Merge zizzer:/bk/newmem
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include "config/use_checker.hh"
33
34 #include "arch/isa_traits.hh"
35 #include "arch/utility.hh"
36 #include "cpu/checker/cpu.hh"
37 #include "cpu/exetrace.hh"
38 #include "cpu/o3/fetch.hh"
39 #include "mem/packet.hh"
40 #include "mem/request.hh"
41 #include "sim/byteswap.hh"
42 #include "sim/host.hh"
43 #include "sim/root.hh"
44
45 #if FULL_SYSTEM
46 #include "arch/tlb.hh"
47 #include "arch/vtophys.hh"
48 #include "sim/system.hh"
49 #endif // FULL_SYSTEM
50
51 #include <algorithm>
52
53 template<class Impl>
54 Tick
55 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56 {
57 panic("DefaultFetch doesn't expect recvAtomic callback!");
58 return curTick;
59 }
60
61 template<class Impl>
62 void
63 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64 {
65 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
66 "functional call.");
67 }
68
69 template<class Impl>
70 void
71 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72 {
73 if (status == RangeChange) {
74 if (!snoopRangeSent) {
75 snoopRangeSent = true;
76 sendStatusChange(Port::RangeChange);
77 }
78 return;
79 }
80
81 panic("DefaultFetch doesn't expect recvStatusChange callback!");
82 }
83
84 template<class Impl>
85 bool
86 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
87 {
88 DPRINTF(Fetch, "Received timing\n");
89 if (pkt->isResponse()) {
90 fetch->processCacheCompletion(pkt);
91 }
92 //else Snooped a coherence request, just return
93 return true;
94 }
95
96 template<class Impl>
97 void
98 DefaultFetch<Impl>::IcachePort::recvRetry()
99 {
100 fetch->recvRetry();
101 }
102
103 template<class Impl>
104 DefaultFetch<Impl>::DefaultFetch(Params *params)
105 : branchPred(params),
106 decodeToFetchDelay(params->decodeToFetchDelay),
107 renameToFetchDelay(params->renameToFetchDelay),
108 iewToFetchDelay(params->iewToFetchDelay),
109 commitToFetchDelay(params->commitToFetchDelay),
110 fetchWidth(params->fetchWidth),
111 cacheBlocked(false),
112 retryPkt(NULL),
113 retryTid(-1),
114 numThreads(params->numberOfThreads),
115 numFetchingThreads(params->smtNumFetchingThreads),
116 interruptPending(false),
117 drainPending(false),
118 switchedOut(false)
119 {
120 if (numThreads > Impl::MaxThreads)
121 fatal("numThreads is not a valid value\n");
122
123 // Set fetch stage's status to inactive.
124 _status = Inactive;
125
126 std::string policy = params->smtFetchPolicy;
127
128 // Convert string to lowercase
129 std::transform(policy.begin(), policy.end(), policy.begin(),
130 (int(*)(int)) tolower);
131
132 // Figure out fetch policy
133 if (policy == "singlethread") {
134 fetchPolicy = SingleThread;
135 if (numThreads > 1)
136 panic("Invalid Fetch Policy for a SMT workload.");
137 } else if (policy == "roundrobin") {
138 fetchPolicy = RoundRobin;
139 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
140 } else if (policy == "branch") {
141 fetchPolicy = Branch;
142 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
143 } else if (policy == "iqcount") {
144 fetchPolicy = IQ;
145 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
146 } else if (policy == "lsqcount") {
147 fetchPolicy = LSQ;
148 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
149 } else {
150 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
151 " RoundRobin,LSQcount,IQcount}\n");
152 }
153
154 // Size of cache block.
155 cacheBlkSize = 64;
156
157 // Create mask to get rid of offset bits.
158 cacheBlkMask = (cacheBlkSize - 1);
159
160 for (int tid=0; tid < numThreads; tid++) {
161
162 fetchStatus[tid] = Running;
163
164 priorityList.push_back(tid);
165
166 memReq[tid] = NULL;
167
168 // Create space to store a cache line.
169 cacheData[tid] = new uint8_t[cacheBlkSize];
170 cacheDataPC[tid] = 0;
171 cacheDataValid[tid] = false;
172
173 delaySlotInfo[tid].branchSeqNum = -1;
174 delaySlotInfo[tid].numInsts = 0;
175 delaySlotInfo[tid].targetAddr = 0;
176 delaySlotInfo[tid].targetReady = false;
177
178 stalls[tid].decode = false;
179 stalls[tid].rename = false;
180 stalls[tid].iew = false;
181 stalls[tid].commit = false;
182 }
183
184 // Get the size of an instruction.
185 instSize = sizeof(TheISA::MachInst);
186 }
187
188 template <class Impl>
189 std::string
190 DefaultFetch<Impl>::name() const
191 {
192 return cpu->name() + ".fetch";
193 }
194
195 template <class Impl>
196 void
197 DefaultFetch<Impl>::regStats()
198 {
199 icacheStallCycles
200 .name(name() + ".icacheStallCycles")
201 .desc("Number of cycles fetch is stalled on an Icache miss")
202 .prereq(icacheStallCycles);
203
204 fetchedInsts
205 .name(name() + ".Insts")
206 .desc("Number of instructions fetch has processed")
207 .prereq(fetchedInsts);
208
209 fetchedBranches
210 .name(name() + ".Branches")
211 .desc("Number of branches that fetch encountered")
212 .prereq(fetchedBranches);
213
214 predictedBranches
215 .name(name() + ".predictedBranches")
216 .desc("Number of branches that fetch has predicted taken")
217 .prereq(predictedBranches);
218
219 fetchCycles
220 .name(name() + ".Cycles")
221 .desc("Number of cycles fetch has run and was not squashing or"
222 " blocked")
223 .prereq(fetchCycles);
224
225 fetchSquashCycles
226 .name(name() + ".SquashCycles")
227 .desc("Number of cycles fetch has spent squashing")
228 .prereq(fetchSquashCycles);
229
230 fetchIdleCycles
231 .name(name() + ".IdleCycles")
232 .desc("Number of cycles fetch was idle")
233 .prereq(fetchIdleCycles);
234
235 fetchBlockedCycles
236 .name(name() + ".BlockedCycles")
237 .desc("Number of cycles fetch has spent blocked")
238 .prereq(fetchBlockedCycles);
239
240 fetchedCacheLines
241 .name(name() + ".CacheLines")
242 .desc("Number of cache lines fetched")
243 .prereq(fetchedCacheLines);
244
245 fetchMiscStallCycles
246 .name(name() + ".MiscStallCycles")
247 .desc("Number of cycles fetch has spent waiting on interrupts, or "
248 "bad addresses, or out of MSHRs")
249 .prereq(fetchMiscStallCycles);
250
251 fetchIcacheSquashes
252 .name(name() + ".IcacheSquashes")
253 .desc("Number of outstanding Icache misses that were squashed")
254 .prereq(fetchIcacheSquashes);
255
256 fetchNisnDist
257 .init(/* base value */ 0,
258 /* last value */ fetchWidth,
259 /* bucket size */ 1)
260 .name(name() + ".rateDist")
261 .desc("Number of instructions fetched each cycle (Total)")
262 .flags(Stats::pdf);
263
264 idleRate
265 .name(name() + ".idleRate")
266 .desc("Percent of cycles fetch was idle")
267 .prereq(idleRate);
268 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
269
270 branchRate
271 .name(name() + ".branchRate")
272 .desc("Number of branch fetches per cycle")
273 .flags(Stats::total);
274 branchRate = fetchedBranches / cpu->numCycles;
275
276 fetchRate
277 .name(name() + ".rate")
278 .desc("Number of inst fetches per cycle")
279 .flags(Stats::total);
280 fetchRate = fetchedInsts / cpu->numCycles;
281
282 branchPred.regStats();
283 }
284
285 template<class Impl>
286 void
287 DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
288 {
289 DPRINTF(Fetch, "Setting the CPU pointer.\n");
290 cpu = cpu_ptr;
291
292 // Name is finally available, so create the port.
293 icachePort = new IcachePort(this);
294
295 icachePort->snoopRangeSent = false;
296
297 #if USE_CHECKER
298 if (cpu->checker) {
299 cpu->checker->setIcachePort(icachePort);
300 }
301 #endif
302
303 // Schedule fetch to get the correct PC from the CPU
304 // scheduleFetchStartupEvent(1);
305
306 // Fetch needs to start fetching instructions at the very beginning,
307 // so it must start up in active state.
308 switchToActive();
309 }
310
311 template<class Impl>
312 void
313 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
314 {
315 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
316 timeBuffer = time_buffer;
317
318 // Create wires to get information from proper places in time buffer.
319 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
320 fromRename = timeBuffer->getWire(-renameToFetchDelay);
321 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
322 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
323 }
324
325 template<class Impl>
326 void
327 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
328 {
329 DPRINTF(Fetch, "Setting active threads list pointer.\n");
330 activeThreads = at_ptr;
331 }
332
333 template<class Impl>
334 void
335 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
336 {
337 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
338 fetchQueue = fq_ptr;
339
340 // Create wire to write information to proper place in fetch queue.
341 toDecode = fetchQueue->getWire(0);
342 }
343
344 template<class Impl>
345 void
346 DefaultFetch<Impl>::initStage()
347 {
348 // Setup PC and nextPC with initial state.
349 for (int tid = 0; tid < numThreads; tid++) {
350 PC[tid] = cpu->readPC(tid);
351 nextPC[tid] = cpu->readNextPC(tid);
352 #if ISA_HAS_DELAY_SLOT
353 nextNPC[tid] = cpu->readNextNPC(tid);
354 #endif
355 }
356 }
357
358 template<class Impl>
359 void
360 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361 {
362 unsigned tid = pkt->req->getThreadNum();
363
364 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
365
366 // Only change the status if it's still waiting on the icache access
367 // to return.
368 if (fetchStatus[tid] != IcacheWaitResponse ||
369 pkt->req != memReq[tid] ||
370 isSwitchedOut()) {
371 ++fetchIcacheSquashes;
372 delete pkt->req;
373 delete pkt;
374 return;
375 }
376
377 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
378 cacheDataValid[tid] = true;
379
380 if (!drainPending) {
381 // Wake up the CPU (if it went to sleep and was waiting on
382 // this completion event).
383 cpu->wakeCPU();
384
385 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386 tid);
387
388 switchToActive();
389 }
390
391 // Only switch to IcacheAccessComplete if we're not stalled as well.
392 if (checkStall(tid)) {
393 fetchStatus[tid] = Blocked;
394 } else {
395 fetchStatus[tid] = IcacheAccessComplete;
396 }
397
398 // Reset the mem req to NULL.
399 delete pkt->req;
400 delete pkt;
401 memReq[tid] = NULL;
402 }
403
404 template <class Impl>
405 bool
406 DefaultFetch<Impl>::drain()
407 {
408 // Fetch is ready to drain at any time.
409 cpu->signalDrained();
410 drainPending = true;
411 return true;
412 }
413
414 template <class Impl>
415 void
416 DefaultFetch<Impl>::resume()
417 {
418 drainPending = false;
419 }
420
421 template <class Impl>
422 void
423 DefaultFetch<Impl>::switchOut()
424 {
425 switchedOut = true;
426 // Branch predictor needs to have its state cleared.
427 branchPred.switchOut();
428 }
429
430 template <class Impl>
431 void
432 DefaultFetch<Impl>::takeOverFrom()
433 {
434 // Reset all state
435 for (int i = 0; i < Impl::MaxThreads; ++i) {
436 stalls[i].decode = 0;
437 stalls[i].rename = 0;
438 stalls[i].iew = 0;
439 stalls[i].commit = 0;
440 PC[i] = cpu->readPC(i);
441 nextPC[i] = cpu->readNextPC(i);
442 #if ISA_HAS_DELAY_SLOT
443 nextNPC[i] = cpu->readNextNPC(i);
444 delaySlotInfo[i].branchSeqNum = -1;
445 delaySlotInfo[i].numInsts = 0;
446 delaySlotInfo[i].targetAddr = 0;
447 delaySlotInfo[i].targetReady = false;
448 #endif
449 fetchStatus[i] = Running;
450 }
451 numInst = 0;
452 wroteToTimeBuffer = false;
453 _status = Inactive;
454 switchedOut = false;
455 interruptPending = false;
456 branchPred.takeOverFrom();
457 }
458
459 template <class Impl>
460 void
461 DefaultFetch<Impl>::wakeFromQuiesce()
462 {
463 DPRINTF(Fetch, "Waking up from quiesce\n");
464 // Hopefully this is safe
465 // @todo: Allow other threads to wake from quiesce.
466 fetchStatus[0] = Running;
467 }
468
469 template <class Impl>
470 inline void
471 DefaultFetch<Impl>::switchToActive()
472 {
473 if (_status == Inactive) {
474 DPRINTF(Activity, "Activating stage.\n");
475
476 cpu->activateStage(O3CPU::FetchIdx);
477
478 _status = Active;
479 }
480 }
481
482 template <class Impl>
483 inline void
484 DefaultFetch<Impl>::switchToInactive()
485 {
486 if (_status == Active) {
487 DPRINTF(Activity, "Deactivating stage.\n");
488
489 cpu->deactivateStage(O3CPU::FetchIdx);
490
491 _status = Inactive;
492 }
493 }
494
495 template <class Impl>
496 bool
497 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
498 Addr &next_NPC)
499 {
500 // Do branch prediction check here.
501 // A bit of a misnomer...next_PC is actually the current PC until
502 // this function updates it.
503 bool predict_taken;
504
505 if (!inst->isControl()) {
506 #if ISA_HAS_DELAY_SLOT
507 Addr cur_PC = next_PC;
508 next_PC = cur_PC + instSize; //next_NPC;
509 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
510 inst->setPredTarg(next_NPC);
511 #else
512 next_PC = next_PC + instSize;
513 inst->setPredTarg(next_PC);
514 #endif
515 return false;
516 }
517
518 int tid = inst->threadNumber;
519 #if ISA_HAS_DELAY_SLOT
520 Addr pred_PC = next_PC;
521 predict_taken = branchPred.predict(inst, pred_PC, tid);
522
523 if (predict_taken) {
524 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
525 } else {
526 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
527 }
528
529 if (predict_taken) {
530 next_PC = next_NPC;
531 next_NPC = pred_PC;
532
533 // Update delay slot info
534 ++delaySlotInfo[tid].numInsts;
535 delaySlotInfo[tid].targetAddr = pred_PC;
536 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
537 delaySlotInfo[tid].numInsts);
538 } else { // !predict_taken
539 if (inst->isCondDelaySlot()) {
540 next_PC = pred_PC;
541 // The delay slot is skipped here if there is on
542 // prediction
543 } else {
544 next_PC = next_NPC;
545 // No need to declare a delay slot here since
546 // there is no for the pred. target to jump
547 }
548
549 next_NPC = next_NPC + instSize;
550 }
551 #else
552 predict_taken = branchPred.predict(inst, next_PC, tid);
553 #endif
554
555 ++fetchedBranches;
556
557 if (predict_taken) {
558 ++predictedBranches;
559 }
560
561 return predict_taken;
562 }
563
564 template <class Impl>
565 bool
566 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
567 {
568 Fault fault = NoFault;
569
570 //AlphaDep
571 if (cacheBlocked) {
572 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
573 tid);
574 return false;
575 } else if (isSwitchedOut()) {
576 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
577 tid);
578 return false;
579 } else if (interruptPending && !(fetch_PC & 0x3)) {
580 // Hold off fetch from getting new instructions when:
581 // Cache is blocked, or
582 // while an interrupt is pending and we're not in PAL mode, or
583 // fetch is switched out.
584 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
585 tid);
586 return false;
587 }
588
589 // Align the fetch PC so it's at the start of a cache block.
590 Addr block_PC = icacheBlockAlignPC(fetch_PC);
591
592 // If we've already got the block, no need to try to fetch it again.
593 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
594 return true;
595 }
596
597 // Setup the memReq to do a read of the first instruction's address.
598 // Set the appropriate read size and flags as well.
599 // Build request here.
600 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
601 fetch_PC, cpu->readCpuId(), tid);
602
603 memReq[tid] = mem_req;
604
605 // Translate the instruction request.
606 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
607
608 // In the case of faults, the fetch stage may need to stall and wait
609 // for the ITB miss to be handled.
610
611 // If translation was successful, attempt to read the first
612 // instruction.
613 if (fault == NoFault) {
614 #if 0
615 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
616 memReq[tid]->isUncacheable()) {
617 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
618 "misspeculating path)!",
619 memReq[tid]->paddr);
620 ret_fault = TheISA::genMachineCheckFault();
621 return false;
622 }
623 #endif
624
625 // Build packet here.
626 PacketPtr data_pkt = new Packet(mem_req,
627 Packet::ReadReq, Packet::Broadcast);
628 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
629
630 cacheDataPC[tid] = block_PC;
631 cacheDataValid[tid] = false;
632
633 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
634
635 fetchedCacheLines++;
636
637 // Now do the timing access to see whether or not the instruction
638 // exists within the cache.
639 if (!icachePort->sendTiming(data_pkt)) {
640 if (data_pkt->result == Packet::BadAddress) {
641 fault = TheISA::genMachineCheckFault();
642 delete mem_req;
643 memReq[tid] = NULL;
644 }
645 assert(retryPkt == NULL);
646 assert(retryTid == -1);
647 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
648 fetchStatus[tid] = IcacheWaitRetry;
649 retryPkt = data_pkt;
650 retryTid = tid;
651 cacheBlocked = true;
652 return false;
653 }
654
655 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
656
657 lastIcacheStall[tid] = curTick;
658
659 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
660 "response.\n", tid);
661
662 fetchStatus[tid] = IcacheWaitResponse;
663 } else {
664 delete mem_req;
665 memReq[tid] = NULL;
666 }
667
668 ret_fault = fault;
669 return true;
670 }
671
672 template <class Impl>
673 inline void
674 DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
675 {
676 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
677 tid, new_PC);
678
679 PC[tid] = new_PC;
680 nextPC[tid] = new_PC + instSize;
681 nextNPC[tid] = new_PC + (2 * instSize);
682
683 // Clear the icache miss if it's outstanding.
684 if (fetchStatus[tid] == IcacheWaitResponse) {
685 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
686 tid);
687 memReq[tid] = NULL;
688 }
689
690 // Get rid of the retrying packet if it was from this thread.
691 if (retryTid == tid) {
692 assert(cacheBlocked);
693 cacheBlocked = false;
694 retryTid = -1;
695 delete retryPkt->req;
696 delete retryPkt;
697 retryPkt = NULL;
698 }
699
700 fetchStatus[tid] = Squashing;
701
702 ++fetchSquashCycles;
703 }
704
705 template<class Impl>
706 void
707 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
708 const InstSeqNum &seq_num,
709 unsigned tid)
710 {
711 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
712
713 doSquash(new_PC, tid);
714
715 #if ISA_HAS_DELAY_SLOT
716 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
717 delaySlotInfo[tid].numInsts = 0;
718 delaySlotInfo[tid].targetAddr = 0;
719 delaySlotInfo[tid].targetReady = false;
720 }
721 #endif
722
723 // Tell the CPU to remove any instructions that are in flight between
724 // fetch and decode.
725 cpu->removeInstsUntil(seq_num, tid);
726 }
727
728 template<class Impl>
729 bool
730 DefaultFetch<Impl>::checkStall(unsigned tid) const
731 {
732 bool ret_val = false;
733
734 if (cpu->contextSwitch) {
735 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
736 ret_val = true;
737 } else if (stalls[tid].decode) {
738 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
739 ret_val = true;
740 } else if (stalls[tid].rename) {
741 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
742 ret_val = true;
743 } else if (stalls[tid].iew) {
744 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
745 ret_val = true;
746 } else if (stalls[tid].commit) {
747 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
748 ret_val = true;
749 }
750
751 return ret_val;
752 }
753
754 template<class Impl>
755 typename DefaultFetch<Impl>::FetchStatus
756 DefaultFetch<Impl>::updateFetchStatus()
757 {
758 //Check Running
759 std::list<unsigned>::iterator threads = (*activeThreads).begin();
760
761 while (threads != (*activeThreads).end()) {
762
763 unsigned tid = *threads++;
764
765 if (fetchStatus[tid] == Running ||
766 fetchStatus[tid] == Squashing ||
767 fetchStatus[tid] == IcacheAccessComplete) {
768
769 if (_status == Inactive) {
770 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
771
772 if (fetchStatus[tid] == IcacheAccessComplete) {
773 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
774 "completion\n",tid);
775 }
776
777 cpu->activateStage(O3CPU::FetchIdx);
778 }
779
780 return Active;
781 }
782 }
783
784 // Stage is switching from active to inactive, notify CPU of it.
785 if (_status == Active) {
786 DPRINTF(Activity, "Deactivating stage.\n");
787
788 cpu->deactivateStage(O3CPU::FetchIdx);
789 }
790
791 return Inactive;
792 }
793
794 template <class Impl>
795 void
796 DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
797 bool squash_delay_slot, unsigned tid)
798 {
799 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
800
801 doSquash(new_PC, tid);
802
803 #if ISA_HAS_DELAY_SLOT
804 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
805 delaySlotInfo[tid].numInsts = 0;
806 delaySlotInfo[tid].targetAddr = 0;
807 delaySlotInfo[tid].targetReady = false;
808 }
809
810 // Tell the CPU to remove any instructions that are not in the ROB.
811 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
812 #else
813 // Tell the CPU to remove any instructions that are not in the ROB.
814 cpu->removeInstsNotInROB(tid, true, 0);
815 #endif
816 }
817
818 template <class Impl>
819 void
820 DefaultFetch<Impl>::tick()
821 {
822 std::list<unsigned>::iterator threads = (*activeThreads).begin();
823 bool status_change = false;
824
825 wroteToTimeBuffer = false;
826
827 while (threads != (*activeThreads).end()) {
828 unsigned tid = *threads++;
829
830 // Check the signals for each thread to determine the proper status
831 // for each thread.
832 bool updated_status = checkSignalsAndUpdate(tid);
833 status_change = status_change || updated_status;
834 }
835
836 DPRINTF(Fetch, "Running stage.\n");
837
838 // Reset the number of the instruction we're fetching.
839 numInst = 0;
840
841 #if FULL_SYSTEM
842 if (fromCommit->commitInfo[0].interruptPending) {
843 interruptPending = true;
844 }
845
846 if (fromCommit->commitInfo[0].clearInterrupt) {
847 interruptPending = false;
848 }
849 #endif
850
851 for (threadFetched = 0; threadFetched < numFetchingThreads;
852 threadFetched++) {
853 // Fetch each of the actively fetching threads.
854 fetch(status_change);
855 }
856
857 // Record number of instructions fetched this cycle for distribution.
858 fetchNisnDist.sample(numInst);
859
860 if (status_change) {
861 // Change the fetch stage status if there was a status change.
862 _status = updateFetchStatus();
863 }
864
865 // If there was activity this cycle, inform the CPU of it.
866 if (wroteToTimeBuffer || cpu->contextSwitch) {
867 DPRINTF(Activity, "Activity this cycle.\n");
868
869 cpu->activityThisCycle();
870 }
871 }
872
873 template <class Impl>
874 bool
875 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
876 {
877 // Update the per thread stall statuses.
878 if (fromDecode->decodeBlock[tid]) {
879 stalls[tid].decode = true;
880 }
881
882 if (fromDecode->decodeUnblock[tid]) {
883 assert(stalls[tid].decode);
884 assert(!fromDecode->decodeBlock[tid]);
885 stalls[tid].decode = false;
886 }
887
888 if (fromRename->renameBlock[tid]) {
889 stalls[tid].rename = true;
890 }
891
892 if (fromRename->renameUnblock[tid]) {
893 assert(stalls[tid].rename);
894 assert(!fromRename->renameBlock[tid]);
895 stalls[tid].rename = false;
896 }
897
898 if (fromIEW->iewBlock[tid]) {
899 stalls[tid].iew = true;
900 }
901
902 if (fromIEW->iewUnblock[tid]) {
903 assert(stalls[tid].iew);
904 assert(!fromIEW->iewBlock[tid]);
905 stalls[tid].iew = false;
906 }
907
908 if (fromCommit->commitBlock[tid]) {
909 stalls[tid].commit = true;
910 }
911
912 if (fromCommit->commitUnblock[tid]) {
913 assert(stalls[tid].commit);
914 assert(!fromCommit->commitBlock[tid]);
915 stalls[tid].commit = false;
916 }
917
918 // Check squash signals from commit.
919 if (fromCommit->commitInfo[tid].squash) {
920
921 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
922 "from commit.\n",tid);
923
924 #if ISA_HAS_DELAY_SLOT
925 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
926 #else
927 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
928 #endif
929 // In any case, squash.
930 squash(fromCommit->commitInfo[tid].nextPC,
931 doneSeqNum,
932 fromCommit->commitInfo[tid].squashDelaySlot,
933 tid);
934
935 // Also check if there's a mispredict that happened.
936 if (fromCommit->commitInfo[tid].branchMispredict) {
937 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
938 fromCommit->commitInfo[tid].nextPC,
939 fromCommit->commitInfo[tid].branchTaken,
940 tid);
941 } else {
942 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
943 tid);
944 }
945
946 return true;
947 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
948 // Update the branch predictor if it wasn't a squashed instruction
949 // that was broadcasted.
950 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
951 }
952
953 // Check ROB squash signals from commit.
954 if (fromCommit->commitInfo[tid].robSquashing) {
955 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
956
957 // Continue to squash.
958 fetchStatus[tid] = Squashing;
959
960 return true;
961 }
962
963 // Check squash signals from decode.
964 if (fromDecode->decodeInfo[tid].squash) {
965 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
966 "from decode.\n",tid);
967
968 // Update the branch predictor.
969 if (fromDecode->decodeInfo[tid].branchMispredict) {
970 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
971 fromDecode->decodeInfo[tid].nextPC,
972 fromDecode->decodeInfo[tid].branchTaken,
973 tid);
974 } else {
975 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
976 tid);
977 }
978
979 if (fetchStatus[tid] != Squashing) {
980
981 #if ISA_HAS_DELAY_SLOT
982 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
983 #else
984 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
985 #endif
986 // Squash unless we're already squashing
987 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
988 doneSeqNum,
989 tid);
990
991 return true;
992 }
993 }
994
995 if (checkStall(tid) &&
996 fetchStatus[tid] != IcacheWaitResponse &&
997 fetchStatus[tid] != IcacheWaitRetry) {
998 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
999
1000 fetchStatus[tid] = Blocked;
1001
1002 return true;
1003 }
1004
1005 if (fetchStatus[tid] == Blocked ||
1006 fetchStatus[tid] == Squashing) {
1007 // Switch status to running if fetch isn't being told to block or
1008 // squash this cycle.
1009 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1010 tid);
1011
1012 fetchStatus[tid] = Running;
1013
1014 return true;
1015 }
1016
1017 // If we've reached this point, we have not gotten any signals that
1018 // cause fetch to change its status. Fetch remains the same as before.
1019 return false;
1020 }
1021
1022 template<class Impl>
1023 void
1024 DefaultFetch<Impl>::fetch(bool &status_change)
1025 {
1026 //////////////////////////////////////////
1027 // Start actual fetch
1028 //////////////////////////////////////////
1029 int tid = getFetchingThread(fetchPolicy);
1030
1031 if (tid == -1 || drainPending) {
1032 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1033
1034 // Breaks looping condition in tick()
1035 threadFetched = numFetchingThreads;
1036 return;
1037 }
1038
1039 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1040
1041 // The current PC.
1042 Addr &fetch_PC = PC[tid];
1043
1044 // Fault code for memory access.
1045 Fault fault = NoFault;
1046
1047 // If returning from the delay of a cache miss, then update the status
1048 // to running, otherwise do the cache access. Possibly move this up
1049 // to tick() function.
1050 if (fetchStatus[tid] == IcacheAccessComplete) {
1051 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1052 tid);
1053
1054 fetchStatus[tid] = Running;
1055 status_change = true;
1056 } else if (fetchStatus[tid] == Running) {
1057 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1058 "instruction, starting at PC %08p.\n",
1059 tid, fetch_PC);
1060
1061 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1062 if (!fetch_success) {
1063 if (cacheBlocked) {
1064 ++icacheStallCycles;
1065 } else {
1066 ++fetchMiscStallCycles;
1067 }
1068 return;
1069 }
1070 } else {
1071 if (fetchStatus[tid] == Idle) {
1072 ++fetchIdleCycles;
1073 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1074 } else if (fetchStatus[tid] == Blocked) {
1075 ++fetchBlockedCycles;
1076 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1077 } else if (fetchStatus[tid] == Squashing) {
1078 ++fetchSquashCycles;
1079 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1080 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1081 ++icacheStallCycles;
1082 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1083 }
1084
1085 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1086 // fetch should do nothing.
1087 return;
1088 }
1089
1090 ++fetchCycles;
1091
1092 // If we had a stall due to an icache miss, then return.
1093 if (fetchStatus[tid] == IcacheWaitResponse) {
1094 ++icacheStallCycles;
1095 status_change = true;
1096 return;
1097 }
1098
1099 Addr next_PC = fetch_PC;
1100 Addr next_NPC = next_PC + instSize;
1101 InstSeqNum inst_seq;
1102 MachInst inst;
1103 ExtMachInst ext_inst;
1104 // @todo: Fix this hack.
1105 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1106
1107 if (fault == NoFault) {
1108 // If the read of the first instruction was successful, then grab the
1109 // instructions from the rest of the cache line and put them into the
1110 // queue heading to decode.
1111
1112 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1113 "decode.\n",tid);
1114
1115 // Need to keep track of whether or not a predicted branch
1116 // ended this fetch block.
1117 bool predicted_branch = false;
1118
1119 // Need to keep track of whether or not a delay slot
1120 // instruction has been fetched
1121
1122 for (;
1123 offset < cacheBlkSize &&
1124 numInst < fetchWidth &&
1125 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1126 ++numInst) {
1127
1128 // Get a sequence number.
1129 inst_seq = cpu->getAndIncrementInstSeq();
1130
1131 // Make sure this is a valid index.
1132 assert(offset <= cacheBlkSize - instSize);
1133
1134 // Get the instruction from the array of the cache line.
1135 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1136 (&cacheData[tid][offset]));
1137
1138 #if THE_ISA == ALPHA_ISA
1139 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1140 #elif THE_ISA == SPARC_ISA
1141 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1142 #endif
1143
1144 // Create a new DynInst from the instruction fetched.
1145 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1146 next_PC,
1147 inst_seq, cpu);
1148 instruction->setTid(tid);
1149
1150 instruction->setASID(tid);
1151
1152 instruction->setThreadState(cpu->thread[tid]);
1153
1154 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1155 "[sn:%lli]\n",
1156 tid, instruction->readPC(), inst_seq);
1157
1158 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1159 tid, instruction->staticInst->disassemble(fetch_PC));
1160
1161 instruction->traceData =
1162 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1163 instruction->staticInst,
1164 instruction->readPC());
1165
1166 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1167 next_NPC);
1168
1169 // Add instruction to the CPU's list of instructions.
1170 instruction->setInstListIt(cpu->addInst(instruction));
1171
1172 // Write the instruction to the first slot in the queue
1173 // that heads to decode.
1174 toDecode->insts[numInst] = instruction;
1175
1176 toDecode->size++;
1177
1178 // Increment stat of fetched instructions.
1179 ++fetchedInsts;
1180
1181 // Move to the next instruction, unless we have a branch.
1182 fetch_PC = next_PC;
1183
1184 if (instruction->isQuiesce()) {
1185 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1186 curTick);
1187 fetchStatus[tid] = QuiescePending;
1188 ++numInst;
1189 status_change = true;
1190 break;
1191 }
1192
1193 offset += instSize;
1194
1195 #if ISA_HAS_DELAY_SLOT
1196 if (predicted_branch) {
1197 delaySlotInfo[tid].branchSeqNum = inst_seq;
1198
1199 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1200 tid, inst_seq);
1201 continue;
1202 } else if (delaySlotInfo[tid].numInsts > 0) {
1203 --delaySlotInfo[tid].numInsts;
1204
1205 // It's OK to set PC to target of branch
1206 if (delaySlotInfo[tid].numInsts == 0) {
1207 delaySlotInfo[tid].targetReady = true;
1208
1209 // Break the looping condition
1210 predicted_branch = true;
1211 }
1212
1213 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1214 " process.\n", tid, delaySlotInfo[tid].numInsts);
1215 }
1216 #endif
1217 }
1218
1219 if (offset >= cacheBlkSize) {
1220 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1221 "block.\n", tid);
1222 } else if (numInst >= fetchWidth) {
1223 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1224 "for this cycle.\n", tid);
1225 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1226 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1227 "instruction encountered.\n", tid);
1228 }
1229 }
1230
1231 if (numInst > 0) {
1232 wroteToTimeBuffer = true;
1233 }
1234
1235 // Now that fetching is completed, update the PC to signify what the next
1236 // cycle will be.
1237 if (fault == NoFault) {
1238 #if ISA_HAS_DELAY_SLOT
1239 if (delaySlotInfo[tid].targetReady &&
1240 delaySlotInfo[tid].numInsts == 0) {
1241 // Set PC to target
1242 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1243 nextPC[tid] = next_PC + instSize; //next_NPC
1244 nextNPC[tid] = next_PC + (2 * instSize);
1245
1246 delaySlotInfo[tid].targetReady = false;
1247 } else {
1248 PC[tid] = next_PC;
1249 nextPC[tid] = next_NPC;
1250 nextNPC[tid] = next_NPC + instSize;
1251 }
1252
1253 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1254 #else
1255 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1256 PC[tid] = next_PC;
1257 nextPC[tid] = next_PC + instSize;
1258 #endif
1259 } else {
1260 // We shouldn't be in an icache miss and also have a fault (an ITB
1261 // miss)
1262 if (fetchStatus[tid] == IcacheWaitResponse) {
1263 panic("Fetch should have exited prior to this!");
1264 }
1265
1266 // Send the fault to commit. This thread will not do anything
1267 // until commit handles the fault. The only other way it can
1268 // wake up is if a squash comes along and changes the PC.
1269 #if FULL_SYSTEM
1270 assert(numInst != fetchWidth);
1271 // Get a sequence number.
1272 inst_seq = cpu->getAndIncrementInstSeq();
1273 // We will use a nop in order to carry the fault.
1274 ext_inst = TheISA::NoopMachInst;
1275
1276 // Create a new DynInst from the dummy nop.
1277 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1278 next_PC,
1279 inst_seq, cpu);
1280 instruction->setPredTarg(next_PC + instSize);
1281 instruction->setTid(tid);
1282
1283 instruction->setASID(tid);
1284
1285 instruction->setThreadState(cpu->thread[tid]);
1286
1287 instruction->traceData = NULL;
1288
1289 instruction->setInstListIt(cpu->addInst(instruction));
1290
1291 instruction->fault = fault;
1292
1293 toDecode->insts[numInst] = instruction;
1294 toDecode->size++;
1295
1296 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1297
1298 fetchStatus[tid] = TrapPending;
1299 status_change = true;
1300 #else // !FULL_SYSTEM
1301 fetchStatus[tid] = TrapPending;
1302 status_change = true;
1303
1304 #endif // FULL_SYSTEM
1305 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1306 tid, fault->name(), PC[tid]);
1307 }
1308 }
1309
1310 template<class Impl>
1311 void
1312 DefaultFetch<Impl>::recvRetry()
1313 {
1314 if (retryPkt != NULL) {
1315 assert(cacheBlocked);
1316 assert(retryTid != -1);
1317 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1318
1319 if (icachePort->sendTiming(retryPkt)) {
1320 fetchStatus[retryTid] = IcacheWaitResponse;
1321 retryPkt = NULL;
1322 retryTid = -1;
1323 cacheBlocked = false;
1324 }
1325 } else {
1326 assert(retryTid == -1);
1327 // Access has been squashed since it was sent out. Just clear
1328 // the cache being blocked.
1329 cacheBlocked = false;
1330 }
1331 }
1332
1333 ///////////////////////////////////////
1334 // //
1335 // SMT FETCH POLICY MAINTAINED HERE //
1336 // //
1337 ///////////////////////////////////////
1338 template<class Impl>
1339 int
1340 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1341 {
1342 if (numThreads > 1) {
1343 switch (fetch_priority) {
1344
1345 case SingleThread:
1346 return 0;
1347
1348 case RoundRobin:
1349 return roundRobin();
1350
1351 case IQ:
1352 return iqCount();
1353
1354 case LSQ:
1355 return lsqCount();
1356
1357 case Branch:
1358 return branchCount();
1359
1360 default:
1361 return -1;
1362 }
1363 } else {
1364 int tid = *((*activeThreads).begin());
1365
1366 if (fetchStatus[tid] == Running ||
1367 fetchStatus[tid] == IcacheAccessComplete ||
1368 fetchStatus[tid] == Idle) {
1369 return tid;
1370 } else {
1371 return -1;
1372 }
1373 }
1374
1375 }
1376
1377
1378 template<class Impl>
1379 int
1380 DefaultFetch<Impl>::roundRobin()
1381 {
1382 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1383 std::list<unsigned>::iterator end = priorityList.end();
1384
1385 int high_pri;
1386
1387 while (pri_iter != end) {
1388 high_pri = *pri_iter;
1389
1390 assert(high_pri <= numThreads);
1391
1392 if (fetchStatus[high_pri] == Running ||
1393 fetchStatus[high_pri] == IcacheAccessComplete ||
1394 fetchStatus[high_pri] == Idle) {
1395
1396 priorityList.erase(pri_iter);
1397 priorityList.push_back(high_pri);
1398
1399 return high_pri;
1400 }
1401
1402 pri_iter++;
1403 }
1404
1405 return -1;
1406 }
1407
1408 template<class Impl>
1409 int
1410 DefaultFetch<Impl>::iqCount()
1411 {
1412 std::priority_queue<unsigned> PQ;
1413
1414 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1415
1416 while (threads != (*activeThreads).end()) {
1417 unsigned tid = *threads++;
1418
1419 PQ.push(fromIEW->iewInfo[tid].iqCount);
1420 }
1421
1422 while (!PQ.empty()) {
1423
1424 unsigned high_pri = PQ.top();
1425
1426 if (fetchStatus[high_pri] == Running ||
1427 fetchStatus[high_pri] == IcacheAccessComplete ||
1428 fetchStatus[high_pri] == Idle)
1429 return high_pri;
1430 else
1431 PQ.pop();
1432
1433 }
1434
1435 return -1;
1436 }
1437
1438 template<class Impl>
1439 int
1440 DefaultFetch<Impl>::lsqCount()
1441 {
1442 std::priority_queue<unsigned> PQ;
1443
1444
1445 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1446
1447 while (threads != (*activeThreads).end()) {
1448 unsigned tid = *threads++;
1449
1450 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1451 }
1452
1453 while (!PQ.empty()) {
1454
1455 unsigned high_pri = PQ.top();
1456
1457 if (fetchStatus[high_pri] == Running ||
1458 fetchStatus[high_pri] == IcacheAccessComplete ||
1459 fetchStatus[high_pri] == Idle)
1460 return high_pri;
1461 else
1462 PQ.pop();
1463
1464 }
1465
1466 return -1;
1467 }
1468
1469 template<class Impl>
1470 int
1471 DefaultFetch<Impl>::branchCount()
1472 {
1473 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1474 panic("Branch Count Fetch policy unimplemented\n");
1475 return *threads;
1476 }