f0566233c856e03285a3dd2684244b2de472ab01
[gem5.git] / src / cpu / o3 / commit_impl.hh
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43 #ifndef __CPU_O3_COMMIT_IMPL_HH__
44 #define __CPU_O3_COMMIT_IMPL_HH__
45
46 #include <algorithm>
47 #include <set>
48 #include <string>
49
50 #include "arch/utility.hh"
51 #include "base/loader/symtab.hh"
52 #include "base/cp_annotate.hh"
53 #include "config/the_isa.hh"
54 #include "cpu/checker/cpu.hh"
55 #include "cpu/o3/commit.hh"
56 #include "cpu/o3/thread_state.hh"
57 #include "cpu/base.hh"
58 #include "cpu/exetrace.hh"
59 #include "cpu/timebuf.hh"
60 #include "debug/Activity.hh"
61 #include "debug/Commit.hh"
62 #include "debug/CommitRate.hh"
63 #include "debug/Drain.hh"
64 #include "debug/ExecFaulting.hh"
65 #include "debug/O3PipeView.hh"
66 #include "params/DerivO3CPU.hh"
67 #include "sim/faults.hh"
68 #include "sim/full_system.hh"
69
70 using namespace std;
71
72 template <class Impl>
73 DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
74 ThreadID _tid)
75 : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
76 {
77 }
78
79 template <class Impl>
80 void
81 DefaultCommit<Impl>::TrapEvent::process()
82 {
83 // This will get reset by commit if it was switched out at the
84 // time of this event processing.
85 commit->trapSquash[tid] = true;
86 }
87
88 template <class Impl>
89 const char *
90 DefaultCommit<Impl>::TrapEvent::description() const
91 {
92 return "Trap";
93 }
94
95 template <class Impl>
96 DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
97 : cpu(_cpu),
98 squashCounter(0),
99 iewToCommitDelay(params->iewToCommitDelay),
100 commitToIEWDelay(params->commitToIEWDelay),
101 renameToROBDelay(params->renameToROBDelay),
102 fetchToCommitDelay(params->commitToFetchDelay),
103 renameWidth(params->renameWidth),
104 commitWidth(params->commitWidth),
105 numThreads(params->numThreads),
106 drainPending(false),
107 drainImminent(false),
108 trapLatency(params->trapLatency),
109 canHandleInterrupts(true),
110 avoidQuiesceLiveLock(false)
111 {
112 if (commitWidth > Impl::MaxWidth)
113 fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
114 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
115 commitWidth, static_cast<int>(Impl::MaxWidth));
116
117 _status = Active;
118 _nextStatus = Inactive;
119 std::string policy = params->smtCommitPolicy;
120
121 //Convert string to lowercase
122 std::transform(policy.begin(), policy.end(), policy.begin(),
123 (int(*)(int)) tolower);
124
125 //Assign commit policy
126 if (policy == "aggressive"){
127 commitPolicy = Aggressive;
128
129 DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
130 } else if (policy == "roundrobin"){
131 commitPolicy = RoundRobin;
132
133 //Set-Up Priority List
134 for (ThreadID tid = 0; tid < numThreads; tid++) {
135 priority_list.push_back(tid);
136 }
137
138 DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
139 } else if (policy == "oldestready"){
140 commitPolicy = OldestReady;
141
142 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
143 } else {
144 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
145 "RoundRobin,OldestReady}");
146 }
147
148 for (ThreadID tid = 0; tid < numThreads; tid++) {
149 commitStatus[tid] = Idle;
150 changedROBNumEntries[tid] = false;
151 checkEmptyROB[tid] = false;
152 trapInFlight[tid] = false;
153 committedStores[tid] = false;
154 trapSquash[tid] = false;
155 tcSquash[tid] = false;
156 pc[tid].set(0);
157 lastCommitedSeqNum[tid] = 0;
158 squashAfterInst[tid] = NULL;
159 }
160 interrupt = NoFault;
161 }
162
163 template <class Impl>
164 std::string
165 DefaultCommit<Impl>::name() const
166 {
167 return cpu->name() + ".commit";
168 }
169
170 template <class Impl>
171 void
172 DefaultCommit<Impl>::regProbePoints()
173 {
174 ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
175 ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
176 }
177
178 template <class Impl>
179 void
180 DefaultCommit<Impl>::regStats()
181 {
182 using namespace Stats;
183 commitSquashedInsts
184 .name(name() + ".commitSquashedInsts")
185 .desc("The number of squashed insts skipped by commit")
186 .prereq(commitSquashedInsts);
187 commitSquashEvents
188 .name(name() + ".commitSquashEvents")
189 .desc("The number of times commit is told to squash")
190 .prereq(commitSquashEvents);
191 commitNonSpecStalls
192 .name(name() + ".commitNonSpecStalls")
193 .desc("The number of times commit has been forced to stall to "
194 "communicate backwards")
195 .prereq(commitNonSpecStalls);
196 branchMispredicts
197 .name(name() + ".branchMispredicts")
198 .desc("The number of times a branch was mispredicted")
199 .prereq(branchMispredicts);
200 numCommittedDist
201 .init(0,commitWidth,1)
202 .name(name() + ".committed_per_cycle")
203 .desc("Number of insts commited each cycle")
204 .flags(Stats::pdf)
205 ;
206
207 instsCommitted
208 .init(cpu->numThreads)
209 .name(name() + ".committedInsts")
210 .desc("Number of instructions committed")
211 .flags(total)
212 ;
213
214 opsCommitted
215 .init(cpu->numThreads)
216 .name(name() + ".committedOps")
217 .desc("Number of ops (including micro ops) committed")
218 .flags(total)
219 ;
220
221 statComSwp
222 .init(cpu->numThreads)
223 .name(name() + ".swp_count")
224 .desc("Number of s/w prefetches committed")
225 .flags(total)
226 ;
227
228 statComRefs
229 .init(cpu->numThreads)
230 .name(name() + ".refs")
231 .desc("Number of memory references committed")
232 .flags(total)
233 ;
234
235 statComLoads
236 .init(cpu->numThreads)
237 .name(name() + ".loads")
238 .desc("Number of loads committed")
239 .flags(total)
240 ;
241
242 statComMembars
243 .init(cpu->numThreads)
244 .name(name() + ".membars")
245 .desc("Number of memory barriers committed")
246 .flags(total)
247 ;
248
249 statComBranches
250 .init(cpu->numThreads)
251 .name(name() + ".branches")
252 .desc("Number of branches committed")
253 .flags(total)
254 ;
255
256 statComFloating
257 .init(cpu->numThreads)
258 .name(name() + ".fp_insts")
259 .desc("Number of committed floating point instructions.")
260 .flags(total)
261 ;
262
263 statComInteger
264 .init(cpu->numThreads)
265 .name(name()+".int_insts")
266 .desc("Number of committed integer instructions.")
267 .flags(total)
268 ;
269
270 statComFunctionCalls
271 .init(cpu->numThreads)
272 .name(name()+".function_calls")
273 .desc("Number of function calls committed.")
274 .flags(total)
275 ;
276
277 statCommittedInstType
278 .init(numThreads,Enums::Num_OpClass)
279 .name(name() + ".op_class")
280 .desc("Class of committed instruction")
281 .flags(total | pdf | dist)
282 ;
283 statCommittedInstType.ysubnames(Enums::OpClassStrings);
284
285 commitEligible
286 .init(cpu->numThreads)
287 .name(name() + ".bw_limited")
288 .desc("number of insts not committed due to BW limits")
289 .flags(total)
290 ;
291
292 commitEligibleSamples
293 .name(name() + ".bw_lim_events")
294 .desc("number cycles where commit BW limit reached")
295 ;
296 }
297
298 template <class Impl>
299 void
300 DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
301 {
302 thread = threads;
303 }
304
305 template <class Impl>
306 void
307 DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
308 {
309 timeBuffer = tb_ptr;
310
311 // Setup wire to send information back to IEW.
312 toIEW = timeBuffer->getWire(0);
313
314 // Setup wire to read data from IEW (for the ROB).
315 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
316 }
317
318 template <class Impl>
319 void
320 DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
321 {
322 fetchQueue = fq_ptr;
323
324 // Setup wire to get instructions from rename (for the ROB).
325 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
326 }
327
328 template <class Impl>
329 void
330 DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
331 {
332 renameQueue = rq_ptr;
333
334 // Setup wire to get instructions from rename (for the ROB).
335 fromRename = renameQueue->getWire(-renameToROBDelay);
336 }
337
338 template <class Impl>
339 void
340 DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
341 {
342 iewQueue = iq_ptr;
343
344 // Setup wire to get instructions from IEW.
345 fromIEW = iewQueue->getWire(-iewToCommitDelay);
346 }
347
348 template <class Impl>
349 void
350 DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
351 {
352 iewStage = iew_stage;
353 }
354
355 template<class Impl>
356 void
357 DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
358 {
359 activeThreads = at_ptr;
360 }
361
362 template <class Impl>
363 void
364 DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
365 {
366 for (ThreadID tid = 0; tid < numThreads; tid++)
367 renameMap[tid] = &rm_ptr[tid];
368 }
369
370 template <class Impl>
371 void
372 DefaultCommit<Impl>::setROB(ROB *rob_ptr)
373 {
374 rob = rob_ptr;
375 }
376
377 template <class Impl>
378 void
379 DefaultCommit<Impl>::startupStage()
380 {
381 rob->setActiveThreads(activeThreads);
382 rob->resetEntries();
383
384 // Broadcast the number of free entries.
385 for (ThreadID tid = 0; tid < numThreads; tid++) {
386 toIEW->commitInfo[tid].usedROB = true;
387 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
388 toIEW->commitInfo[tid].emptyROB = true;
389 }
390
391 // Commit must broadcast the number of free entries it has at the
392 // start of the simulation, so it starts as active.
393 cpu->activateStage(O3CPU::CommitIdx);
394
395 cpu->activityThisCycle();
396 }
397
398 template <class Impl>
399 void
400 DefaultCommit<Impl>::drain()
401 {
402 drainPending = true;
403 }
404
405 template <class Impl>
406 void
407 DefaultCommit<Impl>::drainResume()
408 {
409 drainPending = false;
410 drainImminent = false;
411 }
412
413 template <class Impl>
414 void
415 DefaultCommit<Impl>::drainSanityCheck() const
416 {
417 assert(isDrained());
418 rob->drainSanityCheck();
419 }
420
421 template <class Impl>
422 bool
423 DefaultCommit<Impl>::isDrained() const
424 {
425 /* Make sure no one is executing microcode. There are two reasons
426 * for this:
427 * - Hardware virtualized CPUs can't switch into the middle of a
428 * microcode sequence.
429 * - The current fetch implementation will most likely get very
430 * confused if it tries to start fetching an instruction that
431 * is executing in the middle of a ucode sequence that changes
432 * address mappings. This can happen on for example x86.
433 */
434 for (ThreadID tid = 0; tid < numThreads; tid++) {
435 if (pc[tid].microPC() != 0)
436 return false;
437 }
438
439 /* Make sure that all instructions have finished committing before
440 * declaring the system as drained. We want the pipeline to be
441 * completely empty when we declare the CPU to be drained. This
442 * makes debugging easier since CPU handover and restoring from a
443 * checkpoint with a different CPU should have the same timing.
444 */
445 return rob->isEmpty() &&
446 interrupt == NoFault;
447 }
448
449 template <class Impl>
450 void
451 DefaultCommit<Impl>::takeOverFrom()
452 {
453 _status = Active;
454 _nextStatus = Inactive;
455 for (ThreadID tid = 0; tid < numThreads; tid++) {
456 commitStatus[tid] = Idle;
457 changedROBNumEntries[tid] = false;
458 trapSquash[tid] = false;
459 tcSquash[tid] = false;
460 squashAfterInst[tid] = NULL;
461 }
462 squashCounter = 0;
463 rob->takeOverFrom();
464 }
465
466 template <class Impl>
467 void
468 DefaultCommit<Impl>::deactivateThread(ThreadID tid)
469 {
470 list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
471 priority_list.end(), tid);
472
473 if (thread_it != priority_list.end()) {
474 priority_list.erase(thread_it);
475 }
476 }
477
478
479 template <class Impl>
480 void
481 DefaultCommit<Impl>::updateStatus()
482 {
483 // reset ROB changed variable
484 list<ThreadID>::iterator threads = activeThreads->begin();
485 list<ThreadID>::iterator end = activeThreads->end();
486
487 while (threads != end) {
488 ThreadID tid = *threads++;
489
490 changedROBNumEntries[tid] = false;
491
492 // Also check if any of the threads has a trap pending
493 if (commitStatus[tid] == TrapPending ||
494 commitStatus[tid] == FetchTrapPending) {
495 _nextStatus = Active;
496 }
497 }
498
499 if (_nextStatus == Inactive && _status == Active) {
500 DPRINTF(Activity, "Deactivating stage.\n");
501 cpu->deactivateStage(O3CPU::CommitIdx);
502 } else if (_nextStatus == Active && _status == Inactive) {
503 DPRINTF(Activity, "Activating stage.\n");
504 cpu->activateStage(O3CPU::CommitIdx);
505 }
506
507 _status = _nextStatus;
508 }
509
510 template <class Impl>
511 void
512 DefaultCommit<Impl>::setNextStatus()
513 {
514 int squashes = 0;
515
516 list<ThreadID>::iterator threads = activeThreads->begin();
517 list<ThreadID>::iterator end = activeThreads->end();
518
519 while (threads != end) {
520 ThreadID tid = *threads++;
521
522 if (commitStatus[tid] == ROBSquashing) {
523 squashes++;
524 }
525 }
526
527 squashCounter = squashes;
528
529 // If commit is currently squashing, then it will have activity for the
530 // next cycle. Set its next status as active.
531 if (squashCounter) {
532 _nextStatus = Active;
533 }
534 }
535
536 template <class Impl>
537 bool
538 DefaultCommit<Impl>::changedROBEntries()
539 {
540 list<ThreadID>::iterator threads = activeThreads->begin();
541 list<ThreadID>::iterator end = activeThreads->end();
542
543 while (threads != end) {
544 ThreadID tid = *threads++;
545
546 if (changedROBNumEntries[tid]) {
547 return true;
548 }
549 }
550
551 return false;
552 }
553
554 template <class Impl>
555 size_t
556 DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
557 {
558 return rob->numFreeEntries(tid);
559 }
560
561 template <class Impl>
562 void
563 DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
564 {
565 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
566
567 TrapEvent *trap = new TrapEvent(this, tid);
568
569 cpu->schedule(trap, cpu->clockEdge(trapLatency));
570 trapInFlight[tid] = true;
571 thread[tid]->trapPending = true;
572 }
573
574 template <class Impl>
575 void
576 DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
577 {
578 assert(!trapInFlight[tid]);
579 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
580
581 tcSquash[tid] = true;
582 }
583
584 template <class Impl>
585 void
586 DefaultCommit<Impl>::squashAll(ThreadID tid)
587 {
588 // If we want to include the squashing instruction in the squash,
589 // then use one older sequence number.
590 // Hopefully this doesn't mess things up. Basically I want to squash
591 // all instructions of this thread.
592 InstSeqNum squashed_inst = rob->isEmpty(tid) ?
593 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
594
595 // All younger instructions will be squashed. Set the sequence
596 // number as the youngest instruction in the ROB (0 in this case.
597 // Hopefully nothing breaks.)
598 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
599
600 rob->squash(squashed_inst, tid);
601 changedROBNumEntries[tid] = true;
602
603 // Send back the sequence number of the squashed instruction.
604 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
605
606 // Send back the squash signal to tell stages that they should
607 // squash.
608 toIEW->commitInfo[tid].squash = true;
609
610 // Send back the rob squashing signal so other stages know that
611 // the ROB is in the process of squashing.
612 toIEW->commitInfo[tid].robSquashing = true;
613
614 toIEW->commitInfo[tid].mispredictInst = NULL;
615 toIEW->commitInfo[tid].squashInst = NULL;
616
617 toIEW->commitInfo[tid].pc = pc[tid];
618 }
619
620 template <class Impl>
621 void
622 DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
623 {
624 squashAll(tid);
625
626 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
627
628 thread[tid]->trapPending = false;
629 thread[tid]->noSquashFromTC = false;
630 trapInFlight[tid] = false;
631
632 trapSquash[tid] = false;
633
634 commitStatus[tid] = ROBSquashing;
635 cpu->activityThisCycle();
636 }
637
638 template <class Impl>
639 void
640 DefaultCommit<Impl>::squashFromTC(ThreadID tid)
641 {
642 squashAll(tid);
643
644 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
645
646 thread[tid]->noSquashFromTC = false;
647 assert(!thread[tid]->trapPending);
648
649 commitStatus[tid] = ROBSquashing;
650 cpu->activityThisCycle();
651
652 tcSquash[tid] = false;
653 }
654
655 template <class Impl>
656 void
657 DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
658 {
659 DPRINTF(Commit, "Squashing after squash after request, "
660 "restarting at PC %s\n", pc[tid]);
661
662 squashAll(tid);
663 // Make sure to inform the fetch stage of which instruction caused
664 // the squash. It'll try to re-fetch an instruction executing in
665 // microcode unless this is set.
666 toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
667 squashAfterInst[tid] = NULL;
668
669 commitStatus[tid] = ROBSquashing;
670 cpu->activityThisCycle();
671 }
672
673 template <class Impl>
674 void
675 DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
676 {
677 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
678 tid, head_inst->seqNum);
679
680 assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
681 commitStatus[tid] = SquashAfterPending;
682 squashAfterInst[tid] = head_inst;
683 }
684
685 template <class Impl>
686 void
687 DefaultCommit<Impl>::tick()
688 {
689 wroteToTimeBuffer = false;
690 _nextStatus = Inactive;
691
692 if (activeThreads->empty())
693 return;
694
695 list<ThreadID>::iterator threads = activeThreads->begin();
696 list<ThreadID>::iterator end = activeThreads->end();
697
698 // Check if any of the threads are done squashing. Change the
699 // status if they are done.
700 while (threads != end) {
701 ThreadID tid = *threads++;
702
703 // Clear the bit saying if the thread has committed stores
704 // this cycle.
705 committedStores[tid] = false;
706
707 if (commitStatus[tid] == ROBSquashing) {
708
709 if (rob->isDoneSquashing(tid)) {
710 commitStatus[tid] = Running;
711 } else {
712 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
713 " insts this cycle.\n", tid);
714 rob->doSquash(tid);
715 toIEW->commitInfo[tid].robSquashing = true;
716 wroteToTimeBuffer = true;
717 }
718 }
719 }
720
721 commit();
722
723 markCompletedInsts();
724
725 threads = activeThreads->begin();
726
727 while (threads != end) {
728 ThreadID tid = *threads++;
729
730 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
731 // The ROB has more instructions it can commit. Its next status
732 // will be active.
733 _nextStatus = Active;
734
735 DynInstPtr inst = rob->readHeadInst(tid);
736
737 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
738 " ROB and ready to commit\n",
739 tid, inst->seqNum, inst->pcState());
740
741 } else if (!rob->isEmpty(tid)) {
742 DynInstPtr inst = rob->readHeadInst(tid);
743
744 ppCommitStall->notify(inst);
745
746 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
747 "%s is head of ROB and not ready\n",
748 tid, inst->seqNum, inst->pcState());
749 }
750
751 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
752 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
753 }
754
755
756 if (wroteToTimeBuffer) {
757 DPRINTF(Activity, "Activity This Cycle.\n");
758 cpu->activityThisCycle();
759 }
760
761 updateStatus();
762 }
763
764 template <class Impl>
765 void
766 DefaultCommit<Impl>::handleInterrupt()
767 {
768 // Verify that we still have an interrupt to handle
769 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
770 DPRINTF(Commit, "Pending interrupt is cleared by master before "
771 "it got handled. Restart fetching from the orig path.\n");
772 toIEW->commitInfo[0].clearInterrupt = true;
773 interrupt = NoFault;
774 avoidQuiesceLiveLock = true;
775 return;
776 }
777
778 // Wait until all in flight instructions are finished before enterring
779 // the interrupt.
780 if (canHandleInterrupts && cpu->instList.empty()) {
781 // Squash or record that I need to squash this cycle if
782 // an interrupt needed to be handled.
783 DPRINTF(Commit, "Interrupt detected.\n");
784
785 // Clear the interrupt now that it's going to be handled
786 toIEW->commitInfo[0].clearInterrupt = true;
787
788 assert(!thread[0]->noSquashFromTC);
789 thread[0]->noSquashFromTC = true;
790
791 if (cpu->checker) {
792 cpu->checker->handlePendingInt();
793 }
794
795 // CPU will handle interrupt. Note that we ignore the local copy of
796 // interrupt. This is because the local copy may no longer be the
797 // interrupt that the interrupt controller thinks is being handled.
798 cpu->processInterrupts(cpu->getInterrupts());
799
800 thread[0]->noSquashFromTC = false;
801
802 commitStatus[0] = TrapPending;
803
804 // Generate trap squash event.
805 generateTrapEvent(0);
806
807 interrupt = NoFault;
808 avoidQuiesceLiveLock = false;
809 } else {
810 DPRINTF(Commit, "Interrupt pending: instruction is %sin "
811 "flight, ROB is %sempty\n",
812 canHandleInterrupts ? "not " : "",
813 cpu->instList.empty() ? "" : "not " );
814 }
815 }
816
817 template <class Impl>
818 void
819 DefaultCommit<Impl>::propagateInterrupt()
820 {
821 // Don't propagate intterupts if we are currently handling a trap or
822 // in draining and the last observable instruction has been committed.
823 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
824 tcSquash[0] || drainImminent)
825 return;
826
827 // Process interrupts if interrupts are enabled, not in PAL
828 // mode, and no other traps or external squashes are currently
829 // pending.
830 // @todo: Allow other threads to handle interrupts.
831
832 // Get any interrupt that happened
833 interrupt = cpu->getInterrupts();
834
835 // Tell fetch that there is an interrupt pending. This
836 // will make fetch wait until it sees a non PAL-mode PC,
837 // at which point it stops fetching instructions.
838 if (interrupt != NoFault)
839 toIEW->commitInfo[0].interruptPending = true;
840 }
841
842 template <class Impl>
843 void
844 DefaultCommit<Impl>::commit()
845 {
846 if (FullSystem) {
847 // Check if we have a interrupt and get read to handle it
848 if (cpu->checkInterrupts(cpu->tcBase(0)))
849 propagateInterrupt();
850 }
851
852 ////////////////////////////////////
853 // Check for any possible squashes, handle them first
854 ////////////////////////////////////
855 list<ThreadID>::iterator threads = activeThreads->begin();
856 list<ThreadID>::iterator end = activeThreads->end();
857
858 while (threads != end) {
859 ThreadID tid = *threads++;
860
861 // Not sure which one takes priority. I think if we have
862 // both, that's a bad sign.
863 if (trapSquash[tid]) {
864 assert(!tcSquash[tid]);
865 squashFromTrap(tid);
866 } else if (tcSquash[tid]) {
867 assert(commitStatus[tid] != TrapPending);
868 squashFromTC(tid);
869 } else if (commitStatus[tid] == SquashAfterPending) {
870 // A squash from the previous cycle of the commit stage (i.e.,
871 // commitInsts() called squashAfter) is pending. Squash the
872 // thread now.
873 squashFromSquashAfter(tid);
874 }
875
876 // Squashed sequence number must be older than youngest valid
877 // instruction in the ROB. This prevents squashes from younger
878 // instructions overriding squashes from older instructions.
879 if (fromIEW->squash[tid] &&
880 commitStatus[tid] != TrapPending &&
881 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
882
883 if (fromIEW->mispredictInst[tid]) {
884 DPRINTF(Commit,
885 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
886 tid,
887 fromIEW->mispredictInst[tid]->instAddr(),
888 fromIEW->squashedSeqNum[tid]);
889 } else {
890 DPRINTF(Commit,
891 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
892 tid, fromIEW->squashedSeqNum[tid]);
893 }
894
895 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
896 tid,
897 fromIEW->pc[tid].nextInstAddr());
898
899 commitStatus[tid] = ROBSquashing;
900
901 // If we want to include the squashing instruction in the squash,
902 // then use one older sequence number.
903 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
904
905 if (fromIEW->includeSquashInst[tid]) {
906 squashed_inst--;
907 }
908
909 // All younger instructions will be squashed. Set the sequence
910 // number as the youngest instruction in the ROB.
911 youngestSeqNum[tid] = squashed_inst;
912
913 rob->squash(squashed_inst, tid);
914 changedROBNumEntries[tid] = true;
915
916 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
917
918 toIEW->commitInfo[tid].squash = true;
919
920 // Send back the rob squashing signal so other stages know that
921 // the ROB is in the process of squashing.
922 toIEW->commitInfo[tid].robSquashing = true;
923
924 toIEW->commitInfo[tid].mispredictInst =
925 fromIEW->mispredictInst[tid];
926 toIEW->commitInfo[tid].branchTaken =
927 fromIEW->branchTaken[tid];
928 toIEW->commitInfo[tid].squashInst =
929 rob->findInst(tid, squashed_inst);
930 if (toIEW->commitInfo[tid].mispredictInst) {
931 if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
932 toIEW->commitInfo[tid].branchTaken = true;
933 }
934 }
935
936 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
937
938 if (toIEW->commitInfo[tid].mispredictInst) {
939 ++branchMispredicts;
940 }
941 }
942
943 }
944
945 setNextStatus();
946
947 if (squashCounter != numThreads) {
948 // If we're not currently squashing, then get instructions.
949 getInsts();
950
951 // Try to commit any instructions.
952 commitInsts();
953 }
954
955 //Check for any activity
956 threads = activeThreads->begin();
957
958 while (threads != end) {
959 ThreadID tid = *threads++;
960
961 if (changedROBNumEntries[tid]) {
962 toIEW->commitInfo[tid].usedROB = true;
963 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
964
965 wroteToTimeBuffer = true;
966 changedROBNumEntries[tid] = false;
967 if (rob->isEmpty(tid))
968 checkEmptyROB[tid] = true;
969 }
970
971 // ROB is only considered "empty" for previous stages if: a)
972 // ROB is empty, b) there are no outstanding stores, c) IEW
973 // stage has received any information regarding stores that
974 // committed.
975 // c) is checked by making sure to not consider the ROB empty
976 // on the same cycle as when stores have been committed.
977 // @todo: Make this handle multi-cycle communication between
978 // commit and IEW.
979 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
980 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
981 checkEmptyROB[tid] = false;
982 toIEW->commitInfo[tid].usedROB = true;
983 toIEW->commitInfo[tid].emptyROB = true;
984 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
985 wroteToTimeBuffer = true;
986 }
987
988 }
989 }
990
991 template <class Impl>
992 void
993 DefaultCommit<Impl>::commitInsts()
994 {
995 ////////////////////////////////////
996 // Handle commit
997 // Note that commit will be handled prior to putting new
998 // instructions in the ROB so that the ROB only tries to commit
999 // instructions it has in this current cycle, and not instructions
1000 // it is writing in during this cycle. Can't commit and squash
1001 // things at the same time...
1002 ////////////////////////////////////
1003
1004 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
1005
1006 unsigned num_committed = 0;
1007
1008 DynInstPtr head_inst;
1009
1010 // Commit as many instructions as possible until the commit bandwidth
1011 // limit is reached, or it becomes impossible to commit any more.
1012 while (num_committed < commitWidth) {
1013 // Check for any interrupt that we've already squashed for
1014 // and start processing it.
1015 if (interrupt != NoFault)
1016 handleInterrupt();
1017
1018 int commit_thread = getCommittingThread();
1019
1020 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
1021 break;
1022
1023 head_inst = rob->readHeadInst(commit_thread);
1024
1025 ThreadID tid = head_inst->threadNumber;
1026
1027 assert(tid == commit_thread);
1028
1029 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1030 head_inst->seqNum, tid);
1031
1032 // If the head instruction is squashed, it is ready to retire
1033 // (be removed from the ROB) at any time.
1034 if (head_inst->isSquashed()) {
1035
1036 DPRINTF(Commit, "Retiring squashed instruction from "
1037 "ROB.\n");
1038
1039 rob->retireHead(commit_thread);
1040
1041 ++commitSquashedInsts;
1042
1043 // Record that the number of ROB entries has changed.
1044 changedROBNumEntries[tid] = true;
1045 } else {
1046 pc[tid] = head_inst->pcState();
1047
1048 // Increment the total number of non-speculative instructions
1049 // executed.
1050 // Hack for now: it really shouldn't happen until after the
1051 // commit is deemed to be successful, but this count is needed
1052 // for syscalls.
1053 thread[tid]->funcExeInst++;
1054
1055 // Try to commit the head instruction.
1056 bool commit_success = commitHead(head_inst, num_committed);
1057
1058 if (commit_success) {
1059 ++num_committed;
1060 statCommittedInstType[tid][head_inst->opClass()]++;
1061 ppCommit->notify(head_inst);
1062
1063 changedROBNumEntries[tid] = true;
1064
1065 // Set the doneSeqNum to the youngest committed instruction.
1066 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1067
1068 if (tid == 0) {
1069 canHandleInterrupts = (!head_inst->isDelayedCommit()) &&
1070 ((THE_ISA != ALPHA_ISA) ||
1071 (!(pc[0].instAddr() & 0x3)));
1072 }
1073
1074 // Updates misc. registers.
1075 head_inst->updateMiscRegs();
1076
1077 // Check instruction execution if it successfully commits and
1078 // is not carrying a fault.
1079 if (cpu->checker) {
1080 cpu->checker->verify(head_inst);
1081 }
1082
1083 cpu->traceFunctions(pc[tid].instAddr());
1084
1085 TheISA::advancePC(pc[tid], head_inst->staticInst);
1086
1087 // Keep track of the last sequence number commited
1088 lastCommitedSeqNum[tid] = head_inst->seqNum;
1089
1090 // If this is an instruction that doesn't play nicely with
1091 // others squash everything and restart fetch
1092 if (head_inst->isSquashAfter())
1093 squashAfter(tid, head_inst);
1094
1095 if (drainPending) {
1096 if (pc[tid].microPC() == 0 && interrupt == NoFault &&
1097 !thread[tid]->trapPending) {
1098 // Last architectually committed instruction.
1099 // Squash the pipeline, stall fetch, and use
1100 // drainImminent to disable interrupts
1101 DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1102 squashAfter(tid, head_inst);
1103 cpu->commitDrained(tid);
1104 drainImminent = true;
1105 }
1106 }
1107
1108 int count = 0;
1109 Addr oldpc;
1110 // Debug statement. Checks to make sure we're not
1111 // currently updating state while handling PC events.
1112 assert(!thread[tid]->noSquashFromTC && !thread[tid]->trapPending);
1113 do {
1114 oldpc = pc[tid].instAddr();
1115 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1116 count++;
1117 } while (oldpc != pc[tid].instAddr());
1118 if (count > 1) {
1119 DPRINTF(Commit,
1120 "PC skip function event, stopping commit\n");
1121 break;
1122 }
1123
1124 // Check if an instruction just enabled interrupts and we've
1125 // previously had an interrupt pending that was not handled
1126 // because interrupts were subsequently disabled before the
1127 // pipeline reached a place to handle the interrupt. In that
1128 // case squash now to make sure the interrupt is handled.
1129 //
1130 // If we don't do this, we might end up in a live lock situation
1131 if (!interrupt && avoidQuiesceLiveLock &&
1132 (!head_inst->isMicroop() || head_inst->isLastMicroop()) &&
1133 cpu->checkInterrupts(cpu->tcBase(0)))
1134 squashAfter(tid, head_inst);
1135 } else {
1136 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1137 "[tid:%i] [sn:%i].\n",
1138 head_inst->pcState(), tid ,head_inst->seqNum);
1139 break;
1140 }
1141 }
1142 }
1143
1144 DPRINTF(CommitRate, "%i\n", num_committed);
1145 numCommittedDist.sample(num_committed);
1146
1147 if (num_committed == commitWidth) {
1148 commitEligibleSamples++;
1149 }
1150 }
1151
1152 template <class Impl>
1153 bool
1154 DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1155 {
1156 assert(head_inst);
1157
1158 ThreadID tid = head_inst->threadNumber;
1159
1160 // If the instruction is not executed yet, then it will need extra
1161 // handling. Signal backwards that it should be executed.
1162 if (!head_inst->isExecuted()) {
1163 // Keep this number correct. We have not yet actually executed
1164 // and committed this instruction.
1165 thread[tid]->funcExeInst--;
1166
1167 // Make sure we are only trying to commit un-executed instructions we
1168 // think are possible.
1169 assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1170 || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1171 (head_inst->isLoad() && head_inst->uncacheable()));
1172
1173 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1174 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1175 head_inst->seqNum, head_inst->pcState());
1176
1177 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1178 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1179 return false;
1180 }
1181
1182 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1183
1184 // Change the instruction so it won't try to commit again until
1185 // it is executed.
1186 head_inst->clearCanCommit();
1187
1188 if (head_inst->isLoad() && head_inst->uncacheable()) {
1189 DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1190 head_inst->seqNum, head_inst->pcState());
1191 toIEW->commitInfo[tid].uncached = true;
1192 toIEW->commitInfo[tid].uncachedLoad = head_inst;
1193 } else {
1194 ++commitNonSpecStalls;
1195 }
1196
1197 return false;
1198 }
1199
1200 if (head_inst->isThreadSync()) {
1201 // Not handled for now.
1202 panic("Thread sync instructions are not handled yet.\n");
1203 }
1204
1205 // Check if the instruction caused a fault. If so, trap.
1206 Fault inst_fault = head_inst->getFault();
1207
1208 // Stores mark themselves as completed.
1209 if (!head_inst->isStore() && inst_fault == NoFault) {
1210 head_inst->setCompleted();
1211 }
1212
1213 if (inst_fault != NoFault) {
1214 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1215 head_inst->seqNum, head_inst->pcState());
1216
1217 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1218 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1219 return false;
1220 }
1221
1222 head_inst->setCompleted();
1223
1224 // If instruction has faulted, let the checker execute it and
1225 // check if it sees the same fault and control flow.
1226 if (cpu->checker) {
1227 // Need to check the instruction before its fault is processed
1228 cpu->checker->verify(head_inst);
1229 }
1230
1231 assert(!thread[tid]->noSquashFromTC);
1232
1233 // Mark that we're in state update mode so that the trap's
1234 // execution doesn't generate extra squashes.
1235 thread[tid]->noSquashFromTC = true;
1236
1237 // Execute the trap. Although it's slightly unrealistic in
1238 // terms of timing (as it doesn't wait for the full timing of
1239 // the trap event to complete before updating state), it's
1240 // needed to update the state as soon as possible. This
1241 // prevents external agents from changing any specific state
1242 // that the trap need.
1243 cpu->trap(inst_fault, tid, head_inst->staticInst);
1244
1245 // Exit state update mode to avoid accidental updating.
1246 thread[tid]->noSquashFromTC = false;
1247
1248 commitStatus[tid] = TrapPending;
1249
1250 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1251 head_inst->seqNum);
1252 if (head_inst->traceData) {
1253 if (DTRACE(ExecFaulting)) {
1254 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1255 head_inst->traceData->setCPSeq(thread[tid]->numOp);
1256 head_inst->traceData->dump();
1257 }
1258 delete head_inst->traceData;
1259 head_inst->traceData = NULL;
1260 }
1261
1262 // Generate trap squash event.
1263 generateTrapEvent(tid);
1264 return false;
1265 }
1266
1267 updateComInstStats(head_inst);
1268
1269 if (FullSystem) {
1270 if (thread[tid]->profile) {
1271 thread[tid]->profilePC = head_inst->instAddr();
1272 ProfileNode *node = thread[tid]->profile->consume(
1273 thread[tid]->getTC(), head_inst->staticInst);
1274
1275 if (node)
1276 thread[tid]->profileNode = node;
1277 }
1278 if (CPA::available()) {
1279 if (head_inst->isControl()) {
1280 ThreadContext *tc = thread[tid]->getTC();
1281 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1282 }
1283 }
1284 }
1285 DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1286 head_inst->seqNum, head_inst->pcState());
1287 if (head_inst->traceData) {
1288 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1289 head_inst->traceData->setCPSeq(thread[tid]->numOp);
1290 head_inst->traceData->dump();
1291 delete head_inst->traceData;
1292 head_inst->traceData = NULL;
1293 }
1294 if (head_inst->isReturn()) {
1295 DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1296 head_inst->seqNum, head_inst->pcState());
1297 }
1298
1299 // Update the commit rename map
1300 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1301 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1302 head_inst->renamedDestRegIdx(i));
1303 }
1304
1305 // Finally clear the head ROB entry.
1306 rob->retireHead(tid);
1307
1308 #if TRACING_ON
1309 if (DTRACE(O3PipeView)) {
1310 head_inst->commitTick = curTick() - head_inst->fetchTick;
1311 }
1312 #endif
1313
1314 // If this was a store, record it for this cycle.
1315 if (head_inst->isStore())
1316 committedStores[tid] = true;
1317
1318 // Return true to indicate that we have committed an instruction.
1319 return true;
1320 }
1321
1322 template <class Impl>
1323 void
1324 DefaultCommit<Impl>::getInsts()
1325 {
1326 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1327
1328 // Read any renamed instructions and place them into the ROB.
1329 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1330
1331 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1332 DynInstPtr inst;
1333
1334 inst = fromRename->insts[inst_num];
1335 ThreadID tid = inst->threadNumber;
1336
1337 if (!inst->isSquashed() &&
1338 commitStatus[tid] != ROBSquashing &&
1339 commitStatus[tid] != TrapPending) {
1340 changedROBNumEntries[tid] = true;
1341
1342 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1343 inst->pcState(), inst->seqNum, tid);
1344
1345 rob->insertInst(inst);
1346
1347 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1348
1349 youngestSeqNum[tid] = inst->seqNum;
1350 } else {
1351 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1352 "squashed, skipping.\n",
1353 inst->pcState(), inst->seqNum, tid);
1354 }
1355 }
1356 }
1357
1358 template <class Impl>
1359 void
1360 DefaultCommit<Impl>::markCompletedInsts()
1361 {
1362 // Grab completed insts out of the IEW instruction queue, and mark
1363 // instructions completed within the ROB.
1364 for (int inst_num = 0;
1365 inst_num < fromIEW->size && fromIEW->insts[inst_num];
1366 ++inst_num)
1367 {
1368 if (!fromIEW->insts[inst_num]->isSquashed()) {
1369 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1370 "within ROB.\n",
1371 fromIEW->insts[inst_num]->threadNumber,
1372 fromIEW->insts[inst_num]->pcState(),
1373 fromIEW->insts[inst_num]->seqNum);
1374
1375 // Mark the instruction as ready to commit.
1376 fromIEW->insts[inst_num]->setCanCommit();
1377 }
1378 }
1379 }
1380
1381 template <class Impl>
1382 void
1383 DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1384 {
1385 ThreadID tid = inst->threadNumber;
1386
1387 if (!inst->isMicroop() || inst->isLastMicroop())
1388 instsCommitted[tid]++;
1389 opsCommitted[tid]++;
1390
1391 // To match the old model, don't count nops and instruction
1392 // prefetches towards the total commit count.
1393 if (!inst->isNop() && !inst->isInstPrefetch()) {
1394 cpu->instDone(tid, inst);
1395 }
1396
1397 //
1398 // Control Instructions
1399 //
1400 if (inst->isControl())
1401 statComBranches[tid]++;
1402
1403 //
1404 // Memory references
1405 //
1406 if (inst->isMemRef()) {
1407 statComRefs[tid]++;
1408
1409 if (inst->isLoad()) {
1410 statComLoads[tid]++;
1411 }
1412 }
1413
1414 if (inst->isMemBarrier()) {
1415 statComMembars[tid]++;
1416 }
1417
1418 // Integer Instruction
1419 if (inst->isInteger())
1420 statComInteger[tid]++;
1421
1422 // Floating Point Instruction
1423 if (inst->isFloating())
1424 statComFloating[tid]++;
1425
1426 // Function Calls
1427 if (inst->isCall())
1428 statComFunctionCalls[tid]++;
1429
1430 }
1431
1432 ////////////////////////////////////////
1433 // //
1434 // SMT COMMIT POLICY MAINTAINED HERE //
1435 // //
1436 ////////////////////////////////////////
1437 template <class Impl>
1438 ThreadID
1439 DefaultCommit<Impl>::getCommittingThread()
1440 {
1441 if (numThreads > 1) {
1442 switch (commitPolicy) {
1443
1444 case Aggressive:
1445 //If Policy is Aggressive, commit will call
1446 //this function multiple times per
1447 //cycle
1448 return oldestReady();
1449
1450 case RoundRobin:
1451 return roundRobin();
1452
1453 case OldestReady:
1454 return oldestReady();
1455
1456 default:
1457 return InvalidThreadID;
1458 }
1459 } else {
1460 assert(!activeThreads->empty());
1461 ThreadID tid = activeThreads->front();
1462
1463 if (commitStatus[tid] == Running ||
1464 commitStatus[tid] == Idle ||
1465 commitStatus[tid] == FetchTrapPending) {
1466 return tid;
1467 } else {
1468 return InvalidThreadID;
1469 }
1470 }
1471 }
1472
1473 template<class Impl>
1474 ThreadID
1475 DefaultCommit<Impl>::roundRobin()
1476 {
1477 list<ThreadID>::iterator pri_iter = priority_list.begin();
1478 list<ThreadID>::iterator end = priority_list.end();
1479
1480 while (pri_iter != end) {
1481 ThreadID tid = *pri_iter;
1482
1483 if (commitStatus[tid] == Running ||
1484 commitStatus[tid] == Idle ||
1485 commitStatus[tid] == FetchTrapPending) {
1486
1487 if (rob->isHeadReady(tid)) {
1488 priority_list.erase(pri_iter);
1489 priority_list.push_back(tid);
1490
1491 return tid;
1492 }
1493 }
1494
1495 pri_iter++;
1496 }
1497
1498 return InvalidThreadID;
1499 }
1500
1501 template<class Impl>
1502 ThreadID
1503 DefaultCommit<Impl>::oldestReady()
1504 {
1505 unsigned oldest = 0;
1506 bool first = true;
1507
1508 list<ThreadID>::iterator threads = activeThreads->begin();
1509 list<ThreadID>::iterator end = activeThreads->end();
1510
1511 while (threads != end) {
1512 ThreadID tid = *threads++;
1513
1514 if (!rob->isEmpty(tid) &&
1515 (commitStatus[tid] == Running ||
1516 commitStatus[tid] == Idle ||
1517 commitStatus[tid] == FetchTrapPending)) {
1518
1519 if (rob->isHeadReady(tid)) {
1520
1521 DynInstPtr head_inst = rob->readHeadInst(tid);
1522
1523 if (first) {
1524 oldest = tid;
1525 first = false;
1526 } else if (head_inst->seqNum < oldest) {
1527 oldest = tid;
1528 }
1529 }
1530 }
1531 }
1532
1533 if (!first) {
1534 return oldest;
1535 } else {
1536 return InvalidThreadID;
1537 }
1538 }
1539
1540 #endif//__CPU_O3_COMMIT_IMPL_HH__