syscall_emul: [patch 13/22] add system call retry capability
[gem5.git] / src / cpu / o3 / commit_impl.hh
1 /*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2014 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44 #ifndef __CPU_O3_COMMIT_IMPL_HH__
45 #define __CPU_O3_COMMIT_IMPL_HH__
46
47 #include <algorithm>
48 #include <set>
49 #include <string>
50
51 #include "arch/utility.hh"
52 #include "base/loader/symtab.hh"
53 #include "base/cp_annotate.hh"
54 #include "config/the_isa.hh"
55 #include "cpu/checker/cpu.hh"
56 #include "cpu/o3/commit.hh"
57 #include "cpu/o3/thread_state.hh"
58 #include "cpu/base.hh"
59 #include "cpu/exetrace.hh"
60 #include "cpu/timebuf.hh"
61 #include "debug/Activity.hh"
62 #include "debug/Commit.hh"
63 #include "debug/CommitRate.hh"
64 #include "debug/Drain.hh"
65 #include "debug/ExecFaulting.hh"
66 #include "debug/O3PipeView.hh"
67 #include "params/DerivO3CPU.hh"
68 #include "sim/faults.hh"
69 #include "sim/full_system.hh"
70
71 using namespace std;
72
73 template <class Impl>
74 DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
75 ThreadID _tid)
76 : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
77 {
78 }
79
80 template <class Impl>
81 void
82 DefaultCommit<Impl>::TrapEvent::process()
83 {
84 // This will get reset by commit if it was switched out at the
85 // time of this event processing.
86 commit->trapSquash[tid] = true;
87 }
88
89 template <class Impl>
90 const char *
91 DefaultCommit<Impl>::TrapEvent::description() const
92 {
93 return "Trap";
94 }
95
96 template <class Impl>
97 DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
98 : cpu(_cpu),
99 iewToCommitDelay(params->iewToCommitDelay),
100 commitToIEWDelay(params->commitToIEWDelay),
101 renameToROBDelay(params->renameToROBDelay),
102 fetchToCommitDelay(params->commitToFetchDelay),
103 renameWidth(params->renameWidth),
104 commitWidth(params->commitWidth),
105 numThreads(params->numThreads),
106 drainPending(false),
107 drainImminent(false),
108 trapLatency(params->trapLatency),
109 canHandleInterrupts(true),
110 avoidQuiesceLiveLock(false)
111 {
112 if (commitWidth > Impl::MaxWidth)
113 fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
114 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
115 commitWidth, static_cast<int>(Impl::MaxWidth));
116
117 _status = Active;
118 _nextStatus = Inactive;
119 std::string policy = params->smtCommitPolicy;
120
121 //Convert string to lowercase
122 std::transform(policy.begin(), policy.end(), policy.begin(),
123 (int(*)(int)) tolower);
124
125 //Assign commit policy
126 if (policy == "aggressive"){
127 commitPolicy = Aggressive;
128
129 DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
130 } else if (policy == "roundrobin"){
131 commitPolicy = RoundRobin;
132
133 //Set-Up Priority List
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 priority_list.push_back(tid);
136 }
137
138 DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
139 } else if (policy == "oldestready"){
140 commitPolicy = OldestReady;
141
142 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
143 } else {
144 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
145 "RoundRobin,OldestReady}");
146 }
147
148 for (ThreadID tid = 0; tid < numThreads; tid++) {
149 commitStatus[tid] = Idle;
150 changedROBNumEntries[tid] = false;
151 checkEmptyROB[tid] = false;
152 trapInFlight[tid] = false;
153 committedStores[tid] = false;
154 trapSquash[tid] = false;
155 tcSquash[tid] = false;
156 pc[tid].set(0);
157 lastCommitedSeqNum[tid] = 0;
158 squashAfterInst[tid] = NULL;
159 }
160 interrupt = NoFault;
161 }
162
163 template <class Impl>
164 std::string
165 DefaultCommit<Impl>::name() const
166 {
167 return cpu->name() + ".commit";
168 }
169
170 template <class Impl>
171 void
172 DefaultCommit<Impl>::regProbePoints()
173 {
174 ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
175 ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
176 ppSquash = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Squash");
177 }
178
179 template <class Impl>
180 void
181 DefaultCommit<Impl>::regStats()
182 {
183 using namespace Stats;
184 commitSquashedInsts
185 .name(name() + ".commitSquashedInsts")
186 .desc("The number of squashed insts skipped by commit")
187 .prereq(commitSquashedInsts);
188
189 commitNonSpecStalls
190 .name(name() + ".commitNonSpecStalls")
191 .desc("The number of times commit has been forced to stall to "
192 "communicate backwards")
193 .prereq(commitNonSpecStalls);
194
195 branchMispredicts
196 .name(name() + ".branchMispredicts")
197 .desc("The number of times a branch was mispredicted")
198 .prereq(branchMispredicts);
199
200 numCommittedDist
201 .init(0,commitWidth,1)
202 .name(name() + ".committed_per_cycle")
203 .desc("Number of insts commited each cycle")
204 .flags(Stats::pdf)
205 ;
206
207 instsCommitted
208 .init(cpu->numThreads)
209 .name(name() + ".committedInsts")
210 .desc("Number of instructions committed")
211 .flags(total)
212 ;
213
214 opsCommitted
215 .init(cpu->numThreads)
216 .name(name() + ".committedOps")
217 .desc("Number of ops (including micro ops) committed")
218 .flags(total)
219 ;
220
221 statComSwp
222 .init(cpu->numThreads)
223 .name(name() + ".swp_count")
224 .desc("Number of s/w prefetches committed")
225 .flags(total)
226 ;
227
228 statComRefs
229 .init(cpu->numThreads)
230 .name(name() + ".refs")
231 .desc("Number of memory references committed")
232 .flags(total)
233 ;
234
235 statComLoads
236 .init(cpu->numThreads)
237 .name(name() + ".loads")
238 .desc("Number of loads committed")
239 .flags(total)
240 ;
241
242 statComMembars
243 .init(cpu->numThreads)
244 .name(name() + ".membars")
245 .desc("Number of memory barriers committed")
246 .flags(total)
247 ;
248
249 statComBranches
250 .init(cpu->numThreads)
251 .name(name() + ".branches")
252 .desc("Number of branches committed")
253 .flags(total)
254 ;
255
256 statComFloating
257 .init(cpu->numThreads)
258 .name(name() + ".fp_insts")
259 .desc("Number of committed floating point instructions.")
260 .flags(total)
261 ;
262
263 statComInteger
264 .init(cpu->numThreads)
265 .name(name()+".int_insts")
266 .desc("Number of committed integer instructions.")
267 .flags(total)
268 ;
269
270 statComFunctionCalls
271 .init(cpu->numThreads)
272 .name(name()+".function_calls")
273 .desc("Number of function calls committed.")
274 .flags(total)
275 ;
276
277 statCommittedInstType
278 .init(numThreads,Enums::Num_OpClass)
279 .name(name() + ".op_class")
280 .desc("Class of committed instruction")
281 .flags(total | pdf | dist)
282 ;
283 statCommittedInstType.ysubnames(Enums::OpClassStrings);
284
285 commitEligibleSamples
286 .name(name() + ".bw_lim_events")
287 .desc("number cycles where commit BW limit reached")
288 ;
289 }
290
291 template <class Impl>
292 void
293 DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
294 {
295 thread = threads;
296 }
297
298 template <class Impl>
299 void
300 DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
301 {
302 timeBuffer = tb_ptr;
303
304 // Setup wire to send information back to IEW.
305 toIEW = timeBuffer->getWire(0);
306
307 // Setup wire to read data from IEW (for the ROB).
308 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
309 }
310
311 template <class Impl>
312 void
313 DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
314 {
315 fetchQueue = fq_ptr;
316
317 // Setup wire to get instructions from rename (for the ROB).
318 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
319 }
320
321 template <class Impl>
322 void
323 DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
324 {
325 renameQueue = rq_ptr;
326
327 // Setup wire to get instructions from rename (for the ROB).
328 fromRename = renameQueue->getWire(-renameToROBDelay);
329 }
330
331 template <class Impl>
332 void
333 DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
334 {
335 iewQueue = iq_ptr;
336
337 // Setup wire to get instructions from IEW.
338 fromIEW = iewQueue->getWire(-iewToCommitDelay);
339 }
340
341 template <class Impl>
342 void
343 DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
344 {
345 iewStage = iew_stage;
346 }
347
348 template<class Impl>
349 void
350 DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
351 {
352 activeThreads = at_ptr;
353 }
354
355 template <class Impl>
356 void
357 DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
358 {
359 for (ThreadID tid = 0; tid < numThreads; tid++)
360 renameMap[tid] = &rm_ptr[tid];
361 }
362
363 template <class Impl>
364 void
365 DefaultCommit<Impl>::setROB(ROB *rob_ptr)
366 {
367 rob = rob_ptr;
368 }
369
370 template <class Impl>
371 void
372 DefaultCommit<Impl>::startupStage()
373 {
374 rob->setActiveThreads(activeThreads);
375 rob->resetEntries();
376
377 // Broadcast the number of free entries.
378 for (ThreadID tid = 0; tid < numThreads; tid++) {
379 toIEW->commitInfo[tid].usedROB = true;
380 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
381 toIEW->commitInfo[tid].emptyROB = true;
382 }
383
384 // Commit must broadcast the number of free entries it has at the
385 // start of the simulation, so it starts as active.
386 cpu->activateStage(O3CPU::CommitIdx);
387
388 cpu->activityThisCycle();
389 }
390
391 template <class Impl>
392 void
393 DefaultCommit<Impl>::drain()
394 {
395 drainPending = true;
396 }
397
398 template <class Impl>
399 void
400 DefaultCommit<Impl>::drainResume()
401 {
402 drainPending = false;
403 drainImminent = false;
404 }
405
406 template <class Impl>
407 void
408 DefaultCommit<Impl>::drainSanityCheck() const
409 {
410 assert(isDrained());
411 rob->drainSanityCheck();
412 }
413
414 template <class Impl>
415 bool
416 DefaultCommit<Impl>::isDrained() const
417 {
418 /* Make sure no one is executing microcode. There are two reasons
419 * for this:
420 * - Hardware virtualized CPUs can't switch into the middle of a
421 * microcode sequence.
422 * - The current fetch implementation will most likely get very
423 * confused if it tries to start fetching an instruction that
424 * is executing in the middle of a ucode sequence that changes
425 * address mappings. This can happen on for example x86.
426 */
427 for (ThreadID tid = 0; tid < numThreads; tid++) {
428 if (pc[tid].microPC() != 0)
429 return false;
430 }
431
432 /* Make sure that all instructions have finished committing before
433 * declaring the system as drained. We want the pipeline to be
434 * completely empty when we declare the CPU to be drained. This
435 * makes debugging easier since CPU handover and restoring from a
436 * checkpoint with a different CPU should have the same timing.
437 */
438 return rob->isEmpty() &&
439 interrupt == NoFault;
440 }
441
442 template <class Impl>
443 void
444 DefaultCommit<Impl>::takeOverFrom()
445 {
446 _status = Active;
447 _nextStatus = Inactive;
448 for (ThreadID tid = 0; tid < numThreads; tid++) {
449 commitStatus[tid] = Idle;
450 changedROBNumEntries[tid] = false;
451 trapSquash[tid] = false;
452 tcSquash[tid] = false;
453 squashAfterInst[tid] = NULL;
454 }
455 rob->takeOverFrom();
456 }
457
458 template <class Impl>
459 void
460 DefaultCommit<Impl>::deactivateThread(ThreadID tid)
461 {
462 list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
463 priority_list.end(), tid);
464
465 if (thread_it != priority_list.end()) {
466 priority_list.erase(thread_it);
467 }
468 }
469
470
471 template <class Impl>
472 void
473 DefaultCommit<Impl>::updateStatus()
474 {
475 // reset ROB changed variable
476 list<ThreadID>::iterator threads = activeThreads->begin();
477 list<ThreadID>::iterator end = activeThreads->end();
478
479 while (threads != end) {
480 ThreadID tid = *threads++;
481
482 changedROBNumEntries[tid] = false;
483
484 // Also check if any of the threads has a trap pending
485 if (commitStatus[tid] == TrapPending ||
486 commitStatus[tid] == FetchTrapPending) {
487 _nextStatus = Active;
488 }
489 }
490
491 if (_nextStatus == Inactive && _status == Active) {
492 DPRINTF(Activity, "Deactivating stage.\n");
493 cpu->deactivateStage(O3CPU::CommitIdx);
494 } else if (_nextStatus == Active && _status == Inactive) {
495 DPRINTF(Activity, "Activating stage.\n");
496 cpu->activateStage(O3CPU::CommitIdx);
497 }
498
499 _status = _nextStatus;
500 }
501
502 template <class Impl>
503 bool
504 DefaultCommit<Impl>::changedROBEntries()
505 {
506 list<ThreadID>::iterator threads = activeThreads->begin();
507 list<ThreadID>::iterator end = activeThreads->end();
508
509 while (threads != end) {
510 ThreadID tid = *threads++;
511
512 if (changedROBNumEntries[tid]) {
513 return true;
514 }
515 }
516
517 return false;
518 }
519
520 template <class Impl>
521 size_t
522 DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
523 {
524 return rob->numFreeEntries(tid);
525 }
526
527 template <class Impl>
528 void
529 DefaultCommit<Impl>::generateTrapEvent(ThreadID tid, Fault inst_fault)
530 {
531 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
532
533 TrapEvent *trap = new TrapEvent(this, tid);
534
535 Cycles latency = dynamic_pointer_cast<SyscallRetryFault>(inst_fault) ?
536 cpu->syscallRetryLatency : trapLatency;
537
538 cpu->schedule(trap, cpu->clockEdge(latency));
539 trapInFlight[tid] = true;
540 thread[tid]->trapPending = true;
541 }
542
543 template <class Impl>
544 void
545 DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
546 {
547 assert(!trapInFlight[tid]);
548 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
549
550 tcSquash[tid] = true;
551 }
552
553 template <class Impl>
554 void
555 DefaultCommit<Impl>::squashAll(ThreadID tid)
556 {
557 // If we want to include the squashing instruction in the squash,
558 // then use one older sequence number.
559 // Hopefully this doesn't mess things up. Basically I want to squash
560 // all instructions of this thread.
561 InstSeqNum squashed_inst = rob->isEmpty(tid) ?
562 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
563
564 // All younger instructions will be squashed. Set the sequence
565 // number as the youngest instruction in the ROB (0 in this case.
566 // Hopefully nothing breaks.)
567 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
568
569 rob->squash(squashed_inst, tid);
570 changedROBNumEntries[tid] = true;
571
572 // Send back the sequence number of the squashed instruction.
573 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
574
575 // Send back the squash signal to tell stages that they should
576 // squash.
577 toIEW->commitInfo[tid].squash = true;
578
579 // Send back the rob squashing signal so other stages know that
580 // the ROB is in the process of squashing.
581 toIEW->commitInfo[tid].robSquashing = true;
582
583 toIEW->commitInfo[tid].mispredictInst = NULL;
584 toIEW->commitInfo[tid].squashInst = NULL;
585
586 toIEW->commitInfo[tid].pc = pc[tid];
587 }
588
589 template <class Impl>
590 void
591 DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
592 {
593 squashAll(tid);
594
595 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
596
597 thread[tid]->trapPending = false;
598 thread[tid]->noSquashFromTC = false;
599 trapInFlight[tid] = false;
600
601 trapSquash[tid] = false;
602
603 commitStatus[tid] = ROBSquashing;
604 cpu->activityThisCycle();
605 }
606
607 template <class Impl>
608 void
609 DefaultCommit<Impl>::squashFromTC(ThreadID tid)
610 {
611 squashAll(tid);
612
613 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
614
615 thread[tid]->noSquashFromTC = false;
616 assert(!thread[tid]->trapPending);
617
618 commitStatus[tid] = ROBSquashing;
619 cpu->activityThisCycle();
620
621 tcSquash[tid] = false;
622 }
623
624 template <class Impl>
625 void
626 DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
627 {
628 DPRINTF(Commit, "Squashing after squash after request, "
629 "restarting at PC %s\n", pc[tid]);
630
631 squashAll(tid);
632 // Make sure to inform the fetch stage of which instruction caused
633 // the squash. It'll try to re-fetch an instruction executing in
634 // microcode unless this is set.
635 toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
636 squashAfterInst[tid] = NULL;
637
638 commitStatus[tid] = ROBSquashing;
639 cpu->activityThisCycle();
640 }
641
642 template <class Impl>
643 void
644 DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
645 {
646 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
647 tid, head_inst->seqNum);
648
649 assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
650 commitStatus[tid] = SquashAfterPending;
651 squashAfterInst[tid] = head_inst;
652 }
653
654 template <class Impl>
655 void
656 DefaultCommit<Impl>::tick()
657 {
658 wroteToTimeBuffer = false;
659 _nextStatus = Inactive;
660
661 if (activeThreads->empty())
662 return;
663
664 list<ThreadID>::iterator threads = activeThreads->begin();
665 list<ThreadID>::iterator end = activeThreads->end();
666
667 // Check if any of the threads are done squashing. Change the
668 // status if they are done.
669 while (threads != end) {
670 ThreadID tid = *threads++;
671
672 // Clear the bit saying if the thread has committed stores
673 // this cycle.
674 committedStores[tid] = false;
675
676 if (commitStatus[tid] == ROBSquashing) {
677
678 if (rob->isDoneSquashing(tid)) {
679 commitStatus[tid] = Running;
680 } else {
681 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
682 " insts this cycle.\n", tid);
683 rob->doSquash(tid);
684 toIEW->commitInfo[tid].robSquashing = true;
685 wroteToTimeBuffer = true;
686 }
687 }
688 }
689
690 commit();
691
692 markCompletedInsts();
693
694 threads = activeThreads->begin();
695
696 while (threads != end) {
697 ThreadID tid = *threads++;
698
699 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
700 // The ROB has more instructions it can commit. Its next status
701 // will be active.
702 _nextStatus = Active;
703
704 DynInstPtr inst = rob->readHeadInst(tid);
705
706 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
707 " ROB and ready to commit\n",
708 tid, inst->seqNum, inst->pcState());
709
710 } else if (!rob->isEmpty(tid)) {
711 DynInstPtr inst = rob->readHeadInst(tid);
712
713 ppCommitStall->notify(inst);
714
715 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
716 "%s is head of ROB and not ready\n",
717 tid, inst->seqNum, inst->pcState());
718 }
719
720 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
721 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
722 }
723
724
725 if (wroteToTimeBuffer) {
726 DPRINTF(Activity, "Activity This Cycle.\n");
727 cpu->activityThisCycle();
728 }
729
730 updateStatus();
731 }
732
733 template <class Impl>
734 void
735 DefaultCommit<Impl>::handleInterrupt()
736 {
737 // Verify that we still have an interrupt to handle
738 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
739 DPRINTF(Commit, "Pending interrupt is cleared by master before "
740 "it got handled. Restart fetching from the orig path.\n");
741 toIEW->commitInfo[0].clearInterrupt = true;
742 interrupt = NoFault;
743 avoidQuiesceLiveLock = true;
744 return;
745 }
746
747 // Wait until all in flight instructions are finished before enterring
748 // the interrupt.
749 if (canHandleInterrupts && cpu->instList.empty()) {
750 // Squash or record that I need to squash this cycle if
751 // an interrupt needed to be handled.
752 DPRINTF(Commit, "Interrupt detected.\n");
753
754 // Clear the interrupt now that it's going to be handled
755 toIEW->commitInfo[0].clearInterrupt = true;
756
757 assert(!thread[0]->noSquashFromTC);
758 thread[0]->noSquashFromTC = true;
759
760 if (cpu->checker) {
761 cpu->checker->handlePendingInt();
762 }
763
764 // CPU will handle interrupt. Note that we ignore the local copy of
765 // interrupt. This is because the local copy may no longer be the
766 // interrupt that the interrupt controller thinks is being handled.
767 cpu->processInterrupts(cpu->getInterrupts());
768
769 thread[0]->noSquashFromTC = false;
770
771 commitStatus[0] = TrapPending;
772
773 interrupt = NoFault;
774
775 // Generate trap squash event.
776 generateTrapEvent(0, interrupt);
777
778 avoidQuiesceLiveLock = false;
779 } else {
780 DPRINTF(Commit, "Interrupt pending: instruction is %sin "
781 "flight, ROB is %sempty\n",
782 canHandleInterrupts ? "not " : "",
783 cpu->instList.empty() ? "" : "not " );
784 }
785 }
786
787 template <class Impl>
788 void
789 DefaultCommit<Impl>::propagateInterrupt()
790 {
791 // Don't propagate intterupts if we are currently handling a trap or
792 // in draining and the last observable instruction has been committed.
793 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
794 tcSquash[0] || drainImminent)
795 return;
796
797 // Process interrupts if interrupts are enabled, not in PAL
798 // mode, and no other traps or external squashes are currently
799 // pending.
800 // @todo: Allow other threads to handle interrupts.
801
802 // Get any interrupt that happened
803 interrupt = cpu->getInterrupts();
804
805 // Tell fetch that there is an interrupt pending. This
806 // will make fetch wait until it sees a non PAL-mode PC,
807 // at which point it stops fetching instructions.
808 if (interrupt != NoFault)
809 toIEW->commitInfo[0].interruptPending = true;
810 }
811
812 template <class Impl>
813 void
814 DefaultCommit<Impl>::commit()
815 {
816 if (FullSystem) {
817 // Check if we have a interrupt and get read to handle it
818 if (cpu->checkInterrupts(cpu->tcBase(0)))
819 propagateInterrupt();
820 }
821
822 ////////////////////////////////////
823 // Check for any possible squashes, handle them first
824 ////////////////////////////////////
825 list<ThreadID>::iterator threads = activeThreads->begin();
826 list<ThreadID>::iterator end = activeThreads->end();
827
828 int num_squashing_threads = 0;
829
830 while (threads != end) {
831 ThreadID tid = *threads++;
832
833 // Not sure which one takes priority. I think if we have
834 // both, that's a bad sign.
835 if (trapSquash[tid]) {
836 assert(!tcSquash[tid]);
837 squashFromTrap(tid);
838 } else if (tcSquash[tid]) {
839 assert(commitStatus[tid] != TrapPending);
840 squashFromTC(tid);
841 } else if (commitStatus[tid] == SquashAfterPending) {
842 // A squash from the previous cycle of the commit stage (i.e.,
843 // commitInsts() called squashAfter) is pending. Squash the
844 // thread now.
845 squashFromSquashAfter(tid);
846 }
847
848 // Squashed sequence number must be older than youngest valid
849 // instruction in the ROB. This prevents squashes from younger
850 // instructions overriding squashes from older instructions.
851 if (fromIEW->squash[tid] &&
852 commitStatus[tid] != TrapPending &&
853 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
854
855 if (fromIEW->mispredictInst[tid]) {
856 DPRINTF(Commit,
857 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
858 tid,
859 fromIEW->mispredictInst[tid]->instAddr(),
860 fromIEW->squashedSeqNum[tid]);
861 } else {
862 DPRINTF(Commit,
863 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
864 tid, fromIEW->squashedSeqNum[tid]);
865 }
866
867 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
868 tid,
869 fromIEW->pc[tid].nextInstAddr());
870
871 commitStatus[tid] = ROBSquashing;
872
873 // If we want to include the squashing instruction in the squash,
874 // then use one older sequence number.
875 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
876
877 if (fromIEW->includeSquashInst[tid]) {
878 squashed_inst--;
879 }
880
881 // All younger instructions will be squashed. Set the sequence
882 // number as the youngest instruction in the ROB.
883 youngestSeqNum[tid] = squashed_inst;
884
885 rob->squash(squashed_inst, tid);
886 changedROBNumEntries[tid] = true;
887
888 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
889
890 toIEW->commitInfo[tid].squash = true;
891
892 // Send back the rob squashing signal so other stages know that
893 // the ROB is in the process of squashing.
894 toIEW->commitInfo[tid].robSquashing = true;
895
896 toIEW->commitInfo[tid].mispredictInst =
897 fromIEW->mispredictInst[tid];
898 toIEW->commitInfo[tid].branchTaken =
899 fromIEW->branchTaken[tid];
900 toIEW->commitInfo[tid].squashInst =
901 rob->findInst(tid, squashed_inst);
902 if (toIEW->commitInfo[tid].mispredictInst) {
903 if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
904 toIEW->commitInfo[tid].branchTaken = true;
905 }
906 ++branchMispredicts;
907 }
908
909 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
910 }
911
912 if (commitStatus[tid] == ROBSquashing) {
913 num_squashing_threads++;
914 }
915 }
916
917 // If commit is currently squashing, then it will have activity for the
918 // next cycle. Set its next status as active.
919 if (num_squashing_threads) {
920 _nextStatus = Active;
921 }
922
923 if (num_squashing_threads != numThreads) {
924 // If we're not currently squashing, then get instructions.
925 getInsts();
926
927 // Try to commit any instructions.
928 commitInsts();
929 }
930
931 //Check for any activity
932 threads = activeThreads->begin();
933
934 while (threads != end) {
935 ThreadID tid = *threads++;
936
937 if (changedROBNumEntries[tid]) {
938 toIEW->commitInfo[tid].usedROB = true;
939 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
940
941 wroteToTimeBuffer = true;
942 changedROBNumEntries[tid] = false;
943 if (rob->isEmpty(tid))
944 checkEmptyROB[tid] = true;
945 }
946
947 // ROB is only considered "empty" for previous stages if: a)
948 // ROB is empty, b) there are no outstanding stores, c) IEW
949 // stage has received any information regarding stores that
950 // committed.
951 // c) is checked by making sure to not consider the ROB empty
952 // on the same cycle as when stores have been committed.
953 // @todo: Make this handle multi-cycle communication between
954 // commit and IEW.
955 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
956 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
957 checkEmptyROB[tid] = false;
958 toIEW->commitInfo[tid].usedROB = true;
959 toIEW->commitInfo[tid].emptyROB = true;
960 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
961 wroteToTimeBuffer = true;
962 }
963
964 }
965 }
966
967 template <class Impl>
968 void
969 DefaultCommit<Impl>::commitInsts()
970 {
971 ////////////////////////////////////
972 // Handle commit
973 // Note that commit will be handled prior to putting new
974 // instructions in the ROB so that the ROB only tries to commit
975 // instructions it has in this current cycle, and not instructions
976 // it is writing in during this cycle. Can't commit and squash
977 // things at the same time...
978 ////////////////////////////////////
979
980 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
981
982 unsigned num_committed = 0;
983
984 DynInstPtr head_inst;
985
986 // Commit as many instructions as possible until the commit bandwidth
987 // limit is reached, or it becomes impossible to commit any more.
988 while (num_committed < commitWidth) {
989 // Check for any interrupt that we've already squashed for
990 // and start processing it.
991 if (interrupt != NoFault)
992 handleInterrupt();
993
994 ThreadID commit_thread = getCommittingThread();
995
996 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
997 break;
998
999 head_inst = rob->readHeadInst(commit_thread);
1000
1001 ThreadID tid = head_inst->threadNumber;
1002
1003 assert(tid == commit_thread);
1004
1005 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1006 head_inst->seqNum, tid);
1007
1008 // If the head instruction is squashed, it is ready to retire
1009 // (be removed from the ROB) at any time.
1010 if (head_inst->isSquashed()) {
1011
1012 DPRINTF(Commit, "Retiring squashed instruction from "
1013 "ROB.\n");
1014
1015 rob->retireHead(commit_thread);
1016
1017 ++commitSquashedInsts;
1018 // Notify potential listeners that this instruction is squashed
1019 ppSquash->notify(head_inst);
1020
1021 // Record that the number of ROB entries has changed.
1022 changedROBNumEntries[tid] = true;
1023 } else {
1024 pc[tid] = head_inst->pcState();
1025
1026 // Increment the total number of non-speculative instructions
1027 // executed.
1028 // Hack for now: it really shouldn't happen until after the
1029 // commit is deemed to be successful, but this count is needed
1030 // for syscalls.
1031 thread[tid]->funcExeInst++;
1032
1033 // Try to commit the head instruction.
1034 bool commit_success = commitHead(head_inst, num_committed);
1035
1036 if (commit_success) {
1037 ++num_committed;
1038 statCommittedInstType[tid][head_inst->opClass()]++;
1039 ppCommit->notify(head_inst);
1040
1041 changedROBNumEntries[tid] = true;
1042
1043 // Set the doneSeqNum to the youngest committed instruction.
1044 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1045
1046 if (tid == 0) {
1047 canHandleInterrupts = (!head_inst->isDelayedCommit()) &&
1048 ((THE_ISA != ALPHA_ISA) ||
1049 (!(pc[0].instAddr() & 0x3)));
1050 }
1051
1052 // Updates misc. registers.
1053 head_inst->updateMiscRegs();
1054
1055 // Check instruction execution if it successfully commits and
1056 // is not carrying a fault.
1057 if (cpu->checker) {
1058 cpu->checker->verify(head_inst);
1059 }
1060
1061 cpu->traceFunctions(pc[tid].instAddr());
1062
1063 TheISA::advancePC(pc[tid], head_inst->staticInst);
1064
1065 // Keep track of the last sequence number commited
1066 lastCommitedSeqNum[tid] = head_inst->seqNum;
1067
1068 // If this is an instruction that doesn't play nicely with
1069 // others squash everything and restart fetch
1070 if (head_inst->isSquashAfter())
1071 squashAfter(tid, head_inst);
1072
1073 if (drainPending) {
1074 if (pc[tid].microPC() == 0 && interrupt == NoFault &&
1075 !thread[tid]->trapPending) {
1076 // Last architectually committed instruction.
1077 // Squash the pipeline, stall fetch, and use
1078 // drainImminent to disable interrupts
1079 DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1080 squashAfter(tid, head_inst);
1081 cpu->commitDrained(tid);
1082 drainImminent = true;
1083 }
1084 }
1085
1086 bool onInstBoundary = !head_inst->isMicroop() ||
1087 head_inst->isLastMicroop() ||
1088 !head_inst->isDelayedCommit();
1089
1090 if (onInstBoundary) {
1091 int count = 0;
1092 Addr oldpc;
1093 // Make sure we're not currently updating state while
1094 // handling PC events.
1095 assert(!thread[tid]->noSquashFromTC &&
1096 !thread[tid]->trapPending);
1097 do {
1098 oldpc = pc[tid].instAddr();
1099 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1100 count++;
1101 } while (oldpc != pc[tid].instAddr());
1102 if (count > 1) {
1103 DPRINTF(Commit,
1104 "PC skip function event, stopping commit\n");
1105 break;
1106 }
1107 }
1108
1109 // Check if an instruction just enabled interrupts and we've
1110 // previously had an interrupt pending that was not handled
1111 // because interrupts were subsequently disabled before the
1112 // pipeline reached a place to handle the interrupt. In that
1113 // case squash now to make sure the interrupt is handled.
1114 //
1115 // If we don't do this, we might end up in a live lock situation
1116 if (!interrupt && avoidQuiesceLiveLock &&
1117 onInstBoundary && cpu->checkInterrupts(cpu->tcBase(0)))
1118 squashAfter(tid, head_inst);
1119 } else {
1120 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1121 "[tid:%i] [sn:%i].\n",
1122 head_inst->pcState(), tid ,head_inst->seqNum);
1123 break;
1124 }
1125 }
1126 }
1127
1128 DPRINTF(CommitRate, "%i\n", num_committed);
1129 numCommittedDist.sample(num_committed);
1130
1131 if (num_committed == commitWidth) {
1132 commitEligibleSamples++;
1133 }
1134 }
1135
1136 template <class Impl>
1137 bool
1138 DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1139 {
1140 assert(head_inst);
1141
1142 ThreadID tid = head_inst->threadNumber;
1143
1144 // If the instruction is not executed yet, then it will need extra
1145 // handling. Signal backwards that it should be executed.
1146 if (!head_inst->isExecuted()) {
1147 // Keep this number correct. We have not yet actually executed
1148 // and committed this instruction.
1149 thread[tid]->funcExeInst--;
1150
1151 // Make sure we are only trying to commit un-executed instructions we
1152 // think are possible.
1153 assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1154 || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1155 (head_inst->isLoad() && head_inst->strictlyOrdered()));
1156
1157 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1158 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1159 head_inst->seqNum, head_inst->pcState());
1160
1161 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1162 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1163 return false;
1164 }
1165
1166 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1167
1168 // Change the instruction so it won't try to commit again until
1169 // it is executed.
1170 head_inst->clearCanCommit();
1171
1172 if (head_inst->isLoad() && head_inst->strictlyOrdered()) {
1173 DPRINTF(Commit, "[sn:%lli]: Strictly ordered load, PC %s.\n",
1174 head_inst->seqNum, head_inst->pcState());
1175 toIEW->commitInfo[tid].strictlyOrdered = true;
1176 toIEW->commitInfo[tid].strictlyOrderedLoad = head_inst;
1177 } else {
1178 ++commitNonSpecStalls;
1179 }
1180
1181 return false;
1182 }
1183
1184 if (head_inst->isThreadSync()) {
1185 // Not handled for now.
1186 panic("Thread sync instructions are not handled yet.\n");
1187 }
1188
1189 // Check if the instruction caused a fault. If so, trap.
1190 Fault inst_fault = head_inst->getFault();
1191
1192 // Stores mark themselves as completed.
1193 if (!head_inst->isStore() && inst_fault == NoFault) {
1194 head_inst->setCompleted();
1195 }
1196
1197 if (inst_fault != NoFault) {
1198 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1199 head_inst->seqNum, head_inst->pcState());
1200
1201 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1202 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1203 return false;
1204 }
1205
1206 head_inst->setCompleted();
1207
1208 // If instruction has faulted, let the checker execute it and
1209 // check if it sees the same fault and control flow.
1210 if (cpu->checker) {
1211 // Need to check the instruction before its fault is processed
1212 cpu->checker->verify(head_inst);
1213 }
1214
1215 assert(!thread[tid]->noSquashFromTC);
1216
1217 // Mark that we're in state update mode so that the trap's
1218 // execution doesn't generate extra squashes.
1219 thread[tid]->noSquashFromTC = true;
1220
1221 // Execute the trap. Although it's slightly unrealistic in
1222 // terms of timing (as it doesn't wait for the full timing of
1223 // the trap event to complete before updating state), it's
1224 // needed to update the state as soon as possible. This
1225 // prevents external agents from changing any specific state
1226 // that the trap need.
1227 cpu->trap(inst_fault, tid, head_inst->staticInst);
1228
1229 // Exit state update mode to avoid accidental updating.
1230 thread[tid]->noSquashFromTC = false;
1231
1232 commitStatus[tid] = TrapPending;
1233
1234 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1235 head_inst->seqNum);
1236 if (head_inst->traceData) {
1237 if (DTRACE(ExecFaulting)) {
1238 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1239 head_inst->traceData->setCPSeq(thread[tid]->numOp);
1240 head_inst->traceData->dump();
1241 }
1242 delete head_inst->traceData;
1243 head_inst->traceData = NULL;
1244 }
1245
1246 // Generate trap squash event.
1247 generateTrapEvent(tid, inst_fault);
1248 return false;
1249 }
1250
1251 updateComInstStats(head_inst);
1252
1253 if (FullSystem) {
1254 if (thread[tid]->profile) {
1255 thread[tid]->profilePC = head_inst->instAddr();
1256 ProfileNode *node = thread[tid]->profile->consume(
1257 thread[tid]->getTC(), head_inst->staticInst);
1258
1259 if (node)
1260 thread[tid]->profileNode = node;
1261 }
1262 if (CPA::available()) {
1263 if (head_inst->isControl()) {
1264 ThreadContext *tc = thread[tid]->getTC();
1265 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1266 }
1267 }
1268 }
1269 DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1270 head_inst->seqNum, head_inst->pcState());
1271 if (head_inst->traceData) {
1272 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1273 head_inst->traceData->setCPSeq(thread[tid]->numOp);
1274 head_inst->traceData->dump();
1275 delete head_inst->traceData;
1276 head_inst->traceData = NULL;
1277 }
1278 if (head_inst->isReturn()) {
1279 DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1280 head_inst->seqNum, head_inst->pcState());
1281 }
1282
1283 // Update the commit rename map
1284 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1285 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1286 head_inst->renamedDestRegIdx(i));
1287 }
1288
1289 // Finally clear the head ROB entry.
1290 rob->retireHead(tid);
1291
1292 #if TRACING_ON
1293 if (DTRACE(O3PipeView)) {
1294 head_inst->commitTick = curTick() - head_inst->fetchTick;
1295 }
1296 #endif
1297
1298 // If this was a store, record it for this cycle.
1299 if (head_inst->isStore())
1300 committedStores[tid] = true;
1301
1302 // Return true to indicate that we have committed an instruction.
1303 return true;
1304 }
1305
1306 template <class Impl>
1307 void
1308 DefaultCommit<Impl>::getInsts()
1309 {
1310 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1311
1312 // Read any renamed instructions and place them into the ROB.
1313 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1314
1315 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1316 DynInstPtr inst;
1317
1318 inst = fromRename->insts[inst_num];
1319 ThreadID tid = inst->threadNumber;
1320
1321 if (!inst->isSquashed() &&
1322 commitStatus[tid] != ROBSquashing &&
1323 commitStatus[tid] != TrapPending) {
1324 changedROBNumEntries[tid] = true;
1325
1326 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1327 inst->pcState(), inst->seqNum, tid);
1328
1329 rob->insertInst(inst);
1330
1331 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1332
1333 youngestSeqNum[tid] = inst->seqNum;
1334 } else {
1335 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1336 "squashed, skipping.\n",
1337 inst->pcState(), inst->seqNum, tid);
1338 }
1339 }
1340 }
1341
1342 template <class Impl>
1343 void
1344 DefaultCommit<Impl>::markCompletedInsts()
1345 {
1346 // Grab completed insts out of the IEW instruction queue, and mark
1347 // instructions completed within the ROB.
1348 for (int inst_num = 0; inst_num < fromIEW->size; ++inst_num) {
1349 assert(fromIEW->insts[inst_num]);
1350 if (!fromIEW->insts[inst_num]->isSquashed()) {
1351 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1352 "within ROB.\n",
1353 fromIEW->insts[inst_num]->threadNumber,
1354 fromIEW->insts[inst_num]->pcState(),
1355 fromIEW->insts[inst_num]->seqNum);
1356
1357 // Mark the instruction as ready to commit.
1358 fromIEW->insts[inst_num]->setCanCommit();
1359 }
1360 }
1361 }
1362
1363 template <class Impl>
1364 void
1365 DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1366 {
1367 ThreadID tid = inst->threadNumber;
1368
1369 if (!inst->isMicroop() || inst->isLastMicroop())
1370 instsCommitted[tid]++;
1371 opsCommitted[tid]++;
1372
1373 // To match the old model, don't count nops and instruction
1374 // prefetches towards the total commit count.
1375 if (!inst->isNop() && !inst->isInstPrefetch()) {
1376 cpu->instDone(tid, inst);
1377 }
1378
1379 //
1380 // Control Instructions
1381 //
1382 if (inst->isControl())
1383 statComBranches[tid]++;
1384
1385 //
1386 // Memory references
1387 //
1388 if (inst->isMemRef()) {
1389 statComRefs[tid]++;
1390
1391 if (inst->isLoad()) {
1392 statComLoads[tid]++;
1393 }
1394 }
1395
1396 if (inst->isMemBarrier()) {
1397 statComMembars[tid]++;
1398 }
1399
1400 // Integer Instruction
1401 if (inst->isInteger())
1402 statComInteger[tid]++;
1403
1404 // Floating Point Instruction
1405 if (inst->isFloating())
1406 statComFloating[tid]++;
1407
1408 // Function Calls
1409 if (inst->isCall())
1410 statComFunctionCalls[tid]++;
1411
1412 }
1413
1414 ////////////////////////////////////////
1415 // //
1416 // SMT COMMIT POLICY MAINTAINED HERE //
1417 // //
1418 ////////////////////////////////////////
1419 template <class Impl>
1420 ThreadID
1421 DefaultCommit<Impl>::getCommittingThread()
1422 {
1423 if (numThreads > 1) {
1424 switch (commitPolicy) {
1425
1426 case Aggressive:
1427 //If Policy is Aggressive, commit will call
1428 //this function multiple times per
1429 //cycle
1430 return oldestReady();
1431
1432 case RoundRobin:
1433 return roundRobin();
1434
1435 case OldestReady:
1436 return oldestReady();
1437
1438 default:
1439 return InvalidThreadID;
1440 }
1441 } else {
1442 assert(!activeThreads->empty());
1443 ThreadID tid = activeThreads->front();
1444
1445 if (commitStatus[tid] == Running ||
1446 commitStatus[tid] == Idle ||
1447 commitStatus[tid] == FetchTrapPending) {
1448 return tid;
1449 } else {
1450 return InvalidThreadID;
1451 }
1452 }
1453 }
1454
1455 template<class Impl>
1456 ThreadID
1457 DefaultCommit<Impl>::roundRobin()
1458 {
1459 list<ThreadID>::iterator pri_iter = priority_list.begin();
1460 list<ThreadID>::iterator end = priority_list.end();
1461
1462 while (pri_iter != end) {
1463 ThreadID tid = *pri_iter;
1464
1465 if (commitStatus[tid] == Running ||
1466 commitStatus[tid] == Idle ||
1467 commitStatus[tid] == FetchTrapPending) {
1468
1469 if (rob->isHeadReady(tid)) {
1470 priority_list.erase(pri_iter);
1471 priority_list.push_back(tid);
1472
1473 return tid;
1474 }
1475 }
1476
1477 pri_iter++;
1478 }
1479
1480 return InvalidThreadID;
1481 }
1482
1483 template<class Impl>
1484 ThreadID
1485 DefaultCommit<Impl>::oldestReady()
1486 {
1487 unsigned oldest = 0;
1488 bool first = true;
1489
1490 list<ThreadID>::iterator threads = activeThreads->begin();
1491 list<ThreadID>::iterator end = activeThreads->end();
1492
1493 while (threads != end) {
1494 ThreadID tid = *threads++;
1495
1496 if (!rob->isEmpty(tid) &&
1497 (commitStatus[tid] == Running ||
1498 commitStatus[tid] == Idle ||
1499 commitStatus[tid] == FetchTrapPending)) {
1500
1501 if (rob->isHeadReady(tid)) {
1502
1503 DynInstPtr head_inst = rob->readHeadInst(tid);
1504
1505 if (first) {
1506 oldest = tid;
1507 first = false;
1508 } else if (head_inst->seqNum < oldest) {
1509 oldest = tid;
1510 }
1511 }
1512 }
1513 }
1514
1515 if (!first) {
1516 return oldest;
1517 } else {
1518 return InvalidThreadID;
1519 }
1520 }
1521
1522 #endif//__CPU_O3_COMMIT_IMPL_HH__