Merge zizzer.eecs.umich.edu:/z/m5/Bitkeeper/newmem
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include "config/use_checker.hh"
33
34 #include "arch/isa_traits.hh"
35 #include "arch/utility.hh"
36 #include "cpu/checker/cpu.hh"
37 #include "cpu/exetrace.hh"
38 #include "cpu/o3/fetch.hh"
39 #include "mem/packet.hh"
40 #include "mem/request.hh"
41 #include "sim/byteswap.hh"
42 #include "sim/host.hh"
43 #include "sim/core.hh"
44
45 #if FULL_SYSTEM
46 #include "arch/tlb.hh"
47 #include "arch/vtophys.hh"
48 #include "sim/system.hh"
49 #endif // FULL_SYSTEM
50
51 #include <algorithm>
52
53 template<class Impl>
54 void
55 DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
56 {
57 Port::setPeer(port);
58
59 fetch->setIcache();
60 }
61
62 template<class Impl>
63 Tick
64 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
65 {
66 panic("DefaultFetch doesn't expect recvAtomic callback!");
67 return curTick;
68 }
69
70 template<class Impl>
71 void
72 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
73 {
74 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
75 "functional call.");
76 }
77
78 template<class Impl>
79 void
80 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
81 {
82 if (status == RangeChange) {
83 if (!snoopRangeSent) {
84 snoopRangeSent = true;
85 sendStatusChange(Port::RangeChange);
86 }
87 return;
88 }
89
90 panic("DefaultFetch doesn't expect recvStatusChange callback!");
91 }
92
93 template<class Impl>
94 bool
95 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
96 {
97 DPRINTF(Fetch, "Received timing\n");
98 if (pkt->isResponse()) {
99 fetch->processCacheCompletion(pkt);
100 }
101 //else Snooped a coherence request, just return
102 return true;
103 }
104
105 template<class Impl>
106 void
107 DefaultFetch<Impl>::IcachePort::recvRetry()
108 {
109 fetch->recvRetry();
110 }
111
112 template<class Impl>
113 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, Params *params)
114 : cpu(_cpu),
115 branchPred(params),
116 predecoder(NULL),
117 decodeToFetchDelay(params->decodeToFetchDelay),
118 renameToFetchDelay(params->renameToFetchDelay),
119 iewToFetchDelay(params->iewToFetchDelay),
120 commitToFetchDelay(params->commitToFetchDelay),
121 fetchWidth(params->fetchWidth),
122 cacheBlocked(false),
123 retryPkt(NULL),
124 retryTid(-1),
125 numThreads(params->numberOfThreads),
126 numFetchingThreads(params->smtNumFetchingThreads),
127 interruptPending(false),
128 drainPending(false),
129 switchedOut(false)
130 {
131 if (numThreads > Impl::MaxThreads)
132 fatal("numThreads is not a valid value\n");
133
134 // Set fetch stage's status to inactive.
135 _status = Inactive;
136
137 std::string policy = params->smtFetchPolicy;
138
139 // Convert string to lowercase
140 std::transform(policy.begin(), policy.end(), policy.begin(),
141 (int(*)(int)) tolower);
142
143 // Figure out fetch policy
144 if (policy == "singlethread") {
145 fetchPolicy = SingleThread;
146 if (numThreads > 1)
147 panic("Invalid Fetch Policy for a SMT workload.");
148 } else if (policy == "roundrobin") {
149 fetchPolicy = RoundRobin;
150 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
151 } else if (policy == "branch") {
152 fetchPolicy = Branch;
153 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
154 } else if (policy == "iqcount") {
155 fetchPolicy = IQ;
156 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
157 } else if (policy == "lsqcount") {
158 fetchPolicy = LSQ;
159 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
160 } else {
161 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
162 " RoundRobin,LSQcount,IQcount}\n");
163 }
164
165 // Get the size of an instruction.
166 instSize = sizeof(TheISA::MachInst);
167
168 // Name is finally available, so create the port.
169 icachePort = new IcachePort(this);
170
171 icachePort->snoopRangeSent = false;
172
173 #if USE_CHECKER
174 if (cpu->checker) {
175 cpu->checker->setIcachePort(icachePort);
176 }
177 #endif
178 }
179
180 template <class Impl>
181 std::string
182 DefaultFetch<Impl>::name() const
183 {
184 return cpu->name() + ".fetch";
185 }
186
187 template <class Impl>
188 void
189 DefaultFetch<Impl>::regStats()
190 {
191 icacheStallCycles
192 .name(name() + ".icacheStallCycles")
193 .desc("Number of cycles fetch is stalled on an Icache miss")
194 .prereq(icacheStallCycles);
195
196 fetchedInsts
197 .name(name() + ".Insts")
198 .desc("Number of instructions fetch has processed")
199 .prereq(fetchedInsts);
200
201 fetchedBranches
202 .name(name() + ".Branches")
203 .desc("Number of branches that fetch encountered")
204 .prereq(fetchedBranches);
205
206 predictedBranches
207 .name(name() + ".predictedBranches")
208 .desc("Number of branches that fetch has predicted taken")
209 .prereq(predictedBranches);
210
211 fetchCycles
212 .name(name() + ".Cycles")
213 .desc("Number of cycles fetch has run and was not squashing or"
214 " blocked")
215 .prereq(fetchCycles);
216
217 fetchSquashCycles
218 .name(name() + ".SquashCycles")
219 .desc("Number of cycles fetch has spent squashing")
220 .prereq(fetchSquashCycles);
221
222 fetchIdleCycles
223 .name(name() + ".IdleCycles")
224 .desc("Number of cycles fetch was idle")
225 .prereq(fetchIdleCycles);
226
227 fetchBlockedCycles
228 .name(name() + ".BlockedCycles")
229 .desc("Number of cycles fetch has spent blocked")
230 .prereq(fetchBlockedCycles);
231
232 fetchedCacheLines
233 .name(name() + ".CacheLines")
234 .desc("Number of cache lines fetched")
235 .prereq(fetchedCacheLines);
236
237 fetchMiscStallCycles
238 .name(name() + ".MiscStallCycles")
239 .desc("Number of cycles fetch has spent waiting on interrupts, or "
240 "bad addresses, or out of MSHRs")
241 .prereq(fetchMiscStallCycles);
242
243 fetchIcacheSquashes
244 .name(name() + ".IcacheSquashes")
245 .desc("Number of outstanding Icache misses that were squashed")
246 .prereq(fetchIcacheSquashes);
247
248 fetchNisnDist
249 .init(/* base value */ 0,
250 /* last value */ fetchWidth,
251 /* bucket size */ 1)
252 .name(name() + ".rateDist")
253 .desc("Number of instructions fetched each cycle (Total)")
254 .flags(Stats::pdf);
255
256 idleRate
257 .name(name() + ".idleRate")
258 .desc("Percent of cycles fetch was idle")
259 .prereq(idleRate);
260 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
261
262 branchRate
263 .name(name() + ".branchRate")
264 .desc("Number of branch fetches per cycle")
265 .flags(Stats::total);
266 branchRate = fetchedBranches / cpu->numCycles;
267
268 fetchRate
269 .name(name() + ".rate")
270 .desc("Number of inst fetches per cycle")
271 .flags(Stats::total);
272 fetchRate = fetchedInsts / cpu->numCycles;
273
274 branchPred.regStats();
275 }
276
277 template<class Impl>
278 void
279 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
280 {
281 timeBuffer = time_buffer;
282
283 // Create wires to get information from proper places in time buffer.
284 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
285 fromRename = timeBuffer->getWire(-renameToFetchDelay);
286 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
287 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
288 }
289
290 template<class Impl>
291 void
292 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
293 {
294 activeThreads = at_ptr;
295 }
296
297 template<class Impl>
298 void
299 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
300 {
301 fetchQueue = fq_ptr;
302
303 // Create wire to write information to proper place in fetch queue.
304 toDecode = fetchQueue->getWire(0);
305 }
306
307 template<class Impl>
308 void
309 DefaultFetch<Impl>::initStage()
310 {
311 // Setup PC and nextPC with initial state.
312 for (int tid = 0; tid < numThreads; tid++) {
313 PC[tid] = cpu->readPC(tid);
314 nextPC[tid] = cpu->readNextPC(tid);
315 microPC[tid] = cpu->readMicroPC(tid);
316 }
317
318 for (int tid=0; tid < numThreads; tid++) {
319
320 fetchStatus[tid] = Running;
321
322 priorityList.push_back(tid);
323
324 memReq[tid] = NULL;
325
326 stalls[tid].decode = false;
327 stalls[tid].rename = false;
328 stalls[tid].iew = false;
329 stalls[tid].commit = false;
330 }
331
332 // Schedule fetch to get the correct PC from the CPU
333 // scheduleFetchStartupEvent(1);
334
335 // Fetch needs to start fetching instructions at the very beginning,
336 // so it must start up in active state.
337 switchToActive();
338 }
339
340 template<class Impl>
341 void
342 DefaultFetch<Impl>::setIcache()
343 {
344 // Size of cache block.
345 cacheBlkSize = icachePort->peerBlockSize();
346
347 // Create mask to get rid of offset bits.
348 cacheBlkMask = (cacheBlkSize - 1);
349
350 for (int tid=0; tid < numThreads; tid++) {
351 // Create space to store a cache line.
352 cacheData[tid] = new uint8_t[cacheBlkSize];
353 cacheDataPC[tid] = 0;
354 cacheDataValid[tid] = false;
355 }
356 }
357
358 template<class Impl>
359 void
360 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361 {
362 unsigned tid = pkt->req->getThreadNum();
363
364 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
365
366 // Only change the status if it's still waiting on the icache access
367 // to return.
368 if (fetchStatus[tid] != IcacheWaitResponse ||
369 pkt->req != memReq[tid] ||
370 isSwitchedOut()) {
371 ++fetchIcacheSquashes;
372 delete pkt->req;
373 delete pkt;
374 return;
375 }
376
377 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
378 cacheDataValid[tid] = true;
379
380 if (!drainPending) {
381 // Wake up the CPU (if it went to sleep and was waiting on
382 // this completion event).
383 cpu->wakeCPU();
384
385 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386 tid);
387
388 switchToActive();
389 }
390
391 // Only switch to IcacheAccessComplete if we're not stalled as well.
392 if (checkStall(tid)) {
393 fetchStatus[tid] = Blocked;
394 } else {
395 fetchStatus[tid] = IcacheAccessComplete;
396 }
397
398 // Reset the mem req to NULL.
399 delete pkt->req;
400 delete pkt;
401 memReq[tid] = NULL;
402 }
403
404 template <class Impl>
405 bool
406 DefaultFetch<Impl>::drain()
407 {
408 // Fetch is ready to drain at any time.
409 cpu->signalDrained();
410 drainPending = true;
411 return true;
412 }
413
414 template <class Impl>
415 void
416 DefaultFetch<Impl>::resume()
417 {
418 drainPending = false;
419 }
420
421 template <class Impl>
422 void
423 DefaultFetch<Impl>::switchOut()
424 {
425 switchedOut = true;
426 // Branch predictor needs to have its state cleared.
427 branchPred.switchOut();
428 }
429
430 template <class Impl>
431 void
432 DefaultFetch<Impl>::takeOverFrom()
433 {
434 // Reset all state
435 for (int i = 0; i < Impl::MaxThreads; ++i) {
436 stalls[i].decode = 0;
437 stalls[i].rename = 0;
438 stalls[i].iew = 0;
439 stalls[i].commit = 0;
440 PC[i] = cpu->readPC(i);
441 nextPC[i] = cpu->readNextPC(i);
442 microPC[i] = cpu->readMicroPC(i);
443 fetchStatus[i] = Running;
444 }
445 numInst = 0;
446 wroteToTimeBuffer = false;
447 _status = Inactive;
448 switchedOut = false;
449 interruptPending = false;
450 branchPred.takeOverFrom();
451 }
452
453 template <class Impl>
454 void
455 DefaultFetch<Impl>::wakeFromQuiesce()
456 {
457 DPRINTF(Fetch, "Waking up from quiesce\n");
458 // Hopefully this is safe
459 // @todo: Allow other threads to wake from quiesce.
460 fetchStatus[0] = Running;
461 }
462
463 template <class Impl>
464 inline void
465 DefaultFetch<Impl>::switchToActive()
466 {
467 if (_status == Inactive) {
468 DPRINTF(Activity, "Activating stage.\n");
469
470 cpu->activateStage(O3CPU::FetchIdx);
471
472 _status = Active;
473 }
474 }
475
476 template <class Impl>
477 inline void
478 DefaultFetch<Impl>::switchToInactive()
479 {
480 if (_status == Active) {
481 DPRINTF(Activity, "Deactivating stage.\n");
482
483 cpu->deactivateStage(O3CPU::FetchIdx);
484
485 _status = Inactive;
486 }
487 }
488
489 template <class Impl>
490 bool
491 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
492 Addr &next_NPC, Addr &next_MicroPC)
493 {
494 // Do branch prediction check here.
495 // A bit of a misnomer...next_PC is actually the current PC until
496 // this function updates it.
497 bool predict_taken;
498
499 if (!inst->isControl()) {
500 if (inst->isMicroOp() && !inst->isLastMicroOp()) {
501 next_MicroPC++;
502 } else {
503 next_PC = next_NPC;
504 next_NPC = next_NPC + instSize;
505 next_MicroPC = 0;
506 }
507 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
508 inst->setPredTaken(false);
509 return false;
510 }
511
512 //Assume for now that all control flow is to a different macroop which
513 //would reset the micro pc to 0.
514 next_MicroPC = 0;
515
516 int tid = inst->threadNumber;
517 Addr pred_PC = next_PC;
518 predict_taken = branchPred.predict(inst, pred_PC, tid);
519
520 /* if (predict_taken) {
521 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
522 tid, pred_PC);
523 } else {
524 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
525 }*/
526
527 #if ISA_HAS_DELAY_SLOT
528 next_PC = next_NPC;
529 if (predict_taken)
530 next_NPC = pred_PC;
531 else
532 next_NPC += instSize;
533 #else
534 if (predict_taken)
535 next_PC = pred_PC;
536 else
537 next_PC += instSize;
538 next_NPC = next_PC + instSize;
539 #endif
540 /* DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
541 tid, next_PC, next_NPC);*/
542 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
543 inst->setPredTaken(predict_taken);
544
545 ++fetchedBranches;
546
547 if (predict_taken) {
548 ++predictedBranches;
549 }
550
551 return predict_taken;
552 }
553
554 template <class Impl>
555 bool
556 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
557 {
558 Fault fault = NoFault;
559
560 //AlphaDep
561 if (cacheBlocked) {
562 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
563 tid);
564 return false;
565 } else if (isSwitchedOut()) {
566 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
567 tid);
568 return false;
569 } else if (interruptPending && !(fetch_PC & 0x3)) {
570 // Hold off fetch from getting new instructions when:
571 // Cache is blocked, or
572 // while an interrupt is pending and we're not in PAL mode, or
573 // fetch is switched out.
574 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
575 tid);
576 return false;
577 }
578
579 // Align the fetch PC so it's at the start of a cache block.
580 Addr block_PC = icacheBlockAlignPC(fetch_PC);
581
582 // If we've already got the block, no need to try to fetch it again.
583 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
584 return true;
585 }
586
587 // Setup the memReq to do a read of the first instruction's address.
588 // Set the appropriate read size and flags as well.
589 // Build request here.
590 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
591 fetch_PC, cpu->readCpuId(), tid);
592
593 memReq[tid] = mem_req;
594
595 // Translate the instruction request.
596 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
597
598 // In the case of faults, the fetch stage may need to stall and wait
599 // for the ITB miss to be handled.
600
601 // If translation was successful, attempt to read the first
602 // instruction.
603 if (fault == NoFault) {
604 #if 0
605 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
606 memReq[tid]->isUncacheable()) {
607 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
608 "misspeculating path)!",
609 memReq[tid]->paddr);
610 ret_fault = TheISA::genMachineCheckFault();
611 return false;
612 }
613 #endif
614
615 // Build packet here.
616 PacketPtr data_pkt = new Packet(mem_req,
617 MemCmd::ReadReq, Packet::Broadcast);
618 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
619
620 cacheDataPC[tid] = block_PC;
621 cacheDataValid[tid] = false;
622
623 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
624
625 fetchedCacheLines++;
626
627 // Now do the timing access to see whether or not the instruction
628 // exists within the cache.
629 if (!icachePort->sendTiming(data_pkt)) {
630 if (data_pkt->result == Packet::BadAddress) {
631 fault = TheISA::genMachineCheckFault();
632 delete mem_req;
633 memReq[tid] = NULL;
634 warn("Bad address!\n");
635 }
636 assert(retryPkt == NULL);
637 assert(retryTid == -1);
638 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
639 fetchStatus[tid] = IcacheWaitRetry;
640 retryPkt = data_pkt;
641 retryTid = tid;
642 cacheBlocked = true;
643 return false;
644 }
645
646 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
647
648 lastIcacheStall[tid] = curTick;
649
650 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
651 "response.\n", tid);
652
653 fetchStatus[tid] = IcacheWaitResponse;
654 } else {
655 delete mem_req;
656 memReq[tid] = NULL;
657 }
658
659 ret_fault = fault;
660 return true;
661 }
662
663 template <class Impl>
664 inline void
665 DefaultFetch<Impl>::doSquash(const Addr &new_PC,
666 const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
667 {
668 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
669 tid, new_PC, new_NPC);
670
671 PC[tid] = new_PC;
672 nextPC[tid] = new_NPC;
673 microPC[tid] = new_microPC;
674
675 // Clear the icache miss if it's outstanding.
676 if (fetchStatus[tid] == IcacheWaitResponse) {
677 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
678 tid);
679 memReq[tid] = NULL;
680 }
681
682 // Get rid of the retrying packet if it was from this thread.
683 if (retryTid == tid) {
684 assert(cacheBlocked);
685 if (retryPkt) {
686 delete retryPkt->req;
687 delete retryPkt;
688 }
689 retryPkt = NULL;
690 retryTid = -1;
691 }
692
693 fetchStatus[tid] = Squashing;
694
695 ++fetchSquashCycles;
696 }
697
698 template<class Impl>
699 void
700 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
701 const Addr &new_MicroPC,
702 const InstSeqNum &seq_num, unsigned tid)
703 {
704 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
705
706 doSquash(new_PC, new_NPC, new_MicroPC, tid);
707
708 // Tell the CPU to remove any instructions that are in flight between
709 // fetch and decode.
710 cpu->removeInstsUntil(seq_num, tid);
711 }
712
713 template<class Impl>
714 bool
715 DefaultFetch<Impl>::checkStall(unsigned tid) const
716 {
717 bool ret_val = false;
718
719 if (cpu->contextSwitch) {
720 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
721 ret_val = true;
722 } else if (stalls[tid].decode) {
723 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
724 ret_val = true;
725 } else if (stalls[tid].rename) {
726 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
727 ret_val = true;
728 } else if (stalls[tid].iew) {
729 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
730 ret_val = true;
731 } else if (stalls[tid].commit) {
732 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
733 ret_val = true;
734 }
735
736 return ret_val;
737 }
738
739 template<class Impl>
740 typename DefaultFetch<Impl>::FetchStatus
741 DefaultFetch<Impl>::updateFetchStatus()
742 {
743 //Check Running
744 std::list<unsigned>::iterator threads = activeThreads->begin();
745 std::list<unsigned>::iterator end = activeThreads->end();
746
747 while (threads != end) {
748 unsigned tid = *threads++;
749
750 if (fetchStatus[tid] == Running ||
751 fetchStatus[tid] == Squashing ||
752 fetchStatus[tid] == IcacheAccessComplete) {
753
754 if (_status == Inactive) {
755 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
756
757 if (fetchStatus[tid] == IcacheAccessComplete) {
758 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
759 "completion\n",tid);
760 }
761
762 cpu->activateStage(O3CPU::FetchIdx);
763 }
764
765 return Active;
766 }
767 }
768
769 // Stage is switching from active to inactive, notify CPU of it.
770 if (_status == Active) {
771 DPRINTF(Activity, "Deactivating stage.\n");
772
773 cpu->deactivateStage(O3CPU::FetchIdx);
774 }
775
776 return Inactive;
777 }
778
779 template <class Impl>
780 void
781 DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
782 const Addr &new_MicroPC,
783 const InstSeqNum &seq_num, unsigned tid)
784 {
785 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
786
787 doSquash(new_PC, new_NPC, new_MicroPC, tid);
788
789 // Tell the CPU to remove any instructions that are not in the ROB.
790 cpu->removeInstsNotInROB(tid);
791 }
792
793 template <class Impl>
794 void
795 DefaultFetch<Impl>::tick()
796 {
797 std::list<unsigned>::iterator threads = activeThreads->begin();
798 std::list<unsigned>::iterator end = activeThreads->end();
799 bool status_change = false;
800
801 wroteToTimeBuffer = false;
802
803 while (threads != end) {
804 unsigned tid = *threads++;
805
806 // Check the signals for each thread to determine the proper status
807 // for each thread.
808 bool updated_status = checkSignalsAndUpdate(tid);
809 status_change = status_change || updated_status;
810 }
811
812 DPRINTF(Fetch, "Running stage.\n");
813
814 // Reset the number of the instruction we're fetching.
815 numInst = 0;
816
817 #if FULL_SYSTEM
818 if (fromCommit->commitInfo[0].interruptPending) {
819 interruptPending = true;
820 }
821
822 if (fromCommit->commitInfo[0].clearInterrupt) {
823 interruptPending = false;
824 }
825 #endif
826
827 for (threadFetched = 0; threadFetched < numFetchingThreads;
828 threadFetched++) {
829 // Fetch each of the actively fetching threads.
830 fetch(status_change);
831 }
832
833 // Record number of instructions fetched this cycle for distribution.
834 fetchNisnDist.sample(numInst);
835
836 if (status_change) {
837 // Change the fetch stage status if there was a status change.
838 _status = updateFetchStatus();
839 }
840
841 // If there was activity this cycle, inform the CPU of it.
842 if (wroteToTimeBuffer || cpu->contextSwitch) {
843 DPRINTF(Activity, "Activity this cycle.\n");
844
845 cpu->activityThisCycle();
846 }
847 }
848
849 template <class Impl>
850 bool
851 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
852 {
853 // Update the per thread stall statuses.
854 if (fromDecode->decodeBlock[tid]) {
855 stalls[tid].decode = true;
856 }
857
858 if (fromDecode->decodeUnblock[tid]) {
859 assert(stalls[tid].decode);
860 assert(!fromDecode->decodeBlock[tid]);
861 stalls[tid].decode = false;
862 }
863
864 if (fromRename->renameBlock[tid]) {
865 stalls[tid].rename = true;
866 }
867
868 if (fromRename->renameUnblock[tid]) {
869 assert(stalls[tid].rename);
870 assert(!fromRename->renameBlock[tid]);
871 stalls[tid].rename = false;
872 }
873
874 if (fromIEW->iewBlock[tid]) {
875 stalls[tid].iew = true;
876 }
877
878 if (fromIEW->iewUnblock[tid]) {
879 assert(stalls[tid].iew);
880 assert(!fromIEW->iewBlock[tid]);
881 stalls[tid].iew = false;
882 }
883
884 if (fromCommit->commitBlock[tid]) {
885 stalls[tid].commit = true;
886 }
887
888 if (fromCommit->commitUnblock[tid]) {
889 assert(stalls[tid].commit);
890 assert(!fromCommit->commitBlock[tid]);
891 stalls[tid].commit = false;
892 }
893
894 // Check squash signals from commit.
895 if (fromCommit->commitInfo[tid].squash) {
896
897 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
898 "from commit.\n",tid);
899 // In any case, squash.
900 squash(fromCommit->commitInfo[tid].nextPC,
901 fromCommit->commitInfo[tid].nextNPC,
902 fromCommit->commitInfo[tid].nextMicroPC,
903 fromCommit->commitInfo[tid].doneSeqNum,
904 tid);
905
906 // Also check if there's a mispredict that happened.
907 if (fromCommit->commitInfo[tid].branchMispredict) {
908 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
909 fromCommit->commitInfo[tid].nextPC,
910 fromCommit->commitInfo[tid].branchTaken,
911 tid);
912 } else {
913 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
914 tid);
915 }
916
917 return true;
918 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
919 // Update the branch predictor if it wasn't a squashed instruction
920 // that was broadcasted.
921 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
922 }
923
924 // Check ROB squash signals from commit.
925 if (fromCommit->commitInfo[tid].robSquashing) {
926 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
927
928 // Continue to squash.
929 fetchStatus[tid] = Squashing;
930
931 return true;
932 }
933
934 // Check squash signals from decode.
935 if (fromDecode->decodeInfo[tid].squash) {
936 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
937 "from decode.\n",tid);
938
939 // Update the branch predictor.
940 if (fromDecode->decodeInfo[tid].branchMispredict) {
941 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
942 fromDecode->decodeInfo[tid].nextPC,
943 fromDecode->decodeInfo[tid].branchTaken,
944 tid);
945 } else {
946 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
947 tid);
948 }
949
950 if (fetchStatus[tid] != Squashing) {
951
952 DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
953 fromDecode->decodeInfo[tid].nextPC,
954 fromDecode->decodeInfo[tid].nextNPC);
955 // Squash unless we're already squashing
956 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
957 fromDecode->decodeInfo[tid].nextNPC,
958 fromDecode->decodeInfo[tid].nextMicroPC,
959 fromDecode->decodeInfo[tid].doneSeqNum,
960 tid);
961
962 return true;
963 }
964 }
965
966 if (checkStall(tid) &&
967 fetchStatus[tid] != IcacheWaitResponse &&
968 fetchStatus[tid] != IcacheWaitRetry) {
969 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
970
971 fetchStatus[tid] = Blocked;
972
973 return true;
974 }
975
976 if (fetchStatus[tid] == Blocked ||
977 fetchStatus[tid] == Squashing) {
978 // Switch status to running if fetch isn't being told to block or
979 // squash this cycle.
980 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
981 tid);
982
983 fetchStatus[tid] = Running;
984
985 return true;
986 }
987
988 // If we've reached this point, we have not gotten any signals that
989 // cause fetch to change its status. Fetch remains the same as before.
990 return false;
991 }
992
993 template<class Impl>
994 void
995 DefaultFetch<Impl>::fetch(bool &status_change)
996 {
997 //////////////////////////////////////////
998 // Start actual fetch
999 //////////////////////////////////////////
1000 int tid = getFetchingThread(fetchPolicy);
1001
1002 if (tid == -1 || drainPending) {
1003 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1004
1005 // Breaks looping condition in tick()
1006 threadFetched = numFetchingThreads;
1007 return;
1008 }
1009
1010 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1011
1012 // The current PC.
1013 Addr fetch_PC = PC[tid];
1014 Addr fetch_NPC = nextPC[tid];
1015 Addr fetch_MicroPC = microPC[tid];
1016
1017 // Fault code for memory access.
1018 Fault fault = NoFault;
1019
1020 // If returning from the delay of a cache miss, then update the status
1021 // to running, otherwise do the cache access. Possibly move this up
1022 // to tick() function.
1023 if (fetchStatus[tid] == IcacheAccessComplete) {
1024 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1025 tid);
1026
1027 fetchStatus[tid] = Running;
1028 status_change = true;
1029 } else if (fetchStatus[tid] == Running) {
1030 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1031 "instruction, starting at PC %08p.\n",
1032 tid, fetch_PC);
1033
1034 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1035 if (!fetch_success) {
1036 if (cacheBlocked) {
1037 ++icacheStallCycles;
1038 } else {
1039 ++fetchMiscStallCycles;
1040 }
1041 return;
1042 }
1043 } else {
1044 if (fetchStatus[tid] == Idle) {
1045 ++fetchIdleCycles;
1046 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1047 } else if (fetchStatus[tid] == Blocked) {
1048 ++fetchBlockedCycles;
1049 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1050 } else if (fetchStatus[tid] == Squashing) {
1051 ++fetchSquashCycles;
1052 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1053 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1054 ++icacheStallCycles;
1055 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1056 }
1057
1058 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1059 // fetch should do nothing.
1060 return;
1061 }
1062
1063 ++fetchCycles;
1064
1065 // If we had a stall due to an icache miss, then return.
1066 if (fetchStatus[tid] == IcacheWaitResponse) {
1067 ++icacheStallCycles;
1068 status_change = true;
1069 return;
1070 }
1071
1072 Addr next_PC = fetch_PC;
1073 Addr next_NPC = fetch_NPC;
1074 Addr next_MicroPC = fetch_MicroPC;
1075
1076 InstSeqNum inst_seq;
1077 MachInst inst;
1078 ExtMachInst ext_inst;
1079 // @todo: Fix this hack.
1080 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1081
1082 StaticInstPtr staticInst = NULL;
1083 StaticInstPtr macroop = NULL;
1084
1085 if (fault == NoFault) {
1086 // If the read of the first instruction was successful, then grab the
1087 // instructions from the rest of the cache line and put them into the
1088 // queue heading to decode.
1089
1090 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1091 "decode.\n",tid);
1092
1093 // Need to keep track of whether or not a predicted branch
1094 // ended this fetch block.
1095 bool predicted_branch = false;
1096
1097 while (offset < cacheBlkSize &&
1098 numInst < fetchWidth &&
1099 !predicted_branch) {
1100
1101 // If we're branching after this instruction, quite fetching
1102 // from the same block then.
1103 predicted_branch =
1104 (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1105 if (predicted_branch) {
1106 DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1107 fetch_PC, fetch_NPC);
1108 }
1109
1110 // Make sure this is a valid index.
1111 assert(offset <= cacheBlkSize - instSize);
1112
1113 if (!macroop) {
1114 // Get the instruction from the array of the cache line.
1115 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1116 (&cacheData[tid][offset]));
1117
1118 predecoder.setTC(cpu->thread[tid]->getTC());
1119 predecoder.moreBytes(fetch_PC, 0, inst);
1120
1121 ext_inst = predecoder.getExtMachInst();
1122 staticInst = StaticInstPtr(ext_inst);
1123 if (staticInst->isMacroOp())
1124 macroop = staticInst;
1125 }
1126 do {
1127 if (macroop) {
1128 staticInst = macroop->fetchMicroOp(fetch_MicroPC);
1129 if (staticInst->isLastMicroOp())
1130 macroop = NULL;
1131 }
1132
1133 // Get a sequence number.
1134 inst_seq = cpu->getAndIncrementInstSeq();
1135
1136 // Create a new DynInst from the instruction fetched.
1137 DynInstPtr instruction = new DynInst(staticInst,
1138 fetch_PC, fetch_NPC, fetch_MicroPC,
1139 next_PC, next_NPC, next_MicroPC,
1140 inst_seq, cpu);
1141 instruction->setTid(tid);
1142
1143 instruction->setASID(tid);
1144
1145 instruction->setThreadState(cpu->thread[tid]);
1146
1147 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1148 "[sn:%lli]\n",
1149 tid, instruction->readPC(), inst_seq);
1150
1151 //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1152
1153 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1154 tid, instruction->staticInst->disassemble(fetch_PC));
1155
1156 instruction->traceData =
1157 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1158 instruction->staticInst,
1159 instruction->readPC());
1160
1161 ///FIXME This needs to be more robust in dealing with delay slots
1162 predicted_branch |=
1163 lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1164
1165 // Add instruction to the CPU's list of instructions.
1166 instruction->setInstListIt(cpu->addInst(instruction));
1167
1168 // Write the instruction to the first slot in the queue
1169 // that heads to decode.
1170 toDecode->insts[numInst] = instruction;
1171
1172 toDecode->size++;
1173
1174 // Increment stat of fetched instructions.
1175 ++fetchedInsts;
1176
1177 // Move to the next instruction, unless we have a branch.
1178 fetch_PC = next_PC;
1179 fetch_NPC = next_NPC;
1180 fetch_MicroPC = next_MicroPC;
1181
1182 if (instruction->isQuiesce()) {
1183 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1184 curTick);
1185 fetchStatus[tid] = QuiescePending;
1186 ++numInst;
1187 status_change = true;
1188 break;
1189 }
1190
1191 ++numInst;
1192 } while (staticInst->isMicroOp() &&
1193 !staticInst->isLastMicroOp() &&
1194 numInst < fetchWidth);
1195 offset += instSize;
1196 }
1197
1198 if (predicted_branch) {
1199 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1200 "instruction encountered.\n", tid);
1201 } else if (numInst >= fetchWidth) {
1202 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1203 "for this cycle.\n", tid);
1204 } else if (offset >= cacheBlkSize) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1206 "block.\n", tid);
1207 }
1208 }
1209
1210 if (numInst > 0) {
1211 wroteToTimeBuffer = true;
1212 }
1213
1214 // Now that fetching is completed, update the PC to signify what the next
1215 // cycle will be.
1216 if (fault == NoFault) {
1217 PC[tid] = next_PC;
1218 nextPC[tid] = next_NPC;
1219 microPC[tid] = next_MicroPC;
1220 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1221 } else {
1222 // We shouldn't be in an icache miss and also have a fault (an ITB
1223 // miss)
1224 if (fetchStatus[tid] == IcacheWaitResponse) {
1225 panic("Fetch should have exited prior to this!");
1226 }
1227
1228 // Send the fault to commit. This thread will not do anything
1229 // until commit handles the fault. The only other way it can
1230 // wake up is if a squash comes along and changes the PC.
1231 #if FULL_SYSTEM
1232 assert(numInst < fetchWidth);
1233 // Get a sequence number.
1234 inst_seq = cpu->getAndIncrementInstSeq();
1235 // We will use a nop in order to carry the fault.
1236 ext_inst = TheISA::NoopMachInst;
1237
1238 StaticInstPtr staticInst = new StaticInst(ext_inst);
1239 // Create a new DynInst from the dummy nop.
1240 DynInstPtr instruction = new DynInst(staticInst,
1241 fetch_PC, fetch_NPC,
1242 next_PC, next_NPC,
1243 inst_seq, cpu);
1244 instruction->setPredTarg(next_PC, next_NPC);
1245 instruction->setTid(tid);
1246
1247 instruction->setASID(tid);
1248
1249 instruction->setThreadState(cpu->thread[tid]);
1250
1251 instruction->traceData = NULL;
1252
1253 instruction->setInstListIt(cpu->addInst(instruction));
1254
1255 instruction->fault = fault;
1256
1257 toDecode->insts[numInst] = instruction;
1258 toDecode->size++;
1259
1260 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1261
1262 fetchStatus[tid] = TrapPending;
1263 status_change = true;
1264 #else // !FULL_SYSTEM
1265 fetchStatus[tid] = TrapPending;
1266 status_change = true;
1267
1268 #endif // FULL_SYSTEM
1269 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1270 tid, fault->name(), PC[tid]);
1271 }
1272 }
1273
1274 template<class Impl>
1275 void
1276 DefaultFetch<Impl>::recvRetry()
1277 {
1278 if (retryPkt != NULL) {
1279 assert(cacheBlocked);
1280 assert(retryTid != -1);
1281 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1282
1283 if (icachePort->sendTiming(retryPkt)) {
1284 fetchStatus[retryTid] = IcacheWaitResponse;
1285 retryPkt = NULL;
1286 retryTid = -1;
1287 cacheBlocked = false;
1288 }
1289 } else {
1290 assert(retryTid == -1);
1291 // Access has been squashed since it was sent out. Just clear
1292 // the cache being blocked.
1293 cacheBlocked = false;
1294 }
1295 }
1296
1297 ///////////////////////////////////////
1298 // //
1299 // SMT FETCH POLICY MAINTAINED HERE //
1300 // //
1301 ///////////////////////////////////////
1302 template<class Impl>
1303 int
1304 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1305 {
1306 if (numThreads > 1) {
1307 switch (fetch_priority) {
1308
1309 case SingleThread:
1310 return 0;
1311
1312 case RoundRobin:
1313 return roundRobin();
1314
1315 case IQ:
1316 return iqCount();
1317
1318 case LSQ:
1319 return lsqCount();
1320
1321 case Branch:
1322 return branchCount();
1323
1324 default:
1325 return -1;
1326 }
1327 } else {
1328 std::list<unsigned>::iterator thread = activeThreads->begin();
1329 assert(thread != activeThreads->end());
1330 int tid = *thread;
1331
1332 if (fetchStatus[tid] == Running ||
1333 fetchStatus[tid] == IcacheAccessComplete ||
1334 fetchStatus[tid] == Idle) {
1335 return tid;
1336 } else {
1337 return -1;
1338 }
1339 }
1340
1341 }
1342
1343
1344 template<class Impl>
1345 int
1346 DefaultFetch<Impl>::roundRobin()
1347 {
1348 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1349 std::list<unsigned>::iterator end = priorityList.end();
1350
1351 int high_pri;
1352
1353 while (pri_iter != end) {
1354 high_pri = *pri_iter;
1355
1356 assert(high_pri <= numThreads);
1357
1358 if (fetchStatus[high_pri] == Running ||
1359 fetchStatus[high_pri] == IcacheAccessComplete ||
1360 fetchStatus[high_pri] == Idle) {
1361
1362 priorityList.erase(pri_iter);
1363 priorityList.push_back(high_pri);
1364
1365 return high_pri;
1366 }
1367
1368 pri_iter++;
1369 }
1370
1371 return -1;
1372 }
1373
1374 template<class Impl>
1375 int
1376 DefaultFetch<Impl>::iqCount()
1377 {
1378 std::priority_queue<unsigned> PQ;
1379
1380 std::list<unsigned>::iterator threads = activeThreads->begin();
1381 std::list<unsigned>::iterator end = activeThreads->end();
1382
1383 while (threads != end) {
1384 unsigned tid = *threads++;
1385
1386 PQ.push(fromIEW->iewInfo[tid].iqCount);
1387 }
1388
1389 while (!PQ.empty()) {
1390
1391 unsigned high_pri = PQ.top();
1392
1393 if (fetchStatus[high_pri] == Running ||
1394 fetchStatus[high_pri] == IcacheAccessComplete ||
1395 fetchStatus[high_pri] == Idle)
1396 return high_pri;
1397 else
1398 PQ.pop();
1399
1400 }
1401
1402 return -1;
1403 }
1404
1405 template<class Impl>
1406 int
1407 DefaultFetch<Impl>::lsqCount()
1408 {
1409 std::priority_queue<unsigned> PQ;
1410
1411 std::list<unsigned>::iterator threads = activeThreads->begin();
1412 std::list<unsigned>::iterator end = activeThreads->end();
1413
1414 while (threads != end) {
1415 unsigned tid = *threads++;
1416
1417 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1418 }
1419
1420 while (!PQ.empty()) {
1421
1422 unsigned high_pri = PQ.top();
1423
1424 if (fetchStatus[high_pri] == Running ||
1425 fetchStatus[high_pri] == IcacheAccessComplete ||
1426 fetchStatus[high_pri] == Idle)
1427 return high_pri;
1428 else
1429 PQ.pop();
1430
1431 }
1432
1433 return -1;
1434 }
1435
1436 template<class Impl>
1437 int
1438 DefaultFetch<Impl>::branchCount()
1439 {
1440 std::list<unsigned>::iterator thread = activeThreads->begin();
1441 assert(thread != activeThreads->end());
1442 unsigned tid = *thread;
1443
1444 panic("Branch Count Fetch policy unimplemented\n");
1445 return 0 * tid;
1446 }