SE/FS: Get rid of FULL_SYSTEM in the CPU directory.
[gem5.git] / src / cpu / o3 / commit_impl.hh
1 /*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44 #include <algorithm>
45 #include <string>
46
47 #include "arch/utility.hh"
48 #include "base/loader/symtab.hh"
49 #include "base/cp_annotate.hh"
50 #include "config/the_isa.hh"
51 #include "config/use_checker.hh"
52 #include "cpu/o3/commit.hh"
53 #include "cpu/o3/thread_state.hh"
54 #include "cpu/exetrace.hh"
55 #include "cpu/timebuf.hh"
56 #include "debug/Activity.hh"
57 #include "debug/Commit.hh"
58 #include "debug/CommitRate.hh"
59 #include "debug/ExecFaulting.hh"
60 #include "debug/O3PipeView.hh"
61 #include "params/DerivO3CPU.hh"
62 #include "sim/faults.hh"
63 #include "sim/full_system.hh"
64
65 #if USE_CHECKER
66 #include "cpu/checker/cpu.hh"
67 #endif
68
69 using namespace std;
70
71 template <class Impl>
72 DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
73 ThreadID _tid)
74 : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
75 {
76 }
77
78 template <class Impl>
79 void
80 DefaultCommit<Impl>::TrapEvent::process()
81 {
82 // This will get reset by commit if it was switched out at the
83 // time of this event processing.
84 commit->trapSquash[tid] = true;
85 }
86
87 template <class Impl>
88 const char *
89 DefaultCommit<Impl>::TrapEvent::description() const
90 {
91 return "Trap";
92 }
93
94 template <class Impl>
95 DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
96 : cpu(_cpu),
97 squashCounter(0),
98 iewToCommitDelay(params->iewToCommitDelay),
99 commitToIEWDelay(params->commitToIEWDelay),
100 renameToROBDelay(params->renameToROBDelay),
101 fetchToCommitDelay(params->commitToFetchDelay),
102 renameWidth(params->renameWidth),
103 commitWidth(params->commitWidth),
104 numThreads(params->numThreads),
105 drainPending(false),
106 switchedOut(false),
107 trapLatency(params->trapLatency)
108 {
109 _status = Active;
110 _nextStatus = Inactive;
111 std::string policy = params->smtCommitPolicy;
112
113 //Convert string to lowercase
114 std::transform(policy.begin(), policy.end(), policy.begin(),
115 (int(*)(int)) tolower);
116
117 //Assign commit policy
118 if (policy == "aggressive"){
119 commitPolicy = Aggressive;
120
121 DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
122 } else if (policy == "roundrobin"){
123 commitPolicy = RoundRobin;
124
125 //Set-Up Priority List
126 for (ThreadID tid = 0; tid < numThreads; tid++) {
127 priority_list.push_back(tid);
128 }
129
130 DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
131 } else if (policy == "oldestready"){
132 commitPolicy = OldestReady;
133
134 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
135 } else {
136 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
137 "RoundRobin,OldestReady}");
138 }
139
140 for (ThreadID tid = 0; tid < numThreads; tid++) {
141 commitStatus[tid] = Idle;
142 changedROBNumEntries[tid] = false;
143 checkEmptyROB[tid] = false;
144 trapInFlight[tid] = false;
145 committedStores[tid] = false;
146 trapSquash[tid] = false;
147 tcSquash[tid] = false;
148 pc[tid].set(0);
149 lastCommitedSeqNum[tid] = 0;
150 }
151 interrupt = NoFault;
152 }
153
154 template <class Impl>
155 std::string
156 DefaultCommit<Impl>::name() const
157 {
158 return cpu->name() + ".commit";
159 }
160
161 template <class Impl>
162 void
163 DefaultCommit<Impl>::regStats()
164 {
165 using namespace Stats;
166 commitCommittedInsts
167 .name(name() + ".commitCommittedInsts")
168 .desc("The number of committed instructions")
169 .prereq(commitCommittedInsts);
170 commitSquashedInsts
171 .name(name() + ".commitSquashedInsts")
172 .desc("The number of squashed insts skipped by commit")
173 .prereq(commitSquashedInsts);
174 commitSquashEvents
175 .name(name() + ".commitSquashEvents")
176 .desc("The number of times commit is told to squash")
177 .prereq(commitSquashEvents);
178 commitNonSpecStalls
179 .name(name() + ".commitNonSpecStalls")
180 .desc("The number of times commit has been forced to stall to "
181 "communicate backwards")
182 .prereq(commitNonSpecStalls);
183 branchMispredicts
184 .name(name() + ".branchMispredicts")
185 .desc("The number of times a branch was mispredicted")
186 .prereq(branchMispredicts);
187 numCommittedDist
188 .init(0,commitWidth,1)
189 .name(name() + ".committed_per_cycle")
190 .desc("Number of insts commited each cycle")
191 .flags(Stats::pdf)
192 ;
193
194 statComInst
195 .init(cpu->numThreads)
196 .name(name() + ".count")
197 .desc("Number of instructions committed")
198 .flags(total)
199 ;
200
201 statComSwp
202 .init(cpu->numThreads)
203 .name(name() + ".swp_count")
204 .desc("Number of s/w prefetches committed")
205 .flags(total)
206 ;
207
208 statComRefs
209 .init(cpu->numThreads)
210 .name(name() + ".refs")
211 .desc("Number of memory references committed")
212 .flags(total)
213 ;
214
215 statComLoads
216 .init(cpu->numThreads)
217 .name(name() + ".loads")
218 .desc("Number of loads committed")
219 .flags(total)
220 ;
221
222 statComMembars
223 .init(cpu->numThreads)
224 .name(name() + ".membars")
225 .desc("Number of memory barriers committed")
226 .flags(total)
227 ;
228
229 statComBranches
230 .init(cpu->numThreads)
231 .name(name() + ".branches")
232 .desc("Number of branches committed")
233 .flags(total)
234 ;
235
236 statComFloating
237 .init(cpu->numThreads)
238 .name(name() + ".fp_insts")
239 .desc("Number of committed floating point instructions.")
240 .flags(total)
241 ;
242
243 statComInteger
244 .init(cpu->numThreads)
245 .name(name()+".int_insts")
246 .desc("Number of committed integer instructions.")
247 .flags(total)
248 ;
249
250 statComFunctionCalls
251 .init(cpu->numThreads)
252 .name(name()+".function_calls")
253 .desc("Number of function calls committed.")
254 .flags(total)
255 ;
256
257 commitEligible
258 .init(cpu->numThreads)
259 .name(name() + ".bw_limited")
260 .desc("number of insts not committed due to BW limits")
261 .flags(total)
262 ;
263
264 commitEligibleSamples
265 .name(name() + ".bw_lim_events")
266 .desc("number cycles where commit BW limit reached")
267 ;
268 }
269
270 template <class Impl>
271 void
272 DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
273 {
274 thread = threads;
275 }
276
277 template <class Impl>
278 void
279 DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
280 {
281 timeBuffer = tb_ptr;
282
283 // Setup wire to send information back to IEW.
284 toIEW = timeBuffer->getWire(0);
285
286 // Setup wire to read data from IEW (for the ROB).
287 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
288 }
289
290 template <class Impl>
291 void
292 DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
293 {
294 fetchQueue = fq_ptr;
295
296 // Setup wire to get instructions from rename (for the ROB).
297 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
298 }
299
300 template <class Impl>
301 void
302 DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
303 {
304 renameQueue = rq_ptr;
305
306 // Setup wire to get instructions from rename (for the ROB).
307 fromRename = renameQueue->getWire(-renameToROBDelay);
308 }
309
310 template <class Impl>
311 void
312 DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
313 {
314 iewQueue = iq_ptr;
315
316 // Setup wire to get instructions from IEW.
317 fromIEW = iewQueue->getWire(-iewToCommitDelay);
318 }
319
320 template <class Impl>
321 void
322 DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
323 {
324 iewStage = iew_stage;
325 }
326
327 template<class Impl>
328 void
329 DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
330 {
331 activeThreads = at_ptr;
332 }
333
334 template <class Impl>
335 void
336 DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
337 {
338 for (ThreadID tid = 0; tid < numThreads; tid++)
339 renameMap[tid] = &rm_ptr[tid];
340 }
341
342 template <class Impl>
343 void
344 DefaultCommit<Impl>::setROB(ROB *rob_ptr)
345 {
346 rob = rob_ptr;
347 }
348
349 template <class Impl>
350 void
351 DefaultCommit<Impl>::initStage()
352 {
353 rob->setActiveThreads(activeThreads);
354 rob->resetEntries();
355
356 // Broadcast the number of free entries.
357 for (ThreadID tid = 0; tid < numThreads; tid++) {
358 toIEW->commitInfo[tid].usedROB = true;
359 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
360 toIEW->commitInfo[tid].emptyROB = true;
361 }
362
363 // Commit must broadcast the number of free entries it has at the
364 // start of the simulation, so it starts as active.
365 cpu->activateStage(O3CPU::CommitIdx);
366
367 cpu->activityThisCycle();
368 trapLatency = cpu->ticks(trapLatency);
369 }
370
371 template <class Impl>
372 bool
373 DefaultCommit<Impl>::drain()
374 {
375 drainPending = true;
376
377 return false;
378 }
379
380 template <class Impl>
381 void
382 DefaultCommit<Impl>::switchOut()
383 {
384 switchedOut = true;
385 drainPending = false;
386 rob->switchOut();
387 }
388
389 template <class Impl>
390 void
391 DefaultCommit<Impl>::resume()
392 {
393 drainPending = false;
394 }
395
396 template <class Impl>
397 void
398 DefaultCommit<Impl>::takeOverFrom()
399 {
400 switchedOut = false;
401 _status = Active;
402 _nextStatus = Inactive;
403 for (ThreadID tid = 0; tid < numThreads; tid++) {
404 commitStatus[tid] = Idle;
405 changedROBNumEntries[tid] = false;
406 trapSquash[tid] = false;
407 tcSquash[tid] = false;
408 }
409 squashCounter = 0;
410 rob->takeOverFrom();
411 }
412
413 template <class Impl>
414 void
415 DefaultCommit<Impl>::updateStatus()
416 {
417 // reset ROB changed variable
418 list<ThreadID>::iterator threads = activeThreads->begin();
419 list<ThreadID>::iterator end = activeThreads->end();
420
421 while (threads != end) {
422 ThreadID tid = *threads++;
423
424 changedROBNumEntries[tid] = false;
425
426 // Also check if any of the threads has a trap pending
427 if (commitStatus[tid] == TrapPending ||
428 commitStatus[tid] == FetchTrapPending) {
429 _nextStatus = Active;
430 }
431 }
432
433 if (_nextStatus == Inactive && _status == Active) {
434 DPRINTF(Activity, "Deactivating stage.\n");
435 cpu->deactivateStage(O3CPU::CommitIdx);
436 } else if (_nextStatus == Active && _status == Inactive) {
437 DPRINTF(Activity, "Activating stage.\n");
438 cpu->activateStage(O3CPU::CommitIdx);
439 }
440
441 _status = _nextStatus;
442 }
443
444 template <class Impl>
445 void
446 DefaultCommit<Impl>::setNextStatus()
447 {
448 int squashes = 0;
449
450 list<ThreadID>::iterator threads = activeThreads->begin();
451 list<ThreadID>::iterator end = activeThreads->end();
452
453 while (threads != end) {
454 ThreadID tid = *threads++;
455
456 if (commitStatus[tid] == ROBSquashing) {
457 squashes++;
458 }
459 }
460
461 squashCounter = squashes;
462
463 // If commit is currently squashing, then it will have activity for the
464 // next cycle. Set its next status as active.
465 if (squashCounter) {
466 _nextStatus = Active;
467 }
468 }
469
470 template <class Impl>
471 bool
472 DefaultCommit<Impl>::changedROBEntries()
473 {
474 list<ThreadID>::iterator threads = activeThreads->begin();
475 list<ThreadID>::iterator end = activeThreads->end();
476
477 while (threads != end) {
478 ThreadID tid = *threads++;
479
480 if (changedROBNumEntries[tid]) {
481 return true;
482 }
483 }
484
485 return false;
486 }
487
488 template <class Impl>
489 size_t
490 DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
491 {
492 return rob->numFreeEntries(tid);
493 }
494
495 template <class Impl>
496 void
497 DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
498 {
499 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
500
501 TrapEvent *trap = new TrapEvent(this, tid);
502
503 cpu->schedule(trap, curTick() + trapLatency);
504 trapInFlight[tid] = true;
505 thread[tid]->trapPending = true;
506 }
507
508 template <class Impl>
509 void
510 DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
511 {
512 assert(!trapInFlight[tid]);
513 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
514
515 tcSquash[tid] = true;
516 }
517
518 template <class Impl>
519 void
520 DefaultCommit<Impl>::squashAll(ThreadID tid)
521 {
522 // If we want to include the squashing instruction in the squash,
523 // then use one older sequence number.
524 // Hopefully this doesn't mess things up. Basically I want to squash
525 // all instructions of this thread.
526 InstSeqNum squashed_inst = rob->isEmpty() ?
527 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
528
529 // All younger instructions will be squashed. Set the sequence
530 // number as the youngest instruction in the ROB (0 in this case.
531 // Hopefully nothing breaks.)
532 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
533
534 rob->squash(squashed_inst, tid);
535 changedROBNumEntries[tid] = true;
536
537 // Send back the sequence number of the squashed instruction.
538 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
539
540 // Send back the squash signal to tell stages that they should
541 // squash.
542 toIEW->commitInfo[tid].squash = true;
543
544 // Send back the rob squashing signal so other stages know that
545 // the ROB is in the process of squashing.
546 toIEW->commitInfo[tid].robSquashing = true;
547
548 toIEW->commitInfo[tid].mispredictInst = NULL;
549 toIEW->commitInfo[tid].squashInst = NULL;
550
551 toIEW->commitInfo[tid].pc = pc[tid];
552 }
553
554 template <class Impl>
555 void
556 DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
557 {
558 squashAll(tid);
559
560 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
561
562 thread[tid]->trapPending = false;
563 thread[tid]->inSyscall = false;
564 trapInFlight[tid] = false;
565
566 trapSquash[tid] = false;
567
568 commitStatus[tid] = ROBSquashing;
569 cpu->activityThisCycle();
570 }
571
572 template <class Impl>
573 void
574 DefaultCommit<Impl>::squashFromTC(ThreadID tid)
575 {
576 squashAll(tid);
577
578 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
579
580 thread[tid]->inSyscall = false;
581 assert(!thread[tid]->trapPending);
582
583 commitStatus[tid] = ROBSquashing;
584 cpu->activityThisCycle();
585
586 tcSquash[tid] = false;
587 }
588
589 template <class Impl>
590 void
591 DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst,
592 uint64_t squash_after_seq_num)
593 {
594 youngestSeqNum[tid] = squash_after_seq_num;
595
596 rob->squash(squash_after_seq_num, tid);
597 changedROBNumEntries[tid] = true;
598
599 // Send back the sequence number of the squashed instruction.
600 toIEW->commitInfo[tid].doneSeqNum = squash_after_seq_num;
601
602 toIEW->commitInfo[tid].squashInst = head_inst;
603 // Send back the squash signal to tell stages that they should squash.
604 toIEW->commitInfo[tid].squash = true;
605
606 // Send back the rob squashing signal so other stages know that
607 // the ROB is in the process of squashing.
608 toIEW->commitInfo[tid].robSquashing = true;
609
610 toIEW->commitInfo[tid].mispredictInst = NULL;
611
612 toIEW->commitInfo[tid].pc = pc[tid];
613 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
614 tid, squash_after_seq_num);
615 commitStatus[tid] = ROBSquashing;
616 }
617
618 template <class Impl>
619 void
620 DefaultCommit<Impl>::tick()
621 {
622 wroteToTimeBuffer = false;
623 _nextStatus = Inactive;
624
625 if (drainPending && rob->isEmpty() && !iewStage->hasStoresToWB()) {
626 cpu->signalDrained();
627 drainPending = false;
628 return;
629 }
630
631 if (activeThreads->empty())
632 return;
633
634 list<ThreadID>::iterator threads = activeThreads->begin();
635 list<ThreadID>::iterator end = activeThreads->end();
636
637 // Check if any of the threads are done squashing. Change the
638 // status if they are done.
639 while (threads != end) {
640 ThreadID tid = *threads++;
641
642 // Clear the bit saying if the thread has committed stores
643 // this cycle.
644 committedStores[tid] = false;
645
646 if (commitStatus[tid] == ROBSquashing) {
647
648 if (rob->isDoneSquashing(tid)) {
649 commitStatus[tid] = Running;
650 } else {
651 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
652 " insts this cycle.\n", tid);
653 rob->doSquash(tid);
654 toIEW->commitInfo[tid].robSquashing = true;
655 wroteToTimeBuffer = true;
656 }
657 }
658 }
659
660 commit();
661
662 markCompletedInsts();
663
664 threads = activeThreads->begin();
665
666 while (threads != end) {
667 ThreadID tid = *threads++;
668
669 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
670 // The ROB has more instructions it can commit. Its next status
671 // will be active.
672 _nextStatus = Active;
673
674 DynInstPtr inst = rob->readHeadInst(tid);
675
676 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
677 " ROB and ready to commit\n",
678 tid, inst->seqNum, inst->pcState());
679
680 } else if (!rob->isEmpty(tid)) {
681 DynInstPtr inst = rob->readHeadInst(tid);
682
683 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
684 "%s is head of ROB and not ready\n",
685 tid, inst->seqNum, inst->pcState());
686 }
687
688 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
689 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
690 }
691
692
693 if (wroteToTimeBuffer) {
694 DPRINTF(Activity, "Activity This Cycle.\n");
695 cpu->activityThisCycle();
696 }
697
698 updateStatus();
699 }
700
701 template <class Impl>
702 void
703 DefaultCommit<Impl>::handleInterrupt()
704 {
705 // Verify that we still have an interrupt to handle
706 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
707 DPRINTF(Commit, "Pending interrupt is cleared by master before "
708 "it got handled. Restart fetching from the orig path.\n");
709 toIEW->commitInfo[0].clearInterrupt = true;
710 interrupt = NoFault;
711 return;
712 }
713
714 // Wait until all in flight instructions are finished before enterring
715 // the interrupt.
716 if (cpu->instList.empty()) {
717 // Squash or record that I need to squash this cycle if
718 // an interrupt needed to be handled.
719 DPRINTF(Commit, "Interrupt detected.\n");
720
721 // Clear the interrupt now that it's going to be handled
722 toIEW->commitInfo[0].clearInterrupt = true;
723
724 assert(!thread[0]->inSyscall);
725 thread[0]->inSyscall = true;
726
727 // CPU will handle interrupt.
728 cpu->processInterrupts(interrupt);
729
730 thread[0]->inSyscall = false;
731
732 commitStatus[0] = TrapPending;
733
734 // Generate trap squash event.
735 generateTrapEvent(0);
736
737 interrupt = NoFault;
738 } else {
739 DPRINTF(Commit, "Interrupt pending, waiting for ROB to empty.\n");
740 }
741 }
742
743 template <class Impl>
744 void
745 DefaultCommit<Impl>::propagateInterrupt()
746 {
747 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
748 tcSquash[0])
749 return;
750
751 // Process interrupts if interrupts are enabled, not in PAL
752 // mode, and no other traps or external squashes are currently
753 // pending.
754 // @todo: Allow other threads to handle interrupts.
755
756 // Get any interrupt that happened
757 interrupt = cpu->getInterrupts();
758
759 // Tell fetch that there is an interrupt pending. This
760 // will make fetch wait until it sees a non PAL-mode PC,
761 // at which point it stops fetching instructions.
762 if (interrupt != NoFault)
763 toIEW->commitInfo[0].interruptPending = true;
764 }
765
766 template <class Impl>
767 void
768 DefaultCommit<Impl>::commit()
769 {
770 if (FullSystem) {
771 // Check for any interrupt that we've already squashed for and start
772 // processing it.
773 if (interrupt != NoFault)
774 handleInterrupt();
775
776 // Check if we have a interrupt and get read to handle it
777 if (cpu->checkInterrupts(cpu->tcBase(0)))
778 propagateInterrupt();
779 }
780
781 ////////////////////////////////////
782 // Check for any possible squashes, handle them first
783 ////////////////////////////////////
784 list<ThreadID>::iterator threads = activeThreads->begin();
785 list<ThreadID>::iterator end = activeThreads->end();
786
787 while (threads != end) {
788 ThreadID tid = *threads++;
789
790 // Not sure which one takes priority. I think if we have
791 // both, that's a bad sign.
792 if (trapSquash[tid] == true) {
793 assert(!tcSquash[tid]);
794 squashFromTrap(tid);
795 } else if (tcSquash[tid] == true) {
796 assert(commitStatus[tid] != TrapPending);
797 squashFromTC(tid);
798 }
799
800 // Squashed sequence number must be older than youngest valid
801 // instruction in the ROB. This prevents squashes from younger
802 // instructions overriding squashes from older instructions.
803 if (fromIEW->squash[tid] &&
804 commitStatus[tid] != TrapPending &&
805 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
806
807 if (fromIEW->mispredictInst[tid]) {
808 DPRINTF(Commit,
809 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
810 tid,
811 fromIEW->mispredictInst[tid]->instAddr(),
812 fromIEW->squashedSeqNum[tid]);
813 } else {
814 DPRINTF(Commit,
815 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
816 tid, fromIEW->squashedSeqNum[tid]);
817 }
818
819 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
820 tid,
821 fromIEW->pc[tid].nextInstAddr());
822
823 commitStatus[tid] = ROBSquashing;
824
825 // If we want to include the squashing instruction in the squash,
826 // then use one older sequence number.
827 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
828
829 if (fromIEW->includeSquashInst[tid] == true) {
830 squashed_inst--;
831 }
832
833 // All younger instructions will be squashed. Set the sequence
834 // number as the youngest instruction in the ROB.
835 youngestSeqNum[tid] = squashed_inst;
836
837 rob->squash(squashed_inst, tid);
838 changedROBNumEntries[tid] = true;
839
840 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
841
842 toIEW->commitInfo[tid].squash = true;
843
844 // Send back the rob squashing signal so other stages know that
845 // the ROB is in the process of squashing.
846 toIEW->commitInfo[tid].robSquashing = true;
847
848 toIEW->commitInfo[tid].mispredictInst =
849 fromIEW->mispredictInst[tid];
850 toIEW->commitInfo[tid].branchTaken =
851 fromIEW->branchTaken[tid];
852 toIEW->commitInfo[tid].squashInst = NULL;
853
854 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
855
856 if (toIEW->commitInfo[tid].mispredictInst) {
857 ++branchMispredicts;
858 }
859 }
860
861 }
862
863 setNextStatus();
864
865 if (squashCounter != numThreads) {
866 // If we're not currently squashing, then get instructions.
867 getInsts();
868
869 // Try to commit any instructions.
870 commitInsts();
871 }
872
873 //Check for any activity
874 threads = activeThreads->begin();
875
876 while (threads != end) {
877 ThreadID tid = *threads++;
878
879 if (changedROBNumEntries[tid]) {
880 toIEW->commitInfo[tid].usedROB = true;
881 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
882
883 wroteToTimeBuffer = true;
884 changedROBNumEntries[tid] = false;
885 if (rob->isEmpty(tid))
886 checkEmptyROB[tid] = true;
887 }
888
889 // ROB is only considered "empty" for previous stages if: a)
890 // ROB is empty, b) there are no outstanding stores, c) IEW
891 // stage has received any information regarding stores that
892 // committed.
893 // c) is checked by making sure to not consider the ROB empty
894 // on the same cycle as when stores have been committed.
895 // @todo: Make this handle multi-cycle communication between
896 // commit and IEW.
897 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
898 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
899 checkEmptyROB[tid] = false;
900 toIEW->commitInfo[tid].usedROB = true;
901 toIEW->commitInfo[tid].emptyROB = true;
902 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
903 wroteToTimeBuffer = true;
904 }
905
906 }
907 }
908
909 template <class Impl>
910 void
911 DefaultCommit<Impl>::commitInsts()
912 {
913 ////////////////////////////////////
914 // Handle commit
915 // Note that commit will be handled prior to putting new
916 // instructions in the ROB so that the ROB only tries to commit
917 // instructions it has in this current cycle, and not instructions
918 // it is writing in during this cycle. Can't commit and squash
919 // things at the same time...
920 ////////////////////////////////////
921
922 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
923
924 unsigned num_committed = 0;
925
926 DynInstPtr head_inst;
927
928 // Commit as many instructions as possible until the commit bandwidth
929 // limit is reached, or it becomes impossible to commit any more.
930 while (num_committed < commitWidth) {
931 int commit_thread = getCommittingThread();
932
933 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
934 break;
935
936 head_inst = rob->readHeadInst(commit_thread);
937
938 ThreadID tid = head_inst->threadNumber;
939
940 assert(tid == commit_thread);
941
942 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
943 head_inst->seqNum, tid);
944
945 // If the head instruction is squashed, it is ready to retire
946 // (be removed from the ROB) at any time.
947 if (head_inst->isSquashed()) {
948
949 DPRINTF(Commit, "Retiring squashed instruction from "
950 "ROB.\n");
951
952 rob->retireHead(commit_thread);
953
954 ++commitSquashedInsts;
955
956 // Record that the number of ROB entries has changed.
957 changedROBNumEntries[tid] = true;
958 } else {
959 pc[tid] = head_inst->pcState();
960
961 // Increment the total number of non-speculative instructions
962 // executed.
963 // Hack for now: it really shouldn't happen until after the
964 // commit is deemed to be successful, but this count is needed
965 // for syscalls.
966 thread[tid]->funcExeInst++;
967
968 // Try to commit the head instruction.
969 bool commit_success = commitHead(head_inst, num_committed);
970
971 if (commit_success) {
972 ++num_committed;
973
974 changedROBNumEntries[tid] = true;
975
976 // Set the doneSeqNum to the youngest committed instruction.
977 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
978
979 ++commitCommittedInsts;
980
981 // To match the old model, don't count nops and instruction
982 // prefetches towards the total commit count.
983 if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
984 cpu->instDone(tid);
985 }
986
987 // Updates misc. registers.
988 head_inst->updateMiscRegs();
989
990 TheISA::advancePC(pc[tid], head_inst->staticInst);
991
992 // Keep track of the last sequence number commited
993 lastCommitedSeqNum[tid] = head_inst->seqNum;
994
995 // If this is an instruction that doesn't play nicely with
996 // others squash everything and restart fetch
997 if (head_inst->isSquashAfter())
998 squashAfter(tid, head_inst, head_inst->seqNum);
999
1000 int count = 0;
1001 Addr oldpc;
1002 // Debug statement. Checks to make sure we're not
1003 // currently updating state while handling PC events.
1004 assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
1005 do {
1006 oldpc = pc[tid].instAddr();
1007 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1008 count++;
1009 } while (oldpc != pc[tid].instAddr());
1010 if (count > 1) {
1011 DPRINTF(Commit,
1012 "PC skip function event, stopping commit\n");
1013 break;
1014 }
1015 } else {
1016 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1017 "[tid:%i] [sn:%i].\n",
1018 head_inst->pcState(), tid ,head_inst->seqNum);
1019 break;
1020 }
1021 }
1022 }
1023
1024 DPRINTF(CommitRate, "%i\n", num_committed);
1025 numCommittedDist.sample(num_committed);
1026
1027 if (num_committed == commitWidth) {
1028 commitEligibleSamples++;
1029 }
1030 }
1031
1032 template <class Impl>
1033 bool
1034 DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1035 {
1036 assert(head_inst);
1037
1038 ThreadID tid = head_inst->threadNumber;
1039
1040 // If the instruction is not executed yet, then it will need extra
1041 // handling. Signal backwards that it should be executed.
1042 if (!head_inst->isExecuted()) {
1043 // Keep this number correct. We have not yet actually executed
1044 // and committed this instruction.
1045 thread[tid]->funcExeInst--;
1046
1047 if (head_inst->isNonSpeculative() ||
1048 head_inst->isStoreConditional() ||
1049 head_inst->isMemBarrier() ||
1050 head_inst->isWriteBarrier()) {
1051
1052 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1053 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1054 head_inst->seqNum, head_inst->pcState());
1055
1056 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1057 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1058 return false;
1059 }
1060
1061 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1062
1063 // Change the instruction so it won't try to commit again until
1064 // it is executed.
1065 head_inst->clearCanCommit();
1066
1067 ++commitNonSpecStalls;
1068
1069 return false;
1070 } else if (head_inst->isLoad()) {
1071 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1072 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1073 return false;
1074 }
1075
1076 assert(head_inst->uncacheable());
1077 DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1078 head_inst->seqNum, head_inst->pcState());
1079
1080 // Send back the non-speculative instruction's sequence
1081 // number. Tell the lsq to re-execute the load.
1082 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1083 toIEW->commitInfo[tid].uncached = true;
1084 toIEW->commitInfo[tid].uncachedLoad = head_inst;
1085
1086 head_inst->clearCanCommit();
1087
1088 return false;
1089 } else {
1090 panic("Trying to commit un-executed instruction "
1091 "of unknown type!\n");
1092 }
1093 }
1094
1095 if (head_inst->isThreadSync()) {
1096 // Not handled for now.
1097 panic("Thread sync instructions are not handled yet.\n");
1098 }
1099
1100 // Check if the instruction caused a fault. If so, trap.
1101 Fault inst_fault = head_inst->getFault();
1102
1103 // Stores mark themselves as completed.
1104 if (!head_inst->isStore() && inst_fault == NoFault) {
1105 head_inst->setCompleted();
1106 }
1107
1108 #if USE_CHECKER
1109 // Use checker prior to updating anything due to traps or PC
1110 // based events.
1111 if (cpu->checker) {
1112 cpu->checker->verify(head_inst);
1113 }
1114 #endif
1115
1116 if (inst_fault != NoFault) {
1117 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1118 head_inst->seqNum, head_inst->pcState());
1119
1120 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1121 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1122 return false;
1123 }
1124
1125 head_inst->setCompleted();
1126
1127 #if USE_CHECKER
1128 if (cpu->checker && head_inst->isStore()) {
1129 cpu->checker->verify(head_inst);
1130 }
1131 #endif
1132
1133 assert(!thread[tid]->inSyscall);
1134
1135 // Mark that we're in state update mode so that the trap's
1136 // execution doesn't generate extra squashes.
1137 thread[tid]->inSyscall = true;
1138
1139 // Execute the trap. Although it's slightly unrealistic in
1140 // terms of timing (as it doesn't wait for the full timing of
1141 // the trap event to complete before updating state), it's
1142 // needed to update the state as soon as possible. This
1143 // prevents external agents from changing any specific state
1144 // that the trap need.
1145 cpu->trap(inst_fault, tid, head_inst->staticInst);
1146
1147 // Exit state update mode to avoid accidental updating.
1148 thread[tid]->inSyscall = false;
1149
1150 commitStatus[tid] = TrapPending;
1151
1152 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1153 head_inst->seqNum);
1154 if (head_inst->traceData) {
1155 if (DTRACE(ExecFaulting)) {
1156 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1157 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1158 head_inst->traceData->dump();
1159 }
1160 delete head_inst->traceData;
1161 head_inst->traceData = NULL;
1162 }
1163
1164 // Generate trap squash event.
1165 generateTrapEvent(tid);
1166 return false;
1167 }
1168
1169 updateComInstStats(head_inst);
1170
1171 if (FullSystem) {
1172 if (thread[tid]->profile) {
1173 thread[tid]->profilePC = head_inst->instAddr();
1174 ProfileNode *node = thread[tid]->profile->consume(
1175 thread[tid]->getTC(), head_inst->staticInst);
1176
1177 if (node)
1178 thread[tid]->profileNode = node;
1179 }
1180 if (CPA::available()) {
1181 if (head_inst->isControl()) {
1182 ThreadContext *tc = thread[tid]->getTC();
1183 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1184 }
1185 }
1186 }
1187 DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1188 head_inst->seqNum, head_inst->pcState());
1189 if (head_inst->traceData) {
1190 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1191 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1192 head_inst->traceData->dump();
1193 delete head_inst->traceData;
1194 head_inst->traceData = NULL;
1195 }
1196
1197 // Update the commit rename map
1198 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1199 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1200 head_inst->renamedDestRegIdx(i));
1201 }
1202
1203 // Finally clear the head ROB entry.
1204 rob->retireHead(tid);
1205
1206 #if TRACING_ON
1207 // Print info needed by the pipeline activity viewer.
1208 DPRINTFR(O3PipeView, "O3PipeView:fetch:%llu:0x%08llx:%d:%llu:%s\n",
1209 head_inst->fetchTick,
1210 head_inst->instAddr(),
1211 head_inst->microPC(),
1212 head_inst->seqNum,
1213 head_inst->staticInst->disassemble(head_inst->instAddr()));
1214 DPRINTFR(O3PipeView, "O3PipeView:decode:%llu\n", head_inst->decodeTick);
1215 DPRINTFR(O3PipeView, "O3PipeView:rename:%llu\n", head_inst->renameTick);
1216 DPRINTFR(O3PipeView, "O3PipeView:dispatch:%llu\n", head_inst->dispatchTick);
1217 DPRINTFR(O3PipeView, "O3PipeView:issue:%llu\n", head_inst->issueTick);
1218 DPRINTFR(O3PipeView, "O3PipeView:complete:%llu\n", head_inst->completeTick);
1219 DPRINTFR(O3PipeView, "O3PipeView:retire:%llu\n", curTick());
1220 #endif
1221
1222 // If this was a store, record it for this cycle.
1223 if (head_inst->isStore())
1224 committedStores[tid] = true;
1225
1226 // Return true to indicate that we have committed an instruction.
1227 return true;
1228 }
1229
1230 template <class Impl>
1231 void
1232 DefaultCommit<Impl>::getInsts()
1233 {
1234 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1235
1236 // Read any renamed instructions and place them into the ROB.
1237 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1238
1239 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1240 DynInstPtr inst;
1241
1242 inst = fromRename->insts[inst_num];
1243 ThreadID tid = inst->threadNumber;
1244
1245 if (!inst->isSquashed() &&
1246 commitStatus[tid] != ROBSquashing &&
1247 commitStatus[tid] != TrapPending) {
1248 changedROBNumEntries[tid] = true;
1249
1250 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1251 inst->pcState(), inst->seqNum, tid);
1252
1253 rob->insertInst(inst);
1254
1255 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1256
1257 youngestSeqNum[tid] = inst->seqNum;
1258 } else {
1259 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1260 "squashed, skipping.\n",
1261 inst->pcState(), inst->seqNum, tid);
1262 }
1263 }
1264 }
1265
1266 template <class Impl>
1267 void
1268 DefaultCommit<Impl>::skidInsert()
1269 {
1270 DPRINTF(Commit, "Attempting to any instructions from rename into "
1271 "skidBuffer.\n");
1272
1273 for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1274 DynInstPtr inst = fromRename->insts[inst_num];
1275
1276 if (!inst->isSquashed()) {
1277 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1278 "skidBuffer.\n", inst->pcState(), inst->seqNum,
1279 inst->threadNumber);
1280 skidBuffer.push(inst);
1281 } else {
1282 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1283 "squashed, skipping.\n",
1284 inst->pcState(), inst->seqNum, inst->threadNumber);
1285 }
1286 }
1287 }
1288
1289 template <class Impl>
1290 void
1291 DefaultCommit<Impl>::markCompletedInsts()
1292 {
1293 // Grab completed insts out of the IEW instruction queue, and mark
1294 // instructions completed within the ROB.
1295 for (int inst_num = 0;
1296 inst_num < fromIEW->size && fromIEW->insts[inst_num];
1297 ++inst_num)
1298 {
1299 if (!fromIEW->insts[inst_num]->isSquashed()) {
1300 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1301 "within ROB.\n",
1302 fromIEW->insts[inst_num]->threadNumber,
1303 fromIEW->insts[inst_num]->pcState(),
1304 fromIEW->insts[inst_num]->seqNum);
1305
1306 // Mark the instruction as ready to commit.
1307 fromIEW->insts[inst_num]->setCanCommit();
1308 }
1309 }
1310 }
1311
1312 template <class Impl>
1313 bool
1314 DefaultCommit<Impl>::robDoneSquashing()
1315 {
1316 list<ThreadID>::iterator threads = activeThreads->begin();
1317 list<ThreadID>::iterator end = activeThreads->end();
1318
1319 while (threads != end) {
1320 ThreadID tid = *threads++;
1321
1322 if (!rob->isDoneSquashing(tid))
1323 return false;
1324 }
1325
1326 return true;
1327 }
1328
1329 template <class Impl>
1330 void
1331 DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1332 {
1333 ThreadID tid = inst->threadNumber;
1334
1335 //
1336 // Pick off the software prefetches
1337 //
1338 #ifdef TARGET_ALPHA
1339 if (inst->isDataPrefetch()) {
1340 statComSwp[tid]++;
1341 } else {
1342 statComInst[tid]++;
1343 }
1344 #else
1345 statComInst[tid]++;
1346 #endif
1347
1348 //
1349 // Control Instructions
1350 //
1351 if (inst->isControl())
1352 statComBranches[tid]++;
1353
1354 //
1355 // Memory references
1356 //
1357 if (inst->isMemRef()) {
1358 statComRefs[tid]++;
1359
1360 if (inst->isLoad()) {
1361 statComLoads[tid]++;
1362 }
1363 }
1364
1365 if (inst->isMemBarrier()) {
1366 statComMembars[tid]++;
1367 }
1368
1369 // Integer Instruction
1370 if (inst->isInteger())
1371 statComInteger[tid]++;
1372
1373 // Floating Point Instruction
1374 if (inst->isFloating())
1375 statComFloating[tid]++;
1376
1377 // Function Calls
1378 if (inst->isCall())
1379 statComFunctionCalls[tid]++;
1380
1381 }
1382
1383 ////////////////////////////////////////
1384 // //
1385 // SMT COMMIT POLICY MAINTAINED HERE //
1386 // //
1387 ////////////////////////////////////////
1388 template <class Impl>
1389 ThreadID
1390 DefaultCommit<Impl>::getCommittingThread()
1391 {
1392 if (numThreads > 1) {
1393 switch (commitPolicy) {
1394
1395 case Aggressive:
1396 //If Policy is Aggressive, commit will call
1397 //this function multiple times per
1398 //cycle
1399 return oldestReady();
1400
1401 case RoundRobin:
1402 return roundRobin();
1403
1404 case OldestReady:
1405 return oldestReady();
1406
1407 default:
1408 return InvalidThreadID;
1409 }
1410 } else {
1411 assert(!activeThreads->empty());
1412 ThreadID tid = activeThreads->front();
1413
1414 if (commitStatus[tid] == Running ||
1415 commitStatus[tid] == Idle ||
1416 commitStatus[tid] == FetchTrapPending) {
1417 return tid;
1418 } else {
1419 return InvalidThreadID;
1420 }
1421 }
1422 }
1423
1424 template<class Impl>
1425 ThreadID
1426 DefaultCommit<Impl>::roundRobin()
1427 {
1428 list<ThreadID>::iterator pri_iter = priority_list.begin();
1429 list<ThreadID>::iterator end = priority_list.end();
1430
1431 while (pri_iter != end) {
1432 ThreadID tid = *pri_iter;
1433
1434 if (commitStatus[tid] == Running ||
1435 commitStatus[tid] == Idle ||
1436 commitStatus[tid] == FetchTrapPending) {
1437
1438 if (rob->isHeadReady(tid)) {
1439 priority_list.erase(pri_iter);
1440 priority_list.push_back(tid);
1441
1442 return tid;
1443 }
1444 }
1445
1446 pri_iter++;
1447 }
1448
1449 return InvalidThreadID;
1450 }
1451
1452 template<class Impl>
1453 ThreadID
1454 DefaultCommit<Impl>::oldestReady()
1455 {
1456 unsigned oldest = 0;
1457 bool first = true;
1458
1459 list<ThreadID>::iterator threads = activeThreads->begin();
1460 list<ThreadID>::iterator end = activeThreads->end();
1461
1462 while (threads != end) {
1463 ThreadID tid = *threads++;
1464
1465 if (!rob->isEmpty(tid) &&
1466 (commitStatus[tid] == Running ||
1467 commitStatus[tid] == Idle ||
1468 commitStatus[tid] == FetchTrapPending)) {
1469
1470 if (rob->isHeadReady(tid)) {
1471
1472 DynInstPtr head_inst = rob->readHeadInst(tid);
1473
1474 if (first) {
1475 oldest = tid;
1476 first = false;
1477 } else if (head_inst->seqNum < oldest) {
1478 oldest = tid;
1479 }
1480 }
1481 }
1482 }
1483
1484 if (!first) {
1485 return oldest;
1486 } else {
1487 return InvalidThreadID;
1488 }
1489 }