alpha,arm,mips,power,riscv,sparc,x86,cpu: Get rid of ISA_HAS_DELAY_SLOT.
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45 #ifndef __CPU_O3_FETCH_IMPL_HH__
46 #define __CPU_O3_FETCH_IMPL_HH__
47
48 #include <algorithm>
49 #include <cstring>
50 #include <list>
51 #include <map>
52 #include <queue>
53
54 #include "arch/generic/tlb.hh"
55 #include "arch/isa_traits.hh"
56 #include "arch/utility.hh"
57 #include "arch/vtophys.hh"
58 #include "base/random.hh"
59 #include "base/types.hh"
60 #include "config/the_isa.hh"
61 #include "cpu/base.hh"
62 //#include "cpu/checker/cpu.hh"
63 #include "cpu/o3/fetch.hh"
64 #include "cpu/exetrace.hh"
65 #include "debug/Activity.hh"
66 #include "debug/Drain.hh"
67 #include "debug/Fetch.hh"
68 #include "debug/O3PipeView.hh"
69 #include "mem/packet.hh"
70 #include "params/DerivO3CPU.hh"
71 #include "sim/byteswap.hh"
72 #include "sim/core.hh"
73 #include "sim/eventq.hh"
74 #include "sim/full_system.hh"
75 #include "sim/system.hh"
76 #include "cpu/o3/isa_specific.hh"
77
78 using namespace std;
79
80 template<class Impl>
81 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
82 : cpu(_cpu),
83 decodeToFetchDelay(params->decodeToFetchDelay),
84 renameToFetchDelay(params->renameToFetchDelay),
85 iewToFetchDelay(params->iewToFetchDelay),
86 commitToFetchDelay(params->commitToFetchDelay),
87 fetchWidth(params->fetchWidth),
88 decodeWidth(params->decodeWidth),
89 retryPkt(NULL),
90 retryTid(InvalidThreadID),
91 cacheBlkSize(cpu->cacheLineSize()),
92 fetchBufferSize(params->fetchBufferSize),
93 fetchBufferMask(fetchBufferSize - 1),
94 fetchQueueSize(params->fetchQueueSize),
95 numThreads(params->numThreads),
96 numFetchingThreads(params->smtNumFetchingThreads),
97 finishTranslationEvent(this)
98 {
99 if (numThreads > Impl::MaxThreads)
100 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
101 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
102 numThreads, static_cast<int>(Impl::MaxThreads));
103 if (fetchWidth > Impl::MaxWidth)
104 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
105 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
106 fetchWidth, static_cast<int>(Impl::MaxWidth));
107 if (fetchBufferSize > cacheBlkSize)
108 fatal("fetch buffer size (%u bytes) is greater than the cache "
109 "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
110 if (cacheBlkSize % fetchBufferSize)
111 fatal("cache block (%u bytes) is not a multiple of the "
112 "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
113
114 std::string policy = params->smtFetchPolicy;
115
116 // Convert string to lowercase
117 std::transform(policy.begin(), policy.end(), policy.begin(),
118 (int(*)(int)) tolower);
119
120 // Figure out fetch policy
121 if (policy == "singlethread") {
122 fetchPolicy = SingleThread;
123 if (numThreads > 1)
124 panic("Invalid Fetch Policy for a SMT workload.");
125 } else if (policy == "roundrobin") {
126 fetchPolicy = RoundRobin;
127 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
128 } else if (policy == "branch") {
129 fetchPolicy = Branch;
130 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
131 } else if (policy == "iqcount") {
132 fetchPolicy = IQ;
133 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
134 } else if (policy == "lsqcount") {
135 fetchPolicy = LSQ;
136 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
137 } else {
138 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
139 " RoundRobin,LSQcount,IQcount}\n");
140 }
141
142 // Get the size of an instruction.
143 instSize = sizeof(TheISA::MachInst);
144
145 for (int i = 0; i < Impl::MaxThreads; i++) {
146 decoder[i] = NULL;
147 fetchBuffer[i] = NULL;
148 fetchBufferPC[i] = 0;
149 fetchBufferValid[i] = false;
150 }
151
152 branchPred = params->branchPred;
153
154 for (ThreadID tid = 0; tid < numThreads; tid++) {
155 decoder[tid] = new TheISA::Decoder(params->isa[tid]);
156 // Create space to buffer the cache line data,
157 // which may not hold the entire cache line.
158 fetchBuffer[tid] = new uint8_t[fetchBufferSize];
159 }
160 }
161
162 template <class Impl>
163 std::string
164 DefaultFetch<Impl>::name() const
165 {
166 return cpu->name() + ".fetch";
167 }
168
169 template <class Impl>
170 void
171 DefaultFetch<Impl>::regProbePoints()
172 {
173 ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
174 ppFetchRequestSent = new ProbePointArg<RequestPtr>(cpu->getProbeManager(),
175 "FetchRequest");
176
177 }
178
179 template <class Impl>
180 void
181 DefaultFetch<Impl>::regStats()
182 {
183 icacheStallCycles
184 .name(name() + ".icacheStallCycles")
185 .desc("Number of cycles fetch is stalled on an Icache miss")
186 .prereq(icacheStallCycles);
187
188 fetchedInsts
189 .name(name() + ".Insts")
190 .desc("Number of instructions fetch has processed")
191 .prereq(fetchedInsts);
192
193 fetchedBranches
194 .name(name() + ".Branches")
195 .desc("Number of branches that fetch encountered")
196 .prereq(fetchedBranches);
197
198 predictedBranches
199 .name(name() + ".predictedBranches")
200 .desc("Number of branches that fetch has predicted taken")
201 .prereq(predictedBranches);
202
203 fetchCycles
204 .name(name() + ".Cycles")
205 .desc("Number of cycles fetch has run and was not squashing or"
206 " blocked")
207 .prereq(fetchCycles);
208
209 fetchSquashCycles
210 .name(name() + ".SquashCycles")
211 .desc("Number of cycles fetch has spent squashing")
212 .prereq(fetchSquashCycles);
213
214 fetchTlbCycles
215 .name(name() + ".TlbCycles")
216 .desc("Number of cycles fetch has spent waiting for tlb")
217 .prereq(fetchTlbCycles);
218
219 fetchIdleCycles
220 .name(name() + ".IdleCycles")
221 .desc("Number of cycles fetch was idle")
222 .prereq(fetchIdleCycles);
223
224 fetchBlockedCycles
225 .name(name() + ".BlockedCycles")
226 .desc("Number of cycles fetch has spent blocked")
227 .prereq(fetchBlockedCycles);
228
229 fetchedCacheLines
230 .name(name() + ".CacheLines")
231 .desc("Number of cache lines fetched")
232 .prereq(fetchedCacheLines);
233
234 fetchMiscStallCycles
235 .name(name() + ".MiscStallCycles")
236 .desc("Number of cycles fetch has spent waiting on interrupts, or "
237 "bad addresses, or out of MSHRs")
238 .prereq(fetchMiscStallCycles);
239
240 fetchPendingDrainCycles
241 .name(name() + ".PendingDrainCycles")
242 .desc("Number of cycles fetch has spent waiting on pipes to drain")
243 .prereq(fetchPendingDrainCycles);
244
245 fetchNoActiveThreadStallCycles
246 .name(name() + ".NoActiveThreadStallCycles")
247 .desc("Number of stall cycles due to no active thread to fetch from")
248 .prereq(fetchNoActiveThreadStallCycles);
249
250 fetchPendingTrapStallCycles
251 .name(name() + ".PendingTrapStallCycles")
252 .desc("Number of stall cycles due to pending traps")
253 .prereq(fetchPendingTrapStallCycles);
254
255 fetchPendingQuiesceStallCycles
256 .name(name() + ".PendingQuiesceStallCycles")
257 .desc("Number of stall cycles due to pending quiesce instructions")
258 .prereq(fetchPendingQuiesceStallCycles);
259
260 fetchIcacheWaitRetryStallCycles
261 .name(name() + ".IcacheWaitRetryStallCycles")
262 .desc("Number of stall cycles due to full MSHR")
263 .prereq(fetchIcacheWaitRetryStallCycles);
264
265 fetchIcacheSquashes
266 .name(name() + ".IcacheSquashes")
267 .desc("Number of outstanding Icache misses that were squashed")
268 .prereq(fetchIcacheSquashes);
269
270 fetchTlbSquashes
271 .name(name() + ".ItlbSquashes")
272 .desc("Number of outstanding ITLB misses that were squashed")
273 .prereq(fetchTlbSquashes);
274
275 fetchNisnDist
276 .init(/* base value */ 0,
277 /* last value */ fetchWidth,
278 /* bucket size */ 1)
279 .name(name() + ".rateDist")
280 .desc("Number of instructions fetched each cycle (Total)")
281 .flags(Stats::pdf);
282
283 idleRate
284 .name(name() + ".idleRate")
285 .desc("Percent of cycles fetch was idle")
286 .prereq(idleRate);
287 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
288
289 branchRate
290 .name(name() + ".branchRate")
291 .desc("Number of branch fetches per cycle")
292 .flags(Stats::total);
293 branchRate = fetchedBranches / cpu->numCycles;
294
295 fetchRate
296 .name(name() + ".rate")
297 .desc("Number of inst fetches per cycle")
298 .flags(Stats::total);
299 fetchRate = fetchedInsts / cpu->numCycles;
300 }
301
302 template<class Impl>
303 void
304 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
305 {
306 timeBuffer = time_buffer;
307
308 // Create wires to get information from proper places in time buffer.
309 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310 fromRename = timeBuffer->getWire(-renameToFetchDelay);
311 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313 }
314
315 template<class Impl>
316 void
317 DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
318 {
319 activeThreads = at_ptr;
320 }
321
322 template<class Impl>
323 void
324 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
325 {
326 // Create wire to write information to proper place in fetch time buf.
327 toDecode = ftb_ptr->getWire(0);
328 }
329
330 template<class Impl>
331 void
332 DefaultFetch<Impl>::startupStage()
333 {
334 assert(priorityList.empty());
335 resetStage();
336
337 // Fetch needs to start fetching instructions at the very beginning,
338 // so it must start up in active state.
339 switchToActive();
340 }
341
342 template<class Impl>
343 void
344 DefaultFetch<Impl>::resetStage()
345 {
346 numInst = 0;
347 interruptPending = false;
348 cacheBlocked = false;
349
350 priorityList.clear();
351
352 // Setup PC and nextPC with initial state.
353 for (ThreadID tid = 0; tid < numThreads; ++tid) {
354 fetchStatus[tid] = Running;
355 pc[tid] = cpu->pcState(tid);
356 fetchOffset[tid] = 0;
357 macroop[tid] = NULL;
358
359 delayedCommit[tid] = false;
360 memReq[tid] = NULL;
361
362 stalls[tid].decode = false;
363 stalls[tid].drain = false;
364
365 fetchBufferPC[tid] = 0;
366 fetchBufferValid[tid] = false;
367
368 fetchQueue[tid].clear();
369
370 priorityList.push_back(tid);
371 }
372
373 wroteToTimeBuffer = false;
374 _status = Inactive;
375 }
376
377 template<class Impl>
378 void
379 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
380 {
381 ThreadID tid = cpu->contextToThread(pkt->req->contextId());
382
383 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
384 assert(!cpu->switchedOut());
385
386 // Only change the status if it's still waiting on the icache access
387 // to return.
388 if (fetchStatus[tid] != IcacheWaitResponse ||
389 pkt->req != memReq[tid]) {
390 ++fetchIcacheSquashes;
391 delete pkt->req;
392 delete pkt;
393 return;
394 }
395
396 memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
397 fetchBufferValid[tid] = true;
398
399 // Wake up the CPU (if it went to sleep and was waiting on
400 // this completion event).
401 cpu->wakeCPU();
402
403 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
404 tid);
405
406 switchToActive();
407
408 // Only switch to IcacheAccessComplete if we're not stalled as well.
409 if (checkStall(tid)) {
410 fetchStatus[tid] = Blocked;
411 } else {
412 fetchStatus[tid] = IcacheAccessComplete;
413 }
414
415 pkt->req->setAccessLatency();
416 cpu->ppInstAccessComplete->notify(pkt);
417 // Reset the mem req to NULL.
418 delete pkt->req;
419 delete pkt;
420 memReq[tid] = NULL;
421 }
422
423 template <class Impl>
424 void
425 DefaultFetch<Impl>::drainResume()
426 {
427 for (ThreadID i = 0; i < numThreads; ++i) {
428 stalls[i].decode = false;
429 stalls[i].drain = false;
430 }
431 }
432
433 template <class Impl>
434 void
435 DefaultFetch<Impl>::drainSanityCheck() const
436 {
437 assert(isDrained());
438 assert(retryPkt == NULL);
439 assert(retryTid == InvalidThreadID);
440 assert(!cacheBlocked);
441 assert(!interruptPending);
442
443 for (ThreadID i = 0; i < numThreads; ++i) {
444 assert(!memReq[i]);
445 assert(fetchStatus[i] == Idle || stalls[i].drain);
446 }
447
448 branchPred->drainSanityCheck();
449 }
450
451 template <class Impl>
452 bool
453 DefaultFetch<Impl>::isDrained() const
454 {
455 /* Make sure that threads are either idle of that the commit stage
456 * has signaled that draining has completed by setting the drain
457 * stall flag. This effectively forces the pipeline to be disabled
458 * until the whole system is drained (simulation may continue to
459 * drain other components).
460 */
461 for (ThreadID i = 0; i < numThreads; ++i) {
462 // Verify fetch queues are drained
463 if (!fetchQueue[i].empty())
464 return false;
465
466 // Return false if not idle or drain stalled
467 if (fetchStatus[i] != Idle) {
468 if (fetchStatus[i] == Blocked && stalls[i].drain)
469 continue;
470 else
471 return false;
472 }
473 }
474
475 /* The pipeline might start up again in the middle of the drain
476 * cycle if the finish translation event is scheduled, so make
477 * sure that's not the case.
478 */
479 return !finishTranslationEvent.scheduled();
480 }
481
482 template <class Impl>
483 void
484 DefaultFetch<Impl>::takeOverFrom()
485 {
486 assert(cpu->getInstPort().isConnected());
487 resetStage();
488
489 }
490
491 template <class Impl>
492 void
493 DefaultFetch<Impl>::drainStall(ThreadID tid)
494 {
495 assert(cpu->isDraining());
496 assert(!stalls[tid].drain);
497 DPRINTF(Drain, "%i: Thread drained.\n", tid);
498 stalls[tid].drain = true;
499 }
500
501 template <class Impl>
502 void
503 DefaultFetch<Impl>::wakeFromQuiesce()
504 {
505 DPRINTF(Fetch, "Waking up from quiesce\n");
506 // Hopefully this is safe
507 // @todo: Allow other threads to wake from quiesce.
508 fetchStatus[0] = Running;
509 }
510
511 template <class Impl>
512 inline void
513 DefaultFetch<Impl>::switchToActive()
514 {
515 if (_status == Inactive) {
516 DPRINTF(Activity, "Activating stage.\n");
517
518 cpu->activateStage(O3CPU::FetchIdx);
519
520 _status = Active;
521 }
522 }
523
524 template <class Impl>
525 inline void
526 DefaultFetch<Impl>::switchToInactive()
527 {
528 if (_status == Active) {
529 DPRINTF(Activity, "Deactivating stage.\n");
530
531 cpu->deactivateStage(O3CPU::FetchIdx);
532
533 _status = Inactive;
534 }
535 }
536
537 template <class Impl>
538 void
539 DefaultFetch<Impl>::deactivateThread(ThreadID tid)
540 {
541 // Update priority list
542 auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
543 if (thread_it != priorityList.end()) {
544 priorityList.erase(thread_it);
545 }
546 }
547
548 template <class Impl>
549 bool
550 DefaultFetch<Impl>::lookupAndUpdateNextPC(
551 DynInstPtr &inst, TheISA::PCState &nextPC)
552 {
553 // Do branch prediction check here.
554 // A bit of a misnomer...next_PC is actually the current PC until
555 // this function updates it.
556 bool predict_taken;
557
558 if (!inst->isControl()) {
559 TheISA::advancePC(nextPC, inst->staticInst);
560 inst->setPredTarg(nextPC);
561 inst->setPredTaken(false);
562 return false;
563 }
564
565 ThreadID tid = inst->threadNumber;
566 predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
567 nextPC, tid);
568
569 if (predict_taken) {
570 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
571 tid, inst->seqNum, nextPC);
572 } else {
573 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
574 tid, inst->seqNum);
575 }
576
577 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
578 tid, inst->seqNum, nextPC);
579 inst->setPredTarg(nextPC);
580 inst->setPredTaken(predict_taken);
581
582 ++fetchedBranches;
583
584 if (predict_taken) {
585 ++predictedBranches;
586 }
587
588 return predict_taken;
589 }
590
591 template <class Impl>
592 bool
593 DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
594 {
595 Fault fault = NoFault;
596
597 assert(!cpu->switchedOut());
598
599 // @todo: not sure if these should block translation.
600 //AlphaDep
601 if (cacheBlocked) {
602 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
603 tid);
604 return false;
605 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
606 // Hold off fetch from getting new instructions when:
607 // Cache is blocked, or
608 // while an interrupt is pending and we're not in PAL mode, or
609 // fetch is switched out.
610 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
611 tid);
612 return false;
613 }
614
615 // Align the fetch address to the start of a fetch buffer segment.
616 Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
617
618 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
619 tid, fetchBufferBlockPC, vaddr);
620
621 // Setup the memReq to do a read of the first instruction's address.
622 // Set the appropriate read size and flags as well.
623 // Build request here.
624 RequestPtr mem_req =
625 new Request(tid, fetchBufferBlockPC, fetchBufferSize,
626 Request::INST_FETCH, cpu->instMasterId(), pc,
627 cpu->thread[tid]->contextId());
628
629 mem_req->taskId(cpu->taskId());
630
631 memReq[tid] = mem_req;
632
633 // Initiate translation of the icache block
634 fetchStatus[tid] = ItlbWait;
635 FetchTranslation *trans = new FetchTranslation(this);
636 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
637 trans, BaseTLB::Execute);
638 return true;
639 }
640
641 template <class Impl>
642 void
643 DefaultFetch<Impl>::finishTranslation(const Fault &fault, RequestPtr mem_req)
644 {
645 ThreadID tid = cpu->contextToThread(mem_req->contextId());
646 Addr fetchBufferBlockPC = mem_req->getVaddr();
647
648 assert(!cpu->switchedOut());
649
650 // Wake up CPU if it was idle
651 cpu->wakeCPU();
652
653 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
654 mem_req->getVaddr() != memReq[tid]->getVaddr()) {
655 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
656 tid);
657 ++fetchTlbSquashes;
658 delete mem_req;
659 return;
660 }
661
662
663 // If translation was successful, attempt to read the icache block.
664 if (fault == NoFault) {
665 // Check that we're not going off into random memory
666 // If we have, just wait around for commit to squash something and put
667 // us on the right track
668 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
669 warn("Address %#x is outside of physical memory, stopping fetch\n",
670 mem_req->getPaddr());
671 fetchStatus[tid] = NoGoodAddr;
672 delete mem_req;
673 memReq[tid] = NULL;
674 return;
675 }
676
677 // Build packet here.
678 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
679 data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
680
681 fetchBufferPC[tid] = fetchBufferBlockPC;
682 fetchBufferValid[tid] = false;
683 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
684
685 fetchedCacheLines++;
686
687 // Access the cache.
688 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
689 assert(retryPkt == NULL);
690 assert(retryTid == InvalidThreadID);
691 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
692
693 fetchStatus[tid] = IcacheWaitRetry;
694 retryPkt = data_pkt;
695 retryTid = tid;
696 cacheBlocked = true;
697 } else {
698 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
699 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
700 "response.\n", tid);
701 lastIcacheStall[tid] = curTick();
702 fetchStatus[tid] = IcacheWaitResponse;
703 // Notify Fetch Request probe when a packet containing a fetch
704 // request is successfully sent
705 ppFetchRequestSent->notify(mem_req);
706 }
707 } else {
708 // Don't send an instruction to decode if we can't handle it.
709 if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
710 assert(!finishTranslationEvent.scheduled());
711 finishTranslationEvent.setFault(fault);
712 finishTranslationEvent.setReq(mem_req);
713 cpu->schedule(finishTranslationEvent,
714 cpu->clockEdge(Cycles(1)));
715 return;
716 }
717 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
718 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
719 // Translation faulted, icache request won't be sent.
720 delete mem_req;
721 memReq[tid] = NULL;
722
723 // Send the fault to commit. This thread will not do anything
724 // until commit handles the fault. The only other way it can
725 // wake up is if a squash comes along and changes the PC.
726 TheISA::PCState fetchPC = pc[tid];
727
728 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
729 // We will use a nop in ordier to carry the fault.
730 DynInstPtr instruction = buildInst(tid, StaticInst::nopStaticInstPtr,
731 NULL, fetchPC, fetchPC, false);
732 instruction->setNotAnInst();
733
734 instruction->setPredTarg(fetchPC);
735 instruction->fault = fault;
736 wroteToTimeBuffer = true;
737
738 DPRINTF(Activity, "Activity this cycle.\n");
739 cpu->activityThisCycle();
740
741 fetchStatus[tid] = TrapPending;
742
743 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
744 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
745 tid, fault->name(), pc[tid]);
746 }
747 _status = updateFetchStatus();
748 }
749
750 template <class Impl>
751 inline void
752 DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
753 const DynInstPtr squashInst, ThreadID tid)
754 {
755 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
756 tid, newPC);
757
758 pc[tid] = newPC;
759 fetchOffset[tid] = 0;
760 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
761 macroop[tid] = squashInst->macroop;
762 else
763 macroop[tid] = NULL;
764 decoder[tid]->reset();
765
766 // Clear the icache miss if it's outstanding.
767 if (fetchStatus[tid] == IcacheWaitResponse) {
768 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
769 tid);
770 memReq[tid] = NULL;
771 } else if (fetchStatus[tid] == ItlbWait) {
772 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
773 tid);
774 memReq[tid] = NULL;
775 }
776
777 // Get rid of the retrying packet if it was from this thread.
778 if (retryTid == tid) {
779 assert(cacheBlocked);
780 if (retryPkt) {
781 delete retryPkt->req;
782 delete retryPkt;
783 }
784 retryPkt = NULL;
785 retryTid = InvalidThreadID;
786 }
787
788 fetchStatus[tid] = Squashing;
789
790 // Empty fetch queue
791 fetchQueue[tid].clear();
792
793 // microops are being squashed, it is not known wheather the
794 // youngest non-squashed microop was marked delayed commit
795 // or not. Setting the flag to true ensures that the
796 // interrupts are not handled when they cannot be, though
797 // some opportunities to handle interrupts may be missed.
798 delayedCommit[tid] = true;
799
800 ++fetchSquashCycles;
801 }
802
803 template<class Impl>
804 void
805 DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
806 const DynInstPtr squashInst,
807 const InstSeqNum seq_num, ThreadID tid)
808 {
809 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
810
811 doSquash(newPC, squashInst, tid);
812
813 // Tell the CPU to remove any instructions that are in flight between
814 // fetch and decode.
815 cpu->removeInstsUntil(seq_num, tid);
816 }
817
818 template<class Impl>
819 bool
820 DefaultFetch<Impl>::checkStall(ThreadID tid) const
821 {
822 bool ret_val = false;
823
824 if (stalls[tid].drain) {
825 assert(cpu->isDraining());
826 DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
827 ret_val = true;
828 }
829
830 return ret_val;
831 }
832
833 template<class Impl>
834 typename DefaultFetch<Impl>::FetchStatus
835 DefaultFetch<Impl>::updateFetchStatus()
836 {
837 //Check Running
838 list<ThreadID>::iterator threads = activeThreads->begin();
839 list<ThreadID>::iterator end = activeThreads->end();
840
841 while (threads != end) {
842 ThreadID tid = *threads++;
843
844 if (fetchStatus[tid] == Running ||
845 fetchStatus[tid] == Squashing ||
846 fetchStatus[tid] == IcacheAccessComplete) {
847
848 if (_status == Inactive) {
849 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
850
851 if (fetchStatus[tid] == IcacheAccessComplete) {
852 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
853 "completion\n",tid);
854 }
855
856 cpu->activateStage(O3CPU::FetchIdx);
857 }
858
859 return Active;
860 }
861 }
862
863 // Stage is switching from active to inactive, notify CPU of it.
864 if (_status == Active) {
865 DPRINTF(Activity, "Deactivating stage.\n");
866
867 cpu->deactivateStage(O3CPU::FetchIdx);
868 }
869
870 return Inactive;
871 }
872
873 template <class Impl>
874 void
875 DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
876 const InstSeqNum seq_num, DynInstPtr squashInst,
877 ThreadID tid)
878 {
879 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
880
881 doSquash(newPC, squashInst, tid);
882
883 // Tell the CPU to remove any instructions that are not in the ROB.
884 cpu->removeInstsNotInROB(tid);
885 }
886
887 template <class Impl>
888 void
889 DefaultFetch<Impl>::tick()
890 {
891 list<ThreadID>::iterator threads = activeThreads->begin();
892 list<ThreadID>::iterator end = activeThreads->end();
893 bool status_change = false;
894
895 wroteToTimeBuffer = false;
896
897 for (ThreadID i = 0; i < numThreads; ++i) {
898 issuePipelinedIfetch[i] = false;
899 }
900
901 while (threads != end) {
902 ThreadID tid = *threads++;
903
904 // Check the signals for each thread to determine the proper status
905 // for each thread.
906 bool updated_status = checkSignalsAndUpdate(tid);
907 status_change = status_change || updated_status;
908 }
909
910 DPRINTF(Fetch, "Running stage.\n");
911
912 if (FullSystem) {
913 if (fromCommit->commitInfo[0].interruptPending) {
914 interruptPending = true;
915 }
916
917 if (fromCommit->commitInfo[0].clearInterrupt) {
918 interruptPending = false;
919 }
920 }
921
922 for (threadFetched = 0; threadFetched < numFetchingThreads;
923 threadFetched++) {
924 // Fetch each of the actively fetching threads.
925 fetch(status_change);
926 }
927
928 // Record number of instructions fetched this cycle for distribution.
929 fetchNisnDist.sample(numInst);
930
931 if (status_change) {
932 // Change the fetch stage status if there was a status change.
933 _status = updateFetchStatus();
934 }
935
936 // Issue the next I-cache request if possible.
937 for (ThreadID i = 0; i < numThreads; ++i) {
938 if (issuePipelinedIfetch[i]) {
939 pipelineIcacheAccesses(i);
940 }
941 }
942
943 // Send instructions enqueued into the fetch queue to decode.
944 // Limit rate by fetchWidth. Stall if decode is stalled.
945 unsigned insts_to_decode = 0;
946 unsigned available_insts = 0;
947
948 for (auto tid : *activeThreads) {
949 if (!stalls[tid].decode) {
950 available_insts += fetchQueue[tid].size();
951 }
952 }
953
954 // Pick a random thread to start trying to grab instructions from
955 auto tid_itr = activeThreads->begin();
956 std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
957
958 while (available_insts != 0 && insts_to_decode < decodeWidth) {
959 ThreadID tid = *tid_itr;
960 if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
961 auto inst = fetchQueue[tid].front();
962 toDecode->insts[toDecode->size++] = inst;
963 DPRINTF(Fetch, "[tid:%i][sn:%i]: Sending instruction to decode from "
964 "fetch queue. Fetch queue size: %i.\n",
965 tid, inst->seqNum, fetchQueue[tid].size());
966
967 wroteToTimeBuffer = true;
968 fetchQueue[tid].pop_front();
969 insts_to_decode++;
970 available_insts--;
971 }
972
973 tid_itr++;
974 // Wrap around if at end of active threads list
975 if (tid_itr == activeThreads->end())
976 tid_itr = activeThreads->begin();
977 }
978
979 // If there was activity this cycle, inform the CPU of it.
980 if (wroteToTimeBuffer) {
981 DPRINTF(Activity, "Activity this cycle.\n");
982 cpu->activityThisCycle();
983 }
984
985 // Reset the number of the instruction we've fetched.
986 numInst = 0;
987 }
988
989 template <class Impl>
990 bool
991 DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
992 {
993 // Update the per thread stall statuses.
994 if (fromDecode->decodeBlock[tid]) {
995 stalls[tid].decode = true;
996 }
997
998 if (fromDecode->decodeUnblock[tid]) {
999 assert(stalls[tid].decode);
1000 assert(!fromDecode->decodeBlock[tid]);
1001 stalls[tid].decode = false;
1002 }
1003
1004 // Check squash signals from commit.
1005 if (fromCommit->commitInfo[tid].squash) {
1006
1007 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1008 "from commit.\n",tid);
1009 // In any case, squash.
1010 squash(fromCommit->commitInfo[tid].pc,
1011 fromCommit->commitInfo[tid].doneSeqNum,
1012 fromCommit->commitInfo[tid].squashInst, tid);
1013
1014 // If it was a branch mispredict on a control instruction, update the
1015 // branch predictor with that instruction, otherwise just kill the
1016 // invalid state we generated in after sequence number
1017 if (fromCommit->commitInfo[tid].mispredictInst &&
1018 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1019 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1020 fromCommit->commitInfo[tid].pc,
1021 fromCommit->commitInfo[tid].branchTaken,
1022 tid);
1023 } else {
1024 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1025 tid);
1026 }
1027
1028 return true;
1029 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1030 // Update the branch predictor if it wasn't a squashed instruction
1031 // that was broadcasted.
1032 branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1033 }
1034
1035 // Check squash signals from decode.
1036 if (fromDecode->decodeInfo[tid].squash) {
1037 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1038 "from decode.\n",tid);
1039
1040 // Update the branch predictor.
1041 if (fromDecode->decodeInfo[tid].branchMispredict) {
1042 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1043 fromDecode->decodeInfo[tid].nextPC,
1044 fromDecode->decodeInfo[tid].branchTaken,
1045 tid);
1046 } else {
1047 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1048 tid);
1049 }
1050
1051 if (fetchStatus[tid] != Squashing) {
1052
1053 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1054 fromDecode->decodeInfo[tid].nextPC);
1055 // Squash unless we're already squashing
1056 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1057 fromDecode->decodeInfo[tid].squashInst,
1058 fromDecode->decodeInfo[tid].doneSeqNum,
1059 tid);
1060
1061 return true;
1062 }
1063 }
1064
1065 if (checkStall(tid) &&
1066 fetchStatus[tid] != IcacheWaitResponse &&
1067 fetchStatus[tid] != IcacheWaitRetry &&
1068 fetchStatus[tid] != ItlbWait &&
1069 fetchStatus[tid] != QuiescePending) {
1070 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1071
1072 fetchStatus[tid] = Blocked;
1073
1074 return true;
1075 }
1076
1077 if (fetchStatus[tid] == Blocked ||
1078 fetchStatus[tid] == Squashing) {
1079 // Switch status to running if fetch isn't being told to block or
1080 // squash this cycle.
1081 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1082 tid);
1083
1084 fetchStatus[tid] = Running;
1085
1086 return true;
1087 }
1088
1089 // If we've reached this point, we have not gotten any signals that
1090 // cause fetch to change its status. Fetch remains the same as before.
1091 return false;
1092 }
1093
1094 template<class Impl>
1095 typename Impl::DynInstPtr
1096 DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1097 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1098 TheISA::PCState nextPC, bool trace)
1099 {
1100 // Get a sequence number.
1101 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1102
1103 // Create a new DynInst from the instruction fetched.
1104 DynInstPtr instruction =
1105 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1106 instruction->setTid(tid);
1107
1108 instruction->setASID(tid);
1109
1110 instruction->setThreadState(cpu->thread[tid]);
1111
1112 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1113 "[sn:%lli].\n", tid, thisPC.instAddr(),
1114 thisPC.microPC(), seq);
1115
1116 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1117 instruction->staticInst->
1118 disassemble(thisPC.instAddr()));
1119
1120 #if TRACING_ON
1121 if (trace) {
1122 instruction->traceData =
1123 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1124 instruction->staticInst, thisPC, curMacroop);
1125 }
1126 #else
1127 instruction->traceData = NULL;
1128 #endif
1129
1130 // Add instruction to the CPU's list of instructions.
1131 instruction->setInstListIt(cpu->addInst(instruction));
1132
1133 // Write the instruction to the first slot in the queue
1134 // that heads to decode.
1135 assert(numInst < fetchWidth);
1136 fetchQueue[tid].push_back(instruction);
1137 assert(fetchQueue[tid].size() <= fetchQueueSize);
1138 DPRINTF(Fetch, "[tid:%i]: Fetch queue entry created (%i/%i).\n",
1139 tid, fetchQueue[tid].size(), fetchQueueSize);
1140 //toDecode->insts[toDecode->size++] = instruction;
1141
1142 // Keep track of if we can take an interrupt at this boundary
1143 delayedCommit[tid] = instruction->isDelayedCommit();
1144
1145 return instruction;
1146 }
1147
1148 template<class Impl>
1149 void
1150 DefaultFetch<Impl>::fetch(bool &status_change)
1151 {
1152 //////////////////////////////////////////
1153 // Start actual fetch
1154 //////////////////////////////////////////
1155 ThreadID tid = getFetchingThread(fetchPolicy);
1156
1157 assert(!cpu->switchedOut());
1158
1159 if (tid == InvalidThreadID) {
1160 // Breaks looping condition in tick()
1161 threadFetched = numFetchingThreads;
1162
1163 if (numThreads == 1) { // @todo Per-thread stats
1164 profileStall(0);
1165 }
1166
1167 return;
1168 }
1169
1170 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1171
1172 // The current PC.
1173 TheISA::PCState thisPC = pc[tid];
1174
1175 Addr pcOffset = fetchOffset[tid];
1176 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1177
1178 bool inRom = isRomMicroPC(thisPC.microPC());
1179
1180 // If returning from the delay of a cache miss, then update the status
1181 // to running, otherwise do the cache access. Possibly move this up
1182 // to tick() function.
1183 if (fetchStatus[tid] == IcacheAccessComplete) {
1184 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1185
1186 fetchStatus[tid] = Running;
1187 status_change = true;
1188 } else if (fetchStatus[tid] == Running) {
1189 // Align the fetch PC so its at the start of a fetch buffer segment.
1190 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1191
1192 // If buffer is no longer valid or fetchAddr has moved to point
1193 // to the next cache block, AND we have no remaining ucode
1194 // from a macro-op, then start fetch from icache.
1195 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1196 && !inRom && !macroop[tid]) {
1197 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1198 "instruction, starting at PC %s.\n", tid, thisPC);
1199
1200 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1201
1202 if (fetchStatus[tid] == IcacheWaitResponse)
1203 ++icacheStallCycles;
1204 else if (fetchStatus[tid] == ItlbWait)
1205 ++fetchTlbCycles;
1206 else
1207 ++fetchMiscStallCycles;
1208 return;
1209 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1210 // Stall CPU if an interrupt is posted and we're not issuing
1211 // an delayed commit micro-op currently (delayed commit instructions
1212 // are not interruptable by interrupts, only faults)
1213 ++fetchMiscStallCycles;
1214 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1215 return;
1216 }
1217 } else {
1218 if (fetchStatus[tid] == Idle) {
1219 ++fetchIdleCycles;
1220 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1221 }
1222
1223 // Status is Idle, so fetch should do nothing.
1224 return;
1225 }
1226
1227 ++fetchCycles;
1228
1229 TheISA::PCState nextPC = thisPC;
1230
1231 StaticInstPtr staticInst = NULL;
1232 StaticInstPtr curMacroop = macroop[tid];
1233
1234 // If the read of the first instruction was successful, then grab the
1235 // instructions from the rest of the cache line and put them into the
1236 // queue heading to decode.
1237
1238 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1239 "decode.\n", tid);
1240
1241 // Need to keep track of whether or not a predicted branch
1242 // ended this fetch block.
1243 bool predictedBranch = false;
1244
1245 // Need to halt fetch if quiesce instruction detected
1246 bool quiesce = false;
1247
1248 TheISA::MachInst *cacheInsts =
1249 reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1250
1251 const unsigned numInsts = fetchBufferSize / instSize;
1252 unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1253
1254 // Loop through instruction memory from the cache.
1255 // Keep issuing while fetchWidth is available and branch is not
1256 // predicted taken
1257 while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1258 && !predictedBranch && !quiesce) {
1259 // We need to process more memory if we aren't going to get a
1260 // StaticInst from the rom, the current macroop, or what's already
1261 // in the decoder.
1262 bool needMem = !inRom && !curMacroop &&
1263 !decoder[tid]->instReady();
1264 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1265 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1266
1267 if (needMem) {
1268 // If buffer is no longer valid or fetchAddr has moved to point
1269 // to the next cache block then start fetch from icache.
1270 if (!fetchBufferValid[tid] ||
1271 fetchBufferBlockPC != fetchBufferPC[tid])
1272 break;
1273
1274 if (blkOffset >= numInsts) {
1275 // We need to process more memory, but we've run out of the
1276 // current block.
1277 break;
1278 }
1279
1280 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1281 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1282
1283 if (decoder[tid]->needMoreBytes()) {
1284 blkOffset++;
1285 fetchAddr += instSize;
1286 pcOffset += instSize;
1287 }
1288 }
1289
1290 // Extract as many instructions and/or microops as we can from
1291 // the memory we've processed so far.
1292 do {
1293 if (!(curMacroop || inRom)) {
1294 if (decoder[tid]->instReady()) {
1295 staticInst = decoder[tid]->decode(thisPC);
1296
1297 // Increment stat of fetched instructions.
1298 ++fetchedInsts;
1299
1300 if (staticInst->isMacroop()) {
1301 curMacroop = staticInst;
1302 } else {
1303 pcOffset = 0;
1304 }
1305 } else {
1306 // We need more bytes for this instruction so blkOffset and
1307 // pcOffset will be updated
1308 break;
1309 }
1310 }
1311 // Whether we're moving to a new macroop because we're at the
1312 // end of the current one, or the branch predictor incorrectly
1313 // thinks we are...
1314 bool newMacro = false;
1315 if (curMacroop || inRom) {
1316 if (inRom) {
1317 staticInst = cpu->microcodeRom.fetchMicroop(
1318 thisPC.microPC(), curMacroop);
1319 } else {
1320 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1321 }
1322 newMacro |= staticInst->isLastMicroop();
1323 }
1324
1325 DynInstPtr instruction =
1326 buildInst(tid, staticInst, curMacroop,
1327 thisPC, nextPC, true);
1328
1329 ppFetch->notify(instruction);
1330 numInst++;
1331
1332 #if TRACING_ON
1333 if (DTRACE(O3PipeView)) {
1334 instruction->fetchTick = curTick();
1335 }
1336 #endif
1337
1338 nextPC = thisPC;
1339
1340 // If we're branching after this instruction, quit fetching
1341 // from the same block.
1342 predictedBranch |= thisPC.branching();
1343 predictedBranch |=
1344 lookupAndUpdateNextPC(instruction, nextPC);
1345 if (predictedBranch) {
1346 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1347 }
1348
1349 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1350
1351 // Move to the next instruction, unless we have a branch.
1352 thisPC = nextPC;
1353 inRom = isRomMicroPC(thisPC.microPC());
1354
1355 if (newMacro) {
1356 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1357 blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1358 pcOffset = 0;
1359 curMacroop = NULL;
1360 }
1361
1362 if (instruction->isQuiesce()) {
1363 DPRINTF(Fetch,
1364 "Quiesce instruction encountered, halting fetch!\n");
1365 fetchStatus[tid] = QuiescePending;
1366 status_change = true;
1367 quiesce = true;
1368 break;
1369 }
1370 } while ((curMacroop || decoder[tid]->instReady()) &&
1371 numInst < fetchWidth &&
1372 fetchQueue[tid].size() < fetchQueueSize);
1373
1374 // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1375 // or not.
1376 inRom = isRomMicroPC(thisPC.microPC());
1377 }
1378
1379 if (predictedBranch) {
1380 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1381 "instruction encountered.\n", tid);
1382 } else if (numInst >= fetchWidth) {
1383 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1384 "for this cycle.\n", tid);
1385 } else if (blkOffset >= fetchBufferSize) {
1386 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1387 "fetch buffer.\n", tid);
1388 }
1389
1390 macroop[tid] = curMacroop;
1391 fetchOffset[tid] = pcOffset;
1392
1393 if (numInst > 0) {
1394 wroteToTimeBuffer = true;
1395 }
1396
1397 pc[tid] = thisPC;
1398
1399 // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1400 // a state that would preclude fetching
1401 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1402 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1403 issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1404 fetchStatus[tid] != IcacheWaitResponse &&
1405 fetchStatus[tid] != ItlbWait &&
1406 fetchStatus[tid] != IcacheWaitRetry &&
1407 fetchStatus[tid] != QuiescePending &&
1408 !curMacroop;
1409 }
1410
1411 template<class Impl>
1412 void
1413 DefaultFetch<Impl>::recvReqRetry()
1414 {
1415 if (retryPkt != NULL) {
1416 assert(cacheBlocked);
1417 assert(retryTid != InvalidThreadID);
1418 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1419
1420 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1421 fetchStatus[retryTid] = IcacheWaitResponse;
1422 // Notify Fetch Request probe when a retryPkt is successfully sent.
1423 // Note that notify must be called before retryPkt is set to NULL.
1424 ppFetchRequestSent->notify(retryPkt->req);
1425 retryPkt = NULL;
1426 retryTid = InvalidThreadID;
1427 cacheBlocked = false;
1428 }
1429 } else {
1430 assert(retryTid == InvalidThreadID);
1431 // Access has been squashed since it was sent out. Just clear
1432 // the cache being blocked.
1433 cacheBlocked = false;
1434 }
1435 }
1436
1437 ///////////////////////////////////////
1438 // //
1439 // SMT FETCH POLICY MAINTAINED HERE //
1440 // //
1441 ///////////////////////////////////////
1442 template<class Impl>
1443 ThreadID
1444 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1445 {
1446 if (numThreads > 1) {
1447 switch (fetch_priority) {
1448
1449 case SingleThread:
1450 return 0;
1451
1452 case RoundRobin:
1453 return roundRobin();
1454
1455 case IQ:
1456 return iqCount();
1457
1458 case LSQ:
1459 return lsqCount();
1460
1461 case Branch:
1462 return branchCount();
1463
1464 default:
1465 return InvalidThreadID;
1466 }
1467 } else {
1468 list<ThreadID>::iterator thread = activeThreads->begin();
1469 if (thread == activeThreads->end()) {
1470 return InvalidThreadID;
1471 }
1472
1473 ThreadID tid = *thread;
1474
1475 if (fetchStatus[tid] == Running ||
1476 fetchStatus[tid] == IcacheAccessComplete ||
1477 fetchStatus[tid] == Idle) {
1478 return tid;
1479 } else {
1480 return InvalidThreadID;
1481 }
1482 }
1483 }
1484
1485
1486 template<class Impl>
1487 ThreadID
1488 DefaultFetch<Impl>::roundRobin()
1489 {
1490 list<ThreadID>::iterator pri_iter = priorityList.begin();
1491 list<ThreadID>::iterator end = priorityList.end();
1492
1493 ThreadID high_pri;
1494
1495 while (pri_iter != end) {
1496 high_pri = *pri_iter;
1497
1498 assert(high_pri <= numThreads);
1499
1500 if (fetchStatus[high_pri] == Running ||
1501 fetchStatus[high_pri] == IcacheAccessComplete ||
1502 fetchStatus[high_pri] == Idle) {
1503
1504 priorityList.erase(pri_iter);
1505 priorityList.push_back(high_pri);
1506
1507 return high_pri;
1508 }
1509
1510 pri_iter++;
1511 }
1512
1513 return InvalidThreadID;
1514 }
1515
1516 template<class Impl>
1517 ThreadID
1518 DefaultFetch<Impl>::iqCount()
1519 {
1520 //sorted from lowest->highest
1521 std::priority_queue<unsigned,vector<unsigned>,
1522 std::greater<unsigned> > PQ;
1523 std::map<unsigned, ThreadID> threadMap;
1524
1525 list<ThreadID>::iterator threads = activeThreads->begin();
1526 list<ThreadID>::iterator end = activeThreads->end();
1527
1528 while (threads != end) {
1529 ThreadID tid = *threads++;
1530 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1531
1532 //we can potentially get tid collisions if two threads
1533 //have the same iqCount, but this should be rare.
1534 PQ.push(iqCount);
1535 threadMap[iqCount] = tid;
1536 }
1537
1538 while (!PQ.empty()) {
1539 ThreadID high_pri = threadMap[PQ.top()];
1540
1541 if (fetchStatus[high_pri] == Running ||
1542 fetchStatus[high_pri] == IcacheAccessComplete ||
1543 fetchStatus[high_pri] == Idle)
1544 return high_pri;
1545 else
1546 PQ.pop();
1547
1548 }
1549
1550 return InvalidThreadID;
1551 }
1552
1553 template<class Impl>
1554 ThreadID
1555 DefaultFetch<Impl>::lsqCount()
1556 {
1557 //sorted from lowest->highest
1558 std::priority_queue<unsigned,vector<unsigned>,
1559 std::greater<unsigned> > PQ;
1560 std::map<unsigned, ThreadID> threadMap;
1561
1562 list<ThreadID>::iterator threads = activeThreads->begin();
1563 list<ThreadID>::iterator end = activeThreads->end();
1564
1565 while (threads != end) {
1566 ThreadID tid = *threads++;
1567 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1568
1569 //we can potentially get tid collisions if two threads
1570 //have the same iqCount, but this should be rare.
1571 PQ.push(ldstqCount);
1572 threadMap[ldstqCount] = tid;
1573 }
1574
1575 while (!PQ.empty()) {
1576 ThreadID high_pri = threadMap[PQ.top()];
1577
1578 if (fetchStatus[high_pri] == Running ||
1579 fetchStatus[high_pri] == IcacheAccessComplete ||
1580 fetchStatus[high_pri] == Idle)
1581 return high_pri;
1582 else
1583 PQ.pop();
1584 }
1585
1586 return InvalidThreadID;
1587 }
1588
1589 template<class Impl>
1590 ThreadID
1591 DefaultFetch<Impl>::branchCount()
1592 {
1593 #if 0
1594 list<ThreadID>::iterator thread = activeThreads->begin();
1595 assert(thread != activeThreads->end());
1596 ThreadID tid = *thread;
1597 #endif
1598
1599 panic("Branch Count Fetch policy unimplemented\n");
1600 return InvalidThreadID;
1601 }
1602
1603 template<class Impl>
1604 void
1605 DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1606 {
1607 if (!issuePipelinedIfetch[tid]) {
1608 return;
1609 }
1610
1611 // The next PC to access.
1612 TheISA::PCState thisPC = pc[tid];
1613
1614 if (isRomMicroPC(thisPC.microPC())) {
1615 return;
1616 }
1617
1618 Addr pcOffset = fetchOffset[tid];
1619 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1620
1621 // Align the fetch PC so its at the start of a fetch buffer segment.
1622 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1623
1624 // Unless buffer already got the block, fetch it from icache.
1625 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1626 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1627 "starting at PC %s.\n", tid, thisPC);
1628
1629 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1630 }
1631 }
1632
1633 template<class Impl>
1634 void
1635 DefaultFetch<Impl>::profileStall(ThreadID tid) {
1636 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1637
1638 // @todo Per-thread stats
1639
1640 if (stalls[tid].drain) {
1641 ++fetchPendingDrainCycles;
1642 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1643 } else if (activeThreads->empty()) {
1644 ++fetchNoActiveThreadStallCycles;
1645 DPRINTF(Fetch, "Fetch has no active thread!\n");
1646 } else if (fetchStatus[tid] == Blocked) {
1647 ++fetchBlockedCycles;
1648 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1649 } else if (fetchStatus[tid] == Squashing) {
1650 ++fetchSquashCycles;
1651 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1652 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1653 ++icacheStallCycles;
1654 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1655 tid);
1656 } else if (fetchStatus[tid] == ItlbWait) {
1657 ++fetchTlbCycles;
1658 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1659 "finish!\n", tid);
1660 } else if (fetchStatus[tid] == TrapPending) {
1661 ++fetchPendingTrapStallCycles;
1662 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1663 tid);
1664 } else if (fetchStatus[tid] == QuiescePending) {
1665 ++fetchPendingQuiesceStallCycles;
1666 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1667 "instruction!\n", tid);
1668 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1669 ++fetchIcacheWaitRetryStallCycles;
1670 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1671 tid);
1672 } else if (fetchStatus[tid] == NoGoodAddr) {
1673 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1674 tid);
1675 } else {
1676 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1677 tid, fetchStatus[tid]);
1678 }
1679 }
1680
1681 #endif//__CPU_O3_FETCH_IMPL_HH__