style: eliminate equality tests with true and false
[gem5.git] / src / cpu / o3 / commit_impl.hh
1 /*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43 #ifndef __CPU_O3_COMMIT_IMPL_HH__
44 #define __CPU_O3_COMMIT_IMPL_HH__
45
46 #include <algorithm>
47 #include <set>
48 #include <string>
49
50 #include "arch/utility.hh"
51 #include "base/loader/symtab.hh"
52 #include "base/cp_annotate.hh"
53 #include "config/the_isa.hh"
54 #include "cpu/checker/cpu.hh"
55 #include "cpu/o3/commit.hh"
56 #include "cpu/o3/thread_state.hh"
57 #include "cpu/base.hh"
58 #include "cpu/exetrace.hh"
59 #include "cpu/timebuf.hh"
60 #include "debug/Activity.hh"
61 #include "debug/Commit.hh"
62 #include "debug/CommitRate.hh"
63 #include "debug/Drain.hh"
64 #include "debug/ExecFaulting.hh"
65 #include "debug/O3PipeView.hh"
66 #include "params/DerivO3CPU.hh"
67 #include "sim/faults.hh"
68 #include "sim/full_system.hh"
69
70 using namespace std;
71
72 template <class Impl>
73 DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
74 ThreadID _tid)
75 : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
76 {
77 }
78
79 template <class Impl>
80 void
81 DefaultCommit<Impl>::TrapEvent::process()
82 {
83 // This will get reset by commit if it was switched out at the
84 // time of this event processing.
85 commit->trapSquash[tid] = true;
86 }
87
88 template <class Impl>
89 const char *
90 DefaultCommit<Impl>::TrapEvent::description() const
91 {
92 return "Trap";
93 }
94
95 template <class Impl>
96 DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
97 : cpu(_cpu),
98 squashCounter(0),
99 iewToCommitDelay(params->iewToCommitDelay),
100 commitToIEWDelay(params->commitToIEWDelay),
101 renameToROBDelay(params->renameToROBDelay),
102 fetchToCommitDelay(params->commitToFetchDelay),
103 renameWidth(params->renameWidth),
104 commitWidth(params->commitWidth),
105 numThreads(params->numThreads),
106 drainPending(false),
107 trapLatency(params->trapLatency),
108 canHandleInterrupts(true),
109 avoidQuiesceLiveLock(false)
110 {
111 if (commitWidth > Impl::MaxWidth)
112 fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
113 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
114 commitWidth, static_cast<int>(Impl::MaxWidth));
115
116 _status = Active;
117 _nextStatus = Inactive;
118 std::string policy = params->smtCommitPolicy;
119
120 //Convert string to lowercase
121 std::transform(policy.begin(), policy.end(), policy.begin(),
122 (int(*)(int)) tolower);
123
124 //Assign commit policy
125 if (policy == "aggressive"){
126 commitPolicy = Aggressive;
127
128 DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
129 } else if (policy == "roundrobin"){
130 commitPolicy = RoundRobin;
131
132 //Set-Up Priority List
133 for (ThreadID tid = 0; tid < numThreads; tid++) {
134 priority_list.push_back(tid);
135 }
136
137 DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
138 } else if (policy == "oldestready"){
139 commitPolicy = OldestReady;
140
141 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
142 } else {
143 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
144 "RoundRobin,OldestReady}");
145 }
146
147 for (ThreadID tid = 0; tid < numThreads; tid++) {
148 commitStatus[tid] = Idle;
149 changedROBNumEntries[tid] = false;
150 checkEmptyROB[tid] = false;
151 trapInFlight[tid] = false;
152 committedStores[tid] = false;
153 trapSquash[tid] = false;
154 tcSquash[tid] = false;
155 pc[tid].set(0);
156 lastCommitedSeqNum[tid] = 0;
157 squashAfterInst[tid] = NULL;
158 }
159 interrupt = NoFault;
160 }
161
162 template <class Impl>
163 std::string
164 DefaultCommit<Impl>::name() const
165 {
166 return cpu->name() + ".commit";
167 }
168
169 template <class Impl>
170 void
171 DefaultCommit<Impl>::regProbePoints()
172 {
173 ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
174 ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
175 }
176
177 template <class Impl>
178 void
179 DefaultCommit<Impl>::regStats()
180 {
181 using namespace Stats;
182 commitSquashedInsts
183 .name(name() + ".commitSquashedInsts")
184 .desc("The number of squashed insts skipped by commit")
185 .prereq(commitSquashedInsts);
186 commitSquashEvents
187 .name(name() + ".commitSquashEvents")
188 .desc("The number of times commit is told to squash")
189 .prereq(commitSquashEvents);
190 commitNonSpecStalls
191 .name(name() + ".commitNonSpecStalls")
192 .desc("The number of times commit has been forced to stall to "
193 "communicate backwards")
194 .prereq(commitNonSpecStalls);
195 branchMispredicts
196 .name(name() + ".branchMispredicts")
197 .desc("The number of times a branch was mispredicted")
198 .prereq(branchMispredicts);
199 numCommittedDist
200 .init(0,commitWidth,1)
201 .name(name() + ".committed_per_cycle")
202 .desc("Number of insts commited each cycle")
203 .flags(Stats::pdf)
204 ;
205
206 instsCommitted
207 .init(cpu->numThreads)
208 .name(name() + ".committedInsts")
209 .desc("Number of instructions committed")
210 .flags(total)
211 ;
212
213 opsCommitted
214 .init(cpu->numThreads)
215 .name(name() + ".committedOps")
216 .desc("Number of ops (including micro ops) committed")
217 .flags(total)
218 ;
219
220 statComSwp
221 .init(cpu->numThreads)
222 .name(name() + ".swp_count")
223 .desc("Number of s/w prefetches committed")
224 .flags(total)
225 ;
226
227 statComRefs
228 .init(cpu->numThreads)
229 .name(name() + ".refs")
230 .desc("Number of memory references committed")
231 .flags(total)
232 ;
233
234 statComLoads
235 .init(cpu->numThreads)
236 .name(name() + ".loads")
237 .desc("Number of loads committed")
238 .flags(total)
239 ;
240
241 statComMembars
242 .init(cpu->numThreads)
243 .name(name() + ".membars")
244 .desc("Number of memory barriers committed")
245 .flags(total)
246 ;
247
248 statComBranches
249 .init(cpu->numThreads)
250 .name(name() + ".branches")
251 .desc("Number of branches committed")
252 .flags(total)
253 ;
254
255 statComFloating
256 .init(cpu->numThreads)
257 .name(name() + ".fp_insts")
258 .desc("Number of committed floating point instructions.")
259 .flags(total)
260 ;
261
262 statComInteger
263 .init(cpu->numThreads)
264 .name(name()+".int_insts")
265 .desc("Number of committed integer instructions.")
266 .flags(total)
267 ;
268
269 statComFunctionCalls
270 .init(cpu->numThreads)
271 .name(name()+".function_calls")
272 .desc("Number of function calls committed.")
273 .flags(total)
274 ;
275
276 statCommittedInstType
277 .init(numThreads,Enums::Num_OpClass)
278 .name(name() + ".op_class")
279 .desc("Class of committed instruction")
280 .flags(total | pdf | dist)
281 ;
282 statCommittedInstType.ysubnames(Enums::OpClassStrings);
283
284 commitEligible
285 .init(cpu->numThreads)
286 .name(name() + ".bw_limited")
287 .desc("number of insts not committed due to BW limits")
288 .flags(total)
289 ;
290
291 commitEligibleSamples
292 .name(name() + ".bw_lim_events")
293 .desc("number cycles where commit BW limit reached")
294 ;
295 }
296
297 template <class Impl>
298 void
299 DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
300 {
301 thread = threads;
302 }
303
304 template <class Impl>
305 void
306 DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
307 {
308 timeBuffer = tb_ptr;
309
310 // Setup wire to send information back to IEW.
311 toIEW = timeBuffer->getWire(0);
312
313 // Setup wire to read data from IEW (for the ROB).
314 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
315 }
316
317 template <class Impl>
318 void
319 DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
320 {
321 fetchQueue = fq_ptr;
322
323 // Setup wire to get instructions from rename (for the ROB).
324 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
325 }
326
327 template <class Impl>
328 void
329 DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
330 {
331 renameQueue = rq_ptr;
332
333 // Setup wire to get instructions from rename (for the ROB).
334 fromRename = renameQueue->getWire(-renameToROBDelay);
335 }
336
337 template <class Impl>
338 void
339 DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
340 {
341 iewQueue = iq_ptr;
342
343 // Setup wire to get instructions from IEW.
344 fromIEW = iewQueue->getWire(-iewToCommitDelay);
345 }
346
347 template <class Impl>
348 void
349 DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
350 {
351 iewStage = iew_stage;
352 }
353
354 template<class Impl>
355 void
356 DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
357 {
358 activeThreads = at_ptr;
359 }
360
361 template <class Impl>
362 void
363 DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
364 {
365 for (ThreadID tid = 0; tid < numThreads; tid++)
366 renameMap[tid] = &rm_ptr[tid];
367 }
368
369 template <class Impl>
370 void
371 DefaultCommit<Impl>::setROB(ROB *rob_ptr)
372 {
373 rob = rob_ptr;
374 }
375
376 template <class Impl>
377 void
378 DefaultCommit<Impl>::startupStage()
379 {
380 rob->setActiveThreads(activeThreads);
381 rob->resetEntries();
382
383 // Broadcast the number of free entries.
384 for (ThreadID tid = 0; tid < numThreads; tid++) {
385 toIEW->commitInfo[tid].usedROB = true;
386 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
387 toIEW->commitInfo[tid].emptyROB = true;
388 }
389
390 // Commit must broadcast the number of free entries it has at the
391 // start of the simulation, so it starts as active.
392 cpu->activateStage(O3CPU::CommitIdx);
393
394 cpu->activityThisCycle();
395 }
396
397 template <class Impl>
398 void
399 DefaultCommit<Impl>::drain()
400 {
401 drainPending = true;
402 }
403
404 template <class Impl>
405 void
406 DefaultCommit<Impl>::drainResume()
407 {
408 drainPending = false;
409 }
410
411 template <class Impl>
412 void
413 DefaultCommit<Impl>::drainSanityCheck() const
414 {
415 assert(isDrained());
416 rob->drainSanityCheck();
417 }
418
419 template <class Impl>
420 bool
421 DefaultCommit<Impl>::isDrained() const
422 {
423 /* Make sure no one is executing microcode. There are two reasons
424 * for this:
425 * - Hardware virtualized CPUs can't switch into the middle of a
426 * microcode sequence.
427 * - The current fetch implementation will most likely get very
428 * confused if it tries to start fetching an instruction that
429 * is executing in the middle of a ucode sequence that changes
430 * address mappings. This can happen on for example x86.
431 */
432 for (ThreadID tid = 0; tid < numThreads; tid++) {
433 if (pc[tid].microPC() != 0)
434 return false;
435 }
436
437 /* Make sure that all instructions have finished committing before
438 * declaring the system as drained. We want the pipeline to be
439 * completely empty when we declare the CPU to be drained. This
440 * makes debugging easier since CPU handover and restoring from a
441 * checkpoint with a different CPU should have the same timing.
442 */
443 return rob->isEmpty() &&
444 interrupt == NoFault;
445 }
446
447 template <class Impl>
448 void
449 DefaultCommit<Impl>::takeOverFrom()
450 {
451 _status = Active;
452 _nextStatus = Inactive;
453 for (ThreadID tid = 0; tid < numThreads; tid++) {
454 commitStatus[tid] = Idle;
455 changedROBNumEntries[tid] = false;
456 trapSquash[tid] = false;
457 tcSquash[tid] = false;
458 squashAfterInst[tid] = NULL;
459 }
460 squashCounter = 0;
461 rob->takeOverFrom();
462 }
463
464 template <class Impl>
465 void
466 DefaultCommit<Impl>::updateStatus()
467 {
468 // reset ROB changed variable
469 list<ThreadID>::iterator threads = activeThreads->begin();
470 list<ThreadID>::iterator end = activeThreads->end();
471
472 while (threads != end) {
473 ThreadID tid = *threads++;
474
475 changedROBNumEntries[tid] = false;
476
477 // Also check if any of the threads has a trap pending
478 if (commitStatus[tid] == TrapPending ||
479 commitStatus[tid] == FetchTrapPending) {
480 _nextStatus = Active;
481 }
482 }
483
484 if (_nextStatus == Inactive && _status == Active) {
485 DPRINTF(Activity, "Deactivating stage.\n");
486 cpu->deactivateStage(O3CPU::CommitIdx);
487 } else if (_nextStatus == Active && _status == Inactive) {
488 DPRINTF(Activity, "Activating stage.\n");
489 cpu->activateStage(O3CPU::CommitIdx);
490 }
491
492 _status = _nextStatus;
493 }
494
495 template <class Impl>
496 void
497 DefaultCommit<Impl>::setNextStatus()
498 {
499 int squashes = 0;
500
501 list<ThreadID>::iterator threads = activeThreads->begin();
502 list<ThreadID>::iterator end = activeThreads->end();
503
504 while (threads != end) {
505 ThreadID tid = *threads++;
506
507 if (commitStatus[tid] == ROBSquashing) {
508 squashes++;
509 }
510 }
511
512 squashCounter = squashes;
513
514 // If commit is currently squashing, then it will have activity for the
515 // next cycle. Set its next status as active.
516 if (squashCounter) {
517 _nextStatus = Active;
518 }
519 }
520
521 template <class Impl>
522 bool
523 DefaultCommit<Impl>::changedROBEntries()
524 {
525 list<ThreadID>::iterator threads = activeThreads->begin();
526 list<ThreadID>::iterator end = activeThreads->end();
527
528 while (threads != end) {
529 ThreadID tid = *threads++;
530
531 if (changedROBNumEntries[tid]) {
532 return true;
533 }
534 }
535
536 return false;
537 }
538
539 template <class Impl>
540 size_t
541 DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
542 {
543 return rob->numFreeEntries(tid);
544 }
545
546 template <class Impl>
547 void
548 DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
549 {
550 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
551
552 TrapEvent *trap = new TrapEvent(this, tid);
553
554 cpu->schedule(trap, cpu->clockEdge(trapLatency));
555 trapInFlight[tid] = true;
556 thread[tid]->trapPending = true;
557 }
558
559 template <class Impl>
560 void
561 DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
562 {
563 assert(!trapInFlight[tid]);
564 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
565
566 tcSquash[tid] = true;
567 }
568
569 template <class Impl>
570 void
571 DefaultCommit<Impl>::squashAll(ThreadID tid)
572 {
573 // If we want to include the squashing instruction in the squash,
574 // then use one older sequence number.
575 // Hopefully this doesn't mess things up. Basically I want to squash
576 // all instructions of this thread.
577 InstSeqNum squashed_inst = rob->isEmpty(tid) ?
578 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
579
580 // All younger instructions will be squashed. Set the sequence
581 // number as the youngest instruction in the ROB (0 in this case.
582 // Hopefully nothing breaks.)
583 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
584
585 rob->squash(squashed_inst, tid);
586 changedROBNumEntries[tid] = true;
587
588 // Send back the sequence number of the squashed instruction.
589 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
590
591 // Send back the squash signal to tell stages that they should
592 // squash.
593 toIEW->commitInfo[tid].squash = true;
594
595 // Send back the rob squashing signal so other stages know that
596 // the ROB is in the process of squashing.
597 toIEW->commitInfo[tid].robSquashing = true;
598
599 toIEW->commitInfo[tid].mispredictInst = NULL;
600 toIEW->commitInfo[tid].squashInst = NULL;
601
602 toIEW->commitInfo[tid].pc = pc[tid];
603 }
604
605 template <class Impl>
606 void
607 DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
608 {
609 squashAll(tid);
610
611 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
612
613 thread[tid]->trapPending = false;
614 thread[tid]->noSquashFromTC = false;
615 trapInFlight[tid] = false;
616
617 trapSquash[tid] = false;
618
619 commitStatus[tid] = ROBSquashing;
620 cpu->activityThisCycle();
621 }
622
623 template <class Impl>
624 void
625 DefaultCommit<Impl>::squashFromTC(ThreadID tid)
626 {
627 squashAll(tid);
628
629 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
630
631 thread[tid]->noSquashFromTC = false;
632 assert(!thread[tid]->trapPending);
633
634 commitStatus[tid] = ROBSquashing;
635 cpu->activityThisCycle();
636
637 tcSquash[tid] = false;
638 }
639
640 template <class Impl>
641 void
642 DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
643 {
644 DPRINTF(Commit, "Squashing after squash after request, "
645 "restarting at PC %s\n", pc[tid]);
646
647 squashAll(tid);
648 // Make sure to inform the fetch stage of which instruction caused
649 // the squash. It'll try to re-fetch an instruction executing in
650 // microcode unless this is set.
651 toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
652 squashAfterInst[tid] = NULL;
653
654 commitStatus[tid] = ROBSquashing;
655 cpu->activityThisCycle();
656 }
657
658 template <class Impl>
659 void
660 DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
661 {
662 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
663 tid, head_inst->seqNum);
664
665 assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
666 commitStatus[tid] = SquashAfterPending;
667 squashAfterInst[tid] = head_inst;
668 }
669
670 template <class Impl>
671 void
672 DefaultCommit<Impl>::tick()
673 {
674 wroteToTimeBuffer = false;
675 _nextStatus = Inactive;
676
677 if (activeThreads->empty())
678 return;
679
680 list<ThreadID>::iterator threads = activeThreads->begin();
681 list<ThreadID>::iterator end = activeThreads->end();
682
683 // Check if any of the threads are done squashing. Change the
684 // status if they are done.
685 while (threads != end) {
686 ThreadID tid = *threads++;
687
688 // Clear the bit saying if the thread has committed stores
689 // this cycle.
690 committedStores[tid] = false;
691
692 if (commitStatus[tid] == ROBSquashing) {
693
694 if (rob->isDoneSquashing(tid)) {
695 commitStatus[tid] = Running;
696 } else {
697 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
698 " insts this cycle.\n", tid);
699 rob->doSquash(tid);
700 toIEW->commitInfo[tid].robSquashing = true;
701 wroteToTimeBuffer = true;
702 }
703 }
704 }
705
706 commit();
707
708 markCompletedInsts();
709
710 threads = activeThreads->begin();
711
712 while (threads != end) {
713 ThreadID tid = *threads++;
714
715 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
716 // The ROB has more instructions it can commit. Its next status
717 // will be active.
718 _nextStatus = Active;
719
720 DynInstPtr inst = rob->readHeadInst(tid);
721
722 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
723 " ROB and ready to commit\n",
724 tid, inst->seqNum, inst->pcState());
725
726 } else if (!rob->isEmpty(tid)) {
727 DynInstPtr inst = rob->readHeadInst(tid);
728
729 ppCommitStall->notify(inst);
730
731 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
732 "%s is head of ROB and not ready\n",
733 tid, inst->seqNum, inst->pcState());
734 }
735
736 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
737 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
738 }
739
740
741 if (wroteToTimeBuffer) {
742 DPRINTF(Activity, "Activity This Cycle.\n");
743 cpu->activityThisCycle();
744 }
745
746 updateStatus();
747 }
748
749 template <class Impl>
750 void
751 DefaultCommit<Impl>::handleInterrupt()
752 {
753 // Verify that we still have an interrupt to handle
754 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
755 DPRINTF(Commit, "Pending interrupt is cleared by master before "
756 "it got handled. Restart fetching from the orig path.\n");
757 toIEW->commitInfo[0].clearInterrupt = true;
758 interrupt = NoFault;
759 avoidQuiesceLiveLock = true;
760 return;
761 }
762
763 // Wait until all in flight instructions are finished before enterring
764 // the interrupt.
765 if (canHandleInterrupts && cpu->instList.empty()) {
766 // Squash or record that I need to squash this cycle if
767 // an interrupt needed to be handled.
768 DPRINTF(Commit, "Interrupt detected.\n");
769
770 // Clear the interrupt now that it's going to be handled
771 toIEW->commitInfo[0].clearInterrupt = true;
772
773 assert(!thread[0]->noSquashFromTC);
774 thread[0]->noSquashFromTC = true;
775
776 if (cpu->checker) {
777 cpu->checker->handlePendingInt();
778 }
779
780 // CPU will handle interrupt. Note that we ignore the local copy of
781 // interrupt. This is because the local copy may no longer be the
782 // interrupt that the interrupt controller thinks is being handled.
783 cpu->processInterrupts(cpu->getInterrupts());
784
785 thread[0]->noSquashFromTC = false;
786
787 commitStatus[0] = TrapPending;
788
789 // Generate trap squash event.
790 generateTrapEvent(0);
791
792 interrupt = NoFault;
793 avoidQuiesceLiveLock = false;
794 } else {
795 DPRINTF(Commit, "Interrupt pending: instruction is %sin "
796 "flight, ROB is %sempty\n",
797 canHandleInterrupts ? "not " : "",
798 cpu->instList.empty() ? "" : "not " );
799 }
800 }
801
802 template <class Impl>
803 void
804 DefaultCommit<Impl>::propagateInterrupt()
805 {
806 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
807 tcSquash[0])
808 return;
809
810 // Process interrupts if interrupts are enabled, not in PAL
811 // mode, and no other traps or external squashes are currently
812 // pending.
813 // @todo: Allow other threads to handle interrupts.
814
815 // Get any interrupt that happened
816 interrupt = cpu->getInterrupts();
817
818 // Tell fetch that there is an interrupt pending. This
819 // will make fetch wait until it sees a non PAL-mode PC,
820 // at which point it stops fetching instructions.
821 if (interrupt != NoFault)
822 toIEW->commitInfo[0].interruptPending = true;
823 }
824
825 template <class Impl>
826 void
827 DefaultCommit<Impl>::commit()
828 {
829 if (FullSystem) {
830 // Check if we have a interrupt and get read to handle it
831 if (cpu->checkInterrupts(cpu->tcBase(0)))
832 propagateInterrupt();
833 }
834
835 ////////////////////////////////////
836 // Check for any possible squashes, handle them first
837 ////////////////////////////////////
838 list<ThreadID>::iterator threads = activeThreads->begin();
839 list<ThreadID>::iterator end = activeThreads->end();
840
841 while (threads != end) {
842 ThreadID tid = *threads++;
843
844 // Not sure which one takes priority. I think if we have
845 // both, that's a bad sign.
846 if (trapSquash[tid]) {
847 assert(!tcSquash[tid]);
848 squashFromTrap(tid);
849 } else if (tcSquash[tid]) {
850 assert(commitStatus[tid] != TrapPending);
851 squashFromTC(tid);
852 } else if (commitStatus[tid] == SquashAfterPending) {
853 // A squash from the previous cycle of the commit stage (i.e.,
854 // commitInsts() called squashAfter) is pending. Squash the
855 // thread now.
856 squashFromSquashAfter(tid);
857 }
858
859 // Squashed sequence number must be older than youngest valid
860 // instruction in the ROB. This prevents squashes from younger
861 // instructions overriding squashes from older instructions.
862 if (fromIEW->squash[tid] &&
863 commitStatus[tid] != TrapPending &&
864 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
865
866 if (fromIEW->mispredictInst[tid]) {
867 DPRINTF(Commit,
868 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
869 tid,
870 fromIEW->mispredictInst[tid]->instAddr(),
871 fromIEW->squashedSeqNum[tid]);
872 } else {
873 DPRINTF(Commit,
874 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
875 tid, fromIEW->squashedSeqNum[tid]);
876 }
877
878 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
879 tid,
880 fromIEW->pc[tid].nextInstAddr());
881
882 commitStatus[tid] = ROBSquashing;
883
884 // If we want to include the squashing instruction in the squash,
885 // then use one older sequence number.
886 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
887
888 if (fromIEW->includeSquashInst[tid]) {
889 squashed_inst--;
890 }
891
892 // All younger instructions will be squashed. Set the sequence
893 // number as the youngest instruction in the ROB.
894 youngestSeqNum[tid] = squashed_inst;
895
896 rob->squash(squashed_inst, tid);
897 changedROBNumEntries[tid] = true;
898
899 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
900
901 toIEW->commitInfo[tid].squash = true;
902
903 // Send back the rob squashing signal so other stages know that
904 // the ROB is in the process of squashing.
905 toIEW->commitInfo[tid].robSquashing = true;
906
907 toIEW->commitInfo[tid].mispredictInst =
908 fromIEW->mispredictInst[tid];
909 toIEW->commitInfo[tid].branchTaken =
910 fromIEW->branchTaken[tid];
911 toIEW->commitInfo[tid].squashInst =
912 rob->findInst(tid, squashed_inst);
913 if (toIEW->commitInfo[tid].mispredictInst) {
914 if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
915 toIEW->commitInfo[tid].branchTaken = true;
916 }
917 }
918
919 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
920
921 if (toIEW->commitInfo[tid].mispredictInst) {
922 ++branchMispredicts;
923 }
924 }
925
926 }
927
928 setNextStatus();
929
930 if (squashCounter != numThreads) {
931 // If we're not currently squashing, then get instructions.
932 getInsts();
933
934 // Try to commit any instructions.
935 commitInsts();
936 }
937
938 //Check for any activity
939 threads = activeThreads->begin();
940
941 while (threads != end) {
942 ThreadID tid = *threads++;
943
944 if (changedROBNumEntries[tid]) {
945 toIEW->commitInfo[tid].usedROB = true;
946 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
947
948 wroteToTimeBuffer = true;
949 changedROBNumEntries[tid] = false;
950 if (rob->isEmpty(tid))
951 checkEmptyROB[tid] = true;
952 }
953
954 // ROB is only considered "empty" for previous stages if: a)
955 // ROB is empty, b) there are no outstanding stores, c) IEW
956 // stage has received any information regarding stores that
957 // committed.
958 // c) is checked by making sure to not consider the ROB empty
959 // on the same cycle as when stores have been committed.
960 // @todo: Make this handle multi-cycle communication between
961 // commit and IEW.
962 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
963 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
964 checkEmptyROB[tid] = false;
965 toIEW->commitInfo[tid].usedROB = true;
966 toIEW->commitInfo[tid].emptyROB = true;
967 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
968 wroteToTimeBuffer = true;
969 }
970
971 }
972 }
973
974 template <class Impl>
975 void
976 DefaultCommit<Impl>::commitInsts()
977 {
978 ////////////////////////////////////
979 // Handle commit
980 // Note that commit will be handled prior to putting new
981 // instructions in the ROB so that the ROB only tries to commit
982 // instructions it has in this current cycle, and not instructions
983 // it is writing in during this cycle. Can't commit and squash
984 // things at the same time...
985 ////////////////////////////////////
986
987 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
988
989 unsigned num_committed = 0;
990
991 DynInstPtr head_inst;
992
993 // Commit as many instructions as possible until the commit bandwidth
994 // limit is reached, or it becomes impossible to commit any more.
995 while (num_committed < commitWidth) {
996 // Check for any interrupt that we've already squashed for
997 // and start processing it.
998 if (interrupt != NoFault)
999 handleInterrupt();
1000
1001 int commit_thread = getCommittingThread();
1002
1003 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
1004 break;
1005
1006 head_inst = rob->readHeadInst(commit_thread);
1007
1008 ThreadID tid = head_inst->threadNumber;
1009
1010 assert(tid == commit_thread);
1011
1012 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1013 head_inst->seqNum, tid);
1014
1015 // If the head instruction is squashed, it is ready to retire
1016 // (be removed from the ROB) at any time.
1017 if (head_inst->isSquashed()) {
1018
1019 DPRINTF(Commit, "Retiring squashed instruction from "
1020 "ROB.\n");
1021
1022 rob->retireHead(commit_thread);
1023
1024 ++commitSquashedInsts;
1025
1026 // Record that the number of ROB entries has changed.
1027 changedROBNumEntries[tid] = true;
1028 } else {
1029 pc[tid] = head_inst->pcState();
1030
1031 // Increment the total number of non-speculative instructions
1032 // executed.
1033 // Hack for now: it really shouldn't happen until after the
1034 // commit is deemed to be successful, but this count is needed
1035 // for syscalls.
1036 thread[tid]->funcExeInst++;
1037
1038 // Try to commit the head instruction.
1039 bool commit_success = commitHead(head_inst, num_committed);
1040
1041 if (commit_success) {
1042 ++num_committed;
1043 statCommittedInstType[tid][head_inst->opClass()]++;
1044 ppCommit->notify(head_inst);
1045
1046 changedROBNumEntries[tid] = true;
1047
1048 // Set the doneSeqNum to the youngest committed instruction.
1049 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1050
1051 if (tid == 0) {
1052 canHandleInterrupts = (!head_inst->isDelayedCommit()) &&
1053 ((THE_ISA != ALPHA_ISA) ||
1054 (!(pc[0].instAddr() & 0x3)));
1055 }
1056
1057 // Updates misc. registers.
1058 head_inst->updateMiscRegs();
1059
1060 // Check instruction execution if it successfully commits and
1061 // is not carrying a fault.
1062 if (cpu->checker) {
1063 cpu->checker->verify(head_inst);
1064 }
1065
1066 cpu->traceFunctions(pc[tid].instAddr());
1067
1068 TheISA::advancePC(pc[tid], head_inst->staticInst);
1069
1070 // Keep track of the last sequence number commited
1071 lastCommitedSeqNum[tid] = head_inst->seqNum;
1072
1073 // If this is an instruction that doesn't play nicely with
1074 // others squash everything and restart fetch
1075 if (head_inst->isSquashAfter())
1076 squashAfter(tid, head_inst);
1077
1078 if (drainPending) {
1079 DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1080 if (pc[tid].microPC() == 0 && interrupt == NoFault) {
1081 squashAfter(tid, head_inst);
1082 cpu->commitDrained(tid);
1083 }
1084 }
1085
1086 int count = 0;
1087 Addr oldpc;
1088 // Debug statement. Checks to make sure we're not
1089 // currently updating state while handling PC events.
1090 assert(!thread[tid]->noSquashFromTC && !thread[tid]->trapPending);
1091 do {
1092 oldpc = pc[tid].instAddr();
1093 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1094 count++;
1095 } while (oldpc != pc[tid].instAddr());
1096 if (count > 1) {
1097 DPRINTF(Commit,
1098 "PC skip function event, stopping commit\n");
1099 break;
1100 }
1101
1102 // Check if an instruction just enabled interrupts and we've
1103 // previously had an interrupt pending that was not handled
1104 // because interrupts were subsequently disabled before the
1105 // pipeline reached a place to handle the interrupt. In that
1106 // case squash now to make sure the interrupt is handled.
1107 //
1108 // If we don't do this, we might end up in a live lock situation
1109 if (!interrupt && avoidQuiesceLiveLock &&
1110 (!head_inst->isMicroop() || head_inst->isLastMicroop()) &&
1111 cpu->checkInterrupts(cpu->tcBase(0)))
1112 squashAfter(tid, head_inst);
1113 } else {
1114 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1115 "[tid:%i] [sn:%i].\n",
1116 head_inst->pcState(), tid ,head_inst->seqNum);
1117 break;
1118 }
1119 }
1120 }
1121
1122 DPRINTF(CommitRate, "%i\n", num_committed);
1123 numCommittedDist.sample(num_committed);
1124
1125 if (num_committed == commitWidth) {
1126 commitEligibleSamples++;
1127 }
1128 }
1129
1130 template <class Impl>
1131 bool
1132 DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1133 {
1134 assert(head_inst);
1135
1136 ThreadID tid = head_inst->threadNumber;
1137
1138 // If the instruction is not executed yet, then it will need extra
1139 // handling. Signal backwards that it should be executed.
1140 if (!head_inst->isExecuted()) {
1141 // Keep this number correct. We have not yet actually executed
1142 // and committed this instruction.
1143 thread[tid]->funcExeInst--;
1144
1145 // Make sure we are only trying to commit un-executed instructions we
1146 // think are possible.
1147 assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1148 || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1149 (head_inst->isLoad() && head_inst->uncacheable()));
1150
1151 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1152 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1153 head_inst->seqNum, head_inst->pcState());
1154
1155 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1156 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1157 return false;
1158 }
1159
1160 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1161
1162 // Change the instruction so it won't try to commit again until
1163 // it is executed.
1164 head_inst->clearCanCommit();
1165
1166 if (head_inst->isLoad() && head_inst->uncacheable()) {
1167 DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1168 head_inst->seqNum, head_inst->pcState());
1169 toIEW->commitInfo[tid].uncached = true;
1170 toIEW->commitInfo[tid].uncachedLoad = head_inst;
1171 } else {
1172 ++commitNonSpecStalls;
1173 }
1174
1175 return false;
1176 }
1177
1178 if (head_inst->isThreadSync()) {
1179 // Not handled for now.
1180 panic("Thread sync instructions are not handled yet.\n");
1181 }
1182
1183 // Check if the instruction caused a fault. If so, trap.
1184 Fault inst_fault = head_inst->getFault();
1185
1186 // Stores mark themselves as completed.
1187 if (!head_inst->isStore() && inst_fault == NoFault) {
1188 head_inst->setCompleted();
1189 }
1190
1191 if (inst_fault != NoFault) {
1192 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1193 head_inst->seqNum, head_inst->pcState());
1194
1195 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1196 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1197 return false;
1198 }
1199
1200 head_inst->setCompleted();
1201
1202 // If instruction has faulted, let the checker execute it and
1203 // check if it sees the same fault and control flow.
1204 if (cpu->checker) {
1205 // Need to check the instruction before its fault is processed
1206 cpu->checker->verify(head_inst);
1207 }
1208
1209 assert(!thread[tid]->noSquashFromTC);
1210
1211 // Mark that we're in state update mode so that the trap's
1212 // execution doesn't generate extra squashes.
1213 thread[tid]->noSquashFromTC = true;
1214
1215 // Execute the trap. Although it's slightly unrealistic in
1216 // terms of timing (as it doesn't wait for the full timing of
1217 // the trap event to complete before updating state), it's
1218 // needed to update the state as soon as possible. This
1219 // prevents external agents from changing any specific state
1220 // that the trap need.
1221 cpu->trap(inst_fault, tid, head_inst->staticInst);
1222
1223 // Exit state update mode to avoid accidental updating.
1224 thread[tid]->noSquashFromTC = false;
1225
1226 commitStatus[tid] = TrapPending;
1227
1228 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1229 head_inst->seqNum);
1230 if (head_inst->traceData) {
1231 if (DTRACE(ExecFaulting)) {
1232 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1233 head_inst->traceData->setCPSeq(thread[tid]->numOp);
1234 head_inst->traceData->dump();
1235 }
1236 delete head_inst->traceData;
1237 head_inst->traceData = NULL;
1238 }
1239
1240 // Generate trap squash event.
1241 generateTrapEvent(tid);
1242 return false;
1243 }
1244
1245 updateComInstStats(head_inst);
1246
1247 if (FullSystem) {
1248 if (thread[tid]->profile) {
1249 thread[tid]->profilePC = head_inst->instAddr();
1250 ProfileNode *node = thread[tid]->profile->consume(
1251 thread[tid]->getTC(), head_inst->staticInst);
1252
1253 if (node)
1254 thread[tid]->profileNode = node;
1255 }
1256 if (CPA::available()) {
1257 if (head_inst->isControl()) {
1258 ThreadContext *tc = thread[tid]->getTC();
1259 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1260 }
1261 }
1262 }
1263 DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1264 head_inst->seqNum, head_inst->pcState());
1265 if (head_inst->traceData) {
1266 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1267 head_inst->traceData->setCPSeq(thread[tid]->numOp);
1268 head_inst->traceData->dump();
1269 delete head_inst->traceData;
1270 head_inst->traceData = NULL;
1271 }
1272 if (head_inst->isReturn()) {
1273 DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1274 head_inst->seqNum, head_inst->pcState());
1275 }
1276
1277 // Update the commit rename map
1278 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1279 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1280 head_inst->renamedDestRegIdx(i));
1281 }
1282
1283 // Finally clear the head ROB entry.
1284 rob->retireHead(tid);
1285
1286 #if TRACING_ON
1287 if (DTRACE(O3PipeView)) {
1288 head_inst->commitTick = curTick() - head_inst->fetchTick;
1289 }
1290 #endif
1291
1292 // If this was a store, record it for this cycle.
1293 if (head_inst->isStore())
1294 committedStores[tid] = true;
1295
1296 // Return true to indicate that we have committed an instruction.
1297 return true;
1298 }
1299
1300 template <class Impl>
1301 void
1302 DefaultCommit<Impl>::getInsts()
1303 {
1304 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1305
1306 // Read any renamed instructions and place them into the ROB.
1307 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1308
1309 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1310 DynInstPtr inst;
1311
1312 inst = fromRename->insts[inst_num];
1313 ThreadID tid = inst->threadNumber;
1314
1315 if (!inst->isSquashed() &&
1316 commitStatus[tid] != ROBSquashing &&
1317 commitStatus[tid] != TrapPending) {
1318 changedROBNumEntries[tid] = true;
1319
1320 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1321 inst->pcState(), inst->seqNum, tid);
1322
1323 rob->insertInst(inst);
1324
1325 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1326
1327 youngestSeqNum[tid] = inst->seqNum;
1328 } else {
1329 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1330 "squashed, skipping.\n",
1331 inst->pcState(), inst->seqNum, tid);
1332 }
1333 }
1334 }
1335
1336 template <class Impl>
1337 void
1338 DefaultCommit<Impl>::skidInsert()
1339 {
1340 DPRINTF(Commit, "Attempting to any instructions from rename into "
1341 "skidBuffer.\n");
1342
1343 for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1344 DynInstPtr inst = fromRename->insts[inst_num];
1345
1346 if (!inst->isSquashed()) {
1347 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1348 "skidBuffer.\n", inst->pcState(), inst->seqNum,
1349 inst->threadNumber);
1350 skidBuffer.push(inst);
1351 } else {
1352 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1353 "squashed, skipping.\n",
1354 inst->pcState(), inst->seqNum, inst->threadNumber);
1355 }
1356 }
1357 }
1358
1359 template <class Impl>
1360 void
1361 DefaultCommit<Impl>::markCompletedInsts()
1362 {
1363 // Grab completed insts out of the IEW instruction queue, and mark
1364 // instructions completed within the ROB.
1365 for (int inst_num = 0;
1366 inst_num < fromIEW->size && fromIEW->insts[inst_num];
1367 ++inst_num)
1368 {
1369 if (!fromIEW->insts[inst_num]->isSquashed()) {
1370 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1371 "within ROB.\n",
1372 fromIEW->insts[inst_num]->threadNumber,
1373 fromIEW->insts[inst_num]->pcState(),
1374 fromIEW->insts[inst_num]->seqNum);
1375
1376 // Mark the instruction as ready to commit.
1377 fromIEW->insts[inst_num]->setCanCommit();
1378 }
1379 }
1380 }
1381
1382 template <class Impl>
1383 bool
1384 DefaultCommit<Impl>::robDoneSquashing()
1385 {
1386 list<ThreadID>::iterator threads = activeThreads->begin();
1387 list<ThreadID>::iterator end = activeThreads->end();
1388
1389 while (threads != end) {
1390 ThreadID tid = *threads++;
1391
1392 if (!rob->isDoneSquashing(tid))
1393 return false;
1394 }
1395
1396 return true;
1397 }
1398
1399 template <class Impl>
1400 void
1401 DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1402 {
1403 ThreadID tid = inst->threadNumber;
1404
1405 if (!inst->isMicroop() || inst->isLastMicroop())
1406 instsCommitted[tid]++;
1407 opsCommitted[tid]++;
1408
1409 // To match the old model, don't count nops and instruction
1410 // prefetches towards the total commit count.
1411 if (!inst->isNop() && !inst->isInstPrefetch()) {
1412 cpu->instDone(tid, inst);
1413 }
1414
1415 //
1416 // Control Instructions
1417 //
1418 if (inst->isControl())
1419 statComBranches[tid]++;
1420
1421 //
1422 // Memory references
1423 //
1424 if (inst->isMemRef()) {
1425 statComRefs[tid]++;
1426
1427 if (inst->isLoad()) {
1428 statComLoads[tid]++;
1429 }
1430 }
1431
1432 if (inst->isMemBarrier()) {
1433 statComMembars[tid]++;
1434 }
1435
1436 // Integer Instruction
1437 if (inst->isInteger())
1438 statComInteger[tid]++;
1439
1440 // Floating Point Instruction
1441 if (inst->isFloating())
1442 statComFloating[tid]++;
1443
1444 // Function Calls
1445 if (inst->isCall())
1446 statComFunctionCalls[tid]++;
1447
1448 }
1449
1450 ////////////////////////////////////////
1451 // //
1452 // SMT COMMIT POLICY MAINTAINED HERE //
1453 // //
1454 ////////////////////////////////////////
1455 template <class Impl>
1456 ThreadID
1457 DefaultCommit<Impl>::getCommittingThread()
1458 {
1459 if (numThreads > 1) {
1460 switch (commitPolicy) {
1461
1462 case Aggressive:
1463 //If Policy is Aggressive, commit will call
1464 //this function multiple times per
1465 //cycle
1466 return oldestReady();
1467
1468 case RoundRobin:
1469 return roundRobin();
1470
1471 case OldestReady:
1472 return oldestReady();
1473
1474 default:
1475 return InvalidThreadID;
1476 }
1477 } else {
1478 assert(!activeThreads->empty());
1479 ThreadID tid = activeThreads->front();
1480
1481 if (commitStatus[tid] == Running ||
1482 commitStatus[tid] == Idle ||
1483 commitStatus[tid] == FetchTrapPending) {
1484 return tid;
1485 } else {
1486 return InvalidThreadID;
1487 }
1488 }
1489 }
1490
1491 template<class Impl>
1492 ThreadID
1493 DefaultCommit<Impl>::roundRobin()
1494 {
1495 list<ThreadID>::iterator pri_iter = priority_list.begin();
1496 list<ThreadID>::iterator end = priority_list.end();
1497
1498 while (pri_iter != end) {
1499 ThreadID tid = *pri_iter;
1500
1501 if (commitStatus[tid] == Running ||
1502 commitStatus[tid] == Idle ||
1503 commitStatus[tid] == FetchTrapPending) {
1504
1505 if (rob->isHeadReady(tid)) {
1506 priority_list.erase(pri_iter);
1507 priority_list.push_back(tid);
1508
1509 return tid;
1510 }
1511 }
1512
1513 pri_iter++;
1514 }
1515
1516 return InvalidThreadID;
1517 }
1518
1519 template<class Impl>
1520 ThreadID
1521 DefaultCommit<Impl>::oldestReady()
1522 {
1523 unsigned oldest = 0;
1524 bool first = true;
1525
1526 list<ThreadID>::iterator threads = activeThreads->begin();
1527 list<ThreadID>::iterator end = activeThreads->end();
1528
1529 while (threads != end) {
1530 ThreadID tid = *threads++;
1531
1532 if (!rob->isEmpty(tid) &&
1533 (commitStatus[tid] == Running ||
1534 commitStatus[tid] == Idle ||
1535 commitStatus[tid] == FetchTrapPending)) {
1536
1537 if (rob->isHeadReady(tid)) {
1538
1539 DynInstPtr head_inst = rob->readHeadInst(tid);
1540
1541 if (first) {
1542 oldest = tid;
1543 first = false;
1544 } else if (head_inst->seqNum < oldest) {
1545 oldest = tid;
1546 }
1547 }
1548 }
1549 }
1550
1551 if (!first) {
1552 return oldest;
1553 } else {
1554 return InvalidThreadID;
1555 }
1556 }
1557
1558 #endif//__CPU_O3_COMMIT_IMPL_HH__