Remote GDB support has been changed to use inheritance. Alpha should work, but isn...
[gem5.git] / src / cpu / o3 / fetch_impl.hh
1 /*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32 #include "config/use_checker.hh"
33
34 #include "arch/isa_traits.hh"
35 #include "arch/utility.hh"
36 #include "cpu/checker/cpu.hh"
37 #include "cpu/exetrace.hh"
38 #include "cpu/o3/fetch.hh"
39 #include "mem/packet.hh"
40 #include "mem/request.hh"
41 #include "sim/byteswap.hh"
42 #include "sim/host.hh"
43 #include "sim/root.hh"
44
45 #if FULL_SYSTEM
46 #include "arch/tlb.hh"
47 #include "arch/vtophys.hh"
48 #include "sim/system.hh"
49 #endif // FULL_SYSTEM
50
51 #include <algorithm>
52
53 template<class Impl>
54 Tick
55 DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56 {
57 panic("DefaultFetch doesn't expect recvAtomic callback!");
58 return curTick;
59 }
60
61 template<class Impl>
62 void
63 DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64 {
65 warn("Default fetch doesn't update it's state from a functional call.");
66 }
67
68 template<class Impl>
69 void
70 DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
71 {
72 if (status == RangeChange)
73 return;
74
75 panic("DefaultFetch doesn't expect recvStatusChange callback!");
76 }
77
78 template<class Impl>
79 bool
80 DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
81 {
82 if (pkt->isResponse()) {
83 fetch->processCacheCompletion(pkt);
84 }
85 //else Snooped a coherence request, just return
86 return true;
87 }
88
89 template<class Impl>
90 void
91 DefaultFetch<Impl>::IcachePort::recvRetry()
92 {
93 fetch->recvRetry();
94 }
95
96 template<class Impl>
97 DefaultFetch<Impl>::DefaultFetch(Params *params)
98 : branchPred(params),
99 decodeToFetchDelay(params->decodeToFetchDelay),
100 renameToFetchDelay(params->renameToFetchDelay),
101 iewToFetchDelay(params->iewToFetchDelay),
102 commitToFetchDelay(params->commitToFetchDelay),
103 fetchWidth(params->fetchWidth),
104 cacheBlocked(false),
105 retryPkt(NULL),
106 retryTid(-1),
107 numThreads(params->numberOfThreads),
108 numFetchingThreads(params->smtNumFetchingThreads),
109 interruptPending(false),
110 drainPending(false),
111 switchedOut(false)
112 {
113 if (numThreads > Impl::MaxThreads)
114 fatal("numThreads is not a valid value\n");
115
116 // Set fetch stage's status to inactive.
117 _status = Inactive;
118
119 std::string policy = params->smtFetchPolicy;
120
121 // Convert string to lowercase
122 std::transform(policy.begin(), policy.end(), policy.begin(),
123 (int(*)(int)) tolower);
124
125 // Figure out fetch policy
126 if (policy == "singlethread") {
127 fetchPolicy = SingleThread;
128 if (numThreads > 1)
129 panic("Invalid Fetch Policy for a SMT workload.");
130 } else if (policy == "roundrobin") {
131 fetchPolicy = RoundRobin;
132 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
133 } else if (policy == "branch") {
134 fetchPolicy = Branch;
135 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
136 } else if (policy == "iqcount") {
137 fetchPolicy = IQ;
138 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
139 } else if (policy == "lsqcount") {
140 fetchPolicy = LSQ;
141 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
142 } else {
143 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
144 " RoundRobin,LSQcount,IQcount}\n");
145 }
146
147 // Size of cache block.
148 cacheBlkSize = 64;
149
150 // Create mask to get rid of offset bits.
151 cacheBlkMask = (cacheBlkSize - 1);
152
153 for (int tid=0; tid < numThreads; tid++) {
154
155 fetchStatus[tid] = Running;
156
157 priorityList.push_back(tid);
158
159 memReq[tid] = NULL;
160
161 // Create space to store a cache line.
162 cacheData[tid] = new uint8_t[cacheBlkSize];
163 cacheDataPC[tid] = 0;
164 cacheDataValid[tid] = false;
165
166 delaySlotInfo[tid].branchSeqNum = -1;
167 delaySlotInfo[tid].numInsts = 0;
168 delaySlotInfo[tid].targetAddr = 0;
169 delaySlotInfo[tid].targetReady = false;
170
171 stalls[tid].decode = false;
172 stalls[tid].rename = false;
173 stalls[tid].iew = false;
174 stalls[tid].commit = false;
175 }
176
177 // Get the size of an instruction.
178 instSize = sizeof(TheISA::MachInst);
179 }
180
181 template <class Impl>
182 std::string
183 DefaultFetch<Impl>::name() const
184 {
185 return cpu->name() + ".fetch";
186 }
187
188 template <class Impl>
189 void
190 DefaultFetch<Impl>::regStats()
191 {
192 icacheStallCycles
193 .name(name() + ".icacheStallCycles")
194 .desc("Number of cycles fetch is stalled on an Icache miss")
195 .prereq(icacheStallCycles);
196
197 fetchedInsts
198 .name(name() + ".Insts")
199 .desc("Number of instructions fetch has processed")
200 .prereq(fetchedInsts);
201
202 fetchedBranches
203 .name(name() + ".Branches")
204 .desc("Number of branches that fetch encountered")
205 .prereq(fetchedBranches);
206
207 predictedBranches
208 .name(name() + ".predictedBranches")
209 .desc("Number of branches that fetch has predicted taken")
210 .prereq(predictedBranches);
211
212 fetchCycles
213 .name(name() + ".Cycles")
214 .desc("Number of cycles fetch has run and was not squashing or"
215 " blocked")
216 .prereq(fetchCycles);
217
218 fetchSquashCycles
219 .name(name() + ".SquashCycles")
220 .desc("Number of cycles fetch has spent squashing")
221 .prereq(fetchSquashCycles);
222
223 fetchIdleCycles
224 .name(name() + ".IdleCycles")
225 .desc("Number of cycles fetch was idle")
226 .prereq(fetchIdleCycles);
227
228 fetchBlockedCycles
229 .name(name() + ".BlockedCycles")
230 .desc("Number of cycles fetch has spent blocked")
231 .prereq(fetchBlockedCycles);
232
233 fetchedCacheLines
234 .name(name() + ".CacheLines")
235 .desc("Number of cache lines fetched")
236 .prereq(fetchedCacheLines);
237
238 fetchMiscStallCycles
239 .name(name() + ".MiscStallCycles")
240 .desc("Number of cycles fetch has spent waiting on interrupts, or "
241 "bad addresses, or out of MSHRs")
242 .prereq(fetchMiscStallCycles);
243
244 fetchIcacheSquashes
245 .name(name() + ".IcacheSquashes")
246 .desc("Number of outstanding Icache misses that were squashed")
247 .prereq(fetchIcacheSquashes);
248
249 fetchNisnDist
250 .init(/* base value */ 0,
251 /* last value */ fetchWidth,
252 /* bucket size */ 1)
253 .name(name() + ".rateDist")
254 .desc("Number of instructions fetched each cycle (Total)")
255 .flags(Stats::pdf);
256
257 idleRate
258 .name(name() + ".idleRate")
259 .desc("Percent of cycles fetch was idle")
260 .prereq(idleRate);
261 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
262
263 branchRate
264 .name(name() + ".branchRate")
265 .desc("Number of branch fetches per cycle")
266 .flags(Stats::total);
267 branchRate = fetchedBranches / cpu->numCycles;
268
269 fetchRate
270 .name(name() + ".rate")
271 .desc("Number of inst fetches per cycle")
272 .flags(Stats::total);
273 fetchRate = fetchedInsts / cpu->numCycles;
274
275 branchPred.regStats();
276 }
277
278 template<class Impl>
279 void
280 DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
281 {
282 DPRINTF(Fetch, "Setting the CPU pointer.\n");
283 cpu = cpu_ptr;
284
285 // Name is finally available, so create the port.
286 icachePort = new IcachePort(this);
287
288 #if USE_CHECKER
289 if (cpu->checker) {
290 cpu->checker->setIcachePort(icachePort);
291 }
292 #endif
293
294 // Schedule fetch to get the correct PC from the CPU
295 // scheduleFetchStartupEvent(1);
296
297 // Fetch needs to start fetching instructions at the very beginning,
298 // so it must start up in active state.
299 switchToActive();
300 }
301
302 template<class Impl>
303 void
304 DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
305 {
306 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
307 timeBuffer = time_buffer;
308
309 // Create wires to get information from proper places in time buffer.
310 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
311 fromRename = timeBuffer->getWire(-renameToFetchDelay);
312 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
313 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
314 }
315
316 template<class Impl>
317 void
318 DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
319 {
320 DPRINTF(Fetch, "Setting active threads list pointer.\n");
321 activeThreads = at_ptr;
322 }
323
324 template<class Impl>
325 void
326 DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
327 {
328 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
329 fetchQueue = fq_ptr;
330
331 // Create wire to write information to proper place in fetch queue.
332 toDecode = fetchQueue->getWire(0);
333 }
334
335 template<class Impl>
336 void
337 DefaultFetch<Impl>::initStage()
338 {
339 // Setup PC and nextPC with initial state.
340 for (int tid = 0; tid < numThreads; tid++) {
341 PC[tid] = cpu->readPC(tid);
342 nextPC[tid] = cpu->readNextPC(tid);
343 #if ISA_HAS_DELAY_SLOT
344 nextNPC[tid] = cpu->readNextNPC(tid);
345 #endif
346 }
347 }
348
349 template<class Impl>
350 void
351 DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
352 {
353 unsigned tid = pkt->req->getThreadNum();
354
355 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
356
357 // Only change the status if it's still waiting on the icache access
358 // to return.
359 if (fetchStatus[tid] != IcacheWaitResponse ||
360 pkt->req != memReq[tid] ||
361 isSwitchedOut()) {
362 ++fetchIcacheSquashes;
363 delete pkt->req;
364 delete pkt;
365 return;
366 }
367
368 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
369 cacheDataValid[tid] = true;
370
371 if (!drainPending) {
372 // Wake up the CPU (if it went to sleep and was waiting on
373 // this completion event).
374 cpu->wakeCPU();
375
376 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
377 tid);
378
379 switchToActive();
380 }
381
382 // Only switch to IcacheAccessComplete if we're not stalled as well.
383 if (checkStall(tid)) {
384 fetchStatus[tid] = Blocked;
385 } else {
386 fetchStatus[tid] = IcacheAccessComplete;
387 }
388
389 // Reset the mem req to NULL.
390 delete pkt->req;
391 delete pkt;
392 memReq[tid] = NULL;
393 }
394
395 template <class Impl>
396 bool
397 DefaultFetch<Impl>::drain()
398 {
399 // Fetch is ready to drain at any time.
400 cpu->signalDrained();
401 drainPending = true;
402 return true;
403 }
404
405 template <class Impl>
406 void
407 DefaultFetch<Impl>::resume()
408 {
409 drainPending = false;
410 }
411
412 template <class Impl>
413 void
414 DefaultFetch<Impl>::switchOut()
415 {
416 switchedOut = true;
417 // Branch predictor needs to have its state cleared.
418 branchPred.switchOut();
419 }
420
421 template <class Impl>
422 void
423 DefaultFetch<Impl>::takeOverFrom()
424 {
425 // Reset all state
426 for (int i = 0; i < Impl::MaxThreads; ++i) {
427 stalls[i].decode = 0;
428 stalls[i].rename = 0;
429 stalls[i].iew = 0;
430 stalls[i].commit = 0;
431 PC[i] = cpu->readPC(i);
432 nextPC[i] = cpu->readNextPC(i);
433 #if ISA_HAS_DELAY_SLOT
434 nextNPC[i] = cpu->readNextNPC(i);
435 delaySlotInfo[i].branchSeqNum = -1;
436 delaySlotInfo[i].numInsts = 0;
437 delaySlotInfo[i].targetAddr = 0;
438 delaySlotInfo[i].targetReady = false;
439 #endif
440 fetchStatus[i] = Running;
441 }
442 numInst = 0;
443 wroteToTimeBuffer = false;
444 _status = Inactive;
445 switchedOut = false;
446 interruptPending = false;
447 branchPred.takeOverFrom();
448 }
449
450 template <class Impl>
451 void
452 DefaultFetch<Impl>::wakeFromQuiesce()
453 {
454 DPRINTF(Fetch, "Waking up from quiesce\n");
455 // Hopefully this is safe
456 // @todo: Allow other threads to wake from quiesce.
457 fetchStatus[0] = Running;
458 }
459
460 template <class Impl>
461 inline void
462 DefaultFetch<Impl>::switchToActive()
463 {
464 if (_status == Inactive) {
465 DPRINTF(Activity, "Activating stage.\n");
466
467 cpu->activateStage(O3CPU::FetchIdx);
468
469 _status = Active;
470 }
471 }
472
473 template <class Impl>
474 inline void
475 DefaultFetch<Impl>::switchToInactive()
476 {
477 if (_status == Active) {
478 DPRINTF(Activity, "Deactivating stage.\n");
479
480 cpu->deactivateStage(O3CPU::FetchIdx);
481
482 _status = Inactive;
483 }
484 }
485
486 template <class Impl>
487 bool
488 DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
489 Addr &next_NPC)
490 {
491 // Do branch prediction check here.
492 // A bit of a misnomer...next_PC is actually the current PC until
493 // this function updates it.
494 bool predict_taken;
495
496 if (!inst->isControl()) {
497 #if ISA_HAS_DELAY_SLOT
498 Addr cur_PC = next_PC;
499 next_PC = cur_PC + instSize; //next_NPC;
500 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
501 inst->setPredTarg(next_NPC);
502 #else
503 next_PC = next_PC + instSize;
504 inst->setPredTarg(next_PC);
505 #endif
506 return false;
507 }
508
509 int tid = inst->threadNumber;
510 #if ISA_HAS_DELAY_SLOT
511 Addr pred_PC = next_PC;
512 predict_taken = branchPred.predict(inst, pred_PC, tid);
513
514 if (predict_taken) {
515 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
516 } else {
517 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
518 }
519
520 if (predict_taken) {
521 next_PC = next_NPC;
522 next_NPC = pred_PC;
523
524 // Update delay slot info
525 ++delaySlotInfo[tid].numInsts;
526 delaySlotInfo[tid].targetAddr = pred_PC;
527 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
528 delaySlotInfo[tid].numInsts);
529 } else { // !predict_taken
530 if (inst->isCondDelaySlot()) {
531 next_PC = pred_PC;
532 // The delay slot is skipped here if there is on
533 // prediction
534 } else {
535 next_PC = next_NPC;
536 // No need to declare a delay slot here since
537 // there is no for the pred. target to jump
538 }
539
540 next_NPC = next_NPC + instSize;
541 }
542 #else
543 predict_taken = branchPred.predict(inst, next_PC, tid);
544 #endif
545
546 ++fetchedBranches;
547
548 if (predict_taken) {
549 ++predictedBranches;
550 }
551
552 return predict_taken;
553 }
554
555 template <class Impl>
556 bool
557 DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
558 {
559 Fault fault = NoFault;
560
561 //AlphaDep
562 if (cacheBlocked || isSwitchedOut() ||
563 (interruptPending && (fetch_PC & 0x3))) {
564 // Hold off fetch from getting new instructions when:
565 // Cache is blocked, or
566 // while an interrupt is pending and we're not in PAL mode, or
567 // fetch is switched out.
568 return false;
569 }
570
571 // Align the fetch PC so it's at the start of a cache block.
572 fetch_PC = icacheBlockAlignPC(fetch_PC);
573
574 // If we've already got the block, no need to try to fetch it again.
575 if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
576 return true;
577 }
578
579 // Setup the memReq to do a read of the first instruction's address.
580 // Set the appropriate read size and flags as well.
581 // Build request here.
582 RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, 0,
583 fetch_PC, cpu->readCpuId(), tid);
584
585 memReq[tid] = mem_req;
586
587 // Translate the instruction request.
588 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
589
590 // In the case of faults, the fetch stage may need to stall and wait
591 // for the ITB miss to be handled.
592
593 // If translation was successful, attempt to read the first
594 // instruction.
595 if (fault == NoFault) {
596 #if 0
597 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
598 memReq[tid]->isUncacheable()) {
599 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
600 "misspeculating path)!",
601 memReq[tid]->paddr);
602 ret_fault = TheISA::genMachineCheckFault();
603 return false;
604 }
605 #endif
606
607 // Build packet here.
608 PacketPtr data_pkt = new Packet(mem_req,
609 Packet::ReadReq, Packet::Broadcast);
610 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
611
612 cacheDataPC[tid] = fetch_PC;
613 cacheDataValid[tid] = false;
614
615 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
616
617 fetchedCacheLines++;
618
619 // Now do the timing access to see whether or not the instruction
620 // exists within the cache.
621 if (!icachePort->sendTiming(data_pkt)) {
622 if (data_pkt->result == Packet::BadAddress) {
623 fault = TheISA::genMachineCheckFault();
624 delete mem_req;
625 memReq[tid] = NULL;
626 }
627 assert(retryPkt == NULL);
628 assert(retryTid == -1);
629 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
630 fetchStatus[tid] = IcacheWaitRetry;
631 retryPkt = data_pkt;
632 retryTid = tid;
633 cacheBlocked = true;
634 return false;
635 }
636
637 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
638
639 lastIcacheStall[tid] = curTick;
640
641 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
642 "response.\n", tid);
643
644 fetchStatus[tid] = IcacheWaitResponse;
645 } else {
646 delete mem_req;
647 memReq[tid] = NULL;
648 }
649
650 ret_fault = fault;
651 return true;
652 }
653
654 template <class Impl>
655 inline void
656 DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
657 {
658 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
659 tid, new_PC);
660
661 PC[tid] = new_PC;
662 nextPC[tid] = new_PC + instSize;
663 nextNPC[tid] = new_PC + (2 * instSize);
664
665 // Clear the icache miss if it's outstanding.
666 if (fetchStatus[tid] == IcacheWaitResponse) {
667 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
668 tid);
669 memReq[tid] = NULL;
670 }
671
672 // Get rid of the retrying packet if it was from this thread.
673 if (retryTid == tid) {
674 assert(cacheBlocked);
675 cacheBlocked = false;
676 retryTid = -1;
677 delete retryPkt->req;
678 delete retryPkt;
679 retryPkt = NULL;
680 }
681
682 fetchStatus[tid] = Squashing;
683
684 ++fetchSquashCycles;
685 }
686
687 template<class Impl>
688 void
689 DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
690 const InstSeqNum &seq_num,
691 unsigned tid)
692 {
693 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
694
695 doSquash(new_PC, tid);
696
697 #if ISA_HAS_DELAY_SLOT
698 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
699 delaySlotInfo[tid].numInsts = 0;
700 delaySlotInfo[tid].targetAddr = 0;
701 delaySlotInfo[tid].targetReady = false;
702 }
703 #endif
704
705 // Tell the CPU to remove any instructions that are in flight between
706 // fetch and decode.
707 cpu->removeInstsUntil(seq_num, tid);
708 }
709
710 template<class Impl>
711 bool
712 DefaultFetch<Impl>::checkStall(unsigned tid) const
713 {
714 bool ret_val = false;
715
716 if (cpu->contextSwitch) {
717 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
718 ret_val = true;
719 } else if (stalls[tid].decode) {
720 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
721 ret_val = true;
722 } else if (stalls[tid].rename) {
723 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
724 ret_val = true;
725 } else if (stalls[tid].iew) {
726 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
727 ret_val = true;
728 } else if (stalls[tid].commit) {
729 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
730 ret_val = true;
731 }
732
733 return ret_val;
734 }
735
736 template<class Impl>
737 typename DefaultFetch<Impl>::FetchStatus
738 DefaultFetch<Impl>::updateFetchStatus()
739 {
740 //Check Running
741 std::list<unsigned>::iterator threads = (*activeThreads).begin();
742
743 while (threads != (*activeThreads).end()) {
744
745 unsigned tid = *threads++;
746
747 if (fetchStatus[tid] == Running ||
748 fetchStatus[tid] == Squashing ||
749 fetchStatus[tid] == IcacheAccessComplete) {
750
751 if (_status == Inactive) {
752 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
753
754 if (fetchStatus[tid] == IcacheAccessComplete) {
755 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
756 "completion\n",tid);
757 }
758
759 cpu->activateStage(O3CPU::FetchIdx);
760 }
761
762 return Active;
763 }
764 }
765
766 // Stage is switching from active to inactive, notify CPU of it.
767 if (_status == Active) {
768 DPRINTF(Activity, "Deactivating stage.\n");
769
770 cpu->deactivateStage(O3CPU::FetchIdx);
771 }
772
773 return Inactive;
774 }
775
776 template <class Impl>
777 void
778 DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
779 bool squash_delay_slot, unsigned tid)
780 {
781 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
782
783 doSquash(new_PC, tid);
784
785 #if ISA_HAS_DELAY_SLOT
786 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
787 delaySlotInfo[tid].numInsts = 0;
788 delaySlotInfo[tid].targetAddr = 0;
789 delaySlotInfo[tid].targetReady = false;
790 }
791
792 // Tell the CPU to remove any instructions that are not in the ROB.
793 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
794 #else
795 // Tell the CPU to remove any instructions that are not in the ROB.
796 cpu->removeInstsNotInROB(tid, true, 0);
797 #endif
798 }
799
800 template <class Impl>
801 void
802 DefaultFetch<Impl>::tick()
803 {
804 std::list<unsigned>::iterator threads = (*activeThreads).begin();
805 bool status_change = false;
806
807 wroteToTimeBuffer = false;
808
809 while (threads != (*activeThreads).end()) {
810 unsigned tid = *threads++;
811
812 // Check the signals for each thread to determine the proper status
813 // for each thread.
814 bool updated_status = checkSignalsAndUpdate(tid);
815 status_change = status_change || updated_status;
816 }
817
818 DPRINTF(Fetch, "Running stage.\n");
819
820 // Reset the number of the instruction we're fetching.
821 numInst = 0;
822
823 #if FULL_SYSTEM
824 if (fromCommit->commitInfo[0].interruptPending) {
825 interruptPending = true;
826 }
827
828 if (fromCommit->commitInfo[0].clearInterrupt) {
829 interruptPending = false;
830 }
831 #endif
832
833 for (threadFetched = 0; threadFetched < numFetchingThreads;
834 threadFetched++) {
835 // Fetch each of the actively fetching threads.
836 fetch(status_change);
837 }
838
839 // Record number of instructions fetched this cycle for distribution.
840 fetchNisnDist.sample(numInst);
841
842 if (status_change) {
843 // Change the fetch stage status if there was a status change.
844 _status = updateFetchStatus();
845 }
846
847 // If there was activity this cycle, inform the CPU of it.
848 if (wroteToTimeBuffer || cpu->contextSwitch) {
849 DPRINTF(Activity, "Activity this cycle.\n");
850
851 cpu->activityThisCycle();
852 }
853 }
854
855 template <class Impl>
856 bool
857 DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
858 {
859 // Update the per thread stall statuses.
860 if (fromDecode->decodeBlock[tid]) {
861 stalls[tid].decode = true;
862 }
863
864 if (fromDecode->decodeUnblock[tid]) {
865 assert(stalls[tid].decode);
866 assert(!fromDecode->decodeBlock[tid]);
867 stalls[tid].decode = false;
868 }
869
870 if (fromRename->renameBlock[tid]) {
871 stalls[tid].rename = true;
872 }
873
874 if (fromRename->renameUnblock[tid]) {
875 assert(stalls[tid].rename);
876 assert(!fromRename->renameBlock[tid]);
877 stalls[tid].rename = false;
878 }
879
880 if (fromIEW->iewBlock[tid]) {
881 stalls[tid].iew = true;
882 }
883
884 if (fromIEW->iewUnblock[tid]) {
885 assert(stalls[tid].iew);
886 assert(!fromIEW->iewBlock[tid]);
887 stalls[tid].iew = false;
888 }
889
890 if (fromCommit->commitBlock[tid]) {
891 stalls[tid].commit = true;
892 }
893
894 if (fromCommit->commitUnblock[tid]) {
895 assert(stalls[tid].commit);
896 assert(!fromCommit->commitBlock[tid]);
897 stalls[tid].commit = false;
898 }
899
900 // Check squash signals from commit.
901 if (fromCommit->commitInfo[tid].squash) {
902
903 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
904 "from commit.\n",tid);
905
906 #if ISA_HAS_DELAY_SLOT
907 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
908 #else
909 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
910 #endif
911 // In any case, squash.
912 squash(fromCommit->commitInfo[tid].nextPC,
913 doneSeqNum,
914 fromCommit->commitInfo[tid].squashDelaySlot,
915 tid);
916
917 // Also check if there's a mispredict that happened.
918 if (fromCommit->commitInfo[tid].branchMispredict) {
919 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
920 fromCommit->commitInfo[tid].nextPC,
921 fromCommit->commitInfo[tid].branchTaken,
922 tid);
923 } else {
924 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
925 tid);
926 }
927
928 return true;
929 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
930 // Update the branch predictor if it wasn't a squashed instruction
931 // that was broadcasted.
932 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
933 }
934
935 // Check ROB squash signals from commit.
936 if (fromCommit->commitInfo[tid].robSquashing) {
937 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
938
939 // Continue to squash.
940 fetchStatus[tid] = Squashing;
941
942 return true;
943 }
944
945 // Check squash signals from decode.
946 if (fromDecode->decodeInfo[tid].squash) {
947 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
948 "from decode.\n",tid);
949
950 // Update the branch predictor.
951 if (fromDecode->decodeInfo[tid].branchMispredict) {
952 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
953 fromDecode->decodeInfo[tid].nextPC,
954 fromDecode->decodeInfo[tid].branchTaken,
955 tid);
956 } else {
957 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
958 tid);
959 }
960
961 if (fetchStatus[tid] != Squashing) {
962
963 #if ISA_HAS_DELAY_SLOT
964 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
965 #else
966 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
967 #endif
968 // Squash unless we're already squashing
969 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
970 doneSeqNum,
971 tid);
972
973 return true;
974 }
975 }
976
977 if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
978 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
979
980 fetchStatus[tid] = Blocked;
981
982 return true;
983 }
984
985 if (fetchStatus[tid] == Blocked ||
986 fetchStatus[tid] == Squashing) {
987 // Switch status to running if fetch isn't being told to block or
988 // squash this cycle.
989 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
990 tid);
991
992 fetchStatus[tid] = Running;
993
994 return true;
995 }
996
997 // If we've reached this point, we have not gotten any signals that
998 // cause fetch to change its status. Fetch remains the same as before.
999 return false;
1000 }
1001
1002 template<class Impl>
1003 void
1004 DefaultFetch<Impl>::fetch(bool &status_change)
1005 {
1006 //////////////////////////////////////////
1007 // Start actual fetch
1008 //////////////////////////////////////////
1009 int tid = getFetchingThread(fetchPolicy);
1010
1011 if (tid == -1 || drainPending) {
1012 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1013
1014 // Breaks looping condition in tick()
1015 threadFetched = numFetchingThreads;
1016 return;
1017 }
1018
1019 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1020
1021 // The current PC.
1022 Addr &fetch_PC = PC[tid];
1023
1024 // Fault code for memory access.
1025 Fault fault = NoFault;
1026
1027 // If returning from the delay of a cache miss, then update the status
1028 // to running, otherwise do the cache access. Possibly move this up
1029 // to tick() function.
1030 if (fetchStatus[tid] == IcacheAccessComplete) {
1031 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1032 tid);
1033
1034 fetchStatus[tid] = Running;
1035 status_change = true;
1036 } else if (fetchStatus[tid] == Running) {
1037 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1038 "instruction, starting at PC %08p.\n",
1039 tid, fetch_PC);
1040
1041 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1042 if (!fetch_success) {
1043 if (cacheBlocked) {
1044 ++icacheStallCycles;
1045 } else {
1046 ++fetchMiscStallCycles;
1047 }
1048 return;
1049 }
1050 } else {
1051 if (fetchStatus[tid] == Idle) {
1052 ++fetchIdleCycles;
1053 } else if (fetchStatus[tid] == Blocked) {
1054 ++fetchBlockedCycles;
1055 } else if (fetchStatus[tid] == Squashing) {
1056 ++fetchSquashCycles;
1057 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1058 ++icacheStallCycles;
1059 }
1060
1061 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1062 // fetch should do nothing.
1063 return;
1064 }
1065
1066 ++fetchCycles;
1067
1068 // If we had a stall due to an icache miss, then return.
1069 if (fetchStatus[tid] == IcacheWaitResponse) {
1070 ++icacheStallCycles;
1071 status_change = true;
1072 return;
1073 }
1074
1075 Addr next_PC = fetch_PC;
1076 Addr next_NPC = next_PC + instSize;
1077 InstSeqNum inst_seq;
1078 MachInst inst;
1079 ExtMachInst ext_inst;
1080 // @todo: Fix this hack.
1081 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1082
1083 if (fault == NoFault) {
1084 // If the read of the first instruction was successful, then grab the
1085 // instructions from the rest of the cache line and put them into the
1086 // queue heading to decode.
1087
1088 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1089 "decode.\n",tid);
1090
1091 // Need to keep track of whether or not a predicted branch
1092 // ended this fetch block.
1093 bool predicted_branch = false;
1094
1095 // Need to keep track of whether or not a delay slot
1096 // instruction has been fetched
1097
1098 for (;
1099 offset < cacheBlkSize &&
1100 numInst < fetchWidth &&
1101 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1102 ++numInst) {
1103
1104 // Get a sequence number.
1105 inst_seq = cpu->getAndIncrementInstSeq();
1106
1107 // Make sure this is a valid index.
1108 assert(offset <= cacheBlkSize - instSize);
1109
1110 // Get the instruction from the array of the cache line.
1111 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1112 (&cacheData[tid][offset]));
1113
1114 #if THE_ISA == ALPHA_ISA
1115 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1116 #elif THE_ISA == SPARC_ISA
1117 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1118 #endif
1119
1120 // Create a new DynInst from the instruction fetched.
1121 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1122 next_PC,
1123 inst_seq, cpu);
1124 instruction->setTid(tid);
1125
1126 instruction->setASID(tid);
1127
1128 instruction->setThreadState(cpu->thread[tid]);
1129
1130 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1131 "[sn:%lli]\n",
1132 tid, instruction->readPC(), inst_seq);
1133
1134 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1135 tid, instruction->staticInst->disassemble(fetch_PC));
1136
1137 instruction->traceData =
1138 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1139 instruction->staticInst,
1140 instruction->readPC());
1141
1142 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1143 next_NPC);
1144
1145 // Add instruction to the CPU's list of instructions.
1146 instruction->setInstListIt(cpu->addInst(instruction));
1147
1148 // Write the instruction to the first slot in the queue
1149 // that heads to decode.
1150 toDecode->insts[numInst] = instruction;
1151
1152 toDecode->size++;
1153
1154 // Increment stat of fetched instructions.
1155 ++fetchedInsts;
1156
1157 // Move to the next instruction, unless we have a branch.
1158 fetch_PC = next_PC;
1159
1160 if (instruction->isQuiesce()) {
1161 // warn("%lli: Quiesce instruction encountered, halting fetch!",
1162 // curTick);
1163 fetchStatus[tid] = QuiescePending;
1164 ++numInst;
1165 status_change = true;
1166 break;
1167 }
1168
1169 offset += instSize;
1170
1171 #if ISA_HAS_DELAY_SLOT
1172 if (predicted_branch) {
1173 delaySlotInfo[tid].branchSeqNum = inst_seq;
1174
1175 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1176 tid, inst_seq);
1177 continue;
1178 } else if (delaySlotInfo[tid].numInsts > 0) {
1179 --delaySlotInfo[tid].numInsts;
1180
1181 // It's OK to set PC to target of branch
1182 if (delaySlotInfo[tid].numInsts == 0) {
1183 delaySlotInfo[tid].targetReady = true;
1184
1185 // Break the looping condition
1186 predicted_branch = true;
1187 }
1188
1189 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1190 " process.\n", tid, delaySlotInfo[tid].numInsts);
1191 }
1192 #endif
1193 }
1194
1195 if (offset >= cacheBlkSize) {
1196 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1197 "block.\n", tid);
1198 } else if (numInst >= fetchWidth) {
1199 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1200 "for this cycle.\n", tid);
1201 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1202 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1203 "instruction encountered.\n", tid);
1204 }
1205 }
1206
1207 if (numInst > 0) {
1208 wroteToTimeBuffer = true;
1209 }
1210
1211 // Now that fetching is completed, update the PC to signify what the next
1212 // cycle will be.
1213 if (fault == NoFault) {
1214 #if ISA_HAS_DELAY_SLOT
1215 if (delaySlotInfo[tid].targetReady &&
1216 delaySlotInfo[tid].numInsts == 0) {
1217 // Set PC to target
1218 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1219 nextPC[tid] = next_PC + instSize; //next_NPC
1220 nextNPC[tid] = next_PC + (2 * instSize);
1221
1222 delaySlotInfo[tid].targetReady = false;
1223 } else {
1224 PC[tid] = next_PC;
1225 nextPC[tid] = next_NPC;
1226 nextNPC[tid] = next_NPC + instSize;
1227 }
1228
1229 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1230 #else
1231 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1232 PC[tid] = next_PC;
1233 nextPC[tid] = next_PC + instSize;
1234 #endif
1235 } else {
1236 // We shouldn't be in an icache miss and also have a fault (an ITB
1237 // miss)
1238 if (fetchStatus[tid] == IcacheWaitResponse) {
1239 panic("Fetch should have exited prior to this!");
1240 }
1241
1242 // Send the fault to commit. This thread will not do anything
1243 // until commit handles the fault. The only other way it can
1244 // wake up is if a squash comes along and changes the PC.
1245 #if FULL_SYSTEM
1246 assert(numInst != fetchWidth);
1247 // Get a sequence number.
1248 inst_seq = cpu->getAndIncrementInstSeq();
1249 // We will use a nop in order to carry the fault.
1250 ext_inst = TheISA::NoopMachInst;
1251
1252 // Create a new DynInst from the dummy nop.
1253 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1254 next_PC,
1255 inst_seq, cpu);
1256 instruction->setPredTarg(next_PC + instSize);
1257 instruction->setTid(tid);
1258
1259 instruction->setASID(tid);
1260
1261 instruction->setThreadState(cpu->thread[tid]);
1262
1263 instruction->traceData = NULL;
1264
1265 instruction->setInstListIt(cpu->addInst(instruction));
1266
1267 instruction->fault = fault;
1268
1269 toDecode->insts[numInst] = instruction;
1270 toDecode->size++;
1271
1272 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1273
1274 fetchStatus[tid] = TrapPending;
1275 status_change = true;
1276
1277 // warn("%lli fault (%d) detected @ PC %08p", curTick, fault, PC[tid]);
1278 #else // !FULL_SYSTEM
1279 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1280 #endif // FULL_SYSTEM
1281 }
1282 }
1283
1284 template<class Impl>
1285 void
1286 DefaultFetch<Impl>::recvRetry()
1287 {
1288 if (retryPkt != NULL) {
1289 assert(cacheBlocked);
1290 assert(retryTid != -1);
1291 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1292
1293 if (icachePort->sendTiming(retryPkt)) {
1294 fetchStatus[retryTid] = IcacheWaitResponse;
1295 retryPkt = NULL;
1296 retryTid = -1;
1297 cacheBlocked = false;
1298 }
1299 } else {
1300 assert(retryTid == -1);
1301 // Access has been squashed since it was sent out. Just clear
1302 // the cache being blocked.
1303 cacheBlocked = false;
1304 }
1305 }
1306
1307 ///////////////////////////////////////
1308 // //
1309 // SMT FETCH POLICY MAINTAINED HERE //
1310 // //
1311 ///////////////////////////////////////
1312 template<class Impl>
1313 int
1314 DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1315 {
1316 if (numThreads > 1) {
1317 switch (fetch_priority) {
1318
1319 case SingleThread:
1320 return 0;
1321
1322 case RoundRobin:
1323 return roundRobin();
1324
1325 case IQ:
1326 return iqCount();
1327
1328 case LSQ:
1329 return lsqCount();
1330
1331 case Branch:
1332 return branchCount();
1333
1334 default:
1335 return -1;
1336 }
1337 } else {
1338 int tid = *((*activeThreads).begin());
1339
1340 if (fetchStatus[tid] == Running ||
1341 fetchStatus[tid] == IcacheAccessComplete ||
1342 fetchStatus[tid] == Idle) {
1343 return tid;
1344 } else {
1345 return -1;
1346 }
1347 }
1348
1349 }
1350
1351
1352 template<class Impl>
1353 int
1354 DefaultFetch<Impl>::roundRobin()
1355 {
1356 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1357 std::list<unsigned>::iterator end = priorityList.end();
1358
1359 int high_pri;
1360
1361 while (pri_iter != end) {
1362 high_pri = *pri_iter;
1363
1364 assert(high_pri <= numThreads);
1365
1366 if (fetchStatus[high_pri] == Running ||
1367 fetchStatus[high_pri] == IcacheAccessComplete ||
1368 fetchStatus[high_pri] == Idle) {
1369
1370 priorityList.erase(pri_iter);
1371 priorityList.push_back(high_pri);
1372
1373 return high_pri;
1374 }
1375
1376 pri_iter++;
1377 }
1378
1379 return -1;
1380 }
1381
1382 template<class Impl>
1383 int
1384 DefaultFetch<Impl>::iqCount()
1385 {
1386 std::priority_queue<unsigned> PQ;
1387
1388 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1389
1390 while (threads != (*activeThreads).end()) {
1391 unsigned tid = *threads++;
1392
1393 PQ.push(fromIEW->iewInfo[tid].iqCount);
1394 }
1395
1396 while (!PQ.empty()) {
1397
1398 unsigned high_pri = PQ.top();
1399
1400 if (fetchStatus[high_pri] == Running ||
1401 fetchStatus[high_pri] == IcacheAccessComplete ||
1402 fetchStatus[high_pri] == Idle)
1403 return high_pri;
1404 else
1405 PQ.pop();
1406
1407 }
1408
1409 return -1;
1410 }
1411
1412 template<class Impl>
1413 int
1414 DefaultFetch<Impl>::lsqCount()
1415 {
1416 std::priority_queue<unsigned> PQ;
1417
1418
1419 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1420
1421 while (threads != (*activeThreads).end()) {
1422 unsigned tid = *threads++;
1423
1424 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1425 }
1426
1427 while (!PQ.empty()) {
1428
1429 unsigned high_pri = PQ.top();
1430
1431 if (fetchStatus[high_pri] == Running ||
1432 fetchStatus[high_pri] == IcacheAccessComplete ||
1433 fetchStatus[high_pri] == Idle)
1434 return high_pri;
1435 else
1436 PQ.pop();
1437
1438 }
1439
1440 return -1;
1441 }
1442
1443 template<class Impl>
1444 int
1445 DefaultFetch<Impl>::branchCount()
1446 {
1447 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1448 panic("Branch Count Fetch policy unimplemented\n");
1449 return *threads;
1450 }