
508 inline unsigned int
509 cyclicIndexInc(unsigned int index, unsigned int cycle_size)
510 {
511 unsigned int ret = index + 1;
512
513 if (ret == cycle_size)
514 ret = 0;
515
516 return ret;
517 }
518
519 /** Decrement a cyclic buffer index for indices [0, cycle_size-1] */
520 inline unsigned int
521 cyclicIndexDec(unsigned int index, unsigned int cycle_size)
522 {
523 int ret = index - 1;
524
525 if (ret < 0)
526 ret = cycle_size - 1;
527
528 return ret;
529 }
530
531 unsigned int
532 Execute::issue(ThreadID thread_id)
533 {
534 const ForwardInstData *insts_in = getInput(thread_id);
535 ExecuteThreadInfo &thread = executeInfo[thread_id];
536
537 /* Early termination if we have no instructions */
538 if (!insts_in)
539 return 0;
540
541 /* Start from the first FU */
542 unsigned int fu_index = 0;
543
544 /* Remains true while instructions are still being issued. If any
545 * instruction fails to issue, this is set to false and we exit issue.
546 * This strictly enforces in-order issue. For other issue behaviours,
547 * a more complicated test in the outer while loop below is needed. */
548 bool issued = true;
549
550 /* Number of insts issues this cycle to check for issueLimit */
551 unsigned num_insts_issued = 0;
552
553 /* Number of memory ops issues this cycle to check for memoryIssueLimit */
554 unsigned num_mem_insts_issued = 0;
555
556 /* Number of instructions discarded this cycle in order to enforce a
557 * discardLimit. @todo, add that parameter? */
558 unsigned num_insts_discarded = 0;
559
560 do {
561 MinorDynInstPtr inst = insts_in->insts[thread.inputIndex];
562 Fault fault = inst->fault;
563 bool discarded = false;
564 bool issued_mem_ref = false;
565
566 if (inst->isBubble()) {
567 /* Skip */
568 issued = true;
569 } else if (cpu.getContext(thread_id)->status() ==
570 ThreadContext::Suspended)
571 {
572 DPRINTF(MinorExecute, "Discarding inst: %s from suspended"
573 " thread\n", *inst);
574
575 issued = true;
576 discarded = true;
577 } else if (inst->id.streamSeqNum != thread.streamSeqNum) {
578 DPRINTF(MinorExecute, "Discarding inst: %s as its stream"
579 " state was unexpected, expected: %d\n",
580 *inst, thread.streamSeqNum);
581 issued = true;
582 discarded = true;
583 } else {
584 /* Try and issue an instruction into an FU, assume we didn't and
585 * fix that in the loop */
586 issued = false;
587
588 /* Try FU from 0 each instruction */
589 fu_index = 0;
590
591 /* Try and issue a single instruction stepping through the
592 * available FUs */
593 do {
594 FUPipeline *fu = funcUnits[fu_index];
595
596 DPRINTF(MinorExecute, "Trying to issue inst: %s to FU: %d\n",
597 *inst, fu_index);
598
599 /* Does the examined fu have the OpClass-related capability
600 * needed to execute this instruction? Faults can always
601 * issue to any FU but probably should just 'live' in the
602 * inFlightInsts queue rather than having an FU. */
603 bool fu_is_capable = (!inst->isFault() ?
604 fu->provides(inst->staticInst->opClass()) : true);
605
606 if (inst->isNoCostInst()) {
607 /* Issue free insts. to a fake numbered FU */
608 fu_index = noCostFUIndex;
609
610 /* And start the countdown on activity to allow
611 * this instruction to get to the end of its FU */
612 cpu.activityRecorder->activity();
613
614 /* Mark the destinations for this instruction as
615 * busy */
616 scoreboard[thread_id].markupInstDests(inst, cpu.curCycle() +
617 Cycles(0), cpu.getContext(thread_id), false);
618
619 DPRINTF(MinorExecute, "Issuing %s to %d\n", inst->id, noCostFUIndex);
620 inst->fuIndex = noCostFUIndex;
621 inst->extraCommitDelay = Cycles(0);
622 inst->extraCommitDelayExpr = NULL;
623
624 /* Push the instruction onto the inFlight queue so
625 * it can be committed in order */
626 QueuedInst fu_inst(inst);
627 thread.inFlightInsts->push(fu_inst);
628
629 issued = true;
630
631 } else if (!fu_is_capable || fu->alreadyPushed()) {
632 /* Skip */
633 if (!fu_is_capable) {
634 DPRINTF(MinorExecute, "Can't issue as FU: %d isn't"
635 " capable\n", fu_index);
636 } else {
637 DPRINTF(MinorExecute, "Can't issue as FU: %d is"
638 " already busy\n", fu_index);
639 }
640 } else if (fu->stalled) {
641 DPRINTF(MinorExecute, "Can't issue inst: %s into FU: %d,"
642 " it's stalled\n",
643 *inst, fu_index);
644 } else if (!fu->canInsert()) {
645 DPRINTF(MinorExecute, "Can't issue inst: %s to busy FU"
646 " for another: %d cycles\n",
647 *inst, fu->cyclesBeforeInsert());
648 } else {
649 MinorFUTiming *timing = (!inst->isFault() ?
650 fu->findTiming(inst->staticInst) : NULL);
651
652 const std::vector<Cycles> *src_latencies =
653 (timing ? &(timing->srcRegsRelativeLats)
654 : NULL);
655
656 const std::vector<bool> *cant_forward_from_fu_indices =
657 &(fu->cantForwardFromFUIndices);
658
659 if (timing && timing->suppress) {
660 DPRINTF(MinorExecute, "Can't issue inst: %s as extra"
661 " decoding is suppressing it\n",
662 *inst);
663 } else if (!scoreboard[thread_id].canInstIssue(inst,
664 src_latencies, cant_forward_from_fu_indices,
665 cpu.curCycle(), cpu.getContext(thread_id)))
666 {
667 DPRINTF(MinorExecute, "Can't issue inst: %s yet\n",
668 *inst);
669 } else {
670 /* Can insert the instruction into this FU */
671 DPRINTF(MinorExecute, "Issuing inst: %s"
672 " into FU %d\n", *inst,
673 fu_index);
674
675 Cycles extra_dest_retire_lat = Cycles(0);
676 TimingExpr *extra_dest_retire_lat_expr = NULL;
677 Cycles extra_assumed_lat = Cycles(0);
678
679 /* Add the extraCommitDelay and extraAssumeLat to
680 * the FU pipeline timings */
681 if (timing) {
682 extra_dest_retire_lat =
683 timing->extraCommitLat;
684 extra_dest_retire_lat_expr =
685 timing->extraCommitLatExpr;
686 extra_assumed_lat =
687 timing->extraAssumedLat;
688 }
689
690 issued_mem_ref = inst->isMemRef();
691
692 QueuedInst fu_inst(inst);
693
694 /* Decorate the inst with FU details */
695 inst->fuIndex = fu_index;
696 inst->extraCommitDelay = extra_dest_retire_lat;
697 inst->extraCommitDelayExpr =
698 extra_dest_retire_lat_expr;
699
700 if (issued_mem_ref) {
701 /* Remember which instruction this memory op
702 * depends on so that initiateAcc can be called
703 * early */
704 if (allowEarlyMemIssue) {
705 inst->instToWaitFor =
706 scoreboard[thread_id].execSeqNumToWaitFor(inst,
707 cpu.getContext(thread_id));
708
709 if (lsq.getLastMemBarrier(thread_id) >
710 inst->instToWaitFor)
711 {
712 DPRINTF(MinorExecute, "A barrier will"
713 " cause a delay in mem ref issue of"
714 " inst: %s until after inst"
715 " %d(exec)\n", *inst,
716 lsq.getLastMemBarrier(thread_id));
717
718 inst->instToWaitFor =
719 lsq.getLastMemBarrier(thread_id);
720 } else {
721 DPRINTF(MinorExecute, "Memory ref inst:"
722 " %s must wait for inst %d(exec)"
723 " before issuing\n",
724 *inst, inst->instToWaitFor);
725 }
726
727 inst->canEarlyIssue = true;
728 }
729 /* Also queue this instruction in the memory ref
730 * queue to ensure in-order issue to the LSQ */
731 DPRINTF(MinorExecute, "Pushing mem inst: %s\n",
732 *inst);
733 thread.inFUMemInsts->push(fu_inst);
734 }
735
736 /* Issue to FU */
737 fu->push(fu_inst);
738 /* And start the countdown on activity to allow
739 * this instruction to get to the end of its FU */
740 cpu.activityRecorder->activity();
741
742 /* Mark the destinations for this instruction as
743 * busy */
744 scoreboard[thread_id].markupInstDests(inst, cpu.curCycle() +
745 fu->description.opLat +
746 extra_dest_retire_lat +
747 extra_assumed_lat,
748 cpu.getContext(thread_id),
749 issued_mem_ref && extra_assumed_lat == Cycles(0));
750
751 /* Push the instruction onto the inFlight queue so
752 * it can be committed in order */
753 thread.inFlightInsts->push(fu_inst);
754
755 issued = true;
756 }
757 }
758
759 fu_index++;
760 } while (fu_index != numFuncUnits && !issued);
761
762 if (!issued)
763 DPRINTF(MinorExecute, "Didn't issue inst: %s\n", *inst);
764 }
765
766 if (issued) {
767 /* Generate MinorTrace's MinorInst lines. Do this at commit
768 * to allow better instruction annotation? */
769 if (DTRACE(MinorTrace) && !inst->isBubble())
770 inst->minorTraceInst(*this);
771
772 /* Mark up barriers in the LSQ */
773 if (!discarded && inst->isInst() &&
774 inst->staticInst->isMemBarrier())
775 {
776 DPRINTF(MinorMem, "Issuing memory barrier inst: %s\n", *inst);
777 lsq.issuedMemBarrierInst(inst);
778 }
779
780 if (inst->traceData && setTraceTimeOnIssue) {
781 inst->traceData->setWhen(curTick());
782 }
783
784 if (issued_mem_ref)
785 num_mem_insts_issued++;
786
787 if (discarded) {
788 num_insts_discarded++;
789 } else if (!inst->isBubble()) {
790 num_insts_issued++;
791
792 if (num_insts_issued == issueLimit)
793 DPRINTF(MinorExecute, "Reached inst issue limit\n");
794 }
795
796 thread.inputIndex++;
797 DPRINTF(MinorExecute, "Stepping to next inst inputIndex: %d\n",
798 thread.inputIndex);
799 }
800
801 /* Got to the end of a line */
802 if (thread.inputIndex == insts_in->width()) {
803 popInput(thread_id);
804 /* Set insts_in to null to force us to leave the surrounding
805 * loop */
806 insts_in = NULL;
807
808 if (processMoreThanOneInput) {
809 DPRINTF(MinorExecute, "Wrapping\n");
810 insts_in = getInput(thread_id);
811 }
812 }
813 } while (insts_in && thread.inputIndex < insts_in->width() &&
814 /* We still have instructions */
815 fu_index != numFuncUnits && /* Not visited all FUs */
816 issued && /* We've not yet failed to issue an instruction */
817 num_insts_issued != issueLimit && /* Still allowed to issue */
818 num_mem_insts_issued != memoryIssueLimit);
819
820 return num_insts_issued;
821 }
822
823 bool
824 Execute::tryPCEvents(ThreadID thread_id)
825 {
826 ThreadContext *thread = cpu.getContext(thread_id);
827 unsigned int num_pc_event_checks = 0;
828
829 /* Handle PC events on instructions */
830 Addr oldPC;
831 do {
832 oldPC = thread->instAddr();
833 cpu.system->pcEventQueue.service(thread);
834 num_pc_event_checks++;
835 } while (oldPC != thread->instAddr());
836
837 if (num_pc_event_checks > 1) {
838 DPRINTF(PCEvent, "Acting on PC Event to PC: %s\n",
839 thread->pcState());
840 }
841
842 return num_pc_event_checks > 1;
843 }
844
845 void
846 Execute::doInstCommitAccounting(MinorDynInstPtr inst)
847 {
848 assert(!inst->isFault());
849
850 MinorThread *thread = cpu.threads[inst->id.threadId];
851
852 /* Increment the many and various inst and op counts in the
853 * thread and system */
854 if (!inst->staticInst->isMicroop() || inst->staticInst->isLastMicroop())
855 {
856 thread->numInst++;
857 thread->numInsts++;
858 cpu.stats.numInsts++;
859 cpu.system->totalNumInsts++;
860
861 /* Act on events related to instruction counts */
862 cpu.comInstEventQueue[inst->id.threadId]->serviceEvents(thread->numInst);
863 cpu.system->instEventQueue.serviceEvents(cpu.system->totalNumInsts);
864 }
865 thread->numOp++;
866 thread->numOps++;
867 cpu.stats.numOps++;
868 cpu.stats.committedInstType[inst->id.threadId]
869 [inst->staticInst->opClass()]++;
870
871 /* Set the CP SeqNum to the numOps commit number */
872 if (inst->traceData)
873 inst->traceData->setCPSeq(thread->numOp);
874
875 cpu.probeInstCommit(inst->staticInst, inst->pc.instAddr());
876 }
877
878 bool
879 Execute::commitInst(MinorDynInstPtr inst, bool early_memory_issue,
880 BranchData &branch, Fault &fault, bool &committed,
881 bool &completed_mem_issue)
882 {
883 ThreadID thread_id = inst->id.threadId;
884 ThreadContext *thread = cpu.getContext(thread_id);
885
886 bool completed_inst = true;
887 fault = NoFault;
888
889 /* Is the thread for this instruction suspended? In that case, just
890 * stall as long as there are no pending interrupts */
891 if (thread->status() == ThreadContext::Suspended &&
892 !isInterrupted(thread_id))
893 {
894 panic("We should never hit the case where we try to commit from a "
895 "suspended thread as the streamSeqNum should not match");
896 } else if (inst->isFault()) {
897 ExecContext context(cpu, *cpu.threads[thread_id], *this, inst);
898
899 DPRINTF(MinorExecute, "Fault inst reached Execute: %s\n",
900 inst->fault->name());
901
902 fault = inst->fault;
903 inst->fault->invoke(thread, NULL);
904
905 tryToBranch(inst, fault, branch);
906 } else if (inst->staticInst->isMemRef()) {
907 /* Memory accesses are executed in two parts:
908 * executeMemRefInst -- calculates the EA and issues the access
909 * to memory. This is done here.
910 * handleMemResponse -- handles the response packet, done by
911 * Execute::commit
912 *
913 * While the memory access is in its FU, the EA is being
914 * calculated. At the end of the FU, when it is ready to
915 * 'commit' (in this function), the access is presented to the
916 * memory queues. When a response comes back from memory,
917 * Execute::commit will commit it.
918 */
919 bool predicate_passed = false;
920 bool completed_mem_inst = executeMemRefInst(inst, branch,
921 predicate_passed, fault);
922
923 if (completed_mem_inst && fault != NoFault) {
924 if (early_memory_issue) {
925 DPRINTF(MinorExecute, "Fault in early executing inst: %s\n",
926 fault->name());
927 /* Don't execute the fault, just stall the instruction
928 * until it gets to the head of inFlightInsts */
929 inst->canEarlyIssue = false;
930 /* Not completed as we'll come here again to pick up
931 * the fault when we get to the end of the FU */
932 completed_inst = false;
933 } else {
934 DPRINTF(MinorExecute, "Fault in execute: %s\n",
935 fault->name());
936 fault->invoke(thread, NULL);
937
938 tryToBranch(inst, fault, branch);
939 completed_inst = true;
940 }
941 } else {
942 completed_inst = completed_mem_inst;
943 }
944 completed_mem_issue = completed_inst;
945 } else if (inst->isInst() && inst->staticInst->isMemBarrier() &&
946 !lsq.canPushIntoStoreBuffer())
947 {
948 DPRINTF(MinorExecute, "Can't commit data barrier inst: %s yet as"
949 " there isn't space in the store buffer\n", *inst);
950
951 completed_inst = false;
952 } else if (inst->isInst() && inst->staticInst->isQuiesce()
953 && !branch.isBubble()){
954 /* This instruction can suspend, need to be able to communicate
955 * backwards, so no other branches may evaluate this cycle*/
956 completed_inst = false;
957 } else {
958 ExecContext context(cpu, *cpu.threads[thread_id], *this, inst);
959
960 DPRINTF(MinorExecute, "Committing inst: %s\n", *inst);
961
962 fault = inst->staticInst->execute(&context,
963 inst->traceData);
964
965 /* Set the predicate for tracing and dump */
966 if (inst->traceData)
967 inst->traceData->setPredicate(context.readPredicate());
968
969 committed = true;
970
971 if (fault != NoFault) {
972 DPRINTF(MinorExecute, "Fault in execute of inst: %s fault: %s\n",
973 *inst, fault->name());
974 fault->invoke(thread, inst->staticInst);
975 }
976
977 doInstCommitAccounting(inst);
978 tryToBranch(inst, fault, branch);
979 }
980
981 if (completed_inst) {
982 /* Keep a copy of this instruction's predictionSeqNum just in case
983 * we need to issue a branch without an instruction (such as an
984 * interrupt) */
985 executeInfo[thread_id].lastPredictionSeqNum = inst->id.predictionSeqNum;
986
987 /* Check to see if this instruction suspended the current thread. */
988 if (!inst->isFault() &&
989 thread->status() == ThreadContext::Suspended &&
990 branch.isBubble() && /* It didn't branch too */
991 !isInterrupted(thread_id)) /* Don't suspend if we have
992 interrupts */
993 {
994 TheISA::PCState resume_pc = cpu.getContext(thread_id)->pcState();
995
996 assert(resume_pc.microPC() == 0);
997
998 DPRINTF(MinorInterrupt, "Suspending thread: %d from Execute"
999 " inst: %s\n", thread_id, *inst);
1000
1001 cpu.stats.numFetchSuspends++;
1002
1003 updateBranchData(thread_id, BranchData::SuspendThread, inst,
1004 resume_pc, branch);
1005 }
1006 }
1007
1008 return completed_inst;
1009 }
1010
1011 void
1012 Execute::commit(ThreadID thread_id, bool only_commit_microops, bool discard,
1013 BranchData &branch)
1014 {
1015 Fault fault = NoFault;
1016 Cycles now = cpu.curCycle();
1017 ExecuteThreadInfo &ex_info = executeInfo[thread_id];
1018
1019 /**
1020 * Try and execute as many instructions from the end of FU pipelines as
1021 * possible. This *doesn't* include actually advancing the pipelines.
1022 *
1023 * We do this by looping on the front of the inFlightInsts queue for as
1024 * long as we can find the desired instruction at the end of the
1025 * functional unit it was issued to without seeing a branch or a fault.
1026 * In this function, these terms are used:
1027 * complete -- The instruction has finished its passage through
1028 * its functional unit and its fate has been decided
1029 * (committed, discarded, issued to the memory system)
1030 * commit -- The instruction is complete(d), not discarded and has
1031 * its effects applied to the CPU state
1032 * discard(ed) -- The instruction is complete but not committed
1033 * as its streamSeqNum disagrees with the current
1034 * Execute::streamSeqNum
1035 *
1036 * Commits are also possible from two other places:
1037 *
1038 * 1) Responses returning from the LSQ
1039 * 2) Mem ops issued to the LSQ ('committed' from the FUs) earlier
1040 * than their position in the inFlightInsts queue, but after all
1041 * their dependencies are resolved.
1042 */
1043
1044 /* Has an instruction been completed? Once this becomes false, we stop
1045 * trying to complete instructions. */
1046 bool completed_inst = true;
1047
1048 /* Number of insts committed this cycle to check against commitLimit */
1049 unsigned int num_insts_committed = 0;
1050
1051 /* Number of memory access instructions committed to check against
1052 * memCommitLimit */
1053 unsigned int num_mem_refs_committed = 0;
1054
1055 if (only_commit_microops && !ex_info.inFlightInsts->empty()) {
1056 DPRINTF(MinorInterrupt, "Only commit microops %s %d\n",
1057 *(ex_info.inFlightInsts->front().inst),
1058 ex_info.lastCommitWasEndOfMacroop);
1059 }
1060
1061 while (!ex_info.inFlightInsts->empty() && /* Some more instructions to process */
1062 !branch.isStreamChange() && /* No real branch */
1063 fault == NoFault && /* No faults */
1064 completed_inst && /* Still finding instructions to execute */
1065 num_insts_committed != commitLimit /* Not reached commit limit */
1066 )
1067 {
1068 if (only_commit_microops) {
1069 DPRINTF(MinorInterrupt, "Committing tail of insts before"
1070 " interrupt: %s\n",
1071 *(ex_info.inFlightInsts->front().inst));
1072 }
1073
1074 QueuedInst *head_inflight_inst = &(ex_info.inFlightInsts->front());
1075
1076 InstSeqNum head_exec_seq_num =
1077 head_inflight_inst->inst->id.execSeqNum;
1078
1079 /* The instruction we actually process if completed_inst
1080 * remains true to the end of the loop body.
1081 * Start by considering the the head of the in flight insts queue */
1082 MinorDynInstPtr inst = head_inflight_inst->inst;
1083
1084 bool committed_inst = false;
1085 bool discard_inst = false;
1086 bool completed_mem_ref = false;
1087 bool issued_mem_ref = false;
1088 bool early_memory_issue = false;
1089
1090 /* Must set this again to go around the loop */
1091 completed_inst = false;
1092
1093 /* If we're just completing a macroop before an interrupt or drain,
1094 * can we stil commit another microop (rather than a memory response)
1095 * without crosing into the next full instruction? */
1096 bool can_commit_insts = !ex_info.inFlightInsts->empty() &&
1097 !(only_commit_microops && ex_info.lastCommitWasEndOfMacroop);
1098
1099 /* Can we find a mem response for this inst */
1100 LSQ::LSQRequestPtr mem_response =
1101 (inst->inLSQ ? lsq.findResponse(inst) : NULL);
1102
1103 DPRINTF(MinorExecute, "Trying to commit canCommitInsts: %d\n",
1104 can_commit_insts);
1105
1106 /* Test for PC events after every instruction */
1107 if (isInbetweenInsts(thread_id) && tryPCEvents(thread_id)) {
1108 ThreadContext *thread = cpu.getContext(thread_id);
1109
1110 /* Branch as there was a change in PC */
1111 updateBranchData(thread_id, BranchData::UnpredictedBranch,
1112 MinorDynInst::bubble(), thread->pcState(), branch);
1113 } else if (mem_response &&
1114 num_mem_refs_committed < memoryCommitLimit)
1115 {
1116 /* Try to commit from the memory responses next */
1117 discard_inst = inst->id.streamSeqNum !=
1118 ex_info.streamSeqNum || discard;
1119
1120 DPRINTF(MinorExecute, "Trying to commit mem response: %s\n",
1121 *inst);
1122
1123 /* Complete or discard the response */
1124 if (discard_inst) {
1125 DPRINTF(MinorExecute, "Discarding mem inst: %s as its"
1126 " stream state was unexpected, expected: %d\n",
1127 *inst, ex_info.streamSeqNum);
1128
1129 lsq.popResponse(mem_response);
1130 } else {
1131 handleMemResponse(inst, mem_response, branch, fault);
1132 committed_inst = true;
1133 }
1134
1135 completed_mem_ref = true;
1136 completed_inst = true;
1137 } else if (can_commit_insts) {
1138 /* If true, this instruction will, subject to timing tweaks,
1139 * be considered for completion. try_to_commit flattens
1140 * the `if' tree a bit and allows other tests for inst
1141 * commit to be inserted here. */
1142 bool try_to_commit = false;
1143
1144 /* Try and issue memory ops early if they:
1145 * - Can push a request into the LSQ
1146 * - Have reached the end of their FUs
1147 * - Have had all their dependencies satisfied
1148 * - Are from the right stream
1149 *
1150 * For any other case, leave it to the normal instruction
1151 * issue below to handle them.
1152 */
1153 if (!ex_info.inFUMemInsts->empty() && lsq.canRequest()) {
1154 DPRINTF(MinorExecute, "Trying to commit from mem FUs\n");
1155
1156 const MinorDynInstPtr head_mem_ref_inst =
1157 ex_info.inFUMemInsts->front().inst;
1158 FUPipeline *fu = funcUnits[head_mem_ref_inst->fuIndex];
1159 const MinorDynInstPtr &fu_inst = fu->front().inst;
1160
1161 /* Use this, possibly out of order, inst as the one
1162 * to 'commit'/send to the LSQ */
1163 if (!fu_inst->isBubble() &&
1164 !fu_inst->inLSQ &&
1165 fu_inst->canEarlyIssue &&
1166 ex_info.streamSeqNum == fu_inst->id.streamSeqNum &&
1167 head_exec_seq_num > fu_inst->instToWaitFor)
1168 {
1169 DPRINTF(MinorExecute, "Issuing mem ref early"
1170 " inst: %s instToWaitFor: %d\n",
1171 *(fu_inst), fu_inst->instToWaitFor);
1172
1173 inst = fu_inst;
1174 try_to_commit = true;
1175 early_memory_issue = true;
1176 completed_inst = true;
1177 }
1178 }
1179
1180 /* Try and commit FU-less insts */
1181 if (!completed_inst && inst->isNoCostInst()) {
1182 DPRINTF(MinorExecute, "Committing no cost inst: %s", *inst);
1183
1184 try_to_commit = true;
1185 completed_inst = true;
1186 }
1187
1188 /* Try to issue from the ends of FUs and the inFlightInsts
1189 * queue */
1190 if (!completed_inst && !inst->inLSQ) {
1191 DPRINTF(MinorExecute, "Trying to commit from FUs\n");
1192
1193 /* Try to commit from a functional unit */
1194 /* Is the head inst of the expected inst's FU actually the
1195 * expected inst? */
1196 QueuedInst &fu_inst =
1197 funcUnits[inst->fuIndex]->front();
1198 InstSeqNum fu_inst_seq_num = fu_inst.inst->id.execSeqNum;
1199
1200 if (fu_inst.inst->isBubble()) {
1201 /* No instruction ready */
1202 completed_inst = false;
1203 } else if (fu_inst_seq_num != head_exec_seq_num) {
1204 /* Past instruction: we must have already executed it
1205 * in the same cycle and so the head inst isn't
1206 * actually at the end of its pipeline
1207 * Future instruction: handled above and only for
1208 * mem refs on their way to the LSQ */
1209 } else if (fu_inst.inst->id == inst->id) {
1210 /* All instructions can be committed if they have the
1211 * right execSeqNum and there are no in-flight
1212 * mem insts before us */
1213 try_to_commit = true;
1214 completed_inst = true;
1215 }
1216 }
1217
1218 if (try_to_commit) {
1219 discard_inst = inst->id.streamSeqNum !=
1220 ex_info.streamSeqNum || discard;
1221
1222 /* Is this instruction discardable as its streamSeqNum
1223 * doesn't match? */
1224 if (!discard_inst) {
1225 /* Try to commit or discard a non-memory instruction.
1226 * Memory ops are actually 'committed' from this FUs
1227 * and 'issued' into the memory system so we need to
1228 * account for them later (commit_was_mem_issue gets
1229 * set) */
1230 if (inst->extraCommitDelayExpr) {
1231 DPRINTF(MinorExecute, "Evaluating expression for"
1232 " extra commit delay inst: %s\n", *inst);
1233
1234 ThreadContext *thread = cpu.getContext(thread_id);
1235
1236 TimingExprEvalContext context(inst->staticInst,
1237 thread, NULL);
1238
1239 uint64_t extra_delay = inst->extraCommitDelayExpr->
1240 eval(context);
1241
1242 DPRINTF(MinorExecute, "Extra commit delay expr"
1243 " result: %d\n", extra_delay);
1244
1245 if (extra_delay < 128) {
1246 inst->extraCommitDelay += Cycles(extra_delay);
1247 } else {
1248 DPRINTF(MinorExecute, "Extra commit delay was"
1249 " very long: %d\n", extra_delay);
1250 }
1251 inst->extraCommitDelayExpr = NULL;
1252 }
1253
1254 /* Move the extraCommitDelay from the instruction
1255 * into the minimumCommitCycle */
1256 if (inst->extraCommitDelay != Cycles(0)) {
1257 inst->minimumCommitCycle = cpu.curCycle() +
1258 inst->extraCommitDelay;
1259 inst->extraCommitDelay = Cycles(0);
1260 }
1261
1262 /* @todo Think about making lastMemBarrier be
1263 * MAX_UINT_64 to avoid using 0 as a marker value */
1264 if (!inst->isFault() && inst->isMemRef() &&
1265 lsq.getLastMemBarrier(thread_id) <
1266 inst->id.execSeqNum &&
1267 lsq.getLastMemBarrier(thread_id) != 0)
1268 {
1269 DPRINTF(MinorExecute, "Not committing inst: %s yet"
1270 " as there are incomplete barriers in flight\n",
1271 *inst);
1272 completed_inst = false;
1273 } else if (inst->minimumCommitCycle > now) {
1274 DPRINTF(MinorExecute, "Not committing inst: %s yet"
1275 " as it wants to be stalled for %d more cycles\n",
1276 *inst, inst->minimumCommitCycle - now);
1277 completed_inst = false;
1278 } else {
1279 completed_inst = commitInst(inst,
1280 early_memory_issue, branch, fault,
1281 committed_inst, issued_mem_ref);
1282 }
1283 } else {
1284 /* Discard instruction */
1285 completed_inst = true;
1286 }
1287
1288 if (completed_inst) {
1289 /* Allow the pipeline to advance. If the FU head
1290 * instruction wasn't the inFlightInsts head
1291 * but had already been committed, it would have
1292 * unstalled the pipeline before here */
1293 if (inst->fuIndex != noCostFUIndex) {
1294 DPRINTF(MinorExecute, "Unstalling %d for inst %s\n", inst->fuIndex, inst->id);
1295 funcUnits[inst->fuIndex]->stalled = false;
1296 }
1297 }
1298 }
1299 } else {
1300 DPRINTF(MinorExecute, "No instructions to commit\n");
1301 completed_inst = false;
1302 }
1303
1304 /* All discardable instructions must also be 'completed' by now */
1305 assert(!(discard_inst && !completed_inst));
1306
1307 /* Instruction committed but was discarded due to streamSeqNum
1308 * mismatch */
1309 if (discard_inst) {
1310 DPRINTF(MinorExecute, "Discarding inst: %s as its stream"
1311 " state was unexpected, expected: %d\n",
1312 *inst, ex_info.streamSeqNum);
1313
1314 if (fault == NoFault)
1315 cpu.stats.numDiscardedOps++;
1316 }
1317
1318 /* Mark the mem inst as being in the LSQ */
1319 if (issued_mem_ref) {
1320 inst->fuIndex = 0;
1321 inst->inLSQ = true;
1322 }
1323
1324 /* Pop issued (to LSQ) and discarded mem refs from the inFUMemInsts
1325 * as they've *definitely* exited the FUs */
1326 if (completed_inst && inst->isMemRef()) {
1327 /* The MemRef could have been discarded from the FU or the memory
1328 * queue, so just check an FU instruction */
1329 if (!ex_info.inFUMemInsts->empty() &&
1330 ex_info.inFUMemInsts->front().inst == inst)
1331 {
1332 ex_info.inFUMemInsts->pop();
1333 }
1334 }
1335
1336 if (completed_inst && !(issued_mem_ref && fault == NoFault)) {
1337 /* Note that this includes discarded insts */
1338 DPRINTF(MinorExecute, "Completed inst: %s\n", *inst);
1339
1340 /* Got to the end of a full instruction? */
1341 ex_info.lastCommitWasEndOfMacroop = inst->isFault() ||
1342 inst->isLastOpInInst();
1343
1344 /* lastPredictionSeqNum is kept as a convenience to prevent its
1345 * value from changing too much on the minorview display */
1346 ex_info.lastPredictionSeqNum = inst->id.predictionSeqNum;
1347
1348 /* Finished with the inst, remove it from the inst queue and
1349 * clear its dependencies */
1350 ex_info.inFlightInsts->pop();
1351
1352 /* Complete barriers in the LSQ/move to store buffer */
1353 if (inst->isInst() && inst->staticInst->isMemBarrier()) {
1354 DPRINTF(MinorMem, "Completing memory barrier"
1355 " inst: %s committed: %d\n", *inst, committed_inst);
1356 lsq.completeMemBarrierInst(inst, committed_inst);
1357 }
1358
1359 scoreboard[thread_id].clearInstDests(inst, inst->isMemRef());
1360 }
1361
1362 /* Handle per-cycle instruction counting */
1363 if (committed_inst) {
1364 bool is_no_cost_inst = inst->isNoCostInst();
1365
1366 /* Don't show no cost instructions as having taken a commit
1367 * slot */
1368 if (DTRACE(MinorTrace) && !is_no_cost_inst)
1369 ex_info.instsBeingCommitted.insts[num_insts_committed] = inst;
1370
1371 if (!is_no_cost_inst)
1372 num_insts_committed++;
1373
1374 if (num_insts_committed == commitLimit)
1375 DPRINTF(MinorExecute, "Reached inst commit limit\n");
1376
1377 /* Re-set the time of the instruction if that's required for
1378 * tracing */
1379 if (inst->traceData) {
1380 if (setTraceTimeOnCommit)
1381 inst->traceData->setWhen(curTick());
1382 inst->traceData->dump();
1383 }
1384
1385 if (completed_mem_ref)
1386 num_mem_refs_committed++;
1387
1388 if (num_mem_refs_committed == memoryCommitLimit)
1389 DPRINTF(MinorExecute, "Reached mem ref commit limit\n");
1390 }
1391 }
1392 }
1393
1394 bool
1395 Execute::isInbetweenInsts(ThreadID thread_id) const
1396 {
1397 return executeInfo[thread_id].lastCommitWasEndOfMacroop &&
1398 !lsq.accessesInFlight();
1399 }
1400
1401 void
1402 Execute::evaluate()
1403 {
1404 if (!inp.outputWire->isBubble())
1405 inputBuffer[inp.outputWire->threadId].setTail(*inp.outputWire);
1406
1407 BranchData &branch = *out.inputWire;
1408
1409 unsigned int num_issued = 0;
1410
1411 /* Do all the cycle-wise activities for dcachePort here to potentially
1412 * free up input spaces in the LSQ's requests queue */
1413 lsq.step();
1414
1415 /* Check interrupts first. Will halt commit if interrupt found */
1416 bool interrupted = false;
1417 ThreadID interrupt_tid = checkInterrupts(branch, interrupted);
1418
1419 if (interrupt_tid != InvalidThreadID) {
1420 /* Signalling an interrupt this cycle, not issuing/committing from
1421 * any other threads */
1422 } else if (!branch.isBubble()) {
1423 /* It's important that this is here to carry Fetch1 wakeups to Fetch1
1424 * without overwriting them */
1425 DPRINTF(MinorInterrupt, "Execute skipping a cycle to allow old"
1426 " branch to complete\n");
1427 } else {
1428 ThreadID commit_tid = getCommittingThread();
1429
1430 if (commit_tid != InvalidThreadID) {
1431 ExecuteThreadInfo& commit_info = executeInfo[commit_tid];
1432
1433 DPRINTF(MinorExecute, "Attempting to commit [tid:%d]\n",
1434 commit_tid);
1435 /* commit can set stalled flags observable to issue and so *must* be
1436 * called first */
1437 if (commit_info.drainState != NotDraining) {
1438 if (commit_info.drainState == DrainCurrentInst) {
1439 /* Commit only micro-ops, don't kill anything else */
1440 commit(commit_tid, true, false, branch);
1441
1442 if (isInbetweenInsts(commit_tid))
1443 setDrainState(commit_tid, DrainHaltFetch);
1444
1445 /* Discard any generated branch */
1446 branch = BranchData::bubble();
1447 } else if (commit_info.drainState == DrainAllInsts) {
1448 /* Kill all instructions */
1449 while (getInput(commit_tid))
1450 popInput(commit_tid);
1451 commit(commit_tid, false, true, branch);
1452 }
1453 } else {
1454 /* Commit micro-ops only if interrupted. Otherwise, commit
1455 * anything you like */
1456 DPRINTF(MinorExecute, "Committing micro-ops for interrupt[tid:%d]\n",
1457 commit_tid);
1458 bool only_commit_microops = interrupted &&
1459 hasInterrupt(commit_tid);
1460 commit(commit_tid, only_commit_microops, false, branch);
1461 }
1462
1463 /* Halt fetch, but don't do it until we have the current instruction in
1464 * the bag */
1465 if (commit_info.drainState == DrainHaltFetch) {
1466 updateBranchData(commit_tid, BranchData::HaltFetch,
1467 MinorDynInst::bubble(), TheISA::PCState(0), branch);
1468
1469 cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
1470 setDrainState(commit_tid, DrainAllInsts);
1471 }
1472 }
1473 ThreadID issue_tid = getIssuingThread();
1474 /* This will issue merrily even when interrupted in the sure and
1475 * certain knowledge that the interrupt with change the stream */
1476 if (issue_tid != InvalidThreadID) {
1477 DPRINTF(MinorExecute, "Attempting to issue [tid:%d]\n",
1478 issue_tid);
1479 num_issued = issue(issue_tid);
1480 }
1481
1482 }
1483
1484 /* Run logic to step functional units + decide if we are active on the next
1485 * clock cycle */
1486 std::vector<MinorDynInstPtr> next_issuable_insts;
1487 bool can_issue_next = false;
1488
1489 for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
1490 /* Find the next issuable instruction for each thread and see if it can
1491 be issued */
1492 if (getInput(tid)) {
1493 unsigned int input_index = executeInfo[tid].inputIndex;
1494 MinorDynInstPtr inst = getInput(tid)->insts[input_index];
1495 if (inst->isFault()) {
1496 can_issue_next = true;
1497 } else if (!inst->isBubble()) {
1498 next_issuable_insts.push_back(inst);
1499 }
1500 }
1501 }
1502
1503 bool becoming_stalled = true;
1504
1505 /* Advance the pipelines and note whether they still need to be
1506 * advanced */
1507 for (unsigned int i = 0; i < numFuncUnits; i++) {
1508 FUPipeline *fu = funcUnits[i];
1509 fu->advance();
1510
1511 /* If we need to tick again, the pipeline will have been left or set
1512 * to be unstalled */
1513 if (fu->occupancy !=0 && !fu->stalled)
1514 becoming_stalled = false;
1515
1516 /* Could we possibly issue the next instruction from any thread?
1517 * This is quite an expensive test and is only used to determine
1518 * if the CPU should remain active, only run it if we aren't sure
1519 * we are active next cycle yet */
1520 for (auto inst : next_issuable_insts) {
1521 if (!fu->stalled && fu->provides(inst->staticInst->opClass()) &&
1522 scoreboard[inst->id.threadId].canInstIssue(inst,
1523 NULL, NULL, cpu.curCycle() + Cycles(1),
1524 cpu.getContext(inst->id.threadId))) {
1525 can_issue_next = true;
1526 break;
1527 }
1528 }
1529 }
1530
1531 bool head_inst_might_commit = false;
1532
1533 /* Could the head in flight insts be committed */
1534 for (auto const &info : executeInfo) {
1535 if (!info.inFlightInsts->empty()) {
1536 const QueuedInst &head_inst = info.inFlightInsts->front();
1537
1538 if (head_inst.inst->isNoCostInst()) {
1539 head_inst_might_commit = true;
1540 } else {
1541 FUPipeline *fu = funcUnits[head_inst.inst->fuIndex];
1542 if ((fu->stalled &&
1543 fu->front().inst->id == head_inst.inst->id) ||
1544 lsq.findResponse(head_inst.inst))
1545 {
1546 head_inst_might_commit = true;
1547 break;
1548 }
1549 }
1550 }
1551 }
1552
1553 DPRINTF(Activity, "Need to tick num issued insts: %s%s%s%s%s%s\n",
1554 (num_issued != 0 ? " (issued some insts)" : ""),
1555 (becoming_stalled ? "(becoming stalled)" : "(not becoming stalled)"),
1556 (can_issue_next ? " (can issued next inst)" : ""),
1557 (head_inst_might_commit ? "(head inst might commit)" : ""),
1558 (lsq.needsToTick() ? " (LSQ needs to tick)" : ""),
1559 (interrupted ? " (interrupted)" : ""));
1560
1561 bool need_to_tick =
1562 num_issued != 0 || /* Issued some insts this cycle */
1563 !becoming_stalled || /* Some FU pipelines can still move */
1564 can_issue_next || /* Can still issue a new inst */
1565 head_inst_might_commit || /* Could possible commit the next inst */
1566 lsq.needsToTick() || /* Must step the dcache port */
1567 interrupted; /* There are pending interrupts */
1568
1569 if (!need_to_tick) {
1570 DPRINTF(Activity, "The next cycle might be skippable as there are no"
1571 " advanceable FUs\n");
1572 }
1573
1574 /* Wake up if we need to tick again */
1575 if (need_to_tick)
1576 cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
1577
1578 /* Note activity of following buffer */
1579 if (!branch.isBubble())
1580 cpu.activityRecorder->activity();
1581
1582 /* Make sure the input (if any left) is pushed */
1583 if (!inp.outputWire->isBubble())
1584 inputBuffer[inp.outputWire->threadId].pushTail();
1585 }
1586
1587 ThreadID
1588 Execute::checkInterrupts(BranchData& branch, bool& interrupted)
1589 {
1590 ThreadID tid = interruptPriority;
1591 /* Evaluate interrupts in round-robin based upon service */
1592 do {
1593 /* Has an interrupt been signalled? This may not be acted on
1594 * straighaway so this is different from took_interrupt */
1595 bool thread_interrupted = false;
1596
1597 if (FullSystem && cpu.getInterruptController(tid)) {
1598 /* This is here because it seems that after drainResume the
1599 * interrupt controller isn't always set */
1600 thread_interrupted = executeInfo[tid].drainState == NotDraining &&
1601 isInterrupted(tid);
1602 interrupted = interrupted || thread_interrupted;
1603 } else {
1604 DPRINTF(MinorInterrupt, "No interrupt controller\n");
1605 }
1606 DPRINTF(MinorInterrupt, "[tid:%d] thread_interrupted?=%d isInbetweenInsts?=%d\n",
1607 tid, thread_interrupted, isInbetweenInsts(tid));
1608 /* Act on interrupts */
1609 if (thread_interrupted && isInbetweenInsts(tid)) {
1610 if (takeInterrupt(tid, branch)) {
1611 interruptPriority = tid;
1612 return tid;
1613 }
1614 } else {
1615 tid = (tid + 1) % cpu.numThreads;
1616 }
1617 } while (tid != interruptPriority);
1618
1619 return InvalidThreadID;
1620 }
1621
1622 bool
1623 Execute::hasInterrupt(ThreadID thread_id)
1624 {
1625 if (FullSystem && cpu.getInterruptController(thread_id)) {
1626 return executeInfo[thread_id].drainState == NotDraining &&
1627 isInterrupted(thread_id);
1628 }
1629
1630 return false;
1631 }
1632
1633 void
1634 Execute::minorTrace() const
1635 {
1636 std::ostringstream insts;
1637 std::ostringstream stalled;
1638
1639 executeInfo[0].instsBeingCommitted.reportData(insts);
1640 lsq.minorTrace();
1641 inputBuffer[0].minorTrace();
1642 scoreboard[0].minorTrace();
1643
1644 /* Report functional unit stalling in one string */
1645 unsigned int i = 0;
1646 while (i < numFuncUnits)
1647 {
1648 stalled << (funcUnits[i]->stalled ? '1' : 'E');
1649 i++;
1650 if (i != numFuncUnits)
1651 stalled << ',';
1652 }
1653
1654 MINORTRACE("insts=%s inputIndex=%d streamSeqNum=%d"
1655 " stalled=%s drainState=%d isInbetweenInsts=%d\n",
1656 insts.str(), executeInfo[0].inputIndex, executeInfo[0].streamSeqNum,
1657 stalled.str(), executeInfo[0].drainState, isInbetweenInsts(0));
1658
1659 std::for_each(funcUnits.begin(), funcUnits.end(),
1660 std::mem_fun(&FUPipeline::minorTrace));
1661
1662 executeInfo[0].inFlightInsts->minorTrace();
1663 executeInfo[0].inFUMemInsts->minorTrace();
1664 }
1665
1666 inline ThreadID
1667 Execute::getCommittingThread()
1668 {
1669 std::vector<ThreadID> priority_list;
1670
1671 switch (cpu.threadPolicy) {
1672 case Enums::SingleThreaded:
1673 return 0;
1674 case Enums::RoundRobin:
1675 priority_list = cpu.roundRobinPriority(commitPriority);
1676 break;
1677 case Enums::Random:
1678 priority_list = cpu.randomPriority();
1679 break;
1680 default:
1681 panic("Invalid thread policy");
1682 }
1683
1684 for (auto tid : priority_list) {
1685 ExecuteThreadInfo &ex_info = executeInfo[tid];
1686
1687 bool is_thread_active =
1688 cpu.getContext(tid)->status() == ThreadContext::Active;
1689 bool can_commit_insts = !ex_info.inFlightInsts->empty() &&
1690 is_thread_active;
1691
1692 if (can_commit_insts) {
1693 QueuedInst *head_inflight_inst = &(ex_info.inFlightInsts->front());
1694 MinorDynInstPtr inst = head_inflight_inst->inst;
1695
1696 can_commit_insts = can_commit_insts &&
1697 (!inst->inLSQ || (lsq.findResponse(inst) != NULL));
1698
1699 if (!inst->inLSQ) {
1700 bool can_transfer_mem_inst = false;
1701 if (!ex_info.inFUMemInsts->empty() && lsq.canRequest()) {
1702 const MinorDynInstPtr head_mem_ref_inst =
1703 ex_info.inFUMemInsts->front().inst;
1704 FUPipeline *fu = funcUnits[head_mem_ref_inst->fuIndex];
1705 const MinorDynInstPtr &fu_inst = fu->front().inst;
1706 can_transfer_mem_inst =
1707 !fu_inst->isBubble() &&
1708 fu_inst->id.threadId == tid &&
1709 !fu_inst->inLSQ &&
1710 fu_inst->canEarlyIssue &&
1711 inst->id.execSeqNum > fu_inst->instToWaitFor;
1712 }
1713
1714 bool can_execute_fu_inst = inst->fuIndex == noCostFUIndex;
1715 if (can_commit_insts && !can_transfer_mem_inst &&
1716 inst->fuIndex != noCostFUIndex)
1717 {
1718 QueuedInst& fu_inst = funcUnits[inst->fuIndex]->front();
1719 can_execute_fu_inst = !fu_inst.inst->isBubble() &&
1720 fu_inst.inst->id == inst->id;
1721 }
1722
1723 can_commit_insts = can_commit_insts &&
1724 (can_transfer_mem_inst || can_execute_fu_inst);
1725 }
1726 }
1727
1728
1729 if (can_commit_insts) {
1730 commitPriority = tid;
1731 return tid;
1732 }
1733 }
1734
1735 return InvalidThreadID;
1736 }
1737
1738 inline ThreadID
1739 Execute::getIssuingThread()
1740 {
1741 std::vector<ThreadID> priority_list;
1742
1743 switch (cpu.threadPolicy) {
1744 case Enums::SingleThreaded:
1745 return 0;
1746 case Enums::RoundRobin:
1747 priority_list = cpu.roundRobinPriority(issuePriority);
1748 break;
1749 case Enums::Random:
1750 priority_list = cpu.randomPriority();
1751 break;
1752 default:
1753 panic("Invalid thread scheduling policy.");
1754 }
1755
1756 for (auto tid : priority_list) {
1757 if (cpu.getContext(tid)->status() == ThreadContext::Active &&
1758 getInput(tid)) {
1759 issuePriority = tid;
1760 return tid;
1761 }
1762 }
1763
1764 return InvalidThreadID;
1765 }
1766
1767 void
1768 Execute::drainResume()
1769 {
1770 DPRINTF(Drain, "MinorExecute drainResume\n");
1771
1772 for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
1773 setDrainState(tid, NotDraining);
1774 }
1775
1776 cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
1777 }
1778
1779 std::ostream &operator <<(std::ostream &os, Execute::DrainState state)
1780 {
1781 switch (state)
1782 {
1783 case Execute::NotDraining:
1784 os << "NotDraining";
1785 break;
1786 case Execute::DrainCurrentInst:
1787 os << "DrainCurrentInst";
1788 break;
1789 case Execute::DrainHaltFetch:
1790 os << "DrainHaltFetch";
1791 break;
1792 case Execute::DrainAllInsts:
1793 os << "DrainAllInsts";
1794 break;
1795 default:
1796 os << "Drain-" << static_cast<int>(state);
1797 break;
1798 }
1799
1800 return os;
1801 }
1802
1803 void
1804 Execute::setDrainState(ThreadID thread_id, DrainState state)
1805 {
1806 DPRINTF(Drain, "setDrainState[%d]: %s\n", thread_id, state);
1807 executeInfo[thread_id].drainState = state;
1808 }
1809
1810 unsigned int
1811 Execute::drain()
1812 {
1813 DPRINTF(Drain, "MinorExecute drain\n");
1814
1815 for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
1816 if (executeInfo[tid].drainState == NotDraining) {
1817 cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
1818
1819 /* Go to DrainCurrentInst if we're between microops
1820 * or waiting on an unbufferable memory operation.
1821 * Otherwise we can go straight to DrainHaltFetch
1822 */
1823 if (isInbetweenInsts(tid))
1824 setDrainState(tid, DrainHaltFetch);
1825 else
1826 setDrainState(tid, DrainCurrentInst);
1827 }
1828 }
1829 return (isDrained() ? 0 : 1);
1830 }
1831
1832 bool
1833 Execute::isDrained()
1834 {
1835 if (!lsq.isDrained())
1836 return false;
1837
1838 for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
1839 if (!inputBuffer[tid].empty() ||
1840 !executeInfo[tid].inFlightInsts->empty()) {
1841
1842 return false;
1843 }
1844 }
1845
1846 return true;
1847 }
1848
1849 Execute::~Execute()
1850 {
1851 for (unsigned int i = 0; i < numFuncUnits; i++)
1852 delete funcUnits[i];
1853
1854 for (ThreadID tid = 0; tid < cpu.numThreads; tid++)
1855 delete executeInfo[tid].inFlightInsts;
1856 }
1857
1858 bool
1859 Execute::instIsRightStream(MinorDynInstPtr inst)
1860 {
1861 return inst->id.streamSeqNum == executeInfo[inst->id.threadId].streamSeqNum;
1862 }
1863
1864 bool
1865 Execute::instIsHeadInst(MinorDynInstPtr inst)
1866 {
1867 bool ret = false;
1868
1869 if (!executeInfo[inst->id.threadId].inFlightInsts->empty())
1870 ret = executeInfo[inst->id.threadId].inFlightInsts->front().inst->id == inst->id;
1871
1872 return ret;
1873 }
1874
1875 MinorCPU::MinorCPUPort &
1876 Execute::getDcachePort()
1877 {
1878 return lsq.getDcachePort();
1879 }
1880
1881 }