inorder cpu: add missing DPRINTF argument
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44 #include <algorithm>
45 #include <cstring>
46 #include <list>
47 #include <map>
48 #include <queue>
49
50 #include "arch/isa_traits.hh"
51 #include "arch/tlb.hh"
52 #include "arch/utility.hh"
53 #include "arch/vtophys.hh"
54 #include "base/types.hh"
55 #include "config/the_isa.hh"
56 #include "cpu/base.hh"
57 //#include "cpu/checker/cpu.hh"
58 #include "cpu/o3/fetch.hh"
59 #include "cpu/exetrace.hh"
60 #include "debug/Activity.hh"
61 #include "debug/Fetch.hh"
62 #include "mem/packet.hh"
63 #include "params/DerivO3CPU.hh"
64 #include "sim/byteswap.hh"
65 #include "sim/core.hh"
66 #include "sim/eventq.hh"
67 #include "sim/full_system.hh"
68 #include "sim/system.hh"
69
70 using namespace std;
71
72 template<class Impl>
73 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
74 : cpu(_cpu),
75 branchPred(params),
76 numInst(0),
77 decodeToFetchDelay(params->decodeToFetchDelay),
78 renameToFetchDelay(params->renameToFetchDelay),
79 iewToFetchDelay(params->iewToFetchDelay),
80 commitToFetchDelay(params->commitToFetchDelay),
81 fetchWidth(params->fetchWidth),
82 cacheBlocked(false),
83 retryPkt(NULL),
84 retryTid(InvalidThreadID),
85 numThreads(params->numThreads),
86 numFetchingThreads(params->smtNumFetchingThreads),
87 interruptPending(false),
88 drainPending(false),
89 switchedOut(false),
90 finishTranslationEvent(this)
91 {
92 if (numThreads > Impl::MaxThreads)
93 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
94 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
95 numThreads, static_cast<int>(Impl::MaxThreads));
96 if (fetchWidth > Impl::MaxWidth)
97 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
98 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
99 fetchWidth, static_cast<int>(Impl::MaxWidth));
100
101 // Set fetch stage's status to inactive.
102 _status = Inactive;
103
104 std::string policy = params->smtFetchPolicy;
105
106 // Convert string to lowercase
107 std::transform(policy.begin(), policy.end(), policy.begin(),
108 (int(*)(int)) tolower);
109
110 // Figure out fetch policy
111 if (policy == "singlethread") {
112 fetchPolicy = SingleThread;
113 if (numThreads > 1)
114 panic("Invalid Fetch Policy for a SMT workload.");
115 } else if (policy == "roundrobin") {
116 fetchPolicy = RoundRobin;
117 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
118 } else if (policy == "branch") {
119 fetchPolicy = Branch;
120 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
121 } else if (policy == "iqcount") {
122 fetchPolicy = IQ;
123 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
124 } else if (policy == "lsqcount") {
125 fetchPolicy = LSQ;
126 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
127 } else {
128 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
129 " RoundRobin,LSQcount,IQcount}\n");
130 }
131
132 // Get the size of an instruction.
133 instSize = sizeof(TheISA::MachInst);
134
135 for (int i = 0; i < Impl::MaxThreads; i++) {
136 cacheData[i] = NULL;
137 decoder[i] = new TheISA::Decoder(NULL);
138 }
139 }
140
141 template <class Impl>
142 std::string
143 DefaultFetch<Impl>::name() const
144 {
145 return cpu->name() + ".fetch";
146 }
147
148 template <class Impl>
149 void
150 DefaultFetch<Impl>::regStats()
151 {
152 icacheStallCycles
153 .name(name() + ".icacheStallCycles")
154 .desc("Number of cycles fetch is stalled on an Icache miss")
155 .prereq(icacheStallCycles);
156
157 fetchedInsts
158 .name(name() + ".Insts")
159 .desc("Number of instructions fetch has processed")
160 .prereq(fetchedInsts);
161
162 fetchedBranches
163 .name(name() + ".Branches")
164 .desc("Number of branches that fetch encountered")
165 .prereq(fetchedBranches);
166
167 predictedBranches
168 .name(name() + ".predictedBranches")
169 .desc("Number of branches that fetch has predicted taken")
170 .prereq(predictedBranches);
171
172 fetchCycles
173 .name(name() + ".Cycles")
174 .desc("Number of cycles fetch has run and was not squashing or"
175 " blocked")
176 .prereq(fetchCycles);
177
178 fetchSquashCycles
179 .name(name() + ".SquashCycles")
180 .desc("Number of cycles fetch has spent squashing")
181 .prereq(fetchSquashCycles);
182
183 fetchTlbCycles
184 .name(name() + ".TlbCycles")
185 .desc("Number of cycles fetch has spent waiting for tlb")
186 .prereq(fetchTlbCycles);
187
188 fetchIdleCycles
189 .name(name() + ".IdleCycles")
190 .desc("Number of cycles fetch was idle")
191 .prereq(fetchIdleCycles);
192
193 fetchBlockedCycles
194 .name(name() + ".BlockedCycles")
195 .desc("Number of cycles fetch has spent blocked")
196 .prereq(fetchBlockedCycles);
197
198 fetchedCacheLines
199 .name(name() + ".CacheLines")
200 .desc("Number of cache lines fetched")
201 .prereq(fetchedCacheLines);
202
203 fetchMiscStallCycles
204 .name(name() + ".MiscStallCycles")
205 .desc("Number of cycles fetch has spent waiting on interrupts, or "
206 "bad addresses, or out of MSHRs")
207 .prereq(fetchMiscStallCycles);
208
209 fetchPendingDrainCycles
210 .name(name() + ".PendingDrainCycles")
211 .desc("Number of cycles fetch has spent waiting on pipes to drain")
212 .prereq(fetchPendingDrainCycles);
213
214 fetchNoActiveThreadStallCycles
215 .name(name() + ".NoActiveThreadStallCycles")
216 .desc("Number of stall cycles due to no active thread to fetch from")
217 .prereq(fetchNoActiveThreadStallCycles);
218
219 fetchPendingTrapStallCycles
220 .name(name() + ".PendingTrapStallCycles")
221 .desc("Number of stall cycles due to pending traps")
222 .prereq(fetchPendingTrapStallCycles);
223
224 fetchPendingQuiesceStallCycles
225 .name(name() + ".PendingQuiesceStallCycles")
226 .desc("Number of stall cycles due to pending quiesce instructions")
227 .prereq(fetchPendingQuiesceStallCycles);
228
229 fetchIcacheWaitRetryStallCycles
230 .name(name() + ".IcacheWaitRetryStallCycles")
231 .desc("Number of stall cycles due to full MSHR")
232 .prereq(fetchIcacheWaitRetryStallCycles);
233
234 fetchIcacheSquashes
235 .name(name() + ".IcacheSquashes")
236 .desc("Number of outstanding Icache misses that were squashed")
237 .prereq(fetchIcacheSquashes);
238
239 fetchTlbSquashes
240 .name(name() + ".ItlbSquashes")
241 .desc("Number of outstanding ITLB misses that were squashed")
242 .prereq(fetchTlbSquashes);
243
244 fetchNisnDist
245 .init(/* base value */ 0,
246 /* last value */ fetchWidth,
247 /* bucket size */ 1)
248 .name(name() + ".rateDist")
249 .desc("Number of instructions fetched each cycle (Total)")
250 .flags(Stats::pdf);
251
252 idleRate
253 .name(name() + ".idleRate")
254 .desc("Percent of cycles fetch was idle")
255 .prereq(idleRate);
256 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
257
258 branchRate
259 .name(name() + ".branchRate")
260 .desc("Number of branch fetches per cycle")
261 .flags(Stats::total);
262 branchRate = fetchedBranches / cpu->numCycles;
263
264 fetchRate
265 .name(name() + ".rate")
266 .desc("Number of inst fetches per cycle")
267 .flags(Stats::total);
268 fetchRate = fetchedInsts / cpu->numCycles;
269
270 branchPred.regStats();
271 }
272
273 template<class Impl>
274 void
275 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
276 {
277 timeBuffer = time_buffer;
278
279 // Create wires to get information from proper places in time buffer.
280 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
281 fromRename = timeBuffer->getWire(-renameToFetchDelay);
282 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
283 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
284 }
285
286 template<class Impl>
287 void
288 DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
289 {
290 activeThreads = at_ptr;
291 }
292
293 template<class Impl>
294 void
295 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
296 {
297 fetchQueue = fq_ptr;
298
299 // Create wire to write information to proper place in fetch queue.
300 toDecode = fetchQueue->getWire(0);
301 }
302
303 template<class Impl>
304 void
305 DefaultFetch<Impl>::initStage()
306 {
307 // Setup PC and nextPC with initial state.
308 for (ThreadID tid = 0; tid < numThreads; tid++) {
309 pc[tid] = cpu->pcState(tid);
310 fetchOffset[tid] = 0;
311 macroop[tid] = NULL;
312 delayedCommit[tid] = false;
313 }
314
315 for (ThreadID tid = 0; tid < numThreads; tid++) {
316
317 fetchStatus[tid] = Running;
318
319 priorityList.push_back(tid);
320
321 memReq[tid] = NULL;
322
323 stalls[tid].decode = false;
324 stalls[tid].rename = false;
325 stalls[tid].iew = false;
326 stalls[tid].commit = false;
327 }
328
329 // Schedule fetch to get the correct PC from the CPU
330 // scheduleFetchStartupEvent(1);
331
332 // Fetch needs to start fetching instructions at the very beginning,
333 // so it must start up in active state.
334 switchToActive();
335 }
336
337 template<class Impl>
338 void
339 DefaultFetch<Impl>::setIcache()
340 {
341 assert(cpu->getInstPort().isConnected());
342
343 // Size of cache block.
344 cacheBlkSize = cpu->getInstPort().peerBlockSize();
345
346 // Create mask to get rid of offset bits.
347 cacheBlkMask = (cacheBlkSize - 1);
348
349 for (ThreadID tid = 0; tid < numThreads; tid++) {
350 // Create space to store a cache line.
351 if (!cacheData[tid])
352 cacheData[tid] = new uint8_t[cacheBlkSize];
353 cacheDataPC[tid] = 0;
354 cacheDataValid[tid] = false;
355 }
356 }
357
358 template<class Impl>
359 void
360 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361 {
362 ThreadID tid = pkt->req->threadId();
363
364 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
365
366 // Only change the status if it's still waiting on the icache access
367 // to return.
368 if (fetchStatus[tid] != IcacheWaitResponse ||
369 pkt->req != memReq[tid] ||
370 isSwitchedOut()) {
371 ++fetchIcacheSquashes;
372 delete pkt->req;
373 delete pkt;
374 return;
375 }
376
377 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
378 cacheDataValid[tid] = true;
379
380 if (!drainPending) {
381 // Wake up the CPU (if it went to sleep and was waiting on
382 // this completion event).
383 cpu->wakeCPU();
384
385 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386 tid);
387
388 switchToActive();
389 }
390
391 // Only switch to IcacheAccessComplete if we're not stalled as well.
392 if (checkStall(tid)) {
393 fetchStatus[tid] = Blocked;
394 } else {
395 fetchStatus[tid] = IcacheAccessComplete;
396 }
397
398 // Reset the mem req to NULL.
399 delete pkt->req;
400 delete pkt;
401 memReq[tid] = NULL;
402 }
403
404 template <class Impl>
405 bool
406 DefaultFetch<Impl>::drain()
407 {
408 // Fetch is ready to drain at any time.
409 cpu->signalDrained();
410 drainPending = true;
411 return true;
412 }
413
414 template <class Impl>
415 void
416 DefaultFetch<Impl>::resume()
417 {
418 drainPending = false;
419 }
420
421 template <class Impl>
422 void
423 DefaultFetch<Impl>::switchOut()
424 {
425 switchedOut = true;
426 // Branch predictor needs to have its state cleared.
427 branchPred.switchOut();
428 }
429
430 template <class Impl>
431 void
432 DefaultFetch<Impl>::takeOverFrom()
433 {
434 // the instruction port is now connected so we can get the block
435 // size
436 setIcache();
437
438 // Reset all state
439 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
440 stalls[i].decode = 0;
441 stalls[i].rename = 0;
442 stalls[i].iew = 0;
443 stalls[i].commit = 0;
444 pc[i] = cpu->pcState(i);
445 fetchStatus[i] = Running;
446 }
447 numInst = 0;
448 wroteToTimeBuffer = false;
449 _status = Inactive;
450 switchedOut = false;
451 interruptPending = false;
452 branchPred.takeOverFrom();
453 }
454
455 template <class Impl>
456 void
457 DefaultFetch<Impl>::wakeFromQuiesce()
458 {
459 DPRINTF(Fetch, "Waking up from quiesce\n");
460 // Hopefully this is safe
461 // @todo: Allow other threads to wake from quiesce.
462 fetchStatus[0] = Running;
463 }
464
465 template <class Impl>
466 inline void
467 DefaultFetch<Impl>::switchToActive()
468 {
469 if (_status == Inactive) {
470 DPRINTF(Activity, "Activating stage.\n");
471
472 cpu->activateStage(O3CPU::FetchIdx);
473
474 _status = Active;
475 }
476 }
477
478 template <class Impl>
479 inline void
480 DefaultFetch<Impl>::switchToInactive()
481 {
482 if (_status == Active) {
483 DPRINTF(Activity, "Deactivating stage.\n");
484
485 cpu->deactivateStage(O3CPU::FetchIdx);
486
487 _status = Inactive;
488 }
489 }
490
491 template <class Impl>
492 bool
493 DefaultFetch<Impl>::lookupAndUpdateNextPC(
494 DynInstPtr &inst, TheISA::PCState &nextPC)
495 {
496 // Do branch prediction check here.
497 // A bit of a misnomer...next_PC is actually the current PC until
498 // this function updates it.
499 bool predict_taken;
500
501 if (!inst->isControl()) {
502 TheISA::advancePC(nextPC, inst->staticInst);
503 inst->setPredTarg(nextPC);
504 inst->setPredTaken(false);
505 return false;
506 }
507
508 ThreadID tid = inst->threadNumber;
509 predict_taken = branchPred.predict(inst, nextPC, tid);
510
511 if (predict_taken) {
512 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
513 tid, inst->seqNum, nextPC);
514 } else {
515 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
516 tid, inst->seqNum);
517 }
518
519 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
520 tid, inst->seqNum, nextPC);
521 inst->setPredTarg(nextPC);
522 inst->setPredTaken(predict_taken);
523
524 ++fetchedBranches;
525
526 if (predict_taken) {
527 ++predictedBranches;
528 }
529
530 return predict_taken;
531 }
532
533 template <class Impl>
534 bool
535 DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
536 {
537 Fault fault = NoFault;
538
539 // @todo: not sure if these should block translation.
540 //AlphaDep
541 if (cacheBlocked) {
542 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
543 tid);
544 return false;
545 } else if (isSwitchedOut()) {
546 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
547 tid);
548 return false;
549 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
550 // Hold off fetch from getting new instructions when:
551 // Cache is blocked, or
552 // while an interrupt is pending and we're not in PAL mode, or
553 // fetch is switched out.
554 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
555 tid);
556 return false;
557 }
558
559 // Align the fetch address so it's at the start of a cache block.
560 Addr block_PC = icacheBlockAlignPC(vaddr);
561
562 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
563 tid, block_PC, vaddr);
564
565 // Setup the memReq to do a read of the first instruction's address.
566 // Set the appropriate read size and flags as well.
567 // Build request here.
568 RequestPtr mem_req =
569 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
570 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
571
572 memReq[tid] = mem_req;
573
574 // Initiate translation of the icache block
575 fetchStatus[tid] = ItlbWait;
576 FetchTranslation *trans = new FetchTranslation(this);
577 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
578 trans, BaseTLB::Execute);
579 return true;
580 }
581
582 template <class Impl>
583 void
584 DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
585 {
586 ThreadID tid = mem_req->threadId();
587 Addr block_PC = mem_req->getVaddr();
588
589 // Wake up CPU if it was idle
590 cpu->wakeCPU();
591
592 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
593 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
594 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
595 tid);
596 ++fetchTlbSquashes;
597 delete mem_req;
598 return;
599 }
600
601
602 // If translation was successful, attempt to read the icache block.
603 if (fault == NoFault) {
604 // Check that we're not going off into random memory
605 // If we have, just wait around for commit to squash something and put
606 // us on the right track
607 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
608 warn("Address %#x is outside of physical memory, stopping fetch\n",
609 mem_req->getPaddr());
610 fetchStatus[tid] = NoGoodAddr;
611 delete mem_req;
612 memReq[tid] = NULL;
613 return;
614 }
615
616 // Build packet here.
617 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
618 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
619
620 cacheDataPC[tid] = block_PC;
621 cacheDataValid[tid] = false;
622 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
623
624 fetchedCacheLines++;
625
626 // Access the cache.
627 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
628 assert(retryPkt == NULL);
629 assert(retryTid == InvalidThreadID);
630 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
631
632 fetchStatus[tid] = IcacheWaitRetry;
633 retryPkt = data_pkt;
634 retryTid = tid;
635 cacheBlocked = true;
636 } else {
637 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
638 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
639 "response.\n", tid);
640
641 lastIcacheStall[tid] = curTick();
642 fetchStatus[tid] = IcacheWaitResponse;
643 }
644 } else {
645 if (!(numInst < fetchWidth)) {
646 assert(!finishTranslationEvent.scheduled());
647 finishTranslationEvent.setFault(fault);
648 finishTranslationEvent.setReq(mem_req);
649 cpu->schedule(finishTranslationEvent,
650 cpu->clockEdge(Cycles(1)));
651 return;
652 }
653 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
654 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
655 // Translation faulted, icache request won't be sent.
656 delete mem_req;
657 memReq[tid] = NULL;
658
659 // Send the fault to commit. This thread will not do anything
660 // until commit handles the fault. The only other way it can
661 // wake up is if a squash comes along and changes the PC.
662 TheISA::PCState fetchPC = pc[tid];
663
664 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
665 // We will use a nop in ordier to carry the fault.
666 DynInstPtr instruction = buildInst(tid,
667 decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
668 NULL, fetchPC, fetchPC, false);
669
670 instruction->setPredTarg(fetchPC);
671 instruction->fault = fault;
672 wroteToTimeBuffer = true;
673
674 DPRINTF(Activity, "Activity this cycle.\n");
675 cpu->activityThisCycle();
676
677 fetchStatus[tid] = TrapPending;
678
679 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
680 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
681 tid, fault->name(), pc[tid]);
682 }
683 _status = updateFetchStatus();
684 }
685
686 template <class Impl>
687 inline void
688 DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
689 const DynInstPtr squashInst, ThreadID tid)
690 {
691 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
692 tid, newPC);
693
694 pc[tid] = newPC;
695 fetchOffset[tid] = 0;
696 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
697 macroop[tid] = squashInst->macroop;
698 else
699 macroop[tid] = NULL;
700 decoder[tid]->reset();
701
702 // Clear the icache miss if it's outstanding.
703 if (fetchStatus[tid] == IcacheWaitResponse) {
704 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
705 tid);
706 memReq[tid] = NULL;
707 } else if (fetchStatus[tid] == ItlbWait) {
708 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
709 tid);
710 memReq[tid] = NULL;
711 }
712
713 // Get rid of the retrying packet if it was from this thread.
714 if (retryTid == tid) {
715 assert(cacheBlocked);
716 if (retryPkt) {
717 delete retryPkt->req;
718 delete retryPkt;
719 }
720 retryPkt = NULL;
721 retryTid = InvalidThreadID;
722 }
723
724 fetchStatus[tid] = Squashing;
725
726 // microops are being squashed, it is not known wheather the
727 // youngest non-squashed microop was marked delayed commit
728 // or not. Setting the flag to true ensures that the
729 // interrupts are not handled when they cannot be, though
730 // some opportunities to handle interrupts may be missed.
731 delayedCommit[tid] = true;
732
733 ++fetchSquashCycles;
734 }
735
736 template<class Impl>
737 void
738 DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
739 const DynInstPtr squashInst,
740 const InstSeqNum seq_num, ThreadID tid)
741 {
742 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
743
744 doSquash(newPC, squashInst, tid);
745
746 // Tell the CPU to remove any instructions that are in flight between
747 // fetch and decode.
748 cpu->removeInstsUntil(seq_num, tid);
749 }
750
751 template<class Impl>
752 bool
753 DefaultFetch<Impl>::checkStall(ThreadID tid) const
754 {
755 bool ret_val = false;
756
757 if (cpu->contextSwitch) {
758 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
759 ret_val = true;
760 } else if (stalls[tid].decode) {
761 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
762 ret_val = true;
763 } else if (stalls[tid].rename) {
764 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
765 ret_val = true;
766 } else if (stalls[tid].iew) {
767 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
768 ret_val = true;
769 } else if (stalls[tid].commit) {
770 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
771 ret_val = true;
772 }
773
774 return ret_val;
775 }
776
777 template<class Impl>
778 typename DefaultFetch<Impl>::FetchStatus
779 DefaultFetch<Impl>::updateFetchStatus()
780 {
781 //Check Running
782 list<ThreadID>::iterator threads = activeThreads->begin();
783 list<ThreadID>::iterator end = activeThreads->end();
784
785 while (threads != end) {
786 ThreadID tid = *threads++;
787
788 if (fetchStatus[tid] == Running ||
789 fetchStatus[tid] == Squashing ||
790 fetchStatus[tid] == IcacheAccessComplete) {
791
792 if (_status == Inactive) {
793 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
794
795 if (fetchStatus[tid] == IcacheAccessComplete) {
796 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
797 "completion\n",tid);
798 }
799
800 cpu->activateStage(O3CPU::FetchIdx);
801 }
802
803 return Active;
804 }
805 }
806
807 // Stage is switching from active to inactive, notify CPU of it.
808 if (_status == Active) {
809 DPRINTF(Activity, "Deactivating stage.\n");
810
811 cpu->deactivateStage(O3CPU::FetchIdx);
812 }
813
814 return Inactive;
815 }
816
817 template <class Impl>
818 void
819 DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
820 const InstSeqNum seq_num, DynInstPtr squashInst,
821 ThreadID tid)
822 {
823 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
824
825 doSquash(newPC, squashInst, tid);
826
827 // Tell the CPU to remove any instructions that are not in the ROB.
828 cpu->removeInstsNotInROB(tid);
829 }
830
831 template <class Impl>
832 void
833 DefaultFetch<Impl>::tick()
834 {
835 list<ThreadID>::iterator threads = activeThreads->begin();
836 list<ThreadID>::iterator end = activeThreads->end();
837 bool status_change = false;
838
839 wroteToTimeBuffer = false;
840
841 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
842 issuePipelinedIfetch[i] = false;
843 }
844
845 while (threads != end) {
846 ThreadID tid = *threads++;
847
848 // Check the signals for each thread to determine the proper status
849 // for each thread.
850 bool updated_status = checkSignalsAndUpdate(tid);
851 status_change = status_change || updated_status;
852 }
853
854 DPRINTF(Fetch, "Running stage.\n");
855
856 if (FullSystem) {
857 if (fromCommit->commitInfo[0].interruptPending) {
858 interruptPending = true;
859 }
860
861 if (fromCommit->commitInfo[0].clearInterrupt) {
862 interruptPending = false;
863 }
864 }
865
866 for (threadFetched = 0; threadFetched < numFetchingThreads;
867 threadFetched++) {
868 // Fetch each of the actively fetching threads.
869 fetch(status_change);
870 }
871
872 // Record number of instructions fetched this cycle for distribution.
873 fetchNisnDist.sample(numInst);
874
875 if (status_change) {
876 // Change the fetch stage status if there was a status change.
877 _status = updateFetchStatus();
878 }
879
880 // If there was activity this cycle, inform the CPU of it.
881 if (wroteToTimeBuffer || cpu->contextSwitch) {
882 DPRINTF(Activity, "Activity this cycle.\n");
883
884 cpu->activityThisCycle();
885 }
886
887 // Issue the next I-cache request if possible.
888 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
889 if (issuePipelinedIfetch[i]) {
890 pipelineIcacheAccesses(i);
891 }
892 }
893
894 // Reset the number of the instruction we've fetched.
895 numInst = 0;
896 }
897
898 template <class Impl>
899 bool
900 DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
901 {
902 // Update the per thread stall statuses.
903 if (fromDecode->decodeBlock[tid]) {
904 stalls[tid].decode = true;
905 }
906
907 if (fromDecode->decodeUnblock[tid]) {
908 assert(stalls[tid].decode);
909 assert(!fromDecode->decodeBlock[tid]);
910 stalls[tid].decode = false;
911 }
912
913 if (fromRename->renameBlock[tid]) {
914 stalls[tid].rename = true;
915 }
916
917 if (fromRename->renameUnblock[tid]) {
918 assert(stalls[tid].rename);
919 assert(!fromRename->renameBlock[tid]);
920 stalls[tid].rename = false;
921 }
922
923 if (fromIEW->iewBlock[tid]) {
924 stalls[tid].iew = true;
925 }
926
927 if (fromIEW->iewUnblock[tid]) {
928 assert(stalls[tid].iew);
929 assert(!fromIEW->iewBlock[tid]);
930 stalls[tid].iew = false;
931 }
932
933 if (fromCommit->commitBlock[tid]) {
934 stalls[tid].commit = true;
935 }
936
937 if (fromCommit->commitUnblock[tid]) {
938 assert(stalls[tid].commit);
939 assert(!fromCommit->commitBlock[tid]);
940 stalls[tid].commit = false;
941 }
942
943 // Check squash signals from commit.
944 if (fromCommit->commitInfo[tid].squash) {
945
946 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
947 "from commit.\n",tid);
948 // In any case, squash.
949 squash(fromCommit->commitInfo[tid].pc,
950 fromCommit->commitInfo[tid].doneSeqNum,
951 fromCommit->commitInfo[tid].squashInst, tid);
952
953 // If it was a branch mispredict on a control instruction, update the
954 // branch predictor with that instruction, otherwise just kill the
955 // invalid state we generated in after sequence number
956 if (fromCommit->commitInfo[tid].mispredictInst &&
957 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
958 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
959 fromCommit->commitInfo[tid].pc,
960 fromCommit->commitInfo[tid].branchTaken,
961 tid);
962 } else {
963 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
964 tid);
965 }
966
967 return true;
968 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
969 // Update the branch predictor if it wasn't a squashed instruction
970 // that was broadcasted.
971 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
972 }
973
974 // Check ROB squash signals from commit.
975 if (fromCommit->commitInfo[tid].robSquashing) {
976 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
977
978 // Continue to squash.
979 fetchStatus[tid] = Squashing;
980
981 return true;
982 }
983
984 // Check squash signals from decode.
985 if (fromDecode->decodeInfo[tid].squash) {
986 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
987 "from decode.\n",tid);
988
989 // Update the branch predictor.
990 if (fromDecode->decodeInfo[tid].branchMispredict) {
991 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
992 fromDecode->decodeInfo[tid].nextPC,
993 fromDecode->decodeInfo[tid].branchTaken,
994 tid);
995 } else {
996 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
997 tid);
998 }
999
1000 if (fetchStatus[tid] != Squashing) {
1001
1002 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1003 fromDecode->decodeInfo[tid].nextPC);
1004 // Squash unless we're already squashing
1005 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1006 fromDecode->decodeInfo[tid].squashInst,
1007 fromDecode->decodeInfo[tid].doneSeqNum,
1008 tid);
1009
1010 return true;
1011 }
1012 }
1013
1014 if (checkStall(tid) &&
1015 fetchStatus[tid] != IcacheWaitResponse &&
1016 fetchStatus[tid] != IcacheWaitRetry) {
1017 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1018
1019 fetchStatus[tid] = Blocked;
1020
1021 return true;
1022 }
1023
1024 if (fetchStatus[tid] == Blocked ||
1025 fetchStatus[tid] == Squashing) {
1026 // Switch status to running if fetch isn't being told to block or
1027 // squash this cycle.
1028 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1029 tid);
1030
1031 fetchStatus[tid] = Running;
1032
1033 return true;
1034 }
1035
1036 // If we've reached this point, we have not gotten any signals that
1037 // cause fetch to change its status. Fetch remains the same as before.
1038 return false;
1039 }
1040
1041 template<class Impl>
1042 typename Impl::DynInstPtr
1043 DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1044 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1045 TheISA::PCState nextPC, bool trace)
1046 {
1047 // Get a sequence number.
1048 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1049
1050 // Create a new DynInst from the instruction fetched.
1051 DynInstPtr instruction =
1052 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1053 instruction->setTid(tid);
1054
1055 instruction->setASID(tid);
1056
1057 instruction->setThreadState(cpu->thread[tid]);
1058
1059 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1060 "[sn:%lli].\n", tid, thisPC.instAddr(),
1061 thisPC.microPC(), seq);
1062
1063 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1064 instruction->staticInst->
1065 disassemble(thisPC.instAddr()));
1066
1067 #if TRACING_ON
1068 if (trace) {
1069 instruction->traceData =
1070 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1071 instruction->staticInst, thisPC, curMacroop);
1072 }
1073 #else
1074 instruction->traceData = NULL;
1075 #endif
1076
1077 // Add instruction to the CPU's list of instructions.
1078 instruction->setInstListIt(cpu->addInst(instruction));
1079
1080 // Write the instruction to the first slot in the queue
1081 // that heads to decode.
1082 assert(numInst < fetchWidth);
1083 toDecode->insts[toDecode->size++] = instruction;
1084
1085 // Keep track of if we can take an interrupt at this boundary
1086 delayedCommit[tid] = instruction->isDelayedCommit();
1087
1088 return instruction;
1089 }
1090
1091 template<class Impl>
1092 void
1093 DefaultFetch<Impl>::fetch(bool &status_change)
1094 {
1095 //////////////////////////////////////////
1096 // Start actual fetch
1097 //////////////////////////////////////////
1098 ThreadID tid = getFetchingThread(fetchPolicy);
1099
1100 if (tid == InvalidThreadID || drainPending) {
1101 // Breaks looping condition in tick()
1102 threadFetched = numFetchingThreads;
1103
1104 if (numThreads == 1) { // @todo Per-thread stats
1105 profileStall(0);
1106 }
1107
1108 return;
1109 }
1110
1111 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1112
1113 // The current PC.
1114 TheISA::PCState thisPC = pc[tid];
1115
1116 Addr pcOffset = fetchOffset[tid];
1117 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1118
1119 bool inRom = isRomMicroPC(thisPC.microPC());
1120
1121 // If returning from the delay of a cache miss, then update the status
1122 // to running, otherwise do the cache access. Possibly move this up
1123 // to tick() function.
1124 if (fetchStatus[tid] == IcacheAccessComplete) {
1125 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1126
1127 fetchStatus[tid] = Running;
1128 status_change = true;
1129 } else if (fetchStatus[tid] == Running) {
1130 // Align the fetch PC so its at the start of a cache block.
1131 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1132
1133 // If buffer is no longer valid or fetchAddr has moved to point
1134 // to the next cache block, AND we have no remaining ucode
1135 // from a macro-op, then start fetch from icache.
1136 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1137 && !inRom && !macroop[tid]) {
1138 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1139 "instruction, starting at PC %s.\n", tid, thisPC);
1140
1141 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1142
1143 if (fetchStatus[tid] == IcacheWaitResponse)
1144 ++icacheStallCycles;
1145 else if (fetchStatus[tid] == ItlbWait)
1146 ++fetchTlbCycles;
1147 else
1148 ++fetchMiscStallCycles;
1149 return;
1150 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1151 || isSwitchedOut()) {
1152 // Stall CPU if an interrupt is posted and we're not issuing
1153 // an delayed commit micro-op currently (delayed commit instructions
1154 // are not interruptable by interrupts, only faults)
1155 ++fetchMiscStallCycles;
1156 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1157 return;
1158 }
1159 } else {
1160 if (fetchStatus[tid] == Idle) {
1161 ++fetchIdleCycles;
1162 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1163 }
1164
1165 // Status is Idle, so fetch should do nothing.
1166 return;
1167 }
1168
1169 ++fetchCycles;
1170
1171 TheISA::PCState nextPC = thisPC;
1172
1173 StaticInstPtr staticInst = NULL;
1174 StaticInstPtr curMacroop = macroop[tid];
1175
1176 // If the read of the first instruction was successful, then grab the
1177 // instructions from the rest of the cache line and put them into the
1178 // queue heading to decode.
1179
1180 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1181 "decode.\n", tid);
1182
1183 // Need to keep track of whether or not a predicted branch
1184 // ended this fetch block.
1185 bool predictedBranch = false;
1186
1187 TheISA::MachInst *cacheInsts =
1188 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1189
1190 const unsigned numInsts = cacheBlkSize / instSize;
1191 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1192
1193 // Loop through instruction memory from the cache.
1194 // Keep issuing while fetchWidth is available and branch is not
1195 // predicted taken
1196 while (numInst < fetchWidth && !predictedBranch) {
1197
1198 // We need to process more memory if we aren't going to get a
1199 // StaticInst from the rom, the current macroop, or what's already
1200 // in the decoder.
1201 bool needMem = !inRom && !curMacroop &&
1202 !decoder[tid]->instReady();
1203 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1204 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1205
1206 if (needMem) {
1207 // If buffer is no longer valid or fetchAddr has moved to point
1208 // to the next cache block then start fetch from icache.
1209 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1210 break;
1211
1212 if (blkOffset >= numInsts) {
1213 // We need to process more memory, but we've run out of the
1214 // current block.
1215 break;
1216 }
1217
1218 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1219 // Walk past any annulled delay slot instructions.
1220 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1221 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1222 blkOffset++;
1223 fetchAddr += instSize;
1224 }
1225 if (blkOffset >= numInsts)
1226 break;
1227 }
1228 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1229
1230 decoder[tid]->setTC(cpu->thread[tid]->getTC());
1231 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1232
1233 if (decoder[tid]->needMoreBytes()) {
1234 blkOffset++;
1235 fetchAddr += instSize;
1236 pcOffset += instSize;
1237 }
1238 }
1239
1240 // Extract as many instructions and/or microops as we can from
1241 // the memory we've processed so far.
1242 do {
1243 if (!(curMacroop || inRom)) {
1244 if (decoder[tid]->instReady()) {
1245 staticInst = decoder[tid]->decode(thisPC);
1246
1247 // Increment stat of fetched instructions.
1248 ++fetchedInsts;
1249
1250 if (staticInst->isMacroop()) {
1251 curMacroop = staticInst;
1252 } else {
1253 pcOffset = 0;
1254 }
1255 } else {
1256 // We need more bytes for this instruction so blkOffset and
1257 // pcOffset will be updated
1258 break;
1259 }
1260 }
1261 // Whether we're moving to a new macroop because we're at the
1262 // end of the current one, or the branch predictor incorrectly
1263 // thinks we are...
1264 bool newMacro = false;
1265 if (curMacroop || inRom) {
1266 if (inRom) {
1267 staticInst = cpu->microcodeRom.fetchMicroop(
1268 thisPC.microPC(), curMacroop);
1269 } else {
1270 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1271 }
1272 newMacro |= staticInst->isLastMicroop();
1273 }
1274
1275 DynInstPtr instruction =
1276 buildInst(tid, staticInst, curMacroop,
1277 thisPC, nextPC, true);
1278
1279 numInst++;
1280
1281 #if TRACING_ON
1282 instruction->fetchTick = curTick();
1283 #endif
1284
1285 nextPC = thisPC;
1286
1287 // If we're branching after this instruction, quite fetching
1288 // from the same block then.
1289 predictedBranch |= thisPC.branching();
1290 predictedBranch |=
1291 lookupAndUpdateNextPC(instruction, nextPC);
1292 if (predictedBranch) {
1293 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1294 }
1295
1296 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1297
1298 // Move to the next instruction, unless we have a branch.
1299 thisPC = nextPC;
1300 inRom = isRomMicroPC(thisPC.microPC());
1301
1302 if (newMacro) {
1303 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1304 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1305 pcOffset = 0;
1306 curMacroop = NULL;
1307 }
1308
1309 if (instruction->isQuiesce()) {
1310 DPRINTF(Fetch,
1311 "Quiesce instruction encountered, halting fetch!");
1312 fetchStatus[tid] = QuiescePending;
1313 status_change = true;
1314 break;
1315 }
1316 } while ((curMacroop || decoder[tid]->instReady()) &&
1317 numInst < fetchWidth);
1318 }
1319
1320 if (predictedBranch) {
1321 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1322 "instruction encountered.\n", tid);
1323 } else if (numInst >= fetchWidth) {
1324 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1325 "for this cycle.\n", tid);
1326 } else if (blkOffset >= cacheBlkSize) {
1327 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1328 "block.\n", tid);
1329 }
1330
1331 macroop[tid] = curMacroop;
1332 fetchOffset[tid] = pcOffset;
1333
1334 if (numInst > 0) {
1335 wroteToTimeBuffer = true;
1336 }
1337
1338 pc[tid] = thisPC;
1339
1340 // pipeline a fetch if we're crossing a cache boundary and not in
1341 // a state that would preclude fetching
1342 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1343 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1344 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1345 fetchStatus[tid] != IcacheWaitResponse &&
1346 fetchStatus[tid] != ItlbWait &&
1347 fetchStatus[tid] != IcacheWaitRetry &&
1348 fetchStatus[tid] != QuiescePending &&
1349 !curMacroop;
1350 }
1351
1352 template<class Impl>
1353 void
1354 DefaultFetch<Impl>::recvRetry()
1355 {
1356 if (retryPkt != NULL) {
1357 assert(cacheBlocked);
1358 assert(retryTid != InvalidThreadID);
1359 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1360
1361 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1362 fetchStatus[retryTid] = IcacheWaitResponse;
1363 retryPkt = NULL;
1364 retryTid = InvalidThreadID;
1365 cacheBlocked = false;
1366 }
1367 } else {
1368 assert(retryTid == InvalidThreadID);
1369 // Access has been squashed since it was sent out. Just clear
1370 // the cache being blocked.
1371 cacheBlocked = false;
1372 }
1373 }
1374
1375 ///////////////////////////////////////
1376 // //
1377 // SMT FETCH POLICY MAINTAINED HERE //
1378 // //
1379 ///////////////////////////////////////
1380 template<class Impl>
1381 ThreadID
1382 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1383 {
1384 if (numThreads > 1) {
1385 switch (fetch_priority) {
1386
1387 case SingleThread:
1388 return 0;
1389
1390 case RoundRobin:
1391 return roundRobin();
1392
1393 case IQ:
1394 return iqCount();
1395
1396 case LSQ:
1397 return lsqCount();
1398
1399 case Branch:
1400 return branchCount();
1401
1402 default:
1403 return InvalidThreadID;
1404 }
1405 } else {
1406 list<ThreadID>::iterator thread = activeThreads->begin();
1407 if (thread == activeThreads->end()) {
1408 return InvalidThreadID;
1409 }
1410
1411 ThreadID tid = *thread;
1412
1413 if (fetchStatus[tid] == Running ||
1414 fetchStatus[tid] == IcacheAccessComplete ||
1415 fetchStatus[tid] == Idle) {
1416 return tid;
1417 } else {
1418 return InvalidThreadID;
1419 }
1420 }
1421 }
1422
1423
1424 template<class Impl>
1425 ThreadID
1426 DefaultFetch<Impl>::roundRobin()
1427 {
1428 list<ThreadID>::iterator pri_iter = priorityList.begin();
1429 list<ThreadID>::iterator end = priorityList.end();
1430
1431 ThreadID high_pri;
1432
1433 while (pri_iter != end) {
1434 high_pri = *pri_iter;
1435
1436 assert(high_pri <= numThreads);
1437
1438 if (fetchStatus[high_pri] == Running ||
1439 fetchStatus[high_pri] == IcacheAccessComplete ||
1440 fetchStatus[high_pri] == Idle) {
1441
1442 priorityList.erase(pri_iter);
1443 priorityList.push_back(high_pri);
1444
1445 return high_pri;
1446 }
1447
1448 pri_iter++;
1449 }
1450
1451 return InvalidThreadID;
1452 }
1453
1454 template<class Impl>
1455 ThreadID
1456 DefaultFetch<Impl>::iqCount()
1457 {
1458 std::priority_queue<unsigned> PQ;
1459 std::map<unsigned, ThreadID> threadMap;
1460
1461 list<ThreadID>::iterator threads = activeThreads->begin();
1462 list<ThreadID>::iterator end = activeThreads->end();
1463
1464 while (threads != end) {
1465 ThreadID tid = *threads++;
1466 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1467
1468 PQ.push(iqCount);
1469 threadMap[iqCount] = tid;
1470 }
1471
1472 while (!PQ.empty()) {
1473 ThreadID high_pri = threadMap[PQ.top()];
1474
1475 if (fetchStatus[high_pri] == Running ||
1476 fetchStatus[high_pri] == IcacheAccessComplete ||
1477 fetchStatus[high_pri] == Idle)
1478 return high_pri;
1479 else
1480 PQ.pop();
1481
1482 }
1483
1484 return InvalidThreadID;
1485 }
1486
1487 template<class Impl>
1488 ThreadID
1489 DefaultFetch<Impl>::lsqCount()
1490 {
1491 std::priority_queue<unsigned> PQ;
1492 std::map<unsigned, ThreadID> threadMap;
1493
1494 list<ThreadID>::iterator threads = activeThreads->begin();
1495 list<ThreadID>::iterator end = activeThreads->end();
1496
1497 while (threads != end) {
1498 ThreadID tid = *threads++;
1499 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1500
1501 PQ.push(ldstqCount);
1502 threadMap[ldstqCount] = tid;
1503 }
1504
1505 while (!PQ.empty()) {
1506 ThreadID high_pri = threadMap[PQ.top()];
1507
1508 if (fetchStatus[high_pri] == Running ||
1509 fetchStatus[high_pri] == IcacheAccessComplete ||
1510 fetchStatus[high_pri] == Idle)
1511 return high_pri;
1512 else
1513 PQ.pop();
1514 }
1515
1516 return InvalidThreadID;
1517 }
1518
1519 template<class Impl>
1520 ThreadID
1521 DefaultFetch<Impl>::branchCount()
1522 {
1523 #if 0
1524 list<ThreadID>::iterator thread = activeThreads->begin();
1525 assert(thread != activeThreads->end());
1526 ThreadID tid = *thread;
1527 #endif
1528
1529 panic("Branch Count Fetch policy unimplemented\n");
1530 return InvalidThreadID;
1531 }
1532
1533 template<class Impl>
1534 void
1535 DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1536 {
1537 if (!issuePipelinedIfetch[tid]) {
1538 return;
1539 }
1540
1541 // The next PC to access.
1542 TheISA::PCState thisPC = pc[tid];
1543
1544 if (isRomMicroPC(thisPC.microPC())) {
1545 return;
1546 }
1547
1548 Addr pcOffset = fetchOffset[tid];
1549 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1550
1551 // Align the fetch PC so its at the start of a cache block.
1552 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1553
1554 // Unless buffer already got the block, fetch it from icache.
1555 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1556 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1557 "starting at PC %s.\n", tid, thisPC);
1558
1559 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1560 }
1561 }
1562
1563 template<class Impl>
1564 void
1565 DefaultFetch<Impl>::profileStall(ThreadID tid) {
1566 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1567
1568 // @todo Per-thread stats
1569
1570 if (drainPending) {
1571 ++fetchPendingDrainCycles;
1572 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1573 } else if (activeThreads->empty()) {
1574 ++fetchNoActiveThreadStallCycles;
1575 DPRINTF(Fetch, "Fetch has no active thread!\n");
1576 } else if (fetchStatus[tid] == Blocked) {
1577 ++fetchBlockedCycles;
1578 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1579 } else if (fetchStatus[tid] == Squashing) {
1580 ++fetchSquashCycles;
1581 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1582 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1583 ++icacheStallCycles;
1584 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1585 tid);
1586 } else if (fetchStatus[tid] == ItlbWait) {
1587 ++fetchTlbCycles;
1588 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1589 "finish!\n", tid);
1590 } else if (fetchStatus[tid] == TrapPending) {
1591 ++fetchPendingTrapStallCycles;
1592 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1593 tid);
1594 } else if (fetchStatus[tid] == QuiescePending) {
1595 ++fetchPendingQuiesceStallCycles;
1596 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1597 "instruction!\n", tid);
1598 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1599 ++fetchIcacheWaitRetryStallCycles;
1600 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1601 tid);
1602 } else if (fetchStatus[tid] == NoGoodAddr) {
1603 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1604 tid);
1605 } else {
1606 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1607 tid, fetchStatus[tid]);
1608 }
1609 }