tlb: Don't separate the TLB classes into an instruction TLB and a data TLB
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include <algorithm>
33 #include <cstring>
34
35 #include "config/use_checker.hh"
36
37 #include "arch/isa_traits.hh"
38 #include "arch/utility.hh"
39 #include "cpu/checker/cpu.hh"
40 #include "cpu/exetrace.hh"
41 #include "cpu/o3/fetch.hh"
42 #include "mem/packet.hh"
43 #include "mem/request.hh"
44 #include "sim/byteswap.hh"
45 #include "sim/host.hh"
46 #include "sim/core.hh"
47
48 #if FULL_SYSTEM
49 #include "arch/tlb.hh"
50 #include "arch/vtophys.hh"
51 #include "sim/system.hh"
52 #endif // FULL_SYSTEM
53
54 #include "params/DerivO3CPU.hh"
55
56 template<class Impl>
57 void
58 DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
59 {
60 Port::setPeer(port);
61
62 fetch->setIcache();
63 }
64
65 template<class Impl>
66 Tick
67 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
68 {
69 panic("DefaultFetch doesn't expect recvAtomic callback!");
70 return curTick;
71 }
72
73 template<class Impl>
74 void
75 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
76 {
77 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
78 "functional call.");
79 }
80
81 template<class Impl>
82 void
83 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
84 {
85 if (status == RangeChange) {
86 if (!snoopRangeSent) {
87 snoopRangeSent = true;
88 sendStatusChange(Port::RangeChange);
89 }
90 return;
91 }
92
93 panic("DefaultFetch doesn't expect recvStatusChange callback!");
94 }
95
96 template<class Impl>
97 bool
98 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
99 {
100 DPRINTF(Fetch, "Received timing\n");
101 if (pkt->isResponse()) {
102 fetch->processCacheCompletion(pkt);
103 }
104 //else Snooped a coherence request, just return
105 return true;
106 }
107
108 template<class Impl>
109 void
110 DefaultFetch<Impl>::IcachePort::recvRetry()
111 {
112 fetch->recvRetry();
113 }
114
115 template<class Impl>
116 DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
117 : cpu(_cpu),
118 branchPred(params),
119 predecoder(NULL),
120 decodeToFetchDelay(params->decodeToFetchDelay),
121 renameToFetchDelay(params->renameToFetchDelay),
122 iewToFetchDelay(params->iewToFetchDelay),
123 commitToFetchDelay(params->commitToFetchDelay),
124 fetchWidth(params->fetchWidth),
125 cacheBlocked(false),
126 retryPkt(NULL),
127 retryTid(-1),
128 numThreads(params->numThreads),
129 numFetchingThreads(params->smtNumFetchingThreads),
130 interruptPending(false),
131 drainPending(false),
132 switchedOut(false)
133 {
134 if (numThreads > Impl::MaxThreads)
135 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
136 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
137 numThreads, static_cast<int>(Impl::MaxThreads));
138
139 // Set fetch stage's status to inactive.
140 _status = Inactive;
141
142 std::string policy = params->smtFetchPolicy;
143
144 // Convert string to lowercase
145 std::transform(policy.begin(), policy.end(), policy.begin(),
146 (int(*)(int)) tolower);
147
148 // Figure out fetch policy
149 if (policy == "singlethread") {
150 fetchPolicy = SingleThread;
151 if (numThreads > 1)
152 panic("Invalid Fetch Policy for a SMT workload.");
153 } else if (policy == "roundrobin") {
154 fetchPolicy = RoundRobin;
155 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
156 } else if (policy == "branch") {
157 fetchPolicy = Branch;
158 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
159 } else if (policy == "iqcount") {
160 fetchPolicy = IQ;
161 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
162 } else if (policy == "lsqcount") {
163 fetchPolicy = LSQ;
164 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
165 } else {
166 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
167 " RoundRobin,LSQcount,IQcount}\n");
168 }
169
170 // Get the size of an instruction.
171 instSize = sizeof(TheISA::MachInst);
172
173 // Name is finally available, so create the port.
174 icachePort = new IcachePort(this);
175
176 icachePort->snoopRangeSent = false;
177
178 #if USE_CHECKER
179 if (cpu->checker) {
180 cpu->checker->setIcachePort(icachePort);
181 }
182 #endif
183 }
184
185 template <class Impl>
186 std::string
187 DefaultFetch<Impl>::name() const
188 {
189 return cpu->name() + ".fetch";
190 }
191
192 template <class Impl>
193 void
194 DefaultFetch<Impl>::regStats()
195 {
196 icacheStallCycles
197 .name(name() + ".icacheStallCycles")
198 .desc("Number of cycles fetch is stalled on an Icache miss")
199 .prereq(icacheStallCycles);
200
201 fetchedInsts
202 .name(name() + ".Insts")
203 .desc("Number of instructions fetch has processed")
204 .prereq(fetchedInsts);
205
206 fetchedBranches
207 .name(name() + ".Branches")
208 .desc("Number of branches that fetch encountered")
209 .prereq(fetchedBranches);
210
211 predictedBranches
212 .name(name() + ".predictedBranches")
213 .desc("Number of branches that fetch has predicted taken")
214 .prereq(predictedBranches);
215
216 fetchCycles
217 .name(name() + ".Cycles")
218 .desc("Number of cycles fetch has run and was not squashing or"
219 " blocked")
220 .prereq(fetchCycles);
221
222 fetchSquashCycles
223 .name(name() + ".SquashCycles")
224 .desc("Number of cycles fetch has spent squashing")
225 .prereq(fetchSquashCycles);
226
227 fetchIdleCycles
228 .name(name() + ".IdleCycles")
229 .desc("Number of cycles fetch was idle")
230 .prereq(fetchIdleCycles);
231
232 fetchBlockedCycles
233 .name(name() + ".BlockedCycles")
234 .desc("Number of cycles fetch has spent blocked")
235 .prereq(fetchBlockedCycles);
236
237 fetchedCacheLines
238 .name(name() + ".CacheLines")
239 .desc("Number of cache lines fetched")
240 .prereq(fetchedCacheLines);
241
242 fetchMiscStallCycles
243 .name(name() + ".MiscStallCycles")
244 .desc("Number of cycles fetch has spent waiting on interrupts, or "
245 "bad addresses, or out of MSHRs")
246 .prereq(fetchMiscStallCycles);
247
248 fetchIcacheSquashes
249 .name(name() + ".IcacheSquashes")
250 .desc("Number of outstanding Icache misses that were squashed")
251 .prereq(fetchIcacheSquashes);
252
253 fetchNisnDist
254 .init(/* base value */ 0,
255 /* last value */ fetchWidth,
256 /* bucket size */ 1)
257 .name(name() + ".rateDist")
258 .desc("Number of instructions fetched each cycle (Total)")
259 .flags(Stats::pdf);
260
261 idleRate
262 .name(name() + ".idleRate")
263 .desc("Percent of cycles fetch was idle")
264 .prereq(idleRate);
265 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
266
267 branchRate
268 .name(name() + ".branchRate")
269 .desc("Number of branch fetches per cycle")
270 .flags(Stats::total);
271 branchRate = fetchedBranches / cpu->numCycles;
272
273 fetchRate
274 .name(name() + ".rate")
275 .desc("Number of inst fetches per cycle")
276 .flags(Stats::total);
277 fetchRate = fetchedInsts / cpu->numCycles;
278
279 branchPred.regStats();
280 }
281
282 template<class Impl>
283 void
284 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
285 {
286 timeBuffer = time_buffer;
287
288 // Create wires to get information from proper places in time buffer.
289 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
290 fromRename = timeBuffer->getWire(-renameToFetchDelay);
291 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
292 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
293 }
294
295 template<class Impl>
296 void
297 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
298 {
299 activeThreads = at_ptr;
300 }
301
302 template<class Impl>
303 void
304 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
305 {
306 fetchQueue = fq_ptr;
307
308 // Create wire to write information to proper place in fetch queue.
309 toDecode = fetchQueue->getWire(0);
310 }
311
312 template<class Impl>
313 void
314 DefaultFetch<Impl>::initStage()
315 {
316 // Setup PC and nextPC with initial state.
317 for (int tid = 0; tid < numThreads; tid++) {
318 PC[tid] = cpu->readPC(tid);
319 nextPC[tid] = cpu->readNextPC(tid);
320 microPC[tid] = cpu->readMicroPC(tid);
321 }
322
323 for (int tid=0; tid < numThreads; tid++) {
324
325 fetchStatus[tid] = Running;
326
327 priorityList.push_back(tid);
328
329 memReq[tid] = NULL;
330
331 stalls[tid].decode = false;
332 stalls[tid].rename = false;
333 stalls[tid].iew = false;
334 stalls[tid].commit = false;
335 }
336
337 // Schedule fetch to get the correct PC from the CPU
338 // scheduleFetchStartupEvent(1);
339
340 // Fetch needs to start fetching instructions at the very beginning,
341 // so it must start up in active state.
342 switchToActive();
343 }
344
345 template<class Impl>
346 void
347 DefaultFetch<Impl>::setIcache()
348 {
349 // Size of cache block.
350 cacheBlkSize = icachePort->peerBlockSize();
351
352 // Create mask to get rid of offset bits.
353 cacheBlkMask = (cacheBlkSize - 1);
354
355 for (int tid=0; tid < numThreads; tid++) {
356 // Create space to store a cache line.
357 cacheData[tid] = new uint8_t[cacheBlkSize];
358 cacheDataPC[tid] = 0;
359 cacheDataValid[tid] = false;
360 }
361 }
362
363 template<class Impl>
364 void
365 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
366 {
367 unsigned tid = pkt->req->threadId();
368
369 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
370
371 assert(!pkt->wasNacked());
372
373 // Only change the status if it's still waiting on the icache access
374 // to return.
375 if (fetchStatus[tid] != IcacheWaitResponse ||
376 pkt->req != memReq[tid] ||
377 isSwitchedOut()) {
378 ++fetchIcacheSquashes;
379 delete pkt->req;
380 delete pkt;
381 return;
382 }
383
384 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
385 cacheDataValid[tid] = true;
386
387 if (!drainPending) {
388 // Wake up the CPU (if it went to sleep and was waiting on
389 // this completion event).
390 cpu->wakeCPU();
391
392 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
393 tid);
394
395 switchToActive();
396 }
397
398 // Only switch to IcacheAccessComplete if we're not stalled as well.
399 if (checkStall(tid)) {
400 fetchStatus[tid] = Blocked;
401 } else {
402 fetchStatus[tid] = IcacheAccessComplete;
403 }
404
405 // Reset the mem req to NULL.
406 delete pkt->req;
407 delete pkt;
408 memReq[tid] = NULL;
409 }
410
411 template <class Impl>
412 bool
413 DefaultFetch<Impl>::drain()
414 {
415 // Fetch is ready to drain at any time.
416 cpu->signalDrained();
417 drainPending = true;
418 return true;
419 }
420
421 template <class Impl>
422 void
423 DefaultFetch<Impl>::resume()
424 {
425 drainPending = false;
426 }
427
428 template <class Impl>
429 void
430 DefaultFetch<Impl>::switchOut()
431 {
432 switchedOut = true;
433 // Branch predictor needs to have its state cleared.
434 branchPred.switchOut();
435 }
436
437 template <class Impl>
438 void
439 DefaultFetch<Impl>::takeOverFrom()
440 {
441 // Reset all state
442 for (int i = 0; i < Impl::MaxThreads; ++i) {
443 stalls[i].decode = 0;
444 stalls[i].rename = 0;
445 stalls[i].iew = 0;
446 stalls[i].commit = 0;
447 PC[i] = cpu->readPC(i);
448 nextPC[i] = cpu->readNextPC(i);
449 microPC[i] = cpu->readMicroPC(i);
450 fetchStatus[i] = Running;
451 }
452 numInst = 0;
453 wroteToTimeBuffer = false;
454 _status = Inactive;
455 switchedOut = false;
456 interruptPending = false;
457 branchPred.takeOverFrom();
458 }
459
460 template <class Impl>
461 void
462 DefaultFetch<Impl>::wakeFromQuiesce()
463 {
464 DPRINTF(Fetch, "Waking up from quiesce\n");
465 // Hopefully this is safe
466 // @todo: Allow other threads to wake from quiesce.
467 fetchStatus[0] = Running;
468 }
469
470 template <class Impl>
471 inline void
472 DefaultFetch<Impl>::switchToActive()
473 {
474 if (_status == Inactive) {
475 DPRINTF(Activity, "Activating stage.\n");
476
477 cpu->activateStage(O3CPU::FetchIdx);
478
479 _status = Active;
480 }
481 }
482
483 template <class Impl>
484 inline void
485 DefaultFetch<Impl>::switchToInactive()
486 {
487 if (_status == Active) {
488 DPRINTF(Activity, "Deactivating stage.\n");
489
490 cpu->deactivateStage(O3CPU::FetchIdx);
491
492 _status = Inactive;
493 }
494 }
495
496 template <class Impl>
497 bool
498 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
499 Addr &next_NPC, Addr &next_MicroPC)
500 {
501 // Do branch prediction check here.
502 // A bit of a misnomer...next_PC is actually the current PC until
503 // this function updates it.
504 bool predict_taken;
505
506 if (!inst->isControl()) {
507 if (inst->isMicroop() && !inst->isLastMicroop()) {
508 next_MicroPC++;
509 } else {
510 next_PC = next_NPC;
511 next_NPC = next_NPC + instSize;
512 next_MicroPC = 0;
513 }
514 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
515 inst->setPredTaken(false);
516 return false;
517 }
518
519 //Assume for now that all control flow is to a different macroop which
520 //would reset the micro pc to 0.
521 next_MicroPC = 0;
522
523 int tid = inst->threadNumber;
524 Addr pred_PC = next_PC;
525 predict_taken = branchPred.predict(inst, pred_PC, tid);
526
527 /* if (predict_taken) {
528 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
529 tid, pred_PC);
530 } else {
531 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
532 }*/
533
534 #if ISA_HAS_DELAY_SLOT
535 next_PC = next_NPC;
536 if (predict_taken)
537 next_NPC = pred_PC;
538 else
539 next_NPC += instSize;
540 #else
541 if (predict_taken)
542 next_PC = pred_PC;
543 else
544 next_PC += instSize;
545 next_NPC = next_PC + instSize;
546 #endif
547 /* DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
548 tid, next_PC, next_NPC);*/
549 inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
550 inst->setPredTaken(predict_taken);
551
552 ++fetchedBranches;
553
554 if (predict_taken) {
555 ++predictedBranches;
556 }
557
558 return predict_taken;
559 }
560
561 template <class Impl>
562 bool
563 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
564 {
565 Fault fault = NoFault;
566
567 //AlphaDep
568 if (cacheBlocked) {
569 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
570 tid);
571 return false;
572 } else if (isSwitchedOut()) {
573 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
574 tid);
575 return false;
576 } else if (interruptPending && !(fetch_PC & 0x3)) {
577 // Hold off fetch from getting new instructions when:
578 // Cache is blocked, or
579 // while an interrupt is pending and we're not in PAL mode, or
580 // fetch is switched out.
581 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
582 tid);
583 return false;
584 }
585
586 // Align the fetch PC so it's at the start of a cache block.
587 Addr block_PC = icacheBlockAlignPC(fetch_PC);
588
589 // If we've already got the block, no need to try to fetch it again.
590 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
591 return true;
592 }
593
594 // Setup the memReq to do a read of the first instruction's address.
595 // Set the appropriate read size and flags as well.
596 // Build request here.
597 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
598 fetch_PC, cpu->thread[tid]->contextId(),
599 tid);
600
601 memReq[tid] = mem_req;
602
603 // Translate the instruction request.
604 fault = cpu->itb->translateAtomic(mem_req, cpu->thread[tid]->getTC(),
605 false, true);
606
607 // In the case of faults, the fetch stage may need to stall and wait
608 // for the ITB miss to be handled.
609
610 // If translation was successful, attempt to read the first
611 // instruction.
612 if (fault == NoFault) {
613 #if 0
614 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
615 memReq[tid]->isUncacheable()) {
616 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
617 "misspeculating path)!",
618 memReq[tid]->paddr);
619 ret_fault = TheISA::genMachineCheckFault();
620 return false;
621 }
622 #endif
623
624 // Build packet here.
625 PacketPtr data_pkt = new Packet(mem_req,
626 MemCmd::ReadReq, Packet::Broadcast);
627 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
628
629 cacheDataPC[tid] = block_PC;
630 cacheDataValid[tid] = false;
631
632 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
633
634 fetchedCacheLines++;
635
636 // Now do the timing access to see whether or not the instruction
637 // exists within the cache.
638 if (!icachePort->sendTiming(data_pkt)) {
639 assert(retryPkt == NULL);
640 assert(retryTid == -1);
641 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
642 fetchStatus[tid] = IcacheWaitRetry;
643 retryPkt = data_pkt;
644 retryTid = tid;
645 cacheBlocked = true;
646 return false;
647 }
648
649 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
650
651 lastIcacheStall[tid] = curTick;
652
653 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
654 "response.\n", tid);
655
656 fetchStatus[tid] = IcacheWaitResponse;
657 } else {
658 delete mem_req;
659 memReq[tid] = NULL;
660 }
661
662 ret_fault = fault;
663 return true;
664 }
665
666 template <class Impl>
667 inline void
668 DefaultFetch<Impl>::doSquash(const Addr &new_PC,
669 const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
670 {
671 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
672 tid, new_PC, new_NPC);
673
674 PC[tid] = new_PC;
675 nextPC[tid] = new_NPC;
676 microPC[tid] = new_microPC;
677
678 // Clear the icache miss if it's outstanding.
679 if (fetchStatus[tid] == IcacheWaitResponse) {
680 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
681 tid);
682 memReq[tid] = NULL;
683 }
684
685 // Get rid of the retrying packet if it was from this thread.
686 if (retryTid == tid) {
687 assert(cacheBlocked);
688 if (retryPkt) {
689 delete retryPkt->req;
690 delete retryPkt;
691 }
692 retryPkt = NULL;
693 retryTid = -1;
694 }
695
696 fetchStatus[tid] = Squashing;
697
698 ++fetchSquashCycles;
699 }
700
701 template<class Impl>
702 void
703 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
704 const Addr &new_MicroPC,
705 const InstSeqNum &seq_num, unsigned tid)
706 {
707 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
708
709 doSquash(new_PC, new_NPC, new_MicroPC, tid);
710
711 // Tell the CPU to remove any instructions that are in flight between
712 // fetch and decode.
713 cpu->removeInstsUntil(seq_num, tid);
714 }
715
716 template<class Impl>
717 bool
718 DefaultFetch<Impl>::checkStall(unsigned tid) const
719 {
720 bool ret_val = false;
721
722 if (cpu->contextSwitch) {
723 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
724 ret_val = true;
725 } else if (stalls[tid].decode) {
726 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
727 ret_val = true;
728 } else if (stalls[tid].rename) {
729 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
730 ret_val = true;
731 } else if (stalls[tid].iew) {
732 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
733 ret_val = true;
734 } else if (stalls[tid].commit) {
735 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
736 ret_val = true;
737 }
738
739 return ret_val;
740 }
741
742 template<class Impl>
743 typename DefaultFetch<Impl>::FetchStatus
744 DefaultFetch<Impl>::updateFetchStatus()
745 {
746 //Check Running
747 std::list<unsigned>::iterator threads = activeThreads->begin();
748 std::list<unsigned>::iterator end = activeThreads->end();
749
750 while (threads != end) {
751 unsigned tid = *threads++;
752
753 if (fetchStatus[tid] == Running ||
754 fetchStatus[tid] == Squashing ||
755 fetchStatus[tid] == IcacheAccessComplete) {
756
757 if (_status == Inactive) {
758 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
759
760 if (fetchStatus[tid] == IcacheAccessComplete) {
761 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
762 "completion\n",tid);
763 }
764
765 cpu->activateStage(O3CPU::FetchIdx);
766 }
767
768 return Active;
769 }
770 }
771
772 // Stage is switching from active to inactive, notify CPU of it.
773 if (_status == Active) {
774 DPRINTF(Activity, "Deactivating stage.\n");
775
776 cpu->deactivateStage(O3CPU::FetchIdx);
777 }
778
779 return Inactive;
780 }
781
782 template <class Impl>
783 void
784 DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
785 const Addr &new_MicroPC,
786 const InstSeqNum &seq_num, unsigned tid)
787 {
788 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
789
790 doSquash(new_PC, new_NPC, new_MicroPC, tid);
791
792 // Tell the CPU to remove any instructions that are not in the ROB.
793 cpu->removeInstsNotInROB(tid);
794 }
795
796 template <class Impl>
797 void
798 DefaultFetch<Impl>::tick()
799 {
800 std::list<unsigned>::iterator threads = activeThreads->begin();
801 std::list<unsigned>::iterator end = activeThreads->end();
802 bool status_change = false;
803
804 wroteToTimeBuffer = false;
805
806 while (threads != end) {
807 unsigned tid = *threads++;
808
809 // Check the signals for each thread to determine the proper status
810 // for each thread.
811 bool updated_status = checkSignalsAndUpdate(tid);
812 status_change = status_change || updated_status;
813 }
814
815 DPRINTF(Fetch, "Running stage.\n");
816
817 // Reset the number of the instruction we're fetching.
818 numInst = 0;
819
820 #if FULL_SYSTEM
821 if (fromCommit->commitInfo[0].interruptPending) {
822 interruptPending = true;
823 }
824
825 if (fromCommit->commitInfo[0].clearInterrupt) {
826 interruptPending = false;
827 }
828 #endif
829
830 for (threadFetched = 0; threadFetched < numFetchingThreads;
831 threadFetched++) {
832 // Fetch each of the actively fetching threads.
833 fetch(status_change);
834 }
835
836 // Record number of instructions fetched this cycle for distribution.
837 fetchNisnDist.sample(numInst);
838
839 if (status_change) {
840 // Change the fetch stage status if there was a status change.
841 _status = updateFetchStatus();
842 }
843
844 // If there was activity this cycle, inform the CPU of it.
845 if (wroteToTimeBuffer || cpu->contextSwitch) {
846 DPRINTF(Activity, "Activity this cycle.\n");
847
848 cpu->activityThisCycle();
849 }
850 }
851
852 template <class Impl>
853 bool
854 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
855 {
856 // Update the per thread stall statuses.
857 if (fromDecode->decodeBlock[tid]) {
858 stalls[tid].decode = true;
859 }
860
861 if (fromDecode->decodeUnblock[tid]) {
862 assert(stalls[tid].decode);
863 assert(!fromDecode->decodeBlock[tid]);
864 stalls[tid].decode = false;
865 }
866
867 if (fromRename->renameBlock[tid]) {
868 stalls[tid].rename = true;
869 }
870
871 if (fromRename->renameUnblock[tid]) {
872 assert(stalls[tid].rename);
873 assert(!fromRename->renameBlock[tid]);
874 stalls[tid].rename = false;
875 }
876
877 if (fromIEW->iewBlock[tid]) {
878 stalls[tid].iew = true;
879 }
880
881 if (fromIEW->iewUnblock[tid]) {
882 assert(stalls[tid].iew);
883 assert(!fromIEW->iewBlock[tid]);
884 stalls[tid].iew = false;
885 }
886
887 if (fromCommit->commitBlock[tid]) {
888 stalls[tid].commit = true;
889 }
890
891 if (fromCommit->commitUnblock[tid]) {
892 assert(stalls[tid].commit);
893 assert(!fromCommit->commitBlock[tid]);
894 stalls[tid].commit = false;
895 }
896
897 // Check squash signals from commit.
898 if (fromCommit->commitInfo[tid].squash) {
899
900 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
901 "from commit.\n",tid);
902 // In any case, squash.
903 squash(fromCommit->commitInfo[tid].nextPC,
904 fromCommit->commitInfo[tid].nextNPC,
905 fromCommit->commitInfo[tid].nextMicroPC,
906 fromCommit->commitInfo[tid].doneSeqNum,
907 tid);
908
909 // Also check if there's a mispredict that happened.
910 if (fromCommit->commitInfo[tid].branchMispredict) {
911 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
912 fromCommit->commitInfo[tid].nextPC,
913 fromCommit->commitInfo[tid].branchTaken,
914 tid);
915 } else {
916 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
917 tid);
918 }
919
920 return true;
921 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
922 // Update the branch predictor if it wasn't a squashed instruction
923 // that was broadcasted.
924 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
925 }
926
927 // Check ROB squash signals from commit.
928 if (fromCommit->commitInfo[tid].robSquashing) {
929 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
930
931 // Continue to squash.
932 fetchStatus[tid] = Squashing;
933
934 return true;
935 }
936
937 // Check squash signals from decode.
938 if (fromDecode->decodeInfo[tid].squash) {
939 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
940 "from decode.\n",tid);
941
942 // Update the branch predictor.
943 if (fromDecode->decodeInfo[tid].branchMispredict) {
944 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
945 fromDecode->decodeInfo[tid].nextPC,
946 fromDecode->decodeInfo[tid].branchTaken,
947 tid);
948 } else {
949 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
950 tid);
951 }
952
953 if (fetchStatus[tid] != Squashing) {
954
955 DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
956 fromDecode->decodeInfo[tid].nextPC,
957 fromDecode->decodeInfo[tid].nextNPC);
958 // Squash unless we're already squashing
959 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
960 fromDecode->decodeInfo[tid].nextNPC,
961 fromDecode->decodeInfo[tid].nextMicroPC,
962 fromDecode->decodeInfo[tid].doneSeqNum,
963 tid);
964
965 return true;
966 }
967 }
968
969 if (checkStall(tid) &&
970 fetchStatus[tid] != IcacheWaitResponse &&
971 fetchStatus[tid] != IcacheWaitRetry) {
972 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
973
974 fetchStatus[tid] = Blocked;
975
976 return true;
977 }
978
979 if (fetchStatus[tid] == Blocked ||
980 fetchStatus[tid] == Squashing) {
981 // Switch status to running if fetch isn't being told to block or
982 // squash this cycle.
983 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
984 tid);
985
986 fetchStatus[tid] = Running;
987
988 return true;
989 }
990
991 // If we've reached this point, we have not gotten any signals that
992 // cause fetch to change its status. Fetch remains the same as before.
993 return false;
994 }
995
996 template<class Impl>
997 void
998 DefaultFetch<Impl>::fetch(bool &status_change)
999 {
1000 //////////////////////////////////////////
1001 // Start actual fetch
1002 //////////////////////////////////////////
1003 int tid = getFetchingThread(fetchPolicy);
1004
1005 if (tid == -1 || drainPending) {
1006 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1007
1008 // Breaks looping condition in tick()
1009 threadFetched = numFetchingThreads;
1010 return;
1011 }
1012
1013 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1014
1015 // The current PC.
1016 Addr fetch_PC = PC[tid];
1017 Addr fetch_NPC = nextPC[tid];
1018 Addr fetch_MicroPC = microPC[tid];
1019
1020 // Fault code for memory access.
1021 Fault fault = NoFault;
1022
1023 // If returning from the delay of a cache miss, then update the status
1024 // to running, otherwise do the cache access. Possibly move this up
1025 // to tick() function.
1026 if (fetchStatus[tid] == IcacheAccessComplete) {
1027 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1028 tid);
1029
1030 fetchStatus[tid] = Running;
1031 status_change = true;
1032 } else if (fetchStatus[tid] == Running) {
1033 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1034 "instruction, starting at PC %08p.\n",
1035 tid, fetch_PC);
1036
1037 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1038 if (!fetch_success) {
1039 if (cacheBlocked) {
1040 ++icacheStallCycles;
1041 } else {
1042 ++fetchMiscStallCycles;
1043 }
1044 return;
1045 }
1046 } else {
1047 if (fetchStatus[tid] == Idle) {
1048 ++fetchIdleCycles;
1049 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1050 } else if (fetchStatus[tid] == Blocked) {
1051 ++fetchBlockedCycles;
1052 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1053 } else if (fetchStatus[tid] == Squashing) {
1054 ++fetchSquashCycles;
1055 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1056 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1057 ++icacheStallCycles;
1058 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1059 }
1060
1061 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1062 // fetch should do nothing.
1063 return;
1064 }
1065
1066 ++fetchCycles;
1067
1068 // If we had a stall due to an icache miss, then return.
1069 if (fetchStatus[tid] == IcacheWaitResponse) {
1070 ++icacheStallCycles;
1071 status_change = true;
1072 return;
1073 }
1074
1075 Addr next_PC = fetch_PC;
1076 Addr next_NPC = fetch_NPC;
1077 Addr next_MicroPC = fetch_MicroPC;
1078
1079 InstSeqNum inst_seq;
1080 MachInst inst;
1081 ExtMachInst ext_inst;
1082 // @todo: Fix this hack.
1083 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1084
1085 StaticInstPtr staticInst = NULL;
1086 StaticInstPtr macroop = NULL;
1087
1088 if (fault == NoFault) {
1089 // If the read of the first instruction was successful, then grab the
1090 // instructions from the rest of the cache line and put them into the
1091 // queue heading to decode.
1092
1093 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1094 "decode.\n",tid);
1095
1096 // Need to keep track of whether or not a predicted branch
1097 // ended this fetch block.
1098 bool predicted_branch = false;
1099
1100 while (offset < cacheBlkSize &&
1101 numInst < fetchWidth &&
1102 !predicted_branch) {
1103
1104 // If we're branching after this instruction, quite fetching
1105 // from the same block then.
1106 predicted_branch =
1107 (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1108 if (predicted_branch) {
1109 DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1110 fetch_PC, fetch_NPC);
1111 }
1112
1113 // Make sure this is a valid index.
1114 assert(offset <= cacheBlkSize - instSize);
1115
1116 if (!macroop) {
1117 // Get the instruction from the array of the cache line.
1118 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1119 (&cacheData[tid][offset]));
1120
1121 predecoder.setTC(cpu->thread[tid]->getTC());
1122 predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1123
1124 ext_inst = predecoder.getExtMachInst();
1125 staticInst = StaticInstPtr(ext_inst, fetch_PC);
1126 if (staticInst->isMacroop())
1127 macroop = staticInst;
1128 }
1129 do {
1130 if (macroop) {
1131 staticInst = macroop->fetchMicroop(fetch_MicroPC);
1132 if (staticInst->isLastMicroop())
1133 macroop = NULL;
1134 }
1135
1136 // Get a sequence number.
1137 inst_seq = cpu->getAndIncrementInstSeq();
1138
1139 // Create a new DynInst from the instruction fetched.
1140 DynInstPtr instruction = new DynInst(staticInst,
1141 fetch_PC, fetch_NPC, fetch_MicroPC,
1142 next_PC, next_NPC, next_MicroPC,
1143 inst_seq, cpu);
1144 instruction->setTid(tid);
1145
1146 instruction->setASID(tid);
1147
1148 instruction->setThreadState(cpu->thread[tid]);
1149
1150 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1151 "[sn:%lli]\n",
1152 tid, instruction->readPC(), inst_seq);
1153
1154 //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1155
1156 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1157 tid, instruction->staticInst->disassemble(fetch_PC));
1158
1159 #if TRACING_ON
1160 instruction->traceData =
1161 cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1162 instruction->staticInst, instruction->readPC());
1163 #else
1164 instruction->traceData = NULL;
1165 #endif
1166
1167 ///FIXME This needs to be more robust in dealing with delay slots
1168 predicted_branch |=
1169 lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1170
1171 // Add instruction to the CPU's list of instructions.
1172 instruction->setInstListIt(cpu->addInst(instruction));
1173
1174 // Write the instruction to the first slot in the queue
1175 // that heads to decode.
1176 toDecode->insts[numInst] = instruction;
1177
1178 toDecode->size++;
1179
1180 // Increment stat of fetched instructions.
1181 ++fetchedInsts;
1182
1183 // Move to the next instruction, unless we have a branch.
1184 fetch_PC = next_PC;
1185 fetch_NPC = next_NPC;
1186 fetch_MicroPC = next_MicroPC;
1187
1188 if (instruction->isQuiesce()) {
1189 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1190 curTick);
1191 fetchStatus[tid] = QuiescePending;
1192 ++numInst;
1193 status_change = true;
1194 break;
1195 }
1196
1197 ++numInst;
1198 } while (staticInst->isMicroop() &&
1199 !staticInst->isLastMicroop() &&
1200 numInst < fetchWidth);
1201 offset += instSize;
1202 }
1203
1204 if (predicted_branch) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1206 "instruction encountered.\n", tid);
1207 } else if (numInst >= fetchWidth) {
1208 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1209 "for this cycle.\n", tid);
1210 } else if (offset >= cacheBlkSize) {
1211 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1212 "block.\n", tid);
1213 }
1214 }
1215
1216 if (numInst > 0) {
1217 wroteToTimeBuffer = true;
1218 }
1219
1220 // Now that fetching is completed, update the PC to signify what the next
1221 // cycle will be.
1222 if (fault == NoFault) {
1223 PC[tid] = next_PC;
1224 nextPC[tid] = next_NPC;
1225 microPC[tid] = next_MicroPC;
1226 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1227 } else {
1228 // We shouldn't be in an icache miss and also have a fault (an ITB
1229 // miss)
1230 if (fetchStatus[tid] == IcacheWaitResponse) {
1231 panic("Fetch should have exited prior to this!");
1232 }
1233
1234 // Send the fault to commit. This thread will not do anything
1235 // until commit handles the fault. The only other way it can
1236 // wake up is if a squash comes along and changes the PC.
1237 assert(numInst < fetchWidth);
1238 // Get a sequence number.
1239 inst_seq = cpu->getAndIncrementInstSeq();
1240 // We will use a nop in order to carry the fault.
1241 ext_inst = TheISA::NoopMachInst;
1242
1243 // Create a new DynInst from the dummy nop.
1244 DynInstPtr instruction = new DynInst(ext_inst,
1245 fetch_PC, fetch_NPC, fetch_MicroPC,
1246 next_PC, next_NPC, next_MicroPC,
1247 inst_seq, cpu);
1248 instruction->setPredTarg(next_NPC, next_NPC + instSize, 0);
1249 instruction->setTid(tid);
1250
1251 instruction->setASID(tid);
1252
1253 instruction->setThreadState(cpu->thread[tid]);
1254
1255 instruction->traceData = NULL;
1256
1257 instruction->setInstListIt(cpu->addInst(instruction));
1258
1259 instruction->fault = fault;
1260
1261 toDecode->insts[numInst] = instruction;
1262 toDecode->size++;
1263
1264 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1265
1266 fetchStatus[tid] = TrapPending;
1267 status_change = true;
1268
1269 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1270 tid, fault->name(), PC[tid]);
1271 }
1272 }
1273
1274 template<class Impl>
1275 void
1276 DefaultFetch<Impl>::recvRetry()
1277 {
1278 if (retryPkt != NULL) {
1279 assert(cacheBlocked);
1280 assert(retryTid != -1);
1281 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1282
1283 if (icachePort->sendTiming(retryPkt)) {
1284 fetchStatus[retryTid] = IcacheWaitResponse;
1285 retryPkt = NULL;
1286 retryTid = -1;
1287 cacheBlocked = false;
1288 }
1289 } else {
1290 assert(retryTid == -1);
1291 // Access has been squashed since it was sent out. Just clear
1292 // the cache being blocked.
1293 cacheBlocked = false;
1294 }
1295 }
1296
1297 ///////////////////////////////////////
1298 // //
1299 // SMT FETCH POLICY MAINTAINED HERE //
1300 // //
1301 ///////////////////////////////////////
1302 template<class Impl>
1303 int
1304 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1305 {
1306 if (numThreads > 1) {
1307 switch (fetch_priority) {
1308
1309 case SingleThread:
1310 return 0;
1311
1312 case RoundRobin:
1313 return roundRobin();
1314
1315 case IQ:
1316 return iqCount();
1317
1318 case LSQ:
1319 return lsqCount();
1320
1321 case Branch:
1322 return branchCount();
1323
1324 default:
1325 return -1;
1326 }
1327 } else {
1328 std::list<unsigned>::iterator thread = activeThreads->begin();
1329 assert(thread != activeThreads->end());
1330 int tid = *thread;
1331
1332 if (fetchStatus[tid] == Running ||
1333 fetchStatus[tid] == IcacheAccessComplete ||
1334 fetchStatus[tid] == Idle) {
1335 return tid;
1336 } else {
1337 return -1;
1338 }
1339 }
1340
1341 }
1342
1343
1344 template<class Impl>
1345 int
1346 DefaultFetch<Impl>::roundRobin()
1347 {
1348 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1349 std::list<unsigned>::iterator end = priorityList.end();
1350
1351 int high_pri;
1352
1353 while (pri_iter != end) {
1354 high_pri = *pri_iter;
1355
1356 assert(high_pri <= numThreads);
1357
1358 if (fetchStatus[high_pri] == Running ||
1359 fetchStatus[high_pri] == IcacheAccessComplete ||
1360 fetchStatus[high_pri] == Idle) {
1361
1362 priorityList.erase(pri_iter);
1363 priorityList.push_back(high_pri);
1364
1365 return high_pri;
1366 }
1367
1368 pri_iter++;
1369 }
1370
1371 return -1;
1372 }
1373
1374 template<class Impl>
1375 int
1376 DefaultFetch<Impl>::iqCount()
1377 {
1378 std::priority_queue<unsigned> PQ;
1379
1380 std::list<unsigned>::iterator threads = activeThreads->begin();
1381 std::list<unsigned>::iterator end = activeThreads->end();
1382
1383 while (threads != end) {
1384 unsigned tid = *threads++;
1385
1386 PQ.push(fromIEW->iewInfo[tid].iqCount);
1387 }
1388
1389 while (!PQ.empty()) {
1390
1391 unsigned high_pri = PQ.top();
1392
1393 if (fetchStatus[high_pri] == Running ||
1394 fetchStatus[high_pri] == IcacheAccessComplete ||
1395 fetchStatus[high_pri] == Idle)
1396 return high_pri;
1397 else
1398 PQ.pop();
1399
1400 }
1401
1402 return -1;
1403 }
1404
1405 template<class Impl>
1406 int
1407 DefaultFetch<Impl>::lsqCount()
1408 {
1409 std::priority_queue<unsigned> PQ;
1410
1411 std::list<unsigned>::iterator threads = activeThreads->begin();
1412 std::list<unsigned>::iterator end = activeThreads->end();
1413
1414 while (threads != end) {
1415 unsigned tid = *threads++;
1416
1417 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1418 }
1419
1420 while (!PQ.empty()) {
1421
1422 unsigned high_pri = PQ.top();
1423
1424 if (fetchStatus[high_pri] == Running ||
1425 fetchStatus[high_pri] == IcacheAccessComplete ||
1426 fetchStatus[high_pri] == Idle)
1427 return high_pri;
1428 else
1429 PQ.pop();
1430
1431 }
1432
1433 return -1;
1434 }
1435
1436 template<class Impl>
1437 int
1438 DefaultFetch<Impl>::branchCount()
1439 {
1440 std::list<unsigned>::iterator thread = activeThreads->begin();
1441 assert(thread != activeThreads->end());
1442 unsigned tid = *thread;
1443
1444 panic("Branch Count Fetch policy unimplemented\n");
1445 return 0 * tid;
1446 }