Mem: Make errors in the memory system be responses, not requests. Fixes cache handlin...
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include <algorithm>
33 #include <cstring>
34
35 #include "config/use_checker.hh"
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "cpu/checker/cpu.hh"
40 #include "cpu/exetrace.hh"
41 #include "cpu/o3/fetch.hh"
42 #include "mem/packet.hh"
43 #include "mem/request.hh"
44 #include "sim/byteswap.hh"
45 #include "sim/host.hh"
46 #include "sim/core.hh"
47
48 #if FULL_SYSTEM
49 #include "arch/tlb.hh"
50 #include "arch/vtophys.hh"
51 #include "sim/system.hh"
52 #endif // FULL_SYSTEM
53
54 template<class Impl>
55 void
56 DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
57 {
58 Port::setPeer(port);
59
60 fetch->setIcache();
61 }
62
63 template<class Impl>
64 Tick
65 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
66 {
67 panic("DefaultFetch doesn't expect recvAtomic callback!");
68 return curTick;
69 }
70
71 template<class Impl>
72 void
73 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
74 {
75 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
76 "functional call.");
77 }
78
79 template<class Impl>
80 void
81 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
82 {
83 if (status == RangeChange) {
84 if (!snoopRangeSent) {
85 snoopRangeSent = true;
86 sendStatusChange(Port::RangeChange);
87 }
88 return;
89 }
90
91 panic("DefaultFetch doesn't expect recvStatusChange callback!");
92 }
93
94 template<class Impl>
95 bool
96 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
97 {
98 DPRINTF(Fetch, "Received timing\n");
99 if (pkt->isResponse()) {
100 fetch->processCacheCompletion(pkt);
101 }
102 //else Snooped a coherence request, just return
103 return true;
104 }
105
106 template<class Impl>
107 void
108 DefaultFetch<Impl>::IcachePort::recvRetry()
109 {
110 fetch->recvRetry();
111 }
112
113 template<class Impl>
114 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, Params *params)
115 : cpu(_cpu),
116 branchPred(params),
117 predecoder(NULL),
118 decodeToFetchDelay(params->decodeToFetchDelay),
119 renameToFetchDelay(params->renameToFetchDelay),
120 iewToFetchDelay(params->iewToFetchDelay),
121 commitToFetchDelay(params->commitToFetchDelay),
122 fetchWidth(params->fetchWidth),
123 cacheBlocked(false),
124 retryPkt(NULL),
125 retryTid(-1),
126 numThreads(params->numberOfThreads),
127 numFetchingThreads(params->smtNumFetchingThreads),
128 interruptPending(false),
129 drainPending(false),
130 switchedOut(false)
131 {
132 if (numThreads > Impl::MaxThreads)
133 fatal("numThreads is not a valid value\n");
134
135 // Set fetch stage's status to inactive.
136 _status = Inactive;
137
138 std::string policy = params->smtFetchPolicy;
139
140 // Convert string to lowercase
141 std::transform(policy.begin(), policy.end(), policy.begin(),
142 (int(*)(int)) tolower);
143
144 // Figure out fetch policy
145 if (policy == "singlethread") {
146 fetchPolicy = SingleThread;
147 if (numThreads > 1)
148 panic("Invalid Fetch Policy for a SMT workload.");
149 } else if (policy == "roundrobin") {
150 fetchPolicy = RoundRobin;
151 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
152 } else if (policy == "branch") {
153 fetchPolicy = Branch;
154 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
155 } else if (policy == "iqcount") {
156 fetchPolicy = IQ;
157 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
158 } else if (policy == "lsqcount") {
159 fetchPolicy = LSQ;
160 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
161 } else {
162 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
163 " RoundRobin,LSQcount,IQcount}\n");
164 }
165
166 // Get the size of an instruction.
167 instSize = sizeof(TheISA::MachInst);
168
169 // Name is finally available, so create the port.
170 icachePort = new IcachePort(this);
171
172 icachePort->snoopRangeSent = false;
173
174 #if USE_CHECKER
175 if (cpu->checker) {
176 cpu->checker->setIcachePort(icachePort);
177 }
178 #endif
179 }
180
181 template <class Impl>
182 std::string
183 DefaultFetch<Impl>::name() const
184 {
185 return cpu->name() + ".fetch";
186 }
187
188 template <class Impl>
189 void
190 DefaultFetch<Impl>::regStats()
191 {
192 icacheStallCycles
193 .name(name() + ".icacheStallCycles")
194 .desc("Number of cycles fetch is stalled on an Icache miss")
195 .prereq(icacheStallCycles);
196
197 fetchedInsts
198 .name(name() + ".Insts")
199 .desc("Number of instructions fetch has processed")
200 .prereq(fetchedInsts);
201
202 fetchedBranches
203 .name(name() + ".Branches")
204 .desc("Number of branches that fetch encountered")
205 .prereq(fetchedBranches);
206
207 predictedBranches
208 .name(name() + ".predictedBranches")
209 .desc("Number of branches that fetch has predicted taken")
210 .prereq(predictedBranches);
211
212 fetchCycles
213 .name(name() + ".Cycles")
214 .desc("Number of cycles fetch has run and was not squashing or"
215 " blocked")
216 .prereq(fetchCycles);
217
218 fetchSquashCycles
219 .name(name() + ".SquashCycles")
220 .desc("Number of cycles fetch has spent squashing")
221 .prereq(fetchSquashCycles);
222
223 fetchIdleCycles
224 .name(name() + ".IdleCycles")
225 .desc("Number of cycles fetch was idle")
226 .prereq(fetchIdleCycles);
227
228 fetchBlockedCycles
229 .name(name() + ".BlockedCycles")
230 .desc("Number of cycles fetch has spent blocked")
231 .prereq(fetchBlockedCycles);
232
233 fetchedCacheLines
234 .name(name() + ".CacheLines")
235 .desc("Number of cache lines fetched")
236 .prereq(fetchedCacheLines);
237
238 fetchMiscStallCycles
239 .name(name() + ".MiscStallCycles")
240 .desc("Number of cycles fetch has spent waiting on interrupts, or "
241 "bad addresses, or out of MSHRs")
242 .prereq(fetchMiscStallCycles);
243
244 fetchIcacheSquashes
245 .name(name() + ".IcacheSquashes")
246 .desc("Number of outstanding Icache misses that were squashed")
247 .prereq(fetchIcacheSquashes);
248
249 fetchNisnDist
250 .init(/* base value */ 0,
251 /* last value */ fetchWidth,
252 /* bucket size */ 1)
253 .name(name() + ".rateDist")
254 .desc("Number of instructions fetched each cycle (Total)")
255 .flags(Stats::pdf);
256
257 idleRate
258 .name(name() + ".idleRate")
259 .desc("Percent of cycles fetch was idle")
260 .prereq(idleRate);
261 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
262
263 branchRate
264 .name(name() + ".branchRate")
265 .desc("Number of branch fetches per cycle")
266 .flags(Stats::total);
267 branchRate = fetchedBranches / cpu->numCycles;
268
269 fetchRate
270 .name(name() + ".rate")
271 .desc("Number of inst fetches per cycle")
272 .flags(Stats::total);
273 fetchRate = fetchedInsts / cpu->numCycles;
274
275 branchPred.regStats();
276 }
277
278 template<class Impl>
279 void
280 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
281 {
282 timeBuffer = time_buffer;
283
284 // Create wires to get information from proper places in time buffer.
285 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
286 fromRename = timeBuffer->getWire(-renameToFetchDelay);
287 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
288 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
289 }
290
291 template<class Impl>
292 void
293 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
294 {
295 activeThreads = at_ptr;
296 }
297
298 template<class Impl>
299 void
300 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
301 {
302 fetchQueue = fq_ptr;
303
304 // Create wire to write information to proper place in fetch queue.
305 toDecode = fetchQueue->getWire(0);
306 }
307
308 template<class Impl>
309 void
310 DefaultFetch<Impl>::initStage()
311 {
312 // Setup PC and nextPC with initial state.
313 for (int tid = 0; tid < numThreads; tid++) {
314 PC[tid] = cpu->readPC(tid);
315 nextPC[tid] = cpu->readNextPC(tid);
316 microPC[tid] = cpu->readMicroPC(tid);
317 }
318
319 for (int tid=0; tid < numThreads; tid++) {
320
321 fetchStatus[tid] = Running;
322
323 priorityList.push_back(tid);
324
325 memReq[tid] = NULL;
326
327 stalls[tid].decode = false;
328 stalls[tid].rename = false;
329 stalls[tid].iew = false;
330 stalls[tid].commit = false;
331 }
332
333 // Schedule fetch to get the correct PC from the CPU
334 // scheduleFetchStartupEvent(1);
335
336 // Fetch needs to start fetching instructions at the very beginning,
337 // so it must start up in active state.
338 switchToActive();
339 }
340
341 template<class Impl>
342 void
343 DefaultFetch<Impl>::setIcache()
344 {
345 // Size of cache block.
346 cacheBlkSize = icachePort->peerBlockSize();
347
348 // Create mask to get rid of offset bits.
349 cacheBlkMask = (cacheBlkSize - 1);
350
351 for (int tid=0; tid < numThreads; tid++) {
352 // Create space to store a cache line.
353 cacheData[tid] = new uint8_t[cacheBlkSize];
354 cacheDataPC[tid] = 0;
355 cacheDataValid[tid] = false;
356 }
357 }
358
359 template<class Impl>
360 void
361 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
362 {
363 unsigned tid = pkt->req->getThreadNum();
364
365 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
366
367 assert(!pkt->wasNacked());
368
369 // Only change the status if it's still waiting on the icache access
370 // to return.
371 if (fetchStatus[tid] != IcacheWaitResponse ||
372 pkt->req != memReq[tid] ||
373 isSwitchedOut()) {
374 ++fetchIcacheSquashes;
375 delete pkt->req;
376 delete pkt;
377 return;
378 }
379
380 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
381 cacheDataValid[tid] = true;
382
383 if (!drainPending) {
384 // Wake up the CPU (if it went to sleep and was waiting on
385 // this completion event).
386 cpu->wakeCPU();
387
388 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
389 tid);
390
391 switchToActive();
392 }
393
394 // Only switch to IcacheAccessComplete if we're not stalled as well.
395 if (checkStall(tid)) {
396 fetchStatus[tid] = Blocked;
397 } else {
398 fetchStatus[tid] = IcacheAccessComplete;
399 }
400
401 // Reset the mem req to NULL.
402 delete pkt->req;
403 delete pkt;
404 memReq[tid] = NULL;
405 }
406
407 template <class Impl>
408 bool
409 DefaultFetch<Impl>::drain()
410 {
411 // Fetch is ready to drain at any time.
412 cpu->signalDrained();
413 drainPending = true;
414 return true;
415 }
416
417 template <class Impl>
418 void
419 DefaultFetch<Impl>::resume()
420 {
421 drainPending = false;
422 }
423
424 template <class Impl>
425 void
426 DefaultFetch<Impl>::switchOut()
427 {
428 switchedOut = true;
429 // Branch predictor needs to have its state cleared.
430 branchPred.switchOut();
431 }
432
433 template <class Impl>
434 void
435 DefaultFetch<Impl>::takeOverFrom()
436 {
437 // Reset all state
438 for (int i = 0; i < Impl::MaxThreads; ++i) {
439 stalls[i].decode = 0;
440 stalls[i].rename = 0;
441 stalls[i].iew = 0;
442 stalls[i].commit = 0;
443 PC[i] = cpu->readPC(i);
444 nextPC[i] = cpu->readNextPC(i);
445 microPC[i] = cpu->readMicroPC(i);
446 fetchStatus[i] = Running;
447 }
448 numInst = 0;
449 wroteToTimeBuffer = false;
450 _status = Inactive;
451 switchedOut = false;
452 interruptPending = false;
453 branchPred.takeOverFrom();
454 }
455
456 template <class Impl>
457 void
458 DefaultFetch<Impl>::wakeFromQuiesce()
459 {
460 DPRINTF(Fetch, "Waking up from quiesce\n");
461 // Hopefully this is safe
462 // @todo: Allow other threads to wake from quiesce.
463 fetchStatus[0] = Running;
464 }
465
466 template <class Impl>
467 inline void
468 DefaultFetch<Impl>::switchToActive()
469 {
470 if (_status == Inactive) {
471 DPRINTF(Activity, "Activating stage.\n");
472
473 cpu->activateStage(O3CPU::FetchIdx);
474
475 _status = Active;
476 }
477 }
478
479 template <class Impl>
480 inline void
481 DefaultFetch<Impl>::switchToInactive()
482 {
483 if (_status == Active) {
484 DPRINTF(Activity, "Deactivating stage.\n");
485
486 cpu->deactivateStage(O3CPU::FetchIdx);
487
488 _status = Inactive;
489 }
490 }
491
492 template <class Impl>
493 bool
494 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
495 Addr &next_NPC, Addr &next_MicroPC)
496 {
497 // Do branch prediction check here.
498 // A bit of a misnomer...next_PC is actually the current PC until
499 // this function updates it.
500 bool predict_taken;
501
502 if (!inst->isControl()) {
503 if (inst->isMicroop() && !inst->isLastMicroop()) {
504 next_MicroPC++;
505 } else {
506 next_PC = next_NPC;
507 next_NPC = next_NPC + instSize;
508 next_MicroPC = 0;
509 }
510 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
511 inst->setPredTaken(false);
512 return false;
513 }
514
515 //Assume for now that all control flow is to a different macroop which
516 //would reset the micro pc to 0.
517 next_MicroPC = 0;
518
519 int tid = inst->threadNumber;
520 Addr pred_PC = next_PC;
521 predict_taken = branchPred.predict(inst, pred_PC, tid);
522
523 /* if (predict_taken) {
524 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
525 tid, pred_PC);
526 } else {
527 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
528 }*/
529
530 #if ISA_HAS_DELAY_SLOT
531 next_PC = next_NPC;
532 if (predict_taken)
533 next_NPC = pred_PC;
534 else
535 next_NPC += instSize;
536 #else
537 if (predict_taken)
538 next_PC = pred_PC;
539 else
540 next_PC += instSize;
541 next_NPC = next_PC + instSize;
542 #endif
543 /* DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
544 tid, next_PC, next_NPC);*/
545 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
546 inst->setPredTaken(predict_taken);
547
548 ++fetchedBranches;
549
550 if (predict_taken) {
551 ++predictedBranches;
552 }
553
554 return predict_taken;
555 }
556
557 template <class Impl>
558 bool
559 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
560 {
561 Fault fault = NoFault;
562
563 //AlphaDep
564 if (cacheBlocked) {
565 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
566 tid);
567 return false;
568 } else if (isSwitchedOut()) {
569 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
570 tid);
571 return false;
572 } else if (interruptPending && !(fetch_PC & 0x3)) {
573 // Hold off fetch from getting new instructions when:
574 // Cache is blocked, or
575 // while an interrupt is pending and we're not in PAL mode, or
576 // fetch is switched out.
577 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
578 tid);
579 return false;
580 }
581
582 // Align the fetch PC so it's at the start of a cache block.
583 Addr block_PC = icacheBlockAlignPC(fetch_PC);
584
585 // If we've already got the block, no need to try to fetch it again.
586 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
587 return true;
588 }
589
590 // Setup the memReq to do a read of the first instruction's address.
591 // Set the appropriate read size and flags as well.
592 // Build request here.
593 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
594 fetch_PC, cpu->readCpuId(), tid);
595
596 memReq[tid] = mem_req;
597
598 // Translate the instruction request.
599 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
600
601 // In the case of faults, the fetch stage may need to stall and wait
602 // for the ITB miss to be handled.
603
604 // If translation was successful, attempt to read the first
605 // instruction.
606 if (fault == NoFault) {
607 #if 0
608 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
609 memReq[tid]->isUncacheable()) {
610 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
611 "misspeculating path)!",
612 memReq[tid]->paddr);
613 ret_fault = TheISA::genMachineCheckFault();
614 return false;
615 }
616 #endif
617
618 // Build packet here.
619 PacketPtr data_pkt = new Packet(mem_req,
620 MemCmd::ReadReq, Packet::Broadcast);
621 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
622
623 cacheDataPC[tid] = block_PC;
624 cacheDataValid[tid] = false;
625
626 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
627
628 fetchedCacheLines++;
629
630 // Now do the timing access to see whether or not the instruction
631 // exists within the cache.
632 if (!icachePort->sendTiming(data_pkt)) {
633 assert(retryPkt == NULL);
634 assert(retryTid == -1);
635 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
636 fetchStatus[tid] = IcacheWaitRetry;
637 retryPkt = data_pkt;
638 retryTid = tid;
639 cacheBlocked = true;
640 return false;
641 }
642
643 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
644
645 lastIcacheStall[tid] = curTick;
646
647 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
648 "response.\n", tid);
649
650 fetchStatus[tid] = IcacheWaitResponse;
651 } else {
652 delete mem_req;
653 memReq[tid] = NULL;
654 }
655
656 ret_fault = fault;
657 return true;
658 }
659
660 template <class Impl>
661 inline void
662 DefaultFetch<Impl>::doSquash(const Addr &new_PC,
663 const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
664 {
665 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
666 tid, new_PC, new_NPC);
667
668 PC[tid] = new_PC;
669 nextPC[tid] = new_NPC;
670 microPC[tid] = new_microPC;
671
672 // Clear the icache miss if it's outstanding.
673 if (fetchStatus[tid] == IcacheWaitResponse) {
674 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
675 tid);
676 memReq[tid] = NULL;
677 }
678
679 // Get rid of the retrying packet if it was from this thread.
680 if (retryTid == tid) {
681 assert(cacheBlocked);
682 if (retryPkt) {
683 delete retryPkt->req;
684 delete retryPkt;
685 }
686 retryPkt = NULL;
687 retryTid = -1;
688 }
689
690 fetchStatus[tid] = Squashing;
691
692 ++fetchSquashCycles;
693 }
694
695 template<class Impl>
696 void
697 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
698 const Addr &new_MicroPC,
699 const InstSeqNum &seq_num, unsigned tid)
700 {
701 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
702
703 doSquash(new_PC, new_NPC, new_MicroPC, tid);
704
705 // Tell the CPU to remove any instructions that are in flight between
706 // fetch and decode.
707 cpu->removeInstsUntil(seq_num, tid);
708 }
709
710 template<class Impl>
711 bool
712 DefaultFetch<Impl>::checkStall(unsigned tid) const
713 {
714 bool ret_val = false;
715
716 if (cpu->contextSwitch) {
717 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
718 ret_val = true;
719 } else if (stalls[tid].decode) {
720 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
721 ret_val = true;
722 } else if (stalls[tid].rename) {
723 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
724 ret_val = true;
725 } else if (stalls[tid].iew) {
726 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
727 ret_val = true;
728 } else if (stalls[tid].commit) {
729 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
730 ret_val = true;
731 }
732
733 return ret_val;
734 }
735
736 template<class Impl>
737 typename DefaultFetch<Impl>::FetchStatus
738 DefaultFetch<Impl>::updateFetchStatus()
739 {
740 //Check Running
741 std::list<unsigned>::iterator threads = activeThreads->begin();
742 std::list<unsigned>::iterator end = activeThreads->end();
743
744 while (threads != end) {
745 unsigned tid = *threads++;
746
747 if (fetchStatus[tid] == Running ||
748 fetchStatus[tid] == Squashing ||
749 fetchStatus[tid] == IcacheAccessComplete) {
750
751 if (_status == Inactive) {
752 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
753
754 if (fetchStatus[tid] == IcacheAccessComplete) {
755 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
756 "completion\n",tid);
757 }
758
759 cpu->activateStage(O3CPU::FetchIdx);
760 }
761
762 return Active;
763 }
764 }
765
766 // Stage is switching from active to inactive, notify CPU of it.
767 if (_status == Active) {
768 DPRINTF(Activity, "Deactivating stage.\n");
769
770 cpu->deactivateStage(O3CPU::FetchIdx);
771 }
772
773 return Inactive;
774 }
775
776 template <class Impl>
777 void
778 DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
779 const Addr &new_MicroPC,
780 const InstSeqNum &seq_num, unsigned tid)
781 {
782 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
783
784 doSquash(new_PC, new_NPC, new_MicroPC, tid);
785
786 // Tell the CPU to remove any instructions that are not in the ROB.
787 cpu->removeInstsNotInROB(tid);
788 }
789
790 template <class Impl>
791 void
792 DefaultFetch<Impl>::tick()
793 {
794 std::list<unsigned>::iterator threads = activeThreads->begin();
795 std::list<unsigned>::iterator end = activeThreads->end();
796 bool status_change = false;
797
798 wroteToTimeBuffer = false;
799
800 while (threads != end) {
801 unsigned tid = *threads++;
802
803 // Check the signals for each thread to determine the proper status
804 // for each thread.
805 bool updated_status = checkSignalsAndUpdate(tid);
806 status_change = status_change || updated_status;
807 }
808
809 DPRINTF(Fetch, "Running stage.\n");
810
811 // Reset the number of the instruction we're fetching.
812 numInst = 0;
813
814 #if FULL_SYSTEM
815 if (fromCommit->commitInfo[0].interruptPending) {
816 interruptPending = true;
817 }
818
819 if (fromCommit->commitInfo[0].clearInterrupt) {
820 interruptPending = false;
821 }
822 #endif
823
824 for (threadFetched = 0; threadFetched < numFetchingThreads;
825 threadFetched++) {
826 // Fetch each of the actively fetching threads.
827 fetch(status_change);
828 }
829
830 // Record number of instructions fetched this cycle for distribution.
831 fetchNisnDist.sample(numInst);
832
833 if (status_change) {
834 // Change the fetch stage status if there was a status change.
835 _status = updateFetchStatus();
836 }
837
838 // If there was activity this cycle, inform the CPU of it.
839 if (wroteToTimeBuffer || cpu->contextSwitch) {
840 DPRINTF(Activity, "Activity this cycle.\n");
841
842 cpu->activityThisCycle();
843 }
844 }
845
846 template <class Impl>
847 bool
848 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
849 {
850 // Update the per thread stall statuses.
851 if (fromDecode->decodeBlock[tid]) {
852 stalls[tid].decode = true;
853 }
854
855 if (fromDecode->decodeUnblock[tid]) {
856 assert(stalls[tid].decode);
857 assert(!fromDecode->decodeBlock[tid]);
858 stalls[tid].decode = false;
859 }
860
861 if (fromRename->renameBlock[tid]) {
862 stalls[tid].rename = true;
863 }
864
865 if (fromRename->renameUnblock[tid]) {
866 assert(stalls[tid].rename);
867 assert(!fromRename->renameBlock[tid]);
868 stalls[tid].rename = false;
869 }
870
871 if (fromIEW->iewBlock[tid]) {
872 stalls[tid].iew = true;
873 }
874
875 if (fromIEW->iewUnblock[tid]) {
876 assert(stalls[tid].iew);
877 assert(!fromIEW->iewBlock[tid]);
878 stalls[tid].iew = false;
879 }
880
881 if (fromCommit->commitBlock[tid]) {
882 stalls[tid].commit = true;
883 }
884
885 if (fromCommit->commitUnblock[tid]) {
886 assert(stalls[tid].commit);
887 assert(!fromCommit->commitBlock[tid]);
888 stalls[tid].commit = false;
889 }
890
891 // Check squash signals from commit.
892 if (fromCommit->commitInfo[tid].squash) {
893
894 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
895 "from commit.\n",tid);
896 // In any case, squash.
897 squash(fromCommit->commitInfo[tid].nextPC,
898 fromCommit->commitInfo[tid].nextNPC,
899 fromCommit->commitInfo[tid].nextMicroPC,
900 fromCommit->commitInfo[tid].doneSeqNum,
901 tid);
902
903 // Also check if there's a mispredict that happened.
904 if (fromCommit->commitInfo[tid].branchMispredict) {
905 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
906 fromCommit->commitInfo[tid].nextPC,
907 fromCommit->commitInfo[tid].branchTaken,
908 tid);
909 } else {
910 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
911 tid);
912 }
913
914 return true;
915 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
916 // Update the branch predictor if it wasn't a squashed instruction
917 // that was broadcasted.
918 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
919 }
920
921 // Check ROB squash signals from commit.
922 if (fromCommit->commitInfo[tid].robSquashing) {
923 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
924
925 // Continue to squash.
926 fetchStatus[tid] = Squashing;
927
928 return true;
929 }
930
931 // Check squash signals from decode.
932 if (fromDecode->decodeInfo[tid].squash) {
933 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
934 "from decode.\n",tid);
935
936 // Update the branch predictor.
937 if (fromDecode->decodeInfo[tid].branchMispredict) {
938 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
939 fromDecode->decodeInfo[tid].nextPC,
940 fromDecode->decodeInfo[tid].branchTaken,
941 tid);
942 } else {
943 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
944 tid);
945 }
946
947 if (fetchStatus[tid] != Squashing) {
948
949 DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
950 fromDecode->decodeInfo[tid].nextPC,
951 fromDecode->decodeInfo[tid].nextNPC);
952 // Squash unless we're already squashing
953 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
954 fromDecode->decodeInfo[tid].nextNPC,
955 fromDecode->decodeInfo[tid].nextMicroPC,
956 fromDecode->decodeInfo[tid].doneSeqNum,
957 tid);
958
959 return true;
960 }
961 }
962
963 if (checkStall(tid) &&
964 fetchStatus[tid] != IcacheWaitResponse &&
965 fetchStatus[tid] != IcacheWaitRetry) {
966 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
967
968 fetchStatus[tid] = Blocked;
969
970 return true;
971 }
972
973 if (fetchStatus[tid] == Blocked ||
974 fetchStatus[tid] == Squashing) {
975 // Switch status to running if fetch isn't being told to block or
976 // squash this cycle.
977 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
978 tid);
979
980 fetchStatus[tid] = Running;
981
982 return true;
983 }
984
985 // If we've reached this point, we have not gotten any signals that
986 // cause fetch to change its status. Fetch remains the same as before.
987 return false;
988 }
989
990 template<class Impl>
991 void
992 DefaultFetch<Impl>::fetch(bool &status_change)
993 {
994 //////////////////////////////////////////
995 // Start actual fetch
996 //////////////////////////////////////////
997 int tid = getFetchingThread(fetchPolicy);
998
999 if (tid == -1 || drainPending) {
1000 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1001
1002 // Breaks looping condition in tick()
1003 threadFetched = numFetchingThreads;
1004 return;
1005 }
1006
1007 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1008
1009 // The current PC.
1010 Addr fetch_PC = PC[tid];
1011 Addr fetch_NPC = nextPC[tid];
1012 Addr fetch_MicroPC = microPC[tid];
1013
1014 // Fault code for memory access.
1015 Fault fault = NoFault;
1016
1017 // If returning from the delay of a cache miss, then update the status
1018 // to running, otherwise do the cache access. Possibly move this up
1019 // to tick() function.
1020 if (fetchStatus[tid] == IcacheAccessComplete) {
1021 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1022 tid);
1023
1024 fetchStatus[tid] = Running;
1025 status_change = true;
1026 } else if (fetchStatus[tid] == Running) {
1027 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1028 "instruction, starting at PC %08p.\n",
1029 tid, fetch_PC);
1030
1031 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1032 if (!fetch_success) {
1033 if (cacheBlocked) {
1034 ++icacheStallCycles;
1035 } else {
1036 ++fetchMiscStallCycles;
1037 }
1038 return;
1039 }
1040 } else {
1041 if (fetchStatus[tid] == Idle) {
1042 ++fetchIdleCycles;
1043 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1044 } else if (fetchStatus[tid] == Blocked) {
1045 ++fetchBlockedCycles;
1046 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1047 } else if (fetchStatus[tid] == Squashing) {
1048 ++fetchSquashCycles;
1049 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1050 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1051 ++icacheStallCycles;
1052 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1053 }
1054
1055 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1056 // fetch should do nothing.
1057 return;
1058 }
1059
1060 ++fetchCycles;
1061
1062 // If we had a stall due to an icache miss, then return.
1063 if (fetchStatus[tid] == IcacheWaitResponse) {
1064 ++icacheStallCycles;
1065 status_change = true;
1066 return;
1067 }
1068
1069 Addr next_PC = fetch_PC;
1070 Addr next_NPC = fetch_NPC;
1071 Addr next_MicroPC = fetch_MicroPC;
1072
1073 InstSeqNum inst_seq;
1074 MachInst inst;
1075 ExtMachInst ext_inst;
1076 // @todo: Fix this hack.
1077 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1078
1079 StaticInstPtr staticInst = NULL;
1080 StaticInstPtr macroop = NULL;
1081
1082 if (fault == NoFault) {
1083 // If the read of the first instruction was successful, then grab the
1084 // instructions from the rest of the cache line and put them into the
1085 // queue heading to decode.
1086
1087 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1088 "decode.\n",tid);
1089
1090 // Need to keep track of whether or not a predicted branch
1091 // ended this fetch block.
1092 bool predicted_branch = false;
1093
1094 while (offset < cacheBlkSize &&
1095 numInst < fetchWidth &&
1096 !predicted_branch) {
1097
1098 // If we're branching after this instruction, quite fetching
1099 // from the same block then.
1100 predicted_branch =
1101 (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1102 if (predicted_branch) {
1103 DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1104 fetch_PC, fetch_NPC);
1105 }
1106
1107 // Make sure this is a valid index.
1108 assert(offset <= cacheBlkSize - instSize);
1109
1110 if (!macroop) {
1111 // Get the instruction from the array of the cache line.
1112 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1113 (&cacheData[tid][offset]));
1114
1115 predecoder.setTC(cpu->thread[tid]->getTC());
1116 predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1117
1118 ext_inst = predecoder.getExtMachInst();
1119 staticInst = StaticInstPtr(ext_inst, fetch_PC);
1120 if (staticInst->isMacroop())
1121 macroop = staticInst;
1122 }
1123 do {
1124 if (macroop) {
1125 staticInst = macroop->fetchMicroop(fetch_MicroPC);
1126 if (staticInst->isLastMicroop())
1127 macroop = NULL;
1128 }
1129
1130 // Get a sequence number.
1131 inst_seq = cpu->getAndIncrementInstSeq();
1132
1133 // Create a new DynInst from the instruction fetched.
1134 DynInstPtr instruction = new DynInst(staticInst,
1135 fetch_PC, fetch_NPC, fetch_MicroPC,
1136 next_PC, next_NPC, next_MicroPC,
1137 inst_seq, cpu);
1138 instruction->setTid(tid);
1139
1140 instruction->setASID(tid);
1141
1142 instruction->setThreadState(cpu->thread[tid]);
1143
1144 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1145 "[sn:%lli]\n",
1146 tid, instruction->readPC(), inst_seq);
1147
1148 //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1149
1150 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1151 tid, instruction->staticInst->disassemble(fetch_PC));
1152
1153 #if TRACING_ON
1154 instruction->traceData =
1155 cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1156 instruction->staticInst, instruction->readPC());
1157 #else
1158 instruction->traceData = NULL;
1159 #endif
1160
1161 ///FIXME This needs to be more robust in dealing with delay slots
1162 predicted_branch |=
1163 lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1164
1165 // Add instruction to the CPU's list of instructions.
1166 instruction->setInstListIt(cpu->addInst(instruction));
1167
1168 // Write the instruction to the first slot in the queue
1169 // that heads to decode.
1170 toDecode->insts[numInst] = instruction;
1171
1172 toDecode->size++;
1173
1174 // Increment stat of fetched instructions.
1175 ++fetchedInsts;
1176
1177 // Move to the next instruction, unless we have a branch.
1178 fetch_PC = next_PC;
1179 fetch_NPC = next_NPC;
1180 fetch_MicroPC = next_MicroPC;
1181
1182 if (instruction->isQuiesce()) {
1183 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1184 curTick);
1185 fetchStatus[tid] = QuiescePending;
1186 ++numInst;
1187 status_change = true;
1188 break;
1189 }
1190
1191 ++numInst;
1192 } while (staticInst->isMicroop() &&
1193 !staticInst->isLastMicroop() &&
1194 numInst < fetchWidth);
1195 offset += instSize;
1196 }
1197
1198 if (predicted_branch) {
1199 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1200 "instruction encountered.\n", tid);
1201 } else if (numInst >= fetchWidth) {
1202 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1203 "for this cycle.\n", tid);
1204 } else if (offset >= cacheBlkSize) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1206 "block.\n", tid);
1207 }
1208 }
1209
1210 if (numInst > 0) {
1211 wroteToTimeBuffer = true;
1212 }
1213
1214 // Now that fetching is completed, update the PC to signify what the next
1215 // cycle will be.
1216 if (fault == NoFault) {
1217 PC[tid] = next_PC;
1218 nextPC[tid] = next_NPC;
1219 microPC[tid] = next_MicroPC;
1220 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1221 } else {
1222 // We shouldn't be in an icache miss and also have a fault (an ITB
1223 // miss)
1224 if (fetchStatus[tid] == IcacheWaitResponse) {
1225 panic("Fetch should have exited prior to this!");
1226 }
1227
1228 // Send the fault to commit. This thread will not do anything
1229 // until commit handles the fault. The only other way it can
1230 // wake up is if a squash comes along and changes the PC.
1231 #if FULL_SYSTEM
1232 assert(numInst < fetchWidth);
1233 // Get a sequence number.
1234 inst_seq = cpu->getAndIncrementInstSeq();
1235 // We will use a nop in order to carry the fault.
1236 ext_inst = TheISA::NoopMachInst;
1237
1238 // Create a new DynInst from the dummy nop.
1239 DynInstPtr instruction = new DynInst(ext_inst,
1240 fetch_PC, fetch_NPC, fetch_MicroPC,
1241 next_PC, next_NPC, next_MicroPC,
1242 inst_seq, cpu);
1243 instruction->setPredTarg(next_PC, next_NPC, 1);
1244 instruction->setTid(tid);
1245
1246 instruction->setASID(tid);
1247
1248 instruction->setThreadState(cpu->thread[tid]);
1249
1250 instruction->traceData = NULL;
1251
1252 instruction->setInstListIt(cpu->addInst(instruction));
1253
1254 instruction->fault = fault;
1255
1256 toDecode->insts[numInst] = instruction;
1257 toDecode->size++;
1258
1259 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1260
1261 fetchStatus[tid] = TrapPending;
1262 status_change = true;
1263 #else // !FULL_SYSTEM
1264 fetchStatus[tid] = TrapPending;
1265 status_change = true;
1266
1267 #endif // FULL_SYSTEM
1268 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1269 tid, fault->name(), PC[tid]);
1270 }
1271 }
1272
1273 template<class Impl>
1274 void
1275 DefaultFetch<Impl>::recvRetry()
1276 {
1277 if (retryPkt != NULL) {
1278 assert(cacheBlocked);
1279 assert(retryTid != -1);
1280 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1281
1282 if (icachePort->sendTiming(retryPkt)) {
1283 fetchStatus[retryTid] = IcacheWaitResponse;
1284 retryPkt = NULL;
1285 retryTid = -1;
1286 cacheBlocked = false;
1287 }
1288 } else {
1289 assert(retryTid == -1);
1290 // Access has been squashed since it was sent out. Just clear
1291 // the cache being blocked.
1292 cacheBlocked = false;
1293 }
1294 }
1295
1296 ///////////////////////////////////////
1297 // //
1298 // SMT FETCH POLICY MAINTAINED HERE //
1299 // //
1300 ///////////////////////////////////////
1301 template<class Impl>
1302 int
1303 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1304 {
1305 if (numThreads > 1) {
1306 switch (fetch_priority) {
1307
1308 case SingleThread:
1309 return 0;
1310
1311 case RoundRobin:
1312 return roundRobin();
1313
1314 case IQ:
1315 return iqCount();
1316
1317 case LSQ:
1318 return lsqCount();
1319
1320 case Branch:
1321 return branchCount();
1322
1323 default:
1324 return -1;
1325 }
1326 } else {
1327 std::list<unsigned>::iterator thread = activeThreads->begin();
1328 assert(thread != activeThreads->end());
1329 int tid = *thread;
1330
1331 if (fetchStatus[tid] == Running ||
1332 fetchStatus[tid] == IcacheAccessComplete ||
1333 fetchStatus[tid] == Idle) {
1334 return tid;
1335 } else {
1336 return -1;
1337 }
1338 }
1339
1340 }
1341
1342
1343 template<class Impl>
1344 int
1345 DefaultFetch<Impl>::roundRobin()
1346 {
1347 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1348 std::list<unsigned>::iterator end = priorityList.end();
1349
1350 int high_pri;
1351
1352 while (pri_iter != end) {
1353 high_pri = *pri_iter;
1354
1355 assert(high_pri <= numThreads);
1356
1357 if (fetchStatus[high_pri] == Running ||
1358 fetchStatus[high_pri] == IcacheAccessComplete ||
1359 fetchStatus[high_pri] == Idle) {
1360
1361 priorityList.erase(pri_iter);
1362 priorityList.push_back(high_pri);
1363
1364 return high_pri;
1365 }
1366
1367 pri_iter++;
1368 }
1369
1370 return -1;
1371 }
1372
1373 template<class Impl>
1374 int
1375 DefaultFetch<Impl>::iqCount()
1376 {
1377 std::priority_queue<unsigned> PQ;
1378
1379 std::list<unsigned>::iterator threads = activeThreads->begin();
1380 std::list<unsigned>::iterator end = activeThreads->end();
1381
1382 while (threads != end) {
1383 unsigned tid = *threads++;
1384
1385 PQ.push(fromIEW->iewInfo[tid].iqCount);
1386 }
1387
1388 while (!PQ.empty()) {
1389
1390 unsigned high_pri = PQ.top();
1391
1392 if (fetchStatus[high_pri] == Running ||
1393 fetchStatus[high_pri] == IcacheAccessComplete ||
1394 fetchStatus[high_pri] == Idle)
1395 return high_pri;
1396 else
1397 PQ.pop();
1398
1399 }
1400
1401 return -1;
1402 }
1403
1404 template<class Impl>
1405 int
1406 DefaultFetch<Impl>::lsqCount()
1407 {
1408 std::priority_queue<unsigned> PQ;
1409
1410 std::list<unsigned>::iterator threads = activeThreads->begin();
1411 std::list<unsigned>::iterator end = activeThreads->end();
1412
1413 while (threads != end) {
1414 unsigned tid = *threads++;
1415
1416 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1417 }
1418
1419 while (!PQ.empty()) {
1420
1421 unsigned high_pri = PQ.top();
1422
1423 if (fetchStatus[high_pri] == Running ||
1424 fetchStatus[high_pri] == IcacheAccessComplete ||
1425 fetchStatus[high_pri] == Idle)
1426 return high_pri;
1427 else
1428 PQ.pop();
1429
1430 }
1431
1432 return -1;
1433 }
1434
1435 template<class Impl>
1436 int
1437 DefaultFetch<Impl>::branchCount()
1438 {
1439 std::list<unsigned>::iterator thread = activeThreads->begin();
1440 assert(thread != activeThreads->end());
1441 unsigned tid = *thread;
1442
1443 panic("Branch Count Fetch policy unimplemented\n");
1444 return 0 * tid;
1445 }